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Multivariate probability distribution for sewer system

vulnerability assessment under data-limited conditions

G. Del Giudice, R. Padulano and D. Siciliano
ABSTRACT
The lack of geometrical and hydraulic information about sewer networks often excludes the

adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The

present paper describes a novel statistical procedure for defining the prioritization scheme for

preventive maintenance strategies based on a small sample of failure data collected by the Sewer

Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer

parameters as continuous statistical variables and accounting for their interdependences. After a

statistical analysis of maintenance interventions, the most important available factors affecting

the process are selected and their mutual correlations identified. Then, after a Box-Cox

transformation of the original variables, a methodology is provided for the evaluation of a

vulnerability map of the sewer network by adopting a joint multivariate normal distribution with

different parameter sets. The goodness-of-fit is eventually tested for each distribution by means

of a multivariate plotting position. The developed methodology is expected to assist municipal

engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill

rehabilitation requirements.
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NOTATION
AD
 asset database
AIC
 Akaike index
a
 pipe age (-)
B
 pipe width (m)
d
 cover depth (m)
de
 equivalent diameter (m)
f
 theoretical pdf (-)
H
 pipe height (m)
ID
 incident database
L
 log-likelihood function
l
 pipe length (m)
M
 model label
MSE
 mean square error
m2
 Mahalanobis distance
N
 number of failure events (-)
p
 number of variables (-)
SSE
 square sum of errors
sh
 shape factor (-)
sl
 slope (-)
x
 statistical variable
α
 Chi-squared probability
λ
 Box-Cox transformation parameter
μ
 mean
Σ
 variance-covariance matrix
σ
 standard deviation
The following subscripts and superscripts are used in this

paper:
T
 transformed variable;
i
 statistical variable, ranging between 1 and p
j
 empirical observation, ranging between 1 and N
k
 empirical observation, ranging between 1 and N
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INTRODUCTION

A sewer network typically reproduces the street planimetry,

resulting in a complex and widespread infrastructure which
needs specific maintenance planning and scheduling.
Because of its extreme diffusion in urban areas (Ariaratnam
et al. ), failures in a sewer network can cause consider-

able damage, such as traffic disruption, sinkholes, back-ups,
spills and flooding, and corruption of the nearest water
bodies. All considered, the in-charge authorities must

develop managing strategies which can guarantee an effi-
cient service to population.

The field of asset management has overcome a paradigm

shift from an a posteriori approach, responding to failures
with rehabilitation and replacement projects, to an a priori
approach, predicting failures before they occur and mitigat-

ing the risk through risk assessment and preventive
maintenance strategies (Allbee & Byrneb ). A successful
asset management program should provide prioritization
strategies for funds management by adopting predictive

tools to anticipate sewers failure and to assess the risks
associated with such failures (Fenner ; WRC ).

A large number of papers deal with the quantification of

the deteriorating process of infrastructures, especially invol-
ving wastewater; such deterioration models must provide a
predictive tool to assess the failure probability of sewers at

any given time. However, sewer failures result from a com-
plex process that is not only time-dependent but it is
affected by other parameters whose influence on failure
probability must be carefully determined (Davies et al.
a; Baur & Herz ; Hahn et al. ). Such factors
can be roughly separated in two groups relating to structural
and hydraulic deterioration, respectively (Davies et al.
a; Wirahadikusumah et al. ; Del Giudice & Farina
). The structural deterioration involves the weakening
of pipe structural integrity resulting in an eventual collapse,

whereas hydraulic deterioration refers to the reduced ability
of the sewer to transport sewage resulting in surcharges,
spills, or flooding. Various sewer deterioration models

have been used in the literature to assess the condition of
sanitary and storm sewers; examples are statistical, determi-
nistic and artificial intelligence models (Kleiner & Rajani
; Savic et al. ; Tran et al. ; Berardi et al. ;
Yamijala et al. ; Khan et al. ). Most of them imply
records of pipe failures over a number of years for the pre-
diction of pipe deterioration due to the aging process and

consequent failure rates; however, time-dependent data are
difficult to achieve, so that they often prove unavailable
for sewer networks (Egger et al. ). Furthermore, the

wastewater infrastructure building process usually spans
over the centuries with limited or no data available; another
problem is the absence of a standardized method for the

description of sewer conditions apart from those involving
expensive CCTV inspections, regulated by international
norms such as EN 13508-2 (CEN ), so that in many
countries there is a general lack of systematic information

about sewer networks (Fenner ). In turn, the lack of
data contributes to the lack of available modeling tools to
predict failure patterns to assess the risks associated with

the physical damage and the consequent disruption of
service.

Because of the above-mentioned problems, failure

models are often requested which can account for easily col-
lectable physical data concerning the asset and generic
information about historical records of pipe failure events.
The present paper provides an analysis of Naples combined

sewer network (Italy): for this system both an asset database
and a failure database are available for the development of a
model aiming to locate the sewer branches prone to failure

by means of a statistical analysis of failure records. The pro-
posed model considers sewer information in the failure
dataset as a set of statistical variables. As a novelty element,

the proposed analysis is possible when a correlation
between variables is present, which means the hypothesis
of stochastic independence is violated. Moreover, the par-

ameters will be treated as continuous variables, whereas
several statistical models can be found in the literature
that require a division in classes, so that sewer parameters
must be considered as discrete variables (Lei & Saegrov

; Caruso et al. ; Savic et al. ; Wright et al. ).
DATABASE OVERVIEW AND PREPROCESSING

Asset database

The asset database (AD), made up of about 50,000 records

each corresponding to a sewer segment, shows an overview
of the combined sewer system of Naples; for each record,
information about pipe shape, width B in [m], height H in
[m] and length l in [m] is available; also, invert and surface

level above a fixed datum for both the ends of each pipe
are provided. No other information was inferable from the
available data: thus, the proposed analysis only relies on

basic physical information, inevitably neglecting par-
ameters, such as pipe material or ground conditions,
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which have a key role in the pipe deteriorating process

(Davies et al. a). However, the database needed a pre-
processing operation in order to eliminate records where
some information was missing or unreliable (Savic et al.
); this reduced the number of records to about 40,000.
For the remaining pipes, some additional parameters were
computed, namely an equivalent diameter de, in [m], and a
shape parameter sh, defined as follows:

de ¼
ffiffiffiffiffiffiffiffiffiffiffi
4BH
π

r
; sh ¼ B

H
(1)

in order to numerically account for the different possible

cross-section shapes, sh¼ 1 implying a circular or square
cross-section. Also, slope sl, in [m/m], was computed as
the ratio of elevation difference between the ends of the
pipe to the pipe length; cover depth d, in [m], was computed

as a difference between surface and invert level. Eventually,
each record contains pipe id, equivalent diameter de in [m],
cover depth d in [m], slope sl in [m/m] and shape factor sh
(dimensionless); these parameters can be considered as the
most common physical quantities related to blockage
events. For instance, shape and dimensions have an influ-

ence on the transport capacity of the sewer mains. Slope
Figure 1 | Distribution of sewer parameters within AD and incident database (ID).
also deeply influences water velocity: high slope implies

high velocity and a subsequent abrasion of the sewer
walls, whereas mild slope implies low velocity, with possible
sedimentation of solid material and obstructions.

In order to obtain a more complete analysis, an
additional sewer factor should be considered, namely
sewer age, which is an important parameter in the deterio-
ration process of a conduit (Davies et al. a). Age is

presumably related to the construction material used for
sewers over time, shifting from stone to plastic; it also
implies changes in the shape of sewer sections. No infor-

mation about age is reported in the AD, so that a rough
approximation is held by giving each sewer an age referred
to the construction period of the corresponding urban area

(Davies et al. b; Ahmadi et al. ): in the city of
Naples three different urban expansion periods can be
found, corresponding to years <1900, 1900–1950 and
>1950, respectively. For the sake of mathematical analysis,

a polytomous age variable a was considered, equal to 1
when construction period was before 1900, equal to 2
when construction period was between 1900 and 1950,

and equal to 3 when construction period was after 1950.
Histograms in Figure 1 show the frequency distribution

of the above-mentioned sewer factors, namely, for each
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class, the total length of sewer trunks belonging to that class

divided by the entire network length (about 1,150 km) and
expressed as a percentage. For each parameter, the range
of variation was sectioned in a different number of classes

to give a realistic representation of frequencies.
Frequencies in Figure 1 show a deep asymmetry with

respect to all the considered sewer parameters: about 90%
of the whole network extension is characterized by diam-

eters ranging from the minimum to 2 m, cover depths up
to 6 m, slopes up to 0.02 m/m, and shape factors up to 1.5.
As concerns age, 60% of sewers belong to the third class

(>1950).

Incident database

Information concerning failure events was provided by the

Sewer Office of the Municipality of Naples in the shape of
an incident database (ID) covering years 2002–2011; the
database contains, for each record (total 914 records), the

event id, date and geographic point location of the failure;
then, each point was associated with the corresponding
pipe and its physical characteristics by means of a geographi-

cal information system (GIS) tool. Database only refers to
ordinary maintenance operations due to blockage events:
they will be referred to as ‘failure events’.

Figure 1 shows the distribution of physical parameters

within the ID. Histograms show that the highest failure fre-
quency, specifically the ratio of the number of failure events
for each class to the total number of failures, occurs for

small diameters, small slopes, small depths and for high rec-
tangular cross-sections, showing a deep asymmetry in the
frequency distribution of events for each of the considered

parameters. It should be noted that the pipes provided
with these features also have the largest number of occur-
rences in the AD. Similarly, almost 60% of failure records
belong to the most recent pipe class, but this is merely

because class 3 is also the more diffusely spread in the city.
METHODOLOGY

Statistical distribution of failure frequency

It is possible to conceive the incident dataset as a failure stat-

istical sample; for each parameter a theoretical pdf f (xi) can
be conceived that best suits the observed one, with i¼ 1,…p
being p the number of considered parameters. However, this

procedure is not enough to characterize failure frequency as
there could be interactions among the parameters. Thus,
each f(xi) can be considered as a marginal pdf for a multi-

variate distribution referring to the vector of variables
�x ¼ [x1, . . . xp]; if variables are independent, the multivariate
pdf f(�x) can be computed as the product of marginal pdfs. If

a correlation exists, the joint pdf specifies in a more complex
expression which must take the variance-covariance matrix
into account. To understand about possible correlations
between pairs of variables it is more convenient to analyze

the matrix of Pearson indices which gives dimensionless
correlation estimates.

In order to obtain information concerning sewer system

failure probability, a multinormal distribution function can
be tested, since such a model can account for dependences
among variables by means of the variance-covariance

matrix. If original variables have a different marginal pdf
each, it is possible that a normal model does not fit with
their multivariate distribution. However, if single variables
have normal marginal pdfs, the possibility that their multi-

variate pdf is normal increases. To facilitate this, the
Box-Cox transformation (Box & Cox ) can be applied
to each sewer parameter: this allows for representing the

marginal pdfs as normal probability distributions, and the
normality of each parameter distribution can be tested by
means of a Q-Q plot. Further, the bivariate normal distri-

butions for each possible pair of parameters are assumed
and tested by plotting contour lines of the bivariate
normal density functions. Finally, a joint p-variate normal

distribution is adopted; a normality test can be conducted
by means of a Chi-squared plot (Johnson & Wichern ).
Marginal probability distributions

The first step of the proposed methodology consists of the
evaluation of the marginal pdfs of each physical parameter;

this is done by applying the Box-Cox transformation (Box &
Cox ). According to Box and Cox, every random vari-
able can be interpreted with a normal distribution if a

suitable transformation is applied to the original variable
by means of a transformation coefficient λ that maximizes
the log-likelihood function L(λ) (Box & Cox ). Once
λ has been computed, the normally distributed variables are

xT ¼ xλ � 1
λ

if λ ≠ 0

xT ¼ ln(x) if λ ¼ 0

(2)

The normality of transformed data can be tested for each
variable by means of a Q-Q plot which compares the
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theoretical and the observed quantiles, involving the mean

and standard deviation of transformed data; normality is
confirmed if the fitting line of data resembles the 1:1 line.
Joint bivariate and p-variate normal distributions

Once the marginal pdfs are known for each of the con-
sidered parameters, the normal multivariate density

distribution is tested for estimating the failure probability
of the sewer network

f(xTj1, xTj2, . . . , xTjp) ¼ f(�xTj)

¼ 1

(2π) p=2 � ΣTj j1=2
� exp � (�xTj � �μT )

TΣT
�1(�xTj � �μT )

2

" #
(3)

where �xTj is the vector of transformed variables referring to
observation j (with j varying between 1 and N), �μT is the

mean vector of transformed variables, and ΣT is the var-
iance-covariance matrix referring to �xT . For a univariate
distribution, the argument of the exponential measures the

square distance between each data and the mean value;
this can be generalized for N multivariate observations on
p variables obtaining the square Mahalanobis distance, or

generalized distance, m2 (Härdle & Simar )

m2(xTj1, xTj2, . . . , xTjp) ¼ m2(�xTj) ¼ m2
Tj

¼ (�xTj � �μT )
TΣT

�1(�xTj � �μT ) (4)

with all the symbols previously specified; if m2
Tj ¼ 0, which

implies the vector of observations coincides with the mean
vector, the p-variate normal density has its maximum
value. For a multivariate normal distribution, m2

Tj is a
random variable with a Chi-squared distribution with p
degrees of freedom (Johnson & Wichern ). Substituting
Equation (4) into Equation (3), normal multivariate distri-
bution can be expressed as

f(�xTj) ¼ 1

(2π) p=2 � ΣTj j1=2
� exp �

m2
Tj

2

" #
(5)

Once the marginal distributions for each parameter are
confirmed normal, an intermediate step consists of testing

the normality of the bivariate distributions corresponding
to each possible pair of transformed variables in the case
study (Johnson & Wichern ). The test consists of the

observation of data scatter plots; for each pair, normality
is proved if about 50% of the data are included within the
ellipse corresponding to the 50th percentile of a

Chi-squared distribution with 2 degrees of freedom, and,
simultaneously, about 95% of the data are included in
the ellipse corresponding to the 95th percentile of the

same distribution (Johnson & Wichern ). Note that
for a Chi-squared distribution m2

Tj(α ¼ 0:50) ¼ 1:39 and
m2

Tj(α ¼ 0:05) ¼ 5:99.
The final step of the procedure consists of verifying the

hypothesis of a multivariate normal distribution accounting
for all the p variables altogether; the test can be performed
by evaluating the multivariate generalized distances by

means of Equation (4) with a variance-covariance matrix
including the whole set of available parameters; then, the
computed distances are compared with the theoretical quan-

tiles of a Chi-squared distribution with p degrees of freedom
by means of a so-called Chi-squared plot (Johnson &
Wichern ). The test is passed if data have a fitting line
that resembles the 1:1 line; also, 50% data must have

m2
Tj � m2

Tj(α ¼ 0:5) and 95% data must have
m2

Tj � m2
Tj(α ¼ 0:05). Note that for a Chi-squared function

with five degrees of freedom m2
Tj(α ¼ 0:5) ¼ 4:35 and

m2
Tj(α ¼ 0:05) ¼ 11:07.
Adaptation to data and goodness-of-fit measures

Different multivariate distributions can be obtained by vary-
ing the set of involved variables. This can be done in order to

investigate about the amount of information obtained by
adding explanatory variables to the model, since this
cannot be inferred by simply evaluating the goodness-of-fit

of multivariate Chi-squared plots.
Given a number M of possible models, each differing for

number of variables p or specific variables in the dataset, a
comparison can be done between the computed joint cumu-

lative distribution function (cdf) Φm given by model m (with
m¼ 1…M ) and an empirical joint cumulative frequency Fm.
In this paper the adopted multivariate plotting position

formula is the one proposed by Gringorten ()

F(�xTk) ¼ Pr {�xT � �xTk} ¼ Pr {xT1j � xT1k and xT2j � xT2k
and . . . and xTpj � xTpk}

¼

Noof {xT1j � xT1k and xT2j � xT2k and . . . and

xTpj � xTpk}� 0:44
N þ 0:12

(6)

In Equation (6) N is the sample size, p is the number of

variables in the model and j, k¼ 1…N. If the model perfectly
predicts failure probability, scatter plot of pairs (F, Φ)
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resembles the 1:1 line. However, given the complexity of

sewer failure process, a satisfying adaptation can be assessed
if the interpolating line is close to the 1:1 line, with residuals
having zero mean and a suitably small standard deviation.

An objective criterion to establish which is the best model
among the tested ones is the Akaike criterion (Akaike
) AIC

AICm ¼ N � log (MSEm)þ 2 � pm
¼ N � log SSEm

N � pm

� �
þ 2 � pm (7)

SSEm ¼
XN
j¼1

(Fmj � Φmj)
2 (8)

where MSE is the mean square error, derived from the

square sum of errors (SSE), and pm is the number of vari-
ables in the model m. The model with best adaptation to
data is the one having minimum AIC.
CASE STUDY AND DISCUSSION

To prove the robustness of the proposed methodology, cali-

bration of the multivariate model was done by using a split
sample technique. The original ID was randomly divided
into a calibration sample (N¼ 460) and a validation

sample (N¼ 454). The former was used to compute trans-
formation coefficients λ, and all the normality tests were
performed as discussed in previous sections. The latter

was treated by using the same λ values, along with the
mean vector and the variance-covariance matrix of the cali-
bration sample, to perform all the previously described

normality tests. Table 1 provides the mean vector and the
Pearson matrix of the whole incident dataIDset. A deep cor-
relation between diameter and cover depth can be found:
this was expected since larger pipes require deeper
Table 1 | ID mean values, Box-Cox λ values and Pearson matrix (%)

Variables mean and λ values Pearson matrix

μ λ de

de 0.957 (m) 0.171 de 100

d 2.566 (m) �0.027 d 45.8

sl 0.027 (m/m) 0.112 sl �2.8

sh 0.743 (�) �0.134 sh 1.3

a 2.311 (�) 1.838 a �9.2
excavation operations in order to be laid. Small depen-

dences can also be found between slope, age and shape
factor.

The Box-Cox transformation was applied to the five vari-

ables of the calibration sample, namely de, d, sl, sh and a,
obtaining λ values shown in Table 1. Figure 2 shows the
log-likelihood functions for λ ranging between �3 and 3. It
can be noted that peak log-likelihoods are obtained for λ

values very close to 0; this is not entirely true for age, but
in this case the likelihood function is so flat that its peak L
is very close to L(λ¼ 0). As a results, marginal pdfs were

considered lognormal for all the variables of interest.
Figure 3 shows Q-Q plots for transformed equivalent

diameter deT, transformed cover depth dT, transformed

slope slT and transformed shape factor shT; the Q-Q plot
for transformed age is not shown because its graphical
meaning is not significant, given that variable can assume
only three values. For all variables normality is confirmed.

As concerns bivariate distributions, Table 2 shows per-
centages of data laying within 50th and 95th quantile
ellipses. Values confirm the assumption of normal bivariate

distributions for each pair of variables, except for the pair
de-a. For this pair, the first percentage is considerably
lower than 50%, whereas the second percentage is higher

than 95%; this was not unexpected, since the concept of
age district is a rough way of accounting for pipe age.

Once the bivariate normal distributions are confirmed,

four multivariate models were assumed: the first (M1) con-
siders all the available sewer parameters in the dataset,
namely equivalent diameter, cover depth, slope, shape
factor and age (p¼ 5); the second (M2) neglects age infor-

mation assuming that the incident dataset consists of
ordinary maintenance operations, which do not strictly
depend on pipe deterioration conditions (p¼ 4); the third

(M3) and fourth (M4) also neglect cover depth and diameter
respectively, based on the fact that de and d are deeply
correlated as shown in Table 1 (p¼ 3). Figure 4 shows

Chi-squared plots for all the multivariate distributions; the
d sl sh a

45.8 �2.8 1.3 �9.2

100 �1.4 �19.1 6.4

�1.4 100 �23.2 �26.5

�19.1 �23.2 100 27.5

6.4 �26.5 27.5 100



Figure 2 | Log-likelihood function for sewer parameters.

757 G. D. Giudice et al. | Multivariate probability distribution for sewer systems Water Science & Technology | 73.4 | 2016
Chi-squared plots thoroughly confirm the hypothesis of mul-
tinormal joint distribution for all models, as the 1:1 line
perfectly fits data, so that none of the four considered

models can be rejected. Thus, for all of them a comparison
between computed and observed cdf was evaluated by
means of Equations (6)–(8).

Figure 5 shows this comparison for all four models, for

both calibration and validation samples. The first important
consideration is that failure prevision is falsified when age
is considered within the parameters set, being the computed
Figure 3 | Q-Q plot of sewer parameters with transformed variables for calibration (gray circle

Table 2 | Percentages of data laying within 50th percentile (above main diagonal) and 95th pe

Calibration sample (%)

de d sl sh a

de – 53.5 50.9 51.7 43.0

d 92.4 – 54.3 52.2 49.8

sl 93.9 94.3 – 48.3 52.6

sh 94.6 95.2 96.1 – 53.0

a 98.3 95.2 96.1 98.0 –
probability systematically smaller than the observed one

(Figure 5(a)). This could either happen because age is not
an explanatory variable for blockage events, which do not
physically depend on pipes deteriorating process, or because

the assumption of age district is too rough to represent reality;
this also reflects on bivariate distributions in Table 2 invol-
ving age, whose adaptation to the normal model is the
worst. Once age is removed, the remaining models have simi-

lar adaptation to data, being experimental points aligned
around the 1:1 line with good fit. This is especially true for
M2 and M3, but M3 provides a wider variation of residuals,

as shown in both Figure 5 and Table 3. M4 provides the smal-
lest residual standard deviation, but, as forM1but in a slighter
amount, probability prevision is distorted. Table 3 also shows

AIC values for the models. The above-mentioned consider-
ations about both prevision estimate and standard deviation
of residuals are well summarized in AIC, since the smallest
AIC matches with M2. Note that values in Table 3 are com-

puted for the whole ID.
A second consideration is that removing information

from the dataset, namely moving from left to right in

Figure 6, results in an increasing number of pipes belonging
to the critical class: this underlines the effect of adding vari-
ables as a filter-like behavior, which could facilitate

allocating economic resources when a small budget is avail-
able. If model M1 is selected instead of M2, Figures 6(a)
s) and validation (white circles) samples.

rcentile (below main diagonal) for calibration and validation samples

Validation sample (%)

de d sl sh a

de – 49.8 50.4 53.3 44.9

d 93.6 – 50.0 50.9 47.4

sl 94.1 93.8 – 47.8 50.0

sh 94.9 95.8 96.5 – 52.4

a 98.9 96.9 96.5 97.6 –



Figure 5 | Comparison between theoretical and observed cdf for calibration (gray circles) and validation (white circles) samples for models M1 (a), M2 (b), M3 (c), and M4 (d).

Table 3 | Goodness-of-fit measures

Model p μresiduals σresiduals SSE × 102 AIC

M1 5 0.0126 0.0241 67.67 �2849

M2 4 0.0030 0.0202 38.19 �3079

M3 3 0.0035 0.0309 88.02 �2750

M4 3 0.0078 0.0210 45.60 �3011

Figure 4 | Chi-squared plot with transformed variables for calibration (gray circles) and validation (white circles) sample for models M1 (a), M2 (b), M3 (c), and M4 (d).
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and 6(b) show that the number of critical pipes is lower for

M1 than M2; however, an in-deep fitting analysis as the one
provided in Figure 5 shows that the advantage of having a
highly selective model is thwarted by its unreliability when

describing the sample: in other words, M1 considers non-
critical pipes which actually are.

Figure 7 shows goodness of fit and failure frequency
when a model M5 is considered that assumes variables de,
Figure 6 | ID failure frequency computed with models M1 (a), M2 (b), M3 (c), and M4 (d).
d, sl and sh as uncorrelated. Figure 7(a) particularly shows

how M5 is completely unable to describe failure frequency
within the sample, especially for low probability values.

Figure 8 shows the results of model M2 applied to the

Naples sewer system, with λ values, mean vector and var-
iance-covariance matrix computed for the calibration
sample. The use of a GIS software enables the evaluation
of the most critical sewer pipes as those corresponding to

the maximum values of f(�xT ); density values were divided
into five classes according to Jenks optimization method
(Jenks ), the red one corresponding to the maximum f
values. The map can be adopted to obtain a prioritization
ranking of the sewer network, to locate the trunks which
are particularly prone to failure, where prompt interventions

are needed: a greater selectivity of critical sewer trunks can
be obtained by increasing the number of classes.



Figure 7 | Comparison between theoretical and observed cdf (a) and ID failure frequency

(b) computed with model M5.

Figure 8 | Spatial distribution of failure probability within the city of Naples computed

with model M2.

759 G. D. Giudice et al. | Multivariate probability distribution for sewer systems Water Science & Technology | 73.4 | 2016
CONCLUSIONS

Basing on an AD and failure events records of the sewer

system in the city of Naples (Italy), only containing basic
physical information about sewer pipes, a statistical model
is provided that allows for the estimation of failure prob-
ability and the location of critical sewers. The model can

be successfully coupled to an intervention strategy aimed
at optimizing the allocation of economic resources for the
management of a sewer network. In the case study, marginal

cdfs are lognormal, whereas the best fitting occurs when the
joint failure model neglects age information.

Within the statistical framework, compared to literature

regression models, the proposed procedure does not need a
division of data in classes, so that computing is straightfor-
ward and each variable acts in the model with its own

value; also, dependences among parameters can be taken
into account by means of the variance-covariance matrix.
Moreover, the model is flexible since it can be applied
with any number p of variables, just requiring an increasing

number of marginal and bivariate normal tests. Conversely,
a considerable drawback is that the model is stationary in
the sense that it does not account for variations in time;

also, the ID covers a short number of years. Consequently,
failure probability estimates should be considered as a
short-term provision. Another marginal drawback is that

the model does not automatically update sewer conditions
by taking into account historical records about interven-
tions: this fail is negligible for ordinary maintenance
operations, but could invalidate failure probability estimates

for extraordinary repairs, often entailing entirely substituting
pipes. In this case, the replaced pipes should be removed
from the database as a preliminary operation.
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