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Processes commonly studied at the LargeHadron Collider (LHC) are induced by quarks and gluons inside
the protons of the LHC beams. In this Letter, we demonstrate that, since protons also contain leptons, it is
possible to target lepton-induced processes at the LHC as well. In particular, by picking a lepton from one
beam and a quark from the other beam, we present for the first time a comprehensive analysis of resonant
single leptoquark (LQ) production at a hadron collider. In the case of minimal scalar LQs, we derive novel
bounds that arise from the LHCRun II considering all possible flavor combinations of an electron or a muon
and an up (u), a down (d), a strange, or a charm quark. For the flavor combinations with a u or a d quark, the
obtained limits represent the most stringent constraints to date on LQs of this type. The prospects of our
method at future LHC runs are also explored. Given the discovery reach of the proposed LQ signature, we
argue that dedicated resonance searches in final states featuring a single light lepton and a single light-flavor
jet should be added to the exotics search canon of both the ATLAS and the CMS Collaborations.
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Introduction.—At the Large Hadron Collider (LHC) an
immense number of collisions between quarks and gluons
took place and many more are expected in the upcoming
Run III and the high-luminosity (HL LHC) upgrade. These
collisions have been studied in great detail and have been
used to perform precision measurements of standard model
(SM) processes and to search for physics beyond the SM.
Because of quantum fluctuations, protons, however, also
contain charged leptons, making it possible to study lepton-
induced processes at the LHC as well. The simplest process
of this kind consists of the collision between a lepton (l)
from one proton and a quark (q) from the other proton,
giving rise to the resonant production of an exotic lep-
toquark (LQ) state. LQs are hypothetical colored bosons
that carry both a baryon number and a lepton number [1]—
see [2] for a recent LQ review. Below, taking the case of
LQs as an example, we demonstrate that lepton-induced
processes, which so far have been completely neglected at
the LHC, can be complementary to quark- or gluon-
induced channels in searches for beyond the SM physics.
A number of different searches for LQs have been

considered so far at the LHC. For example, LQs can
be pair produced at hadron colliders via quark fusion

[i.e., qq̄ → LQLQ → ðlqÞðlqÞ] or gluon fusion [i.e.,
gg → LQLQ → ðlqÞðlqÞ]. For sufficiently large LQ-
lepton-quark couplings, also pair production via t-channel
exchange of a lepton becomes relevant, and LQ exchange
contributes to Drell-Yan like dilepton production qq̄ →
lþl− and single LQ production in gq → lþl−q. Both the
ATLAS and the CMS Collaborations have exploited
the different channels to constrain the parameter space
of LQ models (cf. [3–9] for the latest results) and the
subject has also received renewed theoretical interest (see,
e.g., [10–23]).
In this Letter, we develop a new LQ search strategy,

which relies on the fact that once QED interactions are
considered, lepton parton distribution functions (PDFs) of
the proton (p) are generated. The lepton PDFs are small
compared to those of quarks and gluons, since they are
suppressed by two powers of the ratio of the electromag-
netic coupling constant over the strong coupling constant.
A first implementation of a PDF set with leptons was put
forward in [24], that was, however, affected by large
uncertainties. Based upon the so-called LUX method
[25,26], a precise determination of the lepton PDFs has
become available recently [27]. In the following, we will
use the latter lepton PDF determination to compute the
cross sections for resonant single LQ production lq →
LQ → lq in pp collisions, studying final states with a high
transverse momentum (pT) electron (e) or muon (μ) and a
high-pT light-flavor jet (j), to derive bounds on the
parameter space of minimal scalar LQs for all possible
flavor combinations involving first- and second-generation
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leptons and quarks [28]. The corresponding Feynman
diagram is shown in Fig. 1.
LQ interactions.—We follow [18] and consider scalar

LQs which couple only to one lepton and quark flavor,
taking them to be singlets under the SUð2ÞL part of the SM
gauge group. To obtain SUð2ÞL invariant interactions, we
couple the LQs to the SUð2ÞL singlet leptons and quarks,
i.e., the right-handed SM fermions. Using the notation
where all singlet fields are represented by left-handed
charge conjugate fields, the scalar LQ coupling to singlet
electrons and up quarks can then be written as

L ⊃ λeuLQeuðEcUcÞ� þ H:c:; ð1Þ

where the spinor indices of Ec and Uc are contracted
antisymmetrically. In the limit of large scalar LQ masses,
i.e., M ≫ ml; mq, the corresponding total decay width of
the LQ is given by

Γ ¼ jλeuj2
16π

M; ð2Þ

and due to the minimal character of the LQ, it decays
almost exclusively to final states with an electron and an up
quark. The expressions (1) and (2) also apply to all other
flavor combinations after obvious replacements of fields
and indices.
Analysis strategy.—The signal predictions correspond-

ing to s-channel single LQ production pp → LQ → lq are
generated at leading order (LO) using the implementation
of the Lagrangian (1) presented in [14] together with the
LUXlep PDF set, which has been obtained by combining
the lepton PDFs of [27] with the NNPDF3.1luxQED set [31].
Event generation and showering is performed with
MADGRAPH5_aMCNLO [32] and PYTHIA8.2 [33]. Since at
present PYTHIA8.2 cannot handle incoming leptonic partons,
we have replaced all initial-state leptons by photons in the
Les Houches files to shower the events [34]. The parton
shower backward evolution of PYTHIA8.2 then produces
only quarks from photon splitting, so after showering

our simulation includes initial-state quarks instead of
leptons [35].
Our analysis uses experimentally identified jets, elec-

trons, muons, and missing transverse energy (ET;miss).
FastJet3 [37] is used to construct anti-kt jets [38] of radius
R ¼ 0.4. Our analysis is implemented in CheckMATE2 [39],
which employs DELPHES3 [40] as a fast detector simulator.
Detector effects are simulated by smearing the momenta of
the reconstructed objects, and by applying reconstruction
and identification efficiency factors tuned to mimic the
performance of the ATLAS detector. In particular, electron
candidates are required to satisfy the tight identification
criteria of ATLAS [41], while muon candidates must fulfil
the ATLAS quality selection criteria optimized for high-pT
performance [42,43]. The corresponding reconstruction
and identification efficiency for electrons amounts to
90% for pT >500GeV, while for muons the reconstruction
and identification efficiency is 69% (57%) at pT ¼ 1 TeV
(pT ¼ 2.5 TeV)—cf. for example [44,45]. ET;miss is recon-
structed from the sum of the smeared calorimeter deposits,
including an extra smearing factor that effectively para-
metrizes additional QCD activity due to pileup and has
been tuned to match the ATLAS distributions.
The basic selections in our signal region require a

lepton (e or μ) with jηlj < 2.5 and pT;l > 500 GeV and
a light-flavor jet with jηjj < 2.5 and pT;j > 500 GeV. We
furthermore demand ET;miss < 50 GeV, veto events that
contain additional leptons with jηlj<2.5 and pT;l>7GeV
and impose a jet veto on subleading jets with jηjj < 2.5 and
pT;j > 30 GeV. The jet veto limits the amount of hadronic
activity and ensures that the background from tt̄, and s- and
t-channel single top production are negligible in the signal
region.
The dominant background turns out to be W− þ j

production which is generated at next-to-leading order
(NLO) in QCD. Next-to-next-leading order QCD and
electroweak effects that would effectively reduce the size
of the W− þ j background prediction in the phase space
region of interest [46] are not included in our analysis.
Subleading backgrounds arise from Z þ j,WW,W−Z, and
tW production and are simulated at LO and normalized to
the known NLO QCD cross sections. At high values ofmlj

also l− þ j production from an initial-state lepton and
quark via t-channel exchange of a photon or Z boson
represents a relevant irreducible background. We include
this background at LO. For each background process, the
number of events after cuts is fitted and extrapolated to high

invariant lepton-jet masses mlj using e−am
bþc lnmlj

lj . This
functional form is commonly used in experimental searches
(see, e.g., [45]).
In actual experimental analyses the background contri-

butions from events with fake or nonprompt electrons from
the decay of heavy-flavor hadrons is typically extracted
from the data using a matrix method as described, for

FIG. 1. Feynman diagram describing resonant single LQ
production in pp collisions with a final state consisting of a
lepton and a jet.
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example, in [47]. Since we cannot perform such a data-
driven background estimate, we mimic the impact of the
multijet background in our analysis by taking it from the
ATLAS lþ j analysis [48]. Using the auxiliary material of
[48] as provided in [49] we estimate that the ratio of the
multijet to the other e− þ j backgrounds amounts to 28%,
84%, and 142% for mej values of 1 TeV, 3 TeV, and 5 TeV,
respectively.
In Fig. 2 the distributions of the invariant massmej of the

electron and the leading jet are displayed for the SM
backgrounds, and for a benchmark minimal scalar LQ with
mass M ¼ 3 TeV and λeu ¼ 1, after applying the event
selection described above. An integrated luminosity of
100 fb−1 under LHC Run II conditions is assumed. Our
benchmark LQ has a width of Γ ≃ 60 GeV. One observes
that the sum of the SM backgrounds is a steeply falling
distribution, while the LQ signal exhibits a narrow peak as
indicated by the black line. The tt̄, and s- and t-channel single
top backgrounds are not shown, since they are very small.
Systematic uncertainties are treated as follows in our

analysis. The scale (PDF) uncertainties affecting the
dominant W− þ j background have been determined with
MADGRAPH5_aMCNLO. They amount to 4.6% (1.2%), 12%
(4.2%), and 41% (57%) formlj values of 1 TeV, 3 TeV, and
5 TeV, respectively. No systematic uncertainty is applied to
the signal predictions [50]. The individual sources of
uncertainty are added in quadrature which results in
total systematic background uncertainties of 4.7%, 13%,

and 70% for mlj values of 1 TeV, 3 TeV, and 5 TeV,
respectively.
LHC constraints.—The resonance line shape of the LQ

signal is modeled by a relativistic Breit-Wigner that is fitted
to the distribution of events after showering, reconstruction,
and cuts. In this way the broadening of the peak by PDF,
parton shower, and nonperturbative effects is described. We
find that compared to (2) the peak is broadened by the latter
effects by a factor of 6.0, 3.1, and 2.2 for a LQ mass of
1 TeV, 3 TeV, and 5 TeV, respectively.
The statistical significance of any localized excess in the

mlj distribution is quantified using a sliding window
approach after binning the background and signal predic-
tions. The bin size is thereby taken to be equal to the mlj

resolution. This resolution is estimated by combining the
information on the dilepton and dijet mass resolutions
given in [44,51] and [52,53], respectively. Using a simple
error propagation, we find that in the electron case the
experimental mass resolution amounts to 2.3%, 1.7%, and
1.6% at 1 TeV, 3 TeV, and 5 TeV, respectively. In the muon
case the corresponding numbers are 6.7%, 12%, and 17%.
The width of the search window is then varied from a
minimum of twice the mlj resolution up to 2 TeV, and the
optimal width is determined for each signal hypothesis
such that the LQ signal deviates most significantly from the
smooth background distribution. The significance is calcu-
lated as a Poisson ratio of likelihoods modified to incor-
porate systematic uncertainties on the background using the
Asimov approximation [54].
Figure 3 displays the most relevant 95% confidence level

(C.L.) limits on the magnitude of the couplings λeq as a
function of the mass M for minimal scalar LQs. All
possible flavor combinations involving an electron and
an up (u), a down (d), a strange (s), or a charm (c) quark are
considered. The bounds that derive from our novel search
strategy for resonant single LQ production are displayed as
red (LHC Run II constraints) and orange (projections)
shaded regions. The dash-dotted red, solid red, and dashed
orange lines assume an integrated luminosity of 36, 139,
and 300 fb−1 for pp collisions at

ffiffiffi

s
p ¼ 13 TeV, respec-

tively, while the dotted orange lines assume 3ab−1 of
ffiffiffi

s
p ¼ 14 TeV data. The most stringent limits on the mass
of minimal first-generation scalar LQs [9] obtained from
pair-production (PP) searches, are indicated as black lines.
These limits are based on 36 fb−1 of LHC Run II data and
correspond to M > 1435 GeV for first-generation LQs.
Notice that PP via t-channel exchange of a lepton has not
been considered in the CMS analyses. As shown in [18]
this simplification has, however, a minor impact for
jλeqj≲ 1. Following [18] we add the lepton exchange
contribution and indicate the PP bounds by dotted black
lines for jλeqj > 1. The green lines correspond to the Drell-
Yan (DY) bounds derived in [18] from the CMS results
[55], while the yellow lines depict the single production
projections [18] of the CMS LHC Run I search [56].
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FIG. 2. Distributions of mej after imposing the experimental
selection requirements as detailed in the text. The colored
histograms are stacked and represent the SM backgrounds.
The LQ signal prediction corresponds to M¼3TeV and λeu¼1
and is superimposed as a black line. The events are binned in
100 GeV bins and all predictions are obtained for 100 fb−1 of pp
collisions at a center-of-mass energy of

ffiffiffi

s
p ¼ 13 TeV.
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Both sets of bounds assume 36 fb−1 of pp collisions at
ffiffiffi

s
p ¼ 13 TeV. The couplings λeq with q ¼ u, d are also
subject to the constraints arising from atomic parity
violation, and from parity-violating electron scattering
experiments that measure the weak charge (QW) of protons
and nuclei. The relevant 95% C.L. bound reads jλeqj <
0.17M=TeV [18] and is shown in the upper two panels of
Fig. 3 as a dashed blue line. One sees that for λeu (λed) the
hypothetical 139 fb−1 bounds obtained from s-channel
single LQ production are more stringent than the
constraints from QW measurements for M ≲ 3.2 TeV
(M ≲ 2.1 TeV). At the end of the HL LHC the correspond-
ing limits can be expected to surpass the bounds from QW

measurements for minimal scalar LQ masses up to around
5.7 TeV (4.2 TeV). Strong bounds on the couplings λμu and

λμd are also obtained using our method (cf. [57]), while the
minimal scalar LQ interactions proportional to λls or λlc
are more difficult to constrain given the suppression of the
s- and c-quark PDFs.
While we have focused in our Letter on limits for the

minimal scalar LQs in l− þ j final states predicted by (1),
we expect searches for nonminimal scalar LQs decaying to
lþ þ j to give practically identical constraints. Imposing
the same selection criteria on the Wþ þ j background
process leads to a similar size and shape as for the W− þ j
process, since the larger Wþ þ j cross section is compen-
sated by a lower pT of the charged lepton in the Wþ →
lþνl decay.
In view of the simplicity of the proposed LQ signature

and its discovery reach, we urge the ATLAS and CMS
Collaborations to add resonance searches in final states

FIG. 3. 95% C.L. limits on the parameter space of minimal LQeq bosons with q ¼ u, d, s, c. The red (orange) shaded regions
correspond to the parameter space that is excluded by resonant single LQ production at the LHC Run II (future LHC runs). The black
lines indicate the PP limits obtained in [18] by recasting the results [9], the green lines correspond to the DY bounds derived in [18] using
[55], while the yellow lines represent the single production projections [18] of the search [56]. The dashed blue lines depict the
constraints from QW measurements [18]. The parameter spaces to the left and/or above the lines are ruled out.
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featuring a single light lepton and a single light-flavor jet to
their exotics search canon.
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