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Abstract

This paper deals with the discrete counterpart of 2D elliptic model problems rewritten in terms of Boundary Integral Equations.
The study is done within the framework of Isogeometric Analysis based on B-splines. In such a context, the problem of constructing
appropriate, accurate and efficient quadrature rules for the Symmetric Galerkin Boundary Element Method is here investigated. The
new integration schemes, together with row assembly and sum factorization, are used to build a more efficient strategy to derive
the final linear system of equations. Key ingredients are weighted quadrature rules tailored for B-splines, that are constructed to
be exact in the whole test space, also with respect to the singular kernel. Several simulations are presented and discussed, showing
accurate evaluation of the involved integrals and outlining the superiority of the new approach in terms of computational cost and
elapsed time with respect to the standard element-by-element assembly.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Boundary Element Methods (BEMs) are an important strategy for the numerical solution of linear partial
differential equations appearing in many relevant problems in science and engineering applications, see [1,2]. Through
the fundamental solution associated to the considered differential equation, a large class of both exterior and interior
elliptic Boundary Value Problems (BVPs) can be reformulated as linear Boundary Integral Equations (BIEs), reducing
by one the dimension of the computational domain for the discretization, when compared with Finite Element Methods
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(FEMs). For all these problems BEMs can be adopted, offering substantial computational advantages over other
numerical techniques. However, in order to achieve a general efficient numerical implementation, a number of issues
has to be carefully addressed. One of the most important consists in the accurate approximation of weakly singular,
Cauchy singular and even hyper-singular integrals over the boundary. Such integrals occur also when the Symmetric
Galerkin Boundary Element Method (SGBEM) [3] is applied to some BIEs. Indeed, in this case a linear symmetric
system of equations is obtained, whose coefficient matrix has entries defined as possibly singular double integrals
on the boundary of the problem’s domain. Thus, considering the outlined difficulties, it is not surprising that, since
the first appearances of SGBEM [4–7], great effort has been devoted to the efficient and accurate computation of the
related Galerkin linear system, as proved by many papers investigating this aspect (see [8,9] and references therein).
Such techniques were combined to the SGBEM scheme based on Lagrangian bases, always adopting the standard
element-by-element assembly procedure, as customary when the Lagrangian basis is used. This implies that all the
double integrals were split into a sum of integrals on pairs of elements where a local quadrature rule was adopted.

The advent of Isogeometric Analysis (IgA), [10–12] has brought a renewed interest in BEMs and very recently it
has been combined for the first time to the SGBEM scheme [13–15]. Papers dealing with problems in acoustics [16],
Stokes flows [17], fluid–structure-interactions [18] can be found in the literature, using the IgA Galerkin BEM ap-
proach. BEM formulation has been used also to construct computational domains for Galerkin-IgA [19]. In order to re-
duce complexity and gain efficiency, the use of collocation [20] or mixed collocation is also common, see e.g. [21–27].

Following the IgA approach, in [13] B-splines have been used to represent both the domain geometry and the
approximated solution of the problem at hand, giving a significant reduction in the dimension of the discretization
space required to attain a fixed accuracy with respect to the standard Lagrangian basis. In such preliminary
implementation of the IgA-SGBEM scheme, the entries of the coefficient matrix and of the right-hand side of the linear
system are evaluated by using the accurate quadrature rules introduced in [8] and suited for an element-by-element
implementation of the SGBEM scheme. However, such quadrature rules are not capable to take any computational
advantage from the higher regularity of B-splines. The obvious consequence is that the method cannot benefit further
from its new isogeometric formulation. In order to avoid this drawback, in the present paper new quadrature rules
tailored on B-splines are introduced. The aim is to compute efficiently as well as accurately all the occurring double,
possibly singular, integrals, and this is a key point for a new, efficient assembly strategy. The considered quadrature
rules are of two kinds. When no singularity appears a B-spline weighted quadrature is adopted [28,29]. This is
constructed for each B-spline basis function of the approximation space, taken as weight function, in order to be
exact in a suitable B-spline space, usually a refinement of the previous one. In presence of singularities, a new
idea is applied. Following the classic approach based on modified moments [28,30,31], and using the recurrence
relations for B-splines [32], we propose a new procedure so that, also in this case, the final quadrature is exact in
the test space or in a related refinement. As done in [29,33] for the IgA-FEM case, we assemble the final matrix
via row loop and sum-factorization. This allows us to get a remarkable gain in terms of computational costs, as
confirmed by the experiments. The proposed strategy is ready to be used for problems equipped by Dirichlet data. For
mixed problems, hyper-singular integrals can appear which require some more analysis, for example using coordinate
transformation [1,34], subtracting the singularities [35,36] or splitting the contributions in order to recover quantities
that can be evaluated in closed forms [9].

The paper is organized as follows. In Section 2 the boundary integral formulation of two model problems is briefly
introduced. In Section 3 some preliminaries and notations are given, which are necessary in the isogeometric setting
for the representation of the domain geometry and of the discretization space; then the double integrals defining the
entries of the coefficient matrix and of the right-hand side of the IgA-SGBEM linear system are defined. In Section 4,
using a unified formulation, two families of quadrature rules are introduced to approximate the double integrals
introduced before. The families are two, since different rules are needed to deal with regular or singular integrals, both
occurring in any BEM formulation. The formulas used to deal with non singular integrals are taken from [29], and they
are briefly summarized in Section 4.1. Novel formulas addressing the double singular integrals on fixed nodes and
tailored on B-splines are introduced in Section 4.2, where a recursive relation for the computation of the necessary
modified moments for B-spline functions is presented. These last quadrature rules are also preliminarily tested on
some singular integrals whose exact solution is available. Section 5 deals with the efficient computation and assembly
of the IgA-SGBEM linear system. The new B-spline-oriented IgA-SGBEM assembly strategy is tested through some
numerical examples presented and discussed in Section 6. Finally, Section 7 reports the research conclusions.
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2. Boundary integral model problems

In this work we focus on 2D interior or exterior Laplace model problems on planar domains, assuming boundary
Cauchy data of Dirichlet type. In particular we deal with two different geometries: bounded simply connected domains
Ω ⊂ R2, and unbounded domains external to an open limited arc.

In the first case, denoting with Γ the boundary of Ω , assumed sufficiently regular, we deal with the boundary value
problem{

∆u = 0 in Ω ,
u = u D on Γ ,

(1)

where uD is the given boundary datum.
Choosing a direct approach [2], the boundary integral reformulation of (1) starts from the representation formula

for the solution u, i.e.

u(x) = −
1

2π

∫
Γ

K̂ (x, y) q(y) dγy +
1

2π

∫
Γ

∂ K̂
∂ny

(x, y) uD(y) dγy, x ∈ Ω

where x = (x1, x2), y = (y1, y2), the kernel −
1

2π K̂ (x, y) represents the fundamental solution of the 2D Laplace
operator, i.e.

K̂ (x , y) := ln(r ) , with r := ∥x − y∥2 , (2)

and q :=
∂u
∂n . Hence, the solution u can be evaluated in any point of the domain, provided that we know the flux q on

Γ . So, with a limiting process for x tending to Γ and using the boundary datum, we obtain the BIE:

−
1

2π

∫
Γ

K̂ (x, y) q(y) dγy =
1
2

uD(x) −
1

2π

∫
Γ

∂ K̂
∂ny

(x, y) uD(y) dγy, x ∈ Γ , (3)

in the boundary unknown q. The boundary integral problem (3) can be finally set in the following weak form [37]:
given uD ∈ H 1/2(Γ ), find q ∈ H−1/2(Γ ) such that

A(q, p) = F(p), ∀p ∈ H−1/2(Γ ) (4)

where

A(q, p) := −
1

2π

∫
Γ

p(x)
∫
Γ

K̂ (x, y) q(y) dγy dγx (5)

and

F(p) :=

∫
Γ

p(x)
[1

2
uD(x) −

1
2π

∫
Γ

∂ K̂
∂ny

(x, y) uD(y) dγy

]
dγ.x

In the second case, still denoting with Γ an open limited arc in the plane, we consider the following problem{
∆u = 0 in R2

\ Γ ,
u = u D on Γ .

(6)

The BVP in (6) can model the electrostatic problem of finding the electric potential around a capacitor, whose two
faces are so near one another to be considered as overlapped, knowing the electric potential only on the condenser,
see e.g. [38]. This example is a classic case where BEM are preferred to FEM: a problem in an infinite domain with
an obstacle or a source lying on a curve [4,39].

Choosing an indirect approach [2,39], the BIE coming from the boundary integral reformulation of (6) reads:

−
1

2π

∫
Γ

K̂ (x, y)ϕ(y) dγy = uD(x), x ∈ Γ , (7)

where the unknown density function ϕ represents the jump of q across Γ .
Boundary integral problems (7) can be set in a weak form similar to (4), where the bilinear form A(ϕ,ψ) is defined

as in (5) and the right-hand side simplifies in:

F(ψ) :=

∫
Γ

ψ(x) uD(x) dγx.
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The price for the simplification of the indirect approach is that the discrete solution obtained by solving the linear
system does not approximate directly the missing Cauchy data on the boundary, but just the density function appearing
in the chosen integral representation formula, see e.g. [2].

3. IgA-SGBEM discretization

Now, we assume that in both the above model problems, Γ is defined as a parametric curve with no self
intersections, closed in the first case and open in the other. Thus Γ is the image of a regular invertible function
f : I ⊂ R → Γ ⊂ R2 such that, setting f(s) := ( f1(s), f2(s)) , every point x = (x1, x2) ∈ Γ can be seen as the image
of just one value s ∈ I , where I = [a , b] if Γ is open and I = [a , b), otherwise. In more detail, we assume that Γ
is parametrically represented by a function f defined as follows,

f(s) :=

N∑
i=1

Qi Bi,d (s), s ∈ I,

where the Qi , i = 1, . . . , N , are ordered control points assigned in the plane and defining the shape of Γ , and where
{Bi,d (·), i = 1, . . . , N } is the B-spline basis which spans a space S of piecewise d–degree polynomials with respect to
an assigned set ∆ of distinct breakpoints in I.Note that N and the regularity required in S at each inner breakpoint can
be a priori established. Actually the definition of the B-spline basis needs the preliminary introduction of the extended
knot vector T = {t1, . . . , td , td+1, . . . , tN+1, tN+2 , . . . , tN+d+1}, where td+1 = a , tN+1 = b , and t1 ≤ · · · ≤ tN+d+1 .

Each knot ti , i = d + 2, . . . , N , is a possibly repeated occurrence of an inner breakpoint, while the first and last d
knots in T are auxiliary knots characterizing a specific B-spline basis. For brevity, when it is not strictly necessary, in
the following we shall refer to it by omitting d . The regularity at a certain inner breakpoint in ∆ of any function in S is
fully specified by prescribing the breakpoint multiplicity (integer between 1 and d + 1) in T . Since we want f at least
with a continuous image, such multiplicities are required to be all ≤ d and one of them is set to d only when Γ has
an angular point which will coincide with a control point. Extended knot vectors with multiple or periodic auxiliary
knots are the more commonly adopted strategies for completing the definition of T , see e.g. [32]. Note that the in
Computer Aided Geometric Design (CAGD) the standard way to represent closed curves relies on periodic extended
knot vectors and with the last d control points given by an ordered repetition of the first ones, see e.g. [40]. This
clearly means that in practice the dimension of the considered spline space S is N − d in this case.

In the IgA context, dealing with an isoparametric approach, the same basis or an its appropriate refinement is
considered to generate the discretization space Ŝ where we will search the approximate solution of weak BIEs.
Actually spaces with dimension greater than N (or N − d in the closed case) can be clearly used for the experiments,
without abandoning the IgA paradigm, since the knot insertion procedure can always be adopted to represent the
boundary in a higher dimension spline space with a desired mesh spacing or with a reduced regularity at the
breakpoints. We remind that such a procedure implies introducing new breakpoints or increasing the multiplicity
of the existing ones, see e.g. [41].

In more detail, assuming for notational simplicity that no refinement is done, when Γ is an open arc, we define the
space Ŝ as

Ŝ := span{B̂1, . . . , B̂N },

where

B̂i (x) := Bi (f−1(x)) , x ∈ Γ , i = 1, . . . , N . (8)

When Γ is a closed curve, the dimension of Ŝ must be equal to N − d. Thus we fix Ŝ as

Ŝ := span{B̂1, . . . , B̂N−d},

where B̂i , i = d + 1, . . . , N − d are defined as in (8) while we have

B̂i (x) := B(c)
i (f−1(x)) , x ∈ Γ , i = 1, . . . , d,

with

B(c)
i (t) :=

⎧⎨⎩Bi (t) if t ∈ I ∩ [ti , ti+d+1],
BN−d+i (t) if t ∈ I ∩ [tN−d+i , tN+i+1],
0 otherwise.
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In order to simplify the notation, in the sequel, when Γ is closed, we shall omit the superscript (c) to denote the first
d cyclic basis elements.

The algebraic reformulation of the IgA-SGBEM scheme leads to a linear system of equations, whose unknowns
represents the coefficient of the BIE approximate solution w.r.t. the chosen basis, see e.g. [1]. In more detail, denoting
such a solution with α̂(x) :=

∑NDoF
j=1 α j B̂ j (x) , with NDoF := dim(Ŝ) , the resulting linear system has size NDoF and

is referred as

A α = β , (9)

where A is a symmetric positive definite matrix, α = (α1, . . . , αNDoF )T is the unknown vector and β ∈ RNDoF is the
vector defining the right-hand side which depends on the given Cauchy data.

In particular, the entries of the matrix A in (9) are, up to the coefficient −
1

2π , double integral of the type (see (5)):∫
Γ

B̂i (x)
∫
Γ

K̂ (x, y) B̂ j (y) dγy dγx , (10)

while the right-hand side involves the computation, depending on the problem at hand, of the following integrals∫
Γ

u D(x)B̂i (x) dγx ,

∫
Γ

B̂i (x)
∫
Γ

∂ K̂
∂ny

(x, y) u D(y) dγydγx . (11)

Introducing the scalar variables s and t defined as:

s := f−1(x) , t := f−1(y)

and the parametric speed associated with Γ ,

J (·) :=

√
( f ′

1(·))2 + ( f ′

2(·))2 , (12)

in following subsections we rewrite integrals in (10), (11) over the parametric interval I .

3.1. Matrix entries

Referring to the double integral in (10), we can express it as

I (i, j)
K :=

∫
I

Bi (s) J (s)
∫

I
K (s, t) B j (t) J (t) dt ds , (13)

where K (s, t) := K̂ (f(s), f(t)) . Let us investigate the nature of the involved kernel. Considering (2), we can write

K̂ (f(s), f(t)) = ln(∥f(s) − f(t)∥2
2)1/2

=
1
2

ln
(

∥f(s) − f(t)∥2
2

(s − t)2

)
+ ln |s − t | .

Setting

R(s, t) :=
∥f(s) − f(t)∥2

2

(s − t)2 =

[
f1(s) − f1(t)

s − t

]2

+

[
f2(s) − f2(t)

s − t

]2

, (14)

we have that

K (s, t) = K1(s, t) + K2(s, t),

where

K1(s, t) :=
1
2

ln (R(s, t)) , K2(s, t) := ln|s − t | .

Note that K1(s, t) can be defined also for s = t extending its definition by continuity, since

lim
t→s

R(s, t) = J 2(s) , (15)

with J defined as in (12).
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This splitting of K is useful to separate two contributions, the first coming from the geometry of Γ and the last
depending just from its singular nature. Actually, integral (13) can be evaluated as

I (i, j)
K = I (i, j)

K1
+ I (i, j)

K2

with

I (i, j)
Kℓ

:=

∫
I

Bi (s)J (s)
∫

I
Kℓ(s, t) B j (t)J (t) dt ds , ℓ = 1, 2. (16)

Different quadrature rules are needed to compute IKℓ , ℓ = 1, 2, since for ℓ = 2 weakly singular integrals can occur
because of the logarithmic nature of the kernel K2.

3.2. Right-hand side elements

Referring to the first integral in (11) we can rewrite it as:

b(i)
1 :=

∫
I

Bi (s) J (s) uD(s) ds , (17)

where uD(s) = u D(f(s)) . Hence we have to evaluate a regular integral.
The second double integral in (11) can be expressed as

b(i)
2 :=

∫
I

Bi (s) J (s)
∫

I
K (s, t) uD(t) dt ds , (18)

where uD(t) = u D(f(t)) and

K (s, t) :=
∂ K̂
∂ny

(f(s), f(t)) J (t).

We note that, when f ∈ C2(I ), no singularity occurs in (18). Indeed, with some computation, we can write

K (s, t) =
( f2(t) − f2(s)) f ′

1(t) − ( f1(t) − f1(s)) f ′

2(t)
∥f(s) − f(t)∥2

2
,

that is,

K (s, t) =
1

R(s, t)
( f2(t) − f2(s)) f ′

1(t) − ( f1(t) − f1(s)) f ′

2(t)
(t − s)2 ,

with R(s, t) defined in (14). Then, taking into account (15), we have

lim
t→s

K (s, t) =
1
2

f ′

1(s) f ′′

2 (s) − f ′

2(s) f ′′

1 (s)
J 2(s)

.

On the other hand, without assuming f ∈ C2(I ) , the kernel K̄ becomes strongly singular on boundaries with corners
and weakly singular on Lyapunov curves, see [42, Section 7].

4. Novel quadrature rules

As pointed out in the introduction, in the present paper we explore the construction of the algebraic counterpart
of the IgA-SGBEM scheme, by using two different weighted quadrature strategies for regular and singular integrals.
This means that the usual conditions considered for the construction of the quadrature – the exactness requirements –
are imposed with respect to a suitable chosen weight function.

The developed formulas have in common the vector of nodes – denoted by η – but the weights will change
according to the exactness requirements, consisting in imposing their exactness in a suitable spline space with the
respect to the selected weight function. Several quadrature rules are necessary, all determined by solving a linear
system whose coefficient matrix is in any case a B-splines collocation matrix. The existence of the rules is ensured by
the non singularity of such a matrix. This can be achieved by choosing an η vector fulfilling the Whitney–Schoenberg
conditions, see for example [32].

The selected exactness spline space is a possible refinement of the test space S: we propose to subdivide each
element of ∆ into Nre f ≥ 1 elements, where Nre f > 1 is adopted to improve the quadrature accuracy. This – possibly
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new – partition of the interval I is denoted by ∆̄. The corresponding spline space can be generated by B-splines,
denoted in the following by B̄ j , j = 1, . . . , NE , with NE ≈ Nre f NDoF . We point out that other strategies can be
chosen: the only request is that the original test space is included in the exactness space.

Our choice of η, that fulfills the Whitney–Schoenberg conditions with respect to the extended knot vector associated
with B̄ j , j = 1, . . . , NE , is the following: in the first and last element of ∆̄, we take d + 2 uniformly spaced points;
on each inner element we take midpoints and breakpoints. Hence η ∈ RNquad with Nquad = 2d + 2Nre f Nh − 1, where
Nh denotes the number of elements of ∆ (Nh ≈ NDoF when no multiple inner knot is included in the extended knot
vector T ). Note that this simple choice was used also in [29] and for BEM with splines in [43].

We detail the construction of the quadrature rules in the following two subsections, respectively related to regular
and singular integrals.

4.1. B-spline weighted quadrature rule

When dealing with the external integrals in (16) and (18), with the integrals (17), or even with the inner integral in
(16) for the kernel K1, regular integrands occur, always with a B-spline factor, denoted in the sequel as Bi (s). In this
case, following [29], we consider this term as a weight and thus we obtain the quadrature:

Q(i)[ f ] :=

Nquad∑
n=1

w(i)
n f (ηn) ≈

∫
I

f (s)Bi (s) ds. (19)

Let us detail the construction introducing some notation.1

• J (i)
:= { j : 1 ≤ j ≤ NE , supp(B̄ j ) ∩ supp(Bi ) ̸= ∅} ; N (i)

E := #J (i) (number of active exactness functions);
• N (i)

:= {n: 1 ≤ n ≤ Nquad , with ηn ∈ supp(Bi )}; N (i)
quad := #N (i) (number of active quadrature nodes).

The weights w(i)
n , n ∈ N (i), are determined by imposing the exactness of the formula on all B̄ j with j ∈ J (i), the

other weights are set to 0. The local exactness requirements then read:

Q(i)[B̄ j ] =

∑
n∈N (i)

w(i)
n B̄ j (ηn) = µ

(i)
j ∀ j ∈ J (i) , (20)

where µ(i)
j :=

∫
I B̄ j (s)Bi (s) ds can be exactly computed since the integrand is a piecewise polynomial function. Let

us note that the considered definition of η always ensures that N (i)
E ≤ N (i)

quad . Thus, the conditions in (20) lead to a
possibly underdetermined linear system with maximum rank, thanks to the Whitney–Schoenberg conditions fulfilled
by η. Actually the system is non squared only when the support of Bi includes (but is not limited to) the first or the last
element of ∆̄, where more nodes are taken. In this case we have chosen to solve the system in the minimum Euclidean
norm. Note that N (i)

E can be upper bounded independently from NDoF , since N (i)
E ≤ (1 + Nre f ) (d + 1) . Consequently

the size of the linear system in (20) never becomes prohibitive.
This construction has to be repeated for all the basis functions Bi , i = 1, . . . , NDoF . A related Pseudo-code is

given in Algorithm 1 .

4.2. Singular weighted quadrature rule

When instead we deal with the inner integrals in (16), for K = K2, weakly singular integrals can occur, as discussed
in Section 3, hence a different formula is used. We choose to isolate the singular term, as done in [44] and introduce
a quadrature:

Qs[ f ] :=

Nquad∑
n=1

ws
n f (ηn) ≈

∫
I

f (t) ln|t − s| dt. (21)

1 Notice that we define support as the open set where the function is non-zero.
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Input: node vector η, B-splines Bi , i = 1, . . . , NDoF , exactness B-spline evaluations (B) j,n := B̄ j (ηn)
j = 1, . . . , NE , n = 1, . . . , Nquad

1 for i = 1, . . . , NDoF do
2 Extract indexes J (i) of functions B̄ j having support intersecting the support of Bi ;
3 Calculate integrals µ(i)

j :=
∫

I B̄ j (t)Bi (t) dt , j ∈ J (i);
4 Extract indices N (i) of nodes ηn belonging to the support of Bi ;
5 Extract the local collocation matrix B(i)

= (B)J (i),N (i) ;
6 Calculate w(i)

:= (w(i)
ν )ν∈N (i) (min. Euclidean norm) solution of B(i)w(i)

= µ(i) with µ(i)
:= µ

(i)
j , j ∈ J (i);

7 end
Output: vectors w(i), i = 1, . . . , NDoF .

Algorithm 1: Construction of weighted quadrature rules: regular case

In order to fix the weight vector ws
:= (ws

n)
Nquad
n=1 , we impose exactness on the B-spline functions B̄ j , j = 1, . . . , NE ,

that is we require the fulfillment of the following conditions:

Qs[B̄ j ] =

Nquad∑
n=1

ws
n B̄ j (ηn) = µ j (s) ∀ j = 1, . . . , NE , (22)

with

µ j (s) :=

∫
I

B̄ j (t)ln|t − s| dt. (23)

Then, ws is the solution of a linear system of size NE ×Nquad with NE ≤ Nquad whose coefficient matrix is a B-splines
collocation matrix at the quadrature nodes. We remark that this is a – possibly underdetermined – linear system
with maximum rank, thanks to the Whitney–Schoenberg conditions. The right hand side µs

:= (µ j (s)) j=1,...,NE ,
of (22) is calculated by exploiting the recursive formula for B-splines, see below. Recalling that we are dealing
with the inner integrals in (16), for K = K2, and that the formulas introduced in the previous subsection are
used for the outer integrals, the parameter s varies among the entries of the vector η. So different weight vectors
wηn ∈ RNquad , n = 1, . . . , Nquad , are pre-computed.

Let us derive now the recursive approach which can be use to compute the analytic expressions of the modified
moments introduced in (23). Given a B-spline basis of degree r , defined with respect to the partition ∆̄ of I , we set

Iq (B j,r , s) :=

∫
I

ln|t − s| tq B j,r (t) dt , q ∈ N.

Then we can write

µ j (s) = I0(B j,d , s) , (24)

since B j,d = B̄ j .
Taking into account the Cox–De Boor recurrence relation of B-splines [32], assuming that t j is the j th entry of the

associated extended knot vector,

B j,r (t) =
t − t j

t j+r − t j
B j,r−1(t) +

t j+r+1 − t
t j+r+1 − t j+1

B j+1,r−1(t) ,

we have that a consequent recurrence relation can be obtained for Iq (B j,r , s):

Iq (B j,r , s) =
Iq+1(B j,r−1, s) − t j Iq (B j,r−1, s)

t j+r − t j
+

t j+r+1 Iq (B j+1,r−1, s) − Iq+1(B j+1,r−1, s)
t j+r+1 − t j+1

. (25)

We remark that, when multiple knots are taken, if t j+r = t j (t j+r+1 = t j+1), the first (second) addend in the right-hand
side of (25) must be set to zero. In order to compute the desired modified moments (24) by means of (25), we need to
compute preliminarily Ik(Bi,0, s), for k = 0, . . . , d and i = 1, . . . , NE + d . Now, considering that

Bi,0(t) =

{
1 if ti ≤ t < ti+1 ,

0 otherwise,
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we obtain that Ik(Bi,0, s) =
∫ ti+1

ti
ln(|t − s|) tk dt , which clearly is a vanishing quantity if ti = ti+1. In the opposite

case, using the substitution z = t − s, we can write

Ik(Bi,0, s) =

k∑
j=0

(
k
j

)
sk− j

∫ ti+1−s

ti −s
ln|z| z j dz .

Thus, the procedure starts by computing the quantities:

I j
i (s) :=

⎧⎨⎩
∫ ti+1−s

ti −s
ln|z| z j dz , if ti < ti+1 ∧ [ti , ti+1] ⊂ [a , b] ,

0 otherwise
i = 1, . . . , NE + d, j = 0, . . . , d.

Note that with some basic analytic computation we can derive the following explicit expression of I j
i (s) for the non

trivial case:

I j
i (s) =

z j+1

j + 1

(
ln|z| −

1
j + 1

) ⏐⏐⏐⏐ti+1−s

ti −s
.

The described procedure for the computation of the singular modified moments can be seen as a variant of that
introduced in [30], where it was defined for Cauchy singular integrals and used for developing quadrature formulas
based on cubic spline interpolation.

A related Pseudo-code sketching the main steps required for the computation of ws is given in Algorithm 2 . Notice
that this procedure can be used – for example in collocation BEM methods – with respect to a generic vector of points
σ , while in our case we will have σ = η.

Input: Vector σ of abscissae in I, quadrature node vector η, exactness B-spline evaluations (B) j,n := B̄ j (ηn),
j = 1, . . . , NE , n = 1, . . . , Nquad

1 Perform LU -factorization of matrix B ;
2 for ν = 1, . . . , #σ do
3 Compute µ j (σν), j = 1, . . . , NE ;
4 Calculate wσν as (minimum Euclidean norm) solution of Bwσν = µσν using matrix factorization ;
5 end

Output: vectors wσν , ν = 1, . . . , #σ

Algorithm 2: Construction of quadrature rules: singular case
Let us remark that we are proposing a new weighted quadrature where the weight is the singular kernel ln|t − s|

for a fixed value of s, and exactness is required on B-splines of a fixed degree. Following the analysis in [45], this
requirement is the main ingredient for optimal convergence of the BIE approximate solution, because the quadrature
error estimate implies consistency of the overall scheme. Then, it is important to have some indication of the
quadrature error when applying the quadrature to a generic function. We consider the approximation of the integral

Is[v] :=

∫ 1

−1
ln|t − s| v(t) dt , (26)

for functions v(t) such that these values can be evaluated analytically and for s = ηn , where ηn is one of the quadrature
points introduced in Section 4. Then, the value Is[v] is approximated by Qs[v] as in Eq. (21). The error is calculated
as follows:

E R Rd,Nh [v] :=

∑Nquad
n=1 (Qηn [v] − Iηn [v])2∑Nquad

n=1 (Qηn [v])2
, (27)

where Nquad is the number of quadrature points of the external quadrature. The complete analysis of the error of such
rules is beyond the scope of the present paper, we only report here some tests that we have run in order to confirm
their good behavior. We have performed three kind of tests:

1. First, we have checked that the exactness requirements are fulfilled. This issue is mainly concerned with the
condition number of the collocation matrix: we have chosen a-priori fixed quadrature points that could give bad-
conditioned matrices. In all our tests we get machine precision in the numerical computation of the modified
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Table 1
Error E R Rd,Nh [v(t)] as defined in (27). Notice that in the case of functions B j,d (t) the integrating function changes both row-wise, due to degree
d , and column-wise, due to Nh .

Nh 10 20 40 80 100

d = 2 v(t) = B4,3(t) 3.46 · 10−7 1.41 · 10−7 5.62 · 10−8 2.08 · 10−8 1.49 · 10−8

3 B5,4(t) 2.92 · 10−8 1.40 · 10−8 7.20 · 10−9 3.75 · 10−9 3.03 · 10−9

4 B6,5(t) 5.96 · 10−10 2.39 · 10−10 1.03 · 10−10 4.40 · 10−11 3.44 · 10−11

5 B7,6(t) 2.58 · 10−11 9.64 · 10−12 3.92 · 10−12 1.06 · 10−10 4.67 · 10−9

d = 2 v(t) = t3 3.16 · 10−6 1.99 · 10−7 1.24 · 10−8 7.74 · 10−10 3.17 · 10−10

t4 5.21 · 10−5 3.25 · 10−6 2.04 · 10−7 1.27 · 10−8 5.22 · 10−9

d = 3 v(t) = t4 1.60 · 10−5 1.07 · 10−6 6.99 · 10−8 4.47 · 10−9 1.84 · 10−9

d = 2 v(t) =

√
1−t2

t2+25
6.89 · 10−4 2.60 · 10−4 9.45 · 10−5 3.37 · 10−5 2.41 · 10−5

3 4.05 · 10−4 1.50 · 10−4 5.30 · 10−5 1.85 · 10−5 1.31 · 10−5

4 2.92 · 10−4 1.06 · 10−4 3.66 · 10−5 1.25 · 10−5 8.80 · 10−6

5 2.04 · 10−4 7.09 · 10−5 2.44 · 10−5 8.23 · 10−6 5.76 · 10−6

moments with the quadrature formula (21). Moreover, we have checked that the integral of the monomial
(considered in the whole patch) where exactness is due – namely the monomial td - is computed properly. Also
in these cases all tests up to degree d = 5 give exact result up to machine precision.

2. Then, we have considered the computation of moments where exactness is not required: for quadrature rules
where exactness is required on B-splines of degree d , we have computed approximated integrals of B-splines
of degree d + 1 and of the monomial td+1. Results are reported in Table 1.

3. At last, we have considered the integral:

Is

[√
1 − t2

t2 + 25

]
=

∫ 1

−1
ln|t − s|

√
1 − t2

t2 + 25
dt = πln(2) +

π
√

26
5

ln

(√
25 + s2

5 +
√

26

)
(28)

taken from reference [46]. This is an interesting benchmark, and in the cited paper the integral is approximated
by a procedure that computes an auxiliary integral via symbolic computations. On such function our aim is to
test monotone convergence confirmed by results available in Table 1. As a final remark we may notice some
deterioration of the error when the degree is raised probably due to functions with larger supports and very
small values.

5. Efficient computation and assembly of IgA-SGBEM linear system

Applying quadrature rules introduced in the previous Section, and referring at first to (16), we can compute

I (i, j)
K1

∼=

N (i)
quad∑

n1=1

w(i)
n1

J (η(i)
n1

)

N ( j)
quad∑

n2=1

w( j)
n2

J (η( j)
n2

)K1(η(i)
n1
, η( j)

n2
) (29)

and

I (i, j)
K2

∼=

N (i)
quad∑

n1=1

w(i)
n1

J (η(i)
n1

)
Nquad∑
n2=1

w
(η(i)

n1 )
n2 J (ηn2 )B j (ηn2 ) =

N (i)
quad∑

n1=1

w(i)
n1

J (η(i)
n1

)
∑

n2∈N ( j)

w
(η(i)

n1 )
n2 J (ηn2 )B j (ηn2 ) , (30)

where the last equivalence is due to the local support of B j , so that the number of non vanishing addends does not
depend on Nquad and hence neither on NDoF .

For the numerical evaluation of I (i, j)
K2

, we could distinguish the case |i − j | > d + 1, where the singularity does
not occur, so that the regular quadrature could be used as in (29). Nevertheless, in our implementation, we have used
quadrature rule (30) also for regular integrals in the construction of matrix IK2 , because we have checked that this
change of rule not only gives no advantage in terms of computational time, but also gives the same accuracy.

As a last remark we observe that the obtained discrete formulation is not symmetric anymore, due to the different
treatment of the variables in the weakly singular kernel.
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For the numerical evaluation of (17), we can simply consider

b(i)
1

∼=

N (i)
quad∑

n=1

w(i)
n J (η(i)

n )uD(η(i)
n ).

At last, since we assume f ∈ C2(I ), for (18) we proceed by computing

b(i)
2

∼=

N (i)
quad∑

n1=1

w(i)
n1

J (η(i)
n1

)
N G Q∑
n2=1

wG Q
n2

K (η(i)
n1
, ηG Q

n2
)uD(ηG Q

n2
),

where
(
ηG Q,wG Q

)
is a Gaussian quadrature, being the integrand function regular.

5.1. Assembly: computational cost

Following what described in the previous sections, the proposed procedure for the assembly of the algebraic
counterpart of the IgA-SGBEM scheme can be sketched as follows:

1. Fix Nre f and a choice of Nquad quadrature points η.
2. Construct the family of quadrature rules

(
η(i)

n , w
(i)
n

)
n=1,...,N (i)

quad
, i = 1, . . . , NDoF following the procedure in

Algorithm 1 . This is done by solving NDoF linear systems of dimension N (i)
E ≤ (1 + Nre f )(d + 1).

3. Construct the family of quadrature rules
(
ηn, w

ηm
n
)

n=1,...,Nquad
,m = 1, . . . , Nquad following the procedure in

Algorithm 2 . This is done by solving Nquad linear systems of dimension NE ×Nquad ≈ Nre f NDoF ×2Nre f NDoF

where only the right hand size changes, so that the matrix can be factorized just once. We have performed in
our tests the usual LU factorization as implemented in Matlab.

4. Assembly the IgA-SGBEM matrix and right-hand side of interest. For computational efficiency, we propose
row assembly via sum factorization. Details of such construction can be found in [29,33]. In Algorithm 3 we
present the technique in the case of (29).

Input: Quadrature rules
1 Set C(0)

n1,n2
:= K1(ηn1 , ηn1 ), n1, n2 = 1, . . . , Nquad ;

2 for i = 1, . . . , NDoF do
3 Compute C(1)

n1, j :=
∑

n2∈N ( j) w
( j)
n2 J (η( j)

n2 )C(0)
n1,n2

, j ∈ J (i);

4 Compute C(2)
i, j :=

∑
n1∈N (i) w(i)

n1
J (η(i)

n1
)C(1)

n1, j ;

5 Fix C(2)
i,· to obtain the row I (i,J (i))

K1
;

6 end
Output: matrix IK1 .

Algorithm 3: Construction of matrix IK1 of Eq. (29) by sum-factorization

Due to the savings introduced by the patch-strategy for the construction of the weighted quadratures, the number of
quadrature points for each parametric variable is 2d + 2Nre f Nh − 1. Thus the computational cost for the assembly of
the IgA-SGBEM linear system matrix with the introduced B-spline based quadrature strategy and sum factorization
is O([2d + 2Nre f Nh − 1]2) function evaluations.

Remark. In [13] the matrix entries were numerically evaluated within the framework of the standard element-by-
element assembly phase. This implies that, within a double nested cycle over the Nh mesh elements of the partition ∆
on the parametrization interval I , having indicated by e(i)

ℓi
, ℓi = 1, . . . , d + 1 the elements constituting the support of

the B-spline Bi , we computed and assembled (13) as

I (i, j)
K

∼=

d+1∑
ℓi =1

d+1∑
ℓ j =1

∫
e(i)
ℓi

Bi (s) J (s)
∫

e( j)
ℓ j

K (s, t) B j (t) J (t) dt ds , (31)
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taking into account the polynomial nature of the B-splines over each element of their support and using quadrature
schemes introduced in [9], suitable for standard local Lagrangian basis functions. In particular, in presence of kernel
singularity, arising for double integration over couples (e(i)

ℓi
, e( j)

ℓ j
) of coincident or consecutive elements, related double

integrals in (31) were split into the sum of a regular part and a singular part: the first was treated using Gauss–
Legendre rule for both inner and outer integrals, while the other term was evaluated using an interpolatory product
rule, absorbing kernel singularity into the weights, for the inner integration and the Double Exponential rule (briefly,
DE-rule), suitable for integrand function having weak singularities at the endpoints, for the outer integration. When
the double integration occurred on couples of “far” elements Gauss–Legendre rule for both inner and outer integrals
was employed. The interested reader is referred to [9] and related references for more details on the above resumed
quadrature schemes.

Hence, having denoted by NG the number of the Gauss–Legendre rule points, by NDE the number of DE-rule
points and by Nprod the number of points of product rules for singular integration, the computational cost of the
element-by-element procedure for the generation of the IgA-SGBEM linear system matrix, in terms of integrand
function evaluation, was (d + 1)2(N 2

h N 2
G + 3 Nh NDE Nprod ) .

Remark. We observe that using a global quadrature rule in the singular weighted case leads to the solution of a
rectangular system to compute the weight vector ws . Nevertheless in all the performed tests this did not affect the
efficiency of the resulting quadrature rule employed to solve the considered boundary integral equations. Anyway, in
order to be able to further increase the accuracy of such rules we have introduced the parameter Nre f , which can be
increased and consequently the space where exactness of the quadrature is imposed is refined. In more detail, in our
tests we have used Nre f = 1 (no refinement), when accuracy with respect to the reference method was comparable,
while we have set Nre f = 2 to improve it. Other strategies, like p-refinement, can also be considered and an analysis
of the obtained results is currently under study. Another approach would consist in considering local strategies to
achieve the exactness, for instance based on quasi-interpolation techniques.

6. Numerical examples

In this section we present and discuss some numerical results obtained using both the old quadrature strategy with
the element-by-element assembly and the new B-spline based quadrature with the related new assembly. The old code
is developed in Fortran language while the new one is written in Matlab. Simulations have been performed on a laptop
equipped by Intel Core i5 CPU (2.53 GHz, 4 Gb RAM, 64 bit OS).

In all the following experiments, the error EM represents the maximum of the discrete error on a uniform mesh
of 500 points in the parametric domain I , while ER is defined as the relative error in L2(I ) norm. The details on the
considered BVP are reported in the description of each numerical test.

6.1. Exterior Dirichlet problem: parabola test

At first, let us consider the Dirichlet BVP defined in (6) exterior to the arc of parabola Γ = {x = (x1, x2) | x1 =

t, x2 = 1 − t2, t ∈ [−1, 1]}, representable by means of quadratic B-splines related to the extended knot vector

T1 =
[
−1 −1 −1 1 1 1

]
and to the control points Qi , i = 0, 1, 2, whose coordinates are collected in the following matrix:

Q =

[
−1 0 1
0 2 0

]
.

Here, the Dirichlet datum uD is given in such a way that the solution of (7) is explicitly known and reads ϕ(x) =√
1 + 4x2

1 . The discrete counterpart of such BIE involves the computation of matrices IK1 and IK2 with, respectively,
regular and weakly singular integrals, see equations (29)–(30). Also, the right-hand side is regular so that in our
computations with the new assembly a B-spline weighted quadrature rule has been used. The comparison reported in
Table 2, for different values of the parameter h, which uniformly decomposes the parameter interval [−1, 1], involves
C1 quadratic B-spline basis used in the old (element-by-element, with NG = Nprod = 32, NDE = 63) and new
implementations of IgA-SGBEM. In these tests we have taken Nre f = 1 thus no addition of points.
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Table 2
Parabola test: comparison between the two different assembly strategies. On the top, for degree d = 2 and various spacing h. On the bottom, for
constant spacing h = 1/5 and various degrees d. On the first column we report calculated spectral condition number of the matrix. On the second
and third we report the calculated errors: true solution is known, thus the relative error ER in L2 norm and the absolute errors EM in maximum
norm are computed. Finally the elapsed time in seconds for the IgA-SGBEM matrix generation is reported. Notice that the error when d increases
decrees theoretically of a factor h, and this convergence is partially maintained from the methods, being the condition number increasing. By the
other side the convergence in h is as predicted in both cases, namely of order d +1. In all tested cases the condition number of the system is almost
the same for the two assembly strategies and the overall time for assembly is strongly reduced by the new strategy.

h DoF Element-by-element New assembly

cond. ER EM Time (s) cond. ER EM Time (s)

1/5 12 7.19 · 101 1.54 · 10−4 5.08 · 10−4 6.80 8.56 · 101 1.79 · 10−4 6.67 · 10−4 0.13
1/10 22 1.87 · 102 1.65 · 10−5 5.73 · 10−5 15.96 1.87 · 102 1.72 · 10−5 5.96 · 10−5 0.44
1/20 42 4.57 · 102 1.96 · 10−6 6.92 · 10−6 41.75 4.50 · 102 2.01 · 10−6 6.98 · 10−6 1.93
1/40 82 1.01 · 103 2.43 · 10−7 8.50 · 10−7 134.29 9.90 · 102 2.48 · 10−7 8.60 · 10−7 6.47
1/80 162 2.12 · 103 3.03 · 10−8 1.07 · 10−7 566.12 2.07 · 103 3.08 · 10−8 1.06 · 10−7 25.45
1/160 322 4.34 · 103 3.90 · 10−9 1.97 · 10−8 2828.18 4.25 · 103 3.85 · 10−9 1.34 · 10−8 98.87
1/320 642 8.78 · 103 7.17 · 10−10 1.82 · 10−8 16659.45 8.59 · 103 4.81 · 10−10 1.64 · 10−9 409.79

d DoF cond. ER EM Time (s) cond. ER EM Time (s)

2 12 7.19 · 101 1.54 · 10−4 5.08 · 10−4 6.80 8.56 · 101 1.79 · 10−4 6.67 · 10−4 0.13
3 13 1.89 · 102 3.23 · 10−5 1.69 · 10−4 11.93 2.14 · 102 5.63 · 10−5 3.87 · 10−4 0.21
4 14 5.09 · 102 1.80 · 10−5 8.01 · 10−5 20.44 5.61 · 102 2.19 · 10−5 1.20 · 10−4 0.25
5 15 1.41 · 103 5.43 · 10−6 2.06 · 10−5 34.27 1.65 · 103 1.05 · 10−5 5.53 · 10−5 0.31

Together with DoF and spectral condition numbers of the associated matrices, we show the relative error ER in L2

norm, the absolute errors EM in maximum norm and the elapsed time for the IgA-SGBEM matrix generation. Note
that the slightly different results concerning conditioning and accuracy are due to the different quadrature schemes
adopted in the old and new assembly strategies. The elapsed time behaves in both cases as O(N 2

h ) as expected, but the
superiority of the new approach is self-evident.

Similar conclusions can be deduced looking at the results in the bottom part of Table 2 where the comparison has
been done for increasing values of the B-spline basis degree d chosen for the approximation of the BIE solution. Here
the elapsed time behaves in both cases as O(d2).

The same data are used in Fig. 1 where the convergence of errors are plotted with respect to the number of degrees
of freedom and with respect to assembly time. In the first plot it can be seen that the solution obtained with the new
strategy is accurate as the one calculated before, in the second plot it can be seen that the new strategy obtains very
good errors using modest times.

6.2. Interior Dirichlet problem: S-shaped closed domain test

We consider the interior Laplace problem (1) on the domain Ω shown in Fig. 2, equipped by Dirichlet boundary
condition, where Γ := ∂Ω is described by cubic B-splines defined by the cyclic extended knot vector

T2 = [ −3/2 : 1/6 : 3/2],

and control points depicted in Fig. 2. Since uD = −(x1 + x2) is chosen, the solution of (3) is explicitly known, it reads
q(x) = q(f(t)) = ( f ′

1(t) − f ′

2(t))/∥f′(t)∥2 and has C1([−1, 1]) regularity.
Table 3 compares results obtained for this numerical test by the IgA-SGBEM element-by-element implementation

(NG = Nprod = 32, NDE = 63) and the new one (Nre f = 2 for both the quadrature formulas). Also in this case,
the new quadrature and assembly strategy reveals much faster than the old one. Because of modest regularity of the
solution the performed tests are limited to the case d = 3. The plot of the approximate solution obtained from the new
implementation with h = 1/48 is depicted in Fig. 2, where the analytical solution of (3) is also reported.

This example is more challenging from the numerical point of view, due to modest regularity, the use of a direct
approach and the oscillations of the solution, see Fig. 2. Moreover, we point out that the S-shaped domain, being not
starred, is not good for some of the interior point-BEM methods introduced recently [24].
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Fig. 1. Parabola test: Convergence of the errors, case d = 2. On the left the plot of the errors with respect to the number of degrees of freedom
NDoF , on the right with respect to the assembly time. In blue with cross signs the new assembly, in red with circles the element-by-element strategy.
From the Figure on the left, the theoretical convergence of order d + 1 = 3 can be noticed. From the Figure on the right, we can conclude that the
new strategy is accurate as the previous and much more rapid.

Fig. 2. S-shaped domain test: on the left the domain Ω with the control polygon (black) used to represent its boundary in cubic B-spline form with
the cyclic knot vector T2 (in red circles the control points); on the right analytic solution (solid) and numerical one obtained with d = 3, h = 1/48
(crosses).

Table 3
S-shaped domain test: comparison between the two different assembly strategies for degree d = 3. For the explanation of the columns see the
previous table. Notice that in all the tested cases the new assembly is accurate and efficient.

h DoF Element-by-element New assembly

cond. ER EM Time (s) cond. ER EM Time (s)

1/6 15 3.39 · 102 1.12 · 10−1 1.62 · 10−1 98.28 2.87 · 102 1.14 · 10−1 2.33 · 10−1 2.17
1/12 27 8.20 · 102 3.23 · 10−2 6.71 · 10−2 351.41 9.19 · 102 3.30 · 10−2 9.39 · 10−2 5.97
1/24 51 3.00 · 103 3.98 · 10−3 1.33 · 10−2 1240.44 3.67 · 103 4.03 · 10−3 1.97 · 10−2 22.50
1/48 99 8.75 · 103 5.79 · 10−4 2.03 · 10−3 4728.49 8.95 · 103 6.32 · 10−4 3.11 · 10−3 88.80
1/96 195 2.09 · 104 8.96 · 10−5 3.06 · 10−4 18615.21 2.15 · 104 1.85 · 10−4 1.69 · 10−3 372.18

7. Conclusions and future work

In this paper we have presented a new strategy that gives fast assembly in IgA-SGBEM dealing with BVPs equipped
by Dirichlet boundary conditions. The remaining analysis for the application to mixed problems will be covered in a
forthcoming paper.
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Note that the presented integration schemes can be easily used also in the context of collocation BEM, fixing the
outer collocation node and using the new quadrature rules for the inner integration.
Moreover, the proposed method can be profitably used when treating non-linear transmission problems, in order to
obtain the trace of the solution on the boundary, see [47].

An open issue consists in testing hierarchical spline spaces to develop an efficient adaptive isogeometric version of
the scheme, see [48]. The hierarchical approach could overcome the problem of dealing with non-regular curves.
The extension to 3D problems where the boundary surface can be described just by one open patch and the multi-patch
case for the description of closed surfaces is currently under study.
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