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Leukemia is the most common blood cancer, and its development starts at diverse points, leading to
distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in
therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-
resistant cases. Among heterocyclic compounds that attracted a lot of attention because of its wide
spread biological activities, the pyrrolo[1,2-a]quinoxaline heterocyclic framework has been identified as
interesting scaffolds for antiproliferative activity against various human cancer cell lines. In the present
study, novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carbox-
ylate derivatives 1a-l have been designed and synthesized. Their cytotoxicities were evaluated against
five different leukemia cell lines, including Jurkat and U266 (lymphoid cell lines), and K562, U937, HL60
(myeloid cell lines), as well as normal human peripheral blood mononuclear cells (PBMNCs). Then,
apoptosis study was performed with the more interesting compounds. The new pyrrolo[1,2-a]qui-
noxaline series showed promising cytotoxic potential against all leukemia cell lines tested, and some
compounds showed better results than the reference compound A6730. Some compounds, such as 1a,
1e, 1g and 1h are promising because of their high activity against leukemia and their low activity against
normal hematopoietic cells. Structure-activity relationships of these new synthetic compounds 1a-l are
here also discussed.

© 2016 Elsevier Masson SAS. All rights reserved.
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served.
1. Introduction

Acute leukemia is one of the most aggressive hematopoietic
malignancies and is characterized by the abnormal proliferation of
the immature cells and a premature block in lymphoid or myeloid
differentiation. Adult acute leukemia have a poor prognosis due to a
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large number of relapses. Thus, identifying and understanding the
treatment-related resistance mechanisms is of major interest to
improve the therapeutic strategy [1]. Therefore, there is an urgent
need to find new therapeutics, which could led to the development
of novel treatment strategies with less or minimal side effects.

Heterocyclic compounds attracted a lot of attention because of
its wide spread biological activities. Among them, the pyrrolo[1,2-
a]quinoxaline heterocyclic framework constitutes the basis of an
important class of compounds possessing interesting biological
activities. These compounds have been reported to serve as key
intermediates for the assembly of several heterocycles including
antipsychotic agents [2], anti-HIV agents [3], adenosine A3 receptor
modulators [4], antiparasitic agents [5e10], and antitumor agents
[11e13]. In this last field, the discovery and development of novel
therapeutic agents are one of themost important goals inmedicinal
chemistry. In this context, we have recently published three series
(Series A-C) of new interesting substituted pyrrolo[1,2-a]quinoxa-
lines (Fig. 1) endowed with good activity towards the human leu-
kemia cells [14e16]. These antiproliferative pyrrolo[1,2-a]
quinoxaline derivatives have been previously designed as novel
structural analogues of compound A6730, a well-described Akt
inhibitor that presents antiproliferative activity against different
Fig. 1. Structure of bioactive compounds of previously described series A-C, and general stru
D).
human leukemia cell lines [14e17]. Continuing our efforts in this
field and considering the pharmacological activities of pyrroloqui-
noxalines on human leukemic cells, a new series (Series D) was
designed and synthesized. Thus, by taking into accounts the best
results obtained in series B (Fig. 1), we decided to use the JG576 and
JG572 pyrrolo[1,2-a]quinoxaline moieties as a template for the
design of new derivatives 1a-l in which the pyrrole nucleus is
substituted in different positions by a phenyl and an ester function
(Series D, Fig. 1). In relation to our previous works, further phar-
macomodulations on the piperidine core have been considered,
such as the introduction of new substituted heterocyclic systems
[14e16]. The antiproliferative profile of the obtained derivatives 1a-
lwas then evaluated in vitro against a panel of myeloid (U937, HL60,
K562) or lymphoid (Jurkat, U266) leukemic cell lines. Moreover, to
determine their respective cytotoxicity, the new ethyl 4-[4-(4-
substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxa-
line-carboxylate derivatives 1a-l were tested on activated human
peripheral blood mononuclear cells, and assessment of apoptosis
was performed with the more interesting compounds. Structure-
activity relationships of these new synthetic compounds 1a-l are
here discussed. Finally, we used simple computational programs to
predict the drug-like characteristics through the calculated
cture of new synthesized substituted pyrrolo[1,2-a]quinoxaline derivatives 1a-l (series
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physicochemical and toxicological properties of these new ethyl 4-
[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]qui-
noxaline-carboxylate derivatives to determine their potential anti-
leukemia activity.
2. Chemistry

All reported pyrrolo[1,2-a]quinoxaline derivatives 1a-l were
synthesized from various substituted phenyl-1H-pyrrole-dicar-
boxylic acid ethyl ester 2a-d (Schemes 1 and 2). Different strategies
using classical or microwaves heating were considered for the
synthesis of the phenyl-1H-pyrrole-diesters 2a-d in order to
introduce the phenyl and ester functions on the pyrrole ring
(Table 1). The synthesis of the diethyl 4-phenyl-1H-pyrrole-2,3-
dicarboxylate 2a has been accomplished by treatment of ethyl
isocyanide on ethyl phenylpropiolate under 1,3-
bis(diphenylphosphino)propane (dppp) catalysis via a formal
[3 þ 2] cyclo-addition (Scheme 1, Table 1) [18,19]. Various attempts
were investigated for the preparation of the diethyl 3-phenyl-1H-
pyrrole-2,4-dicarboxylate 2b. At first, this pyrrole 2b was prepared
by silver-catalyzed cycloaddition of commercially available ethyl
phenylpropiolate with ethyl isocyanoacetate in 1,4-dioxane or DMF
at 80 �C (Scheme 1, Methods A-C, Table 1) [20,21]. The very low
yield obtained (12%, Table 1) using microwaves heating led us to
investigate other methodologies. The copper-catalyzed reaction of
ethyl isocyanide with the electron-deficient alkyne, ethyl phenyl-
propiolate, gave the diethyl 3-phenyl-1H-pyrrole-2,4-dicarboxylate
2bwith 62% in dioxane at 100 �C usingmicrowave heating (Table 1)
Scheme 1. Synthesis of phenyl-1H-pyrrole-diesters 2a-d; Reagents and conditions: (i)
dppp, dioxane, 100 �C; (ii) Method A: Ag2CO3, dioxane, 80 �C; Method B: 1) Ag2CO3,
dioxane, 25 �C; 2) 80 �C; Method C: 1) Ag2CO3, NMP, 25 �C; 2) 80 �C; (iii) Method D:
Cu2O, ph�enanthroline, dioxane, 100 �C; (iv) Method E: DBU, THF, 50 �C; (v) H2NOH,
HCl, Pyridine, EtOH, reflux; (vi) 1) H5C2OOCeC^CeCOOC2H5, DABCO, toluene, 80 �C;
2) 170 �C, P; (vii) NaN3, DMF, 65 �C; (viii) C6H5eCOeCH2eCOOC2H5, Mn(OAc)3&$2H2O,
40 �C.
[1,2]. Pyrrole 2b could be also synthesized by reaction of ethyl
isocyanoacetate with benzaldehyde in the presence of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) in THF [22,23]. The synthe-
sis of the diethyl 5-phenyl-1H-pyrrole-2,3-dicarboxylate 2c has
been accomplished in two steps starting from commercially avail-
able acetophenone via its oxime 3 (Scheme 1). The acetophenone
oxime 3, synthesized by the reaction of hydroxylamine on aceto-
phenone [7], was then reacted with diethyl acetylene in the pres-
ence of 1,4-diazabicyclo[2.2.2]octane (DABCO) to form pyrrole 2c
via a thermal rearrangement by Trofimov reaction [24,25]. Diethyl
5-phenyl-1H-pyrrole-2,4-dicarboxylate 2d was prepared by
manganese(III)-catalyzed formal [3 þ 2] annulation of ethyl 2-
azidoacrylate 4 and ethyl 3-oxo-3-phenylpropanoate [26]. The 2-
azidoacrylate 4 was previously synthesized by treatment of ethyl
2,3-dibromopropanoate with three equivalents of sodium azide
(NaN3) in aprotic polar solvent such as dimethylformamide (DMF)
[10,11]. A X-ray single crystal analysis was also performed on
phenyl-1H-pyrrole-diesters 2b-d in order to confirm the structures
(Fig. 2). The preparation of N-aryl pyrroles 5a-d were obtained by
nucleophilic substitution of the various pyrrole-2-carboxylates 2a-
dwith 2-fluoro-nitrobenzene using cesium carbonate as the base in
refluxing DMF solution (Scheme 2) [15,16]. The preparation of 5a-
d was also performed under microwave irradiation. Reduction of
the nitro moiety with iron in hot glacial acetic acid produced the
spontaneous ring closure onto the ester in position 2 of the pyrrole
moiety to afford the desired tricyclic pyrrolo[1,2-a]quinoxalines 6a-
d through a one-pot reduction-cyclization step [15,16]. The lac-
tames 6a-d were subsequently chlorodehydroxylated with phos-
phorous oxychloride, leading to the 4-chloroquinoxalines 7a-d. 4-
(Pyrrolo[1,2-a]quinoxalin-4-yl)benzaldehydes 8a-d were easily
prepared by a direct Suzuki-Miyaura cross-coupling reaction of 4-
chloropyrroloquinoxalines 7a-d with 4-formylphenylboronic acid
performed in the presence of Pd(PPh3)4 as a catalyst, and in the
presence of potassium carbonate used as the base [14e16]. The
aldehydes 8a-d were then engaged in a reductive amination with
NaBH3CN and 4-(2-ketobenzimidazolin-1-yl)piperidine or 4-(5-
fluorobenzimidazolin-2-yl)piperidine or 2-(3-piperidin-4-yl-1H-
1,2,4-triazol-5-yl)pyridine to give the pyrrolo[1,2-a]quinoxalines
1a-l [14e16]. The 3D spatial determinations of 1a, 1d, 1g and 1j
were established by X-ray crystallography (Fig. 3), and confirmed
the structures in the solid state as anticipated on the basis of IR and
1H and 13C NMR data.

3. Biological activity

3.1. Cytotoxicity in leukemia cell lines

The twelve new compounds 1a-l were tested in MTS assay for
their in vitro antiproliferative activity against five human leukemic
cell lines (U937, K562, Jurkat, U266 and HL60). Compound A6730
(Fig. 1) was used in these tests as the reference standard drug. The
results are summarized in Table 2. In addition, compound LY-
294002, which showed antiproliferative activity against the HL60,
U937 and K562 cell lines [27e30], was also applied as a referential
cytotoxic agent.

The pyrrolo[1,2-a]quinoxalines 1c, 1f, 1g, 1h, 1i, 1k and 1l were
found the most antiproliferative compounds on the growth of hu-
man myeloid U937 cell line with IC50 of 3e11 mM. The two de-
rivatives 1h and 1k with IC50 of 4 and 3 mM respectively, showed a
better activity in comparison with the reference compound A6730
(IC50¼ 8 mM). These two compounds 1h and 1kwere substituted in
position 4 by a benzylpiperidinyl fluorobenzimidazole group and in
position 1 by a phenyl. In general, the substitution by a phenyl on
position 1 of the pyrrole moiety led to active derivatives (1g-l
excepted 1j). Interestingly, 1c, 1f, 1i and 1l were substituted by a



Scheme 2. Synthesis of pyrrolo[1,2-a]quinoxalines 1a-l; Reagents and conditions: (i) 2-fluoro-nitrobenzene, Cs2CO3, DMF, D; (ii) Fe, CH3COOH, D; (iii) POCl3, D; (iv)
OHCeC6H4eB(OH)2, Pd[P(C6H5)3]4, K2CO3, toluene, EtOH, D; (v) 4-(2-ketobenzimidazolin-1-yl)piperidine or 4-(5-fluorobenzimidazolin-2-yl)piperidine or 2-(3-piperidin-4-yl-1H-
1,2,4-triazol-5-yl]pyridine, NaBH3CN, MeOH, D.

Table 1
Synthesis of phenyl-1H-pyrrole-diester 2a-d under standard reaction conditions.

Reagents and conditions Time Yield (%)

2a (i) dppp, dioxane, 100 �C 2 h 87a

2b (ii) Method A: Ag2CO3, dioxane, 80 �C 1 h 9a

(ii) Method B: 1) Ag2CO3, dioxane, 25 �C; 2) 80 �C 1) 5 min
2) 30 min

10a

(ii) Method C: 1) Ag2CO3, NMP, 25 �C; 2) 80 �C 1) 5 min
2) 30 min

12b

(iii) Method D: Cu2O, phenanthroline, dioxane, 100 �C 40 min 62b

(iv) Method E: DBU, THF, 50 �C 1 h 35b

2c (vi) 1) H5C2OOCeC^CeCOOC2H5, DABCO, toluene, 80 �C;
2) 170 �C, P

1) 6 min
2) 45 min

28b

2d (viii) C6H5eCOeCH2eCOOC2H5, Mn(OAc)3&$2H2O, 40 �C 2 h 42a

a Conventional heating.
b Microwaves heating (200 W).
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benzylpiperidinyl triazolylpyridine moiety in position 4 of the
pyrrolo[1,2-a]quinoxaline core, All other compounds derived from
the incorporation of the benzylpiperidinyl benzimidazolonemoiety
(compounds 1a, 1d and 1j), which was present in the reference
compound A6730, into the 4-position of the heterocyclic pyrrolo-
quinoxaline ring were found inactive on the U937 cell line in
comparison with their benzylpiperidinyl fluorobenzimidazole or
benzylpiperidinyl triazolylpyridine analogues, excepted 1g that
was found active (IC50 ¼ 9 mM). From a SAR point of view, these
preliminary biological results on U937 cell line enlightened the
importance of the substitution at C-4 position of the pyrroloqui-
noxaline scaffold by a benzylpiperidinyl fluorobenzimidazole
group, and also the need of a phenyl functionalisation in position 1
of the pyrrole ring (compounds 1h and 1k).

The antiproliferative potencies of these new derivatives 1a-l
were also examined towards the human myeloid leukaemia cell
lines K562 and HL60.
Among the twelve compounds tested for antiproliferative ac-

tivities on K562 cell line, the five pyrrolo[1,2-a]quinoxalines 1a, 1b,
1e,1k and 1lwere found themost active compoundswith an IC50 of
3e4 mM. All the other pyrroloquinoxalines 1 also showed signifi-
cant antiproliferative activity with IC50 ranging from 7 to 14 mM,
better than the one found for the reference compound A6730
(IC50 ¼ 17 mM). Moreover, in terms of structure-activity relation-
ships discussion, it could be also noticed that the four quinoxalines
1b, 1e, 1h and 1k, bearing the benzylpiperidinyl fluo-
robenzimidazole moiety in their 4-position, were always found the
most active compounds with IC50 of 3e7 mM in each subseries
diversely substituted by a phenyl and an ester on the pyrrole ring.

Against the HL60 human acute promyeloid leukemia cell line,
most of the tested compounds showed antiproliferative activity
with IC50 values from 3 to 24 mM, excepted 1a and 1j that were



Fig. 2. The ORTEP drawing of phenyl-1H-pyrrole-diesters 2b-d with thermal ellipsoids at 30% level.
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found inactive (IC50 > 50 mM). The two pyrroloquinoxalines 1d and
1f having an ester function and a phenyl respectively in position 2
and 3 exhibited better activities than their other homologues.
Compounds 1d and 1k showed a better activity that the one
noticed for the reference compound A6730: i.e. IC50 ¼ 3.5 and 3 mM
for 1d and 1k, respectively in comparison with 5.5 mM for A6730.

The antiproliferative activities of compounds 1a-l against the T-
acute lymphoblastic leukemia Jurkat cell line were also investi-
gated, and the results exhibited potent cytotoxicity for pyrrolo-
quinoxalines 1b-l (IC50 from 2 to 6.5 mM) as potent as the one
observed for A6730 (IC50 ¼ 3.5 mM). Nevertheless, the pyrrolo[1,2-
a]quinoxaline 1a showed low antiproliferative activity
(IC50 ¼ 41 mM). Hence in the subseries functionalized by a phenyl
and an ester at C2 and C3 respectively, the IC50 of 1b and 1c (5 mM)
was 8.2 times lower than those of compound 1a (IC50 ¼ 41 mM).

Against the human myeloma cell line U266, the same pyrrolo
[1,2-a]quinoxalines 1b, 1f, 1h, 1k and 1l, bearing a benzylpiper-
idinyl fluorobenzimidazole or a benzylpiperidinyl triazolylpyridine
moiety in position 4 and substituted on the pyrrole ring, exhibited
potent cytotoxicity (IC50 from 3 to 5 mM). All the other tested pyr-
roloquinoxalines 1 (compounds 1d-e,1g and 1i) were also found to
be active on U266 cell line with IC50 ranging from 8 to 18 mM, with
the exception of 1a, 1c and 1j that presented an IC50 superior to
50 mM.

Against each human cancer cell lines, the antiproliferative ac-
tivities of compounds 1a-l were generally found superior to those
of the other reference drug LY-294002.
3.2. Cytotoxicity activity in activated normal peripheral blood
mononuclear cells

The compounds 1a-l were tested on activated (PBMNC þ PHA)
human peripheral blood mononuclear cells to evaluate their
respective cytotoxicity on normal cells (Table 2). As expected, most
of the pyrrolo[1,2-a]quinoxalines 1a-l showed significant level of
cytotoxicity against lymphocytes with IC50 ranging from 8 to over
50 mM. These preliminary results were used to determine their
respective range of toxic concentration.

Indexes of selectivity (IS) were defined as the ratio of the IC50
value on the human mononuclear cells to the IC50 value on the
K562, U937, HL60, Jurkat and U266 lines. Compounds that
demonstrated high selectivity (high index of selectivity) should
offer a potential of safer therapy. This led to identify compounds
with index of selectivity >16.7 and >12.5 for compounds 1e and 1a,
respectively, on the human myeloid leukemic cell lines K562; and
>12.5 for compound 1g against the human leukemic cell lines
Jurkat. We could notice that the more interesting new pyrroloqui-
noxaline structure (compound 1e) could be considered as a direct
combination of our previously bioactive described derivatives
JG572 and JG576. Moreover, we could notice that the compound 1a
showed interesting selectivity towards K562 CML cell lines. The
potential inhibitor 1h also showed interesting IS on U937 and U266
leukemic cell lines with value of 12.5. These four compounds could
now constitute suitable candidates for further pharmacological
studies. The reference compound A6730 showed interesting
selectivity with index of selectivity value noticed at 14.3 on the
Jurkat cell line.



Fig. 3. The ORTEP drawing of pyrrolo[1,2-a]quinoxalines 1a, 1d, 1g and 1j with thermal ellipsoids at 30% level.

Table 2
In vitro activity of compounds 1a-l on U937, K562, HL60, Jurkat and U266 cells, and cytotoxicity on human peripheral blood mononuclear cells PBMNC þ PHA.

IC50 values (mM)a

Compound K562 U937 HL60 Jurkat U266 Cytotoxicity on activated human peripheral blood mononuclear cells (PBMNC) PBMNC þ PHA

A6730 17 ± 0.3 8 ± 0.2 5.5 ± 0.2 3.5 ± 0.2 n.d.b >50
LY-294002 38 ± 1 14 ± 0.3 14 ± 0.3 22 ± 1 46 ± 2 >50
1a 4 ± 0.1 >50 >50 41 ± 1.2 >50 >50
1b 3 ± 0.1 21 ± 2.2 19 ± 2.8 5 ± 0.2 3.5 ± 0.1 14 ± 1
1c 14 ± 0.3 7 ± 0.3 12 ± 2.3 5 ± 0.1 >50 16 ± 2
1d 9 ± 0.3 >50 3.5 ± 0.1 4 ± 0.1 10 ± 0.8 41.3 ± 5
1e 3 ± 0.1 n.d. 10 ± 0.9 5 ± 0.2 18 ± 1.1 >50
1f 7 ± 0.2 7 ± 0.1 5 ± 0.1 2 ± 0.1 5 ± 0.1 8 ± 0.5
1g 8 ± 0.2 9 ± 0.4 6 ± 0.1 4 ± 0.1 9 ± 0.8 >50
1h 7 ± 0.3 4 ± 0.1 8 ± 0.2 6 ± 0.15 4 ± 0.1 50 ± 4
1i 12 ± 0.4 11 ± 0.9 24 ± 3 5 ± 0.1 8 ± 0.5 50 ± 6
1j 8.5 ± 0.3 >50 >50 6.5 ± 0.1 >50 >50
1k 3 ± 0.1 3 ± 0.1 3 ± 0.1 3.5 ± 0.1 3 ± 0.1 13 ± 1
1l 3.5 ± 0.1 8 ± 0.2 7 ± 0.3 3 ± 0.1 3 ± 0.1 12 ± 1

a The IC50 (mM) values correspond to the mean ± standard deviation from 3 independent experiments.
b n.d. ¼ not determined.
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3.3. Determination of the action mode

The reference compound A6730, which showed interesting
selectivity on the Jurkat cell line, is additionally described as an Akt
inhibitor (Akt1 IC50 ¼ 58 nM, Akt2 IC50 ¼ 10 nM and IC50
Akt3 ¼ 2.2 mM) [31]. To determine the possible mechanism of ac-
tion of our compounds, we first evaluated their potency on isolated
enzymes such as Akt 1, 2 and 3 as well as onmTOR. These tests have
been performed by DiscoverX at 1 and 10 mM [32]. Nevertheless,
only low effects have been detected. Akt2 activity was reduced of
38% and 35% with derivatives 1e and 1j at 10 mM, respectively. Such
of enzymatic interaction could not explain the cell effects. Next
assessment of apoptosis in K562 cell line was examined. Apoptosis
induces loss of membrane asymmetry resulting in phosphatidyl



Table 3
Predicted drug-relevant properties of compounds 1a-l.

Compound Clog P TPSA nON nOH/NH N violationsa

A6730 5.55 95.50 8 2 2
1a 7.19 84.65 8 1 2
1b 7.70 75.53 7 1 2
1c 6.49 101.32 9 1 2
1d 7.19 84.65 8 1 2
1e 7.70 75.53 7 1 2
1f 6.49 101.32 9 1 2
1g 7.13 84.65 8 1 2
1h 7.65 75.53 7 1 2
1i 6.44 101.32 9 1 2
1j 7.13 84.65 8 1 2
1k 7.65 75.53 7 1 2
1l 6.44 101.32 9 1 2

a Number of violations to the Lipinski's “rule of five”: log P � 5, molecular weight
�500, number of hydrogen bond acceptors �10, and number of hydrogen bond
donors �5.
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serine (PS) exposure and alterations in mitochondrial membrane
potential. Cells were incubated with or without increasing doses 1e
for 3 days. Compound 1e, which showed themost interesting index
of selectivity on the human myeloid leukemic cell lines K562, in-
duces a significantly increase in Annexin V positive cells from the
second and third days (92% ± 2.8) (Fig. 4). These results could
explain the inhibition of cell proliferation observed with this
compound 1e.

3.4. Predicted toxicity and other drug relevant properties

To speculate on any toxicity risks and drug-like characteristics of
these novel synthesized compounds, we computed a set of drug
relevant properties from their 2D chemical structures (Table 3). The
calculated properties indicated that our molecules 1 present the
same toxicological profile as the anticancer reference compound
A6730. These parameters were calculated by the molinspiration
web services [33]. All compounds 1a-l were found lipophilic with
Clog P values between 6.44 and 7.70. The Clog P of the reference
compound A6730 was noticed at 5.55 slightly lower than those of
our compounds. To predict intestinal absorption, we estimated the
molecular polar surface areas (PSA) of these new pyrroloquinoxa-
line compounds 1a-l from the calculated TPSA. PSA has been
extensively used in medicinal chemistry for modeling absorption
phenomena and to optimize a drug's ability to permeate cells. The
PSA of a molecule is defined as the surface sum over all polar atoms,
which primarily consist of oxygen and nitrogen as well as their
attached hydrogens. Molecules with a polar surface area greater
than 140 Å2 tend to be poor at permeating cell membranes, while a
PSA of less than 60 Å2 is usually needed for molecules to penetrate
the blood-brain barrier and thus act on the brain and other central
nervous system tissues [34,35]. The PSA of our compounds could
suggest an intestinal absorption (PSA < 140 Å2). On the other hand,
these pyrroloquinoxalines seem to be unlikely to cross the blood-
brain barrier (PSA > 60 Å2). Thus, based on these predicted data,
the calculated PSA values for these derivatives 1 could indicate a
possible better oral bioavailability with a smaller chance of CNS
toxicity.

4. Conclusion

In the present work, we synthesized a series of twelve new ethyl
4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]
quinoxaline-carboxylate derivatives 1a-l and investigated their
antileukemic activity on the human leukemic cell lines U937, K562,
Fig. 4. Effect of 1e on apoptosis of K562 cells. Cells were cultured with or without
increasing doses of 1e for 3 days in culture medium then stained with APC-Annexin V,
and analyzed by flow cytometry. Results are expressed as Mean ± Standard Error (SEM)
of three independent experiments. ***p < 0.001 compared with control (t-test).
Jurkat, U266 and HL60. These results have been discussed in a
preliminary SAR study. The first biological evaluation of our new
substituted pyrrolo[1,2-a]quinoxalines showed cytotoxic activity in
these myeloid and lymphoid leukemia cell lines. Consequently,
compounds 1e, 1a, 1g and 1h are promising due to their high
cytotoxic activity against some leukemia cells (IC50 ranging from 3
to 9 mM) and their lower toxicity against normal hematopoietic
cells (estimated IC50 > 50 mM). These compounds showing inter-
esting index of selectivity may constitute suitable candidates for
further pharmacological studies. Moreover, it would be also inter-
esting to enlarge the biological evaluation of these new bioactive
pyrrolo[1,2-a]quinoxaline derivatives in order to precise now their
mechanism of action.
5. Experimental

5.1. Chemistry

Commercially reagents were used as received without addi-
tional purification. Melting points were determined with an SM-
LUX-POL Leitz hot-stage microscope and are uncorrected. IR
spectra were recorded on an NICOLET 380FT-IR spectrophotometer.
NMR spectra were recorded with tetramethylsilane as an internal
standard using a BRUKER AVANCE 300 spectrometer. Splitting
patterns have been designated as follows: s ¼ singlet; bs ¼ broad
singlet; d ¼ doublet; t ¼ triplet; q ¼ quartet; dd ¼ double doublet;
ddd ¼ double double doublet; dt ¼ double triplet; m ¼ multiplet.
Analytical TLC were carried out on 0.25 precoated silica gel plates
(POLYGRAM SIL G/UV254) and visualization of compounds after UV
light irradiation. Silica gel 60 (70e230 mesh) was used for column
chromatography. Microwave experiments were carried out using a
focused microwave reactor (CEM Discover). High resolution mass
spectra (electrospray in positive mode, ESIþ) were recorded on a
Waters Q-TOF Ultima apparatus. Elemental analyses were found
within ±0.4% of the theoretical values.
5.1.1. Ethyl 2-azidoacrylate (4)
To a solution of sodium azide (3.75 g, 57.68 mmol) in DMF

(120 mL) at 65 �C was added ethyl 2,3-dibromopropionate (5.00 g,
19.26 mmol). After 10 min, the reaction mixture was cooled and
poured into water (300 mL) and extracted with ether (3 � 120 mL).
The combined organic extracts were washed with water
(3� 120 mL), dried over MgSO4, filtered and evaporated in vacuo to
afford ethyl 2-azidoacrylate as a yellow oil (79%). Rf ¼ 0.38 (cyclo-
hexane/Et2O-98/2) [36,37].
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5.1.2. Diethyl 4-phenyl-1H-pyrrole-2,3-dicarboxylate (2a)
To a 1,4-dioxane solution (10 mL) of 1,3-bis(diphenylphosphino)

propane (dppp) (0.32 g, 0.78 mmol) were added ethyl iso-
cyanoacetate (0.70 g, 6.19 mmol) and ethyl phenylpropiolate
(0.90 g, 5.17 mmol). The solution was stirred at 100 �C for 2 h. After
the consumption of ethyl isocyanoacetate, the reactionmixturewas
cooled to room temperature, filtered and evaporated in vacuo. The
crude was purified on silica gel (eluent: cyclohexane/AcOEt-90/10
then cyclohexane/AcOEt-70/30, Rf ¼ 0.33) to afford 2a as a color-
less oil (87%) [18,19].

5.1.3. Diethyl 3-phenyl-1H-pyrrole-2,4-dicarboxylate (2b)
Method A: To a mixture of ethyl phenylpropiolate (2.5 g,

14.3 mmol) and Ag2CO3 (0.264 g, 0.96 mmol) in 1,4-dioxane
(40 mL) at 80 �C, ethyl isocyanoacetate (1.08 g, 9.55 mmol) was
slowly added. The solution was stirred at 100 �C for 30 min. After
the consumption of ethyl isocyanoacetate, the reactionmixturewas
cooled to room temperature, filtered and evaporated in vacuo. The
crude was purified on silica gel (eluent: cyclohexane/AcOEt-90/10
then cyclohexane/AcOEt-70/30, Rf ¼ 0.33) to afford 2b as white
crystals (9%).Method B: A mixture of ethyl phenylpropiolate (2.5 g,
14.3 mmol) and Ag2CO3 (0.264 g, 0.96 mmol) in 1,4-dioxane
(40 mL) was heated at 80 �C for 5 min, then mixture was cooled
with an ice bath. To this resulting solution cooled at room tem-
perature, ethyl isocyanoacetate (1.08 g, 9.55 mmol) was added
dropwise. The reaction mixture was stirred for 5 min at 25 �C, then
heated for 30 min at 80 �C. The resulting slurry was concentrated
under reduced pressure and taken up with dichloromethane. The
organic layer was washed with brine, dried with Na2SO4, filtered
and evaporated under vacuum. The crude was purified on silica gel
as above leading to 2b (10%). Method C: To a N-methyl-2-
pyrrolidone (NMP) solution (40 mL) of Ag2CO3 (0.264 g,
0.96 mmol) was added ethyl phenylpropiolate (2.5 g, 14.3 mmol).
After a prestirring of 30 s, the solution was irradiated during 1 min.
The irradiation was programmed to maintain a constant tempera-
ture (80 �C) with a power of 200W. To the resulting solution cooled
at room temperature, ethyl isocyanoacetate (1.08 g, 9.55mmol) was
added dropwise. After a pre-stirring of 30 s, the solution was irra-
diated during 6 min with a first step of irradiation of 1 min at 25 �C
followed by a second one of 5 min at 80 �C. The power was set at
200 W in both steps. The resulting slurry was concentrated under
reduced pressure and taken up with dichloromethane. The organic
layer was washed with brine, dried with Na2SO4, filtered and
evaporated under vacuum. The crude was purified on silica gel as
above to afford 2b (12%). Method D: To a 1,4-dioxane solution
(25 mL) of Cu2O (0.085 g, 0.59 mmol) and 1,10-phenanthroline
(0.215 g, 1.19 mmol) were added ethyl isocyanoacetate (1.35 g,
11.9 mmol) and ethyl phenylpropiolate (2.5 g, 14.3 mmol). After a
prestirring of 30 s, the solution was irradiated during 40 min. The
irradiation was programmed to maintain a constant temperature
(100 �C) with a power of 200W. The reaction mixture was cooled to
room temperature, filtered and concentrated in vacuo. The crude
was purified on silica gel as above to give 2b (62%). Method E: To a
THF solution (30 mL) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
(3.00 g, 19.7 mmol) was added ethyl isocyanoacetate (1.98 g,
17.5 mmol). After a prestirring of 30 s, the solution was irradiated
during 2 min. The irradiation was programmed to maintain a
constant temperature (50 �C) with a power of 200 W. To the
resulting solution at the same temperature, ethyl isocyanoacetate
(1.08 g, 9.55 mmol) was added dropwise. After a prestirring of 30 s,
the solution was irradiated during 1 h. The irradiation was pro-
grammed to maintain a constant temperature (50 �C) with a power
of 200 W. The reaction mixture was neutralized with acetic acid
and then the solvent was removed under reduced pressure. The
resulting residue was extracted with ethyl acetate and the extract
was washed with hydrochloric acid and water, dried with Na2SO4,
and then evaporated in vacuo. The crudewas purified on silica gel as
above to give 2b (35%) [20e22].

5.1.4. Diethyl 5-phenyl-1H-pyrrole-2,3-dicarboxylate (2c)
To 1,4-diazabicyclo[2.2.2]octane (0.083 g, 0.74mmol) and oxime

3 (1.00 g, 7.40 mmol) in dry toluene (20 mL) was added diethyl
acetylenedicarboxylate (1.26 g, 7.40 mmol), and the resultant
mixture was subjected to the two-stage microwave irradiation
sequence (stage 1: 80 �C, 6 min; stage 2: 170 �C, 45min). The power
was set at 200 W in both steps. The reaction mixture was cooled to
room temperature, filtered and concentrated in vacuo. The crude
was purified on silica gel as above to give 2c (28%) [24,25].

5.1.5. Diethyl 5-phenyl-1H-pyrrole-2,4-dicarboxylate (2d)
To a solution of ethyl 2-azidoacrylate 4 (1.70 g, 12.1 mmol) and

ethyl phenylacetoacetate (3.47 g, 18.0 mmol) in MeOH (30 mL) was
added AcOH (1.45 g, 24.1 mmol) and manganese(III) acetate dihy-
drate (1.29 g, 4.81 mmol), and the solution was stirred at 40 �C for
2 h. The reaction mixture was quenched with pH 9 ammonium
buffer (AcONH4 þ NH4OH), and then extracted twice with AcOEt.
The combined organic extracts were washed with brine, dried with
Na2SO4, filtered and concentrated in vacuo. The resulting residue
was cooled, triturated in Et2O and filtered. The crystals formedwere
filtered, and dried under reduced pressure to give 2d as white
crystals (42%) [26].

5.1.6. General procedure for diethyl 1-(2-nitroph�enyl)-phenyl-
pyrrole-dicarboxylate (5a-d)

Conventional heating: To a solution of diethyl phenyl-1H-pyr-
role-dicarboxylate 2a-d (2.75 mmol) in 11 mL of DMF was added
cesium carbonate (3.3 mmol). The mixture was stirred at room
temperature for 10 min, then 2-fluoro-nitrobenzene (4.12 mmol)
was added. The reaction mixture was refluxed for 1 h 30 (15 h for
5d), then was diluted in AcOEt (35 mL). The organic layer was
washed with water (2 � 30 mL), then brine (30 mL) and dried over
sodium sulfate. The organic layer was concentrated under vacuo to
give a brown oil. After triturating in Et2O a solid was obtained and
filtered off, washed with Et2O and dried to give the desired product
5. Microwave heating: A suspension of diethyl phenyl-1H-pyrrole-
dicarboxylate 2a-d (3.4mmol), 1-fluoro-2-nitrobenzene (5.1mmol)
and cesium carbonate (4.06 mmol) in 12 mL of DMF was irradiated
during 10 min. The irradiation was programmed to maintain a
constant temperature (150 �C) with a maximal power output of
200 W. The reaction mixture was then diluted in AcOEt (60 mL),
washed with water (2 � 50 mL), then brine (50 mL) and dried over
sodium sulphate. The organic layer was concentrated under vacuo
to give products 5a-d as an oil.

5.1.6.1. Ethyl 1-(2-nitrophenyl)-4-phenyl-pyrrole-2,3-dicarboxylate
(5a). Orange oil (85%/89%). 1H NMR (CDCl3) d: 8.13 (dd, 1H,
J ¼ 7.90 and 1.35 Hz, H-30), 7.74 (ddd, 1H, J ¼ 7.90, 7.90 and 1.35 Hz,
H-40), 7.63 (ddd, 1H, J ¼ 7.90, 7.90 and 1.35 Hz, H-50), 7.55e7.43 (m,
3H, H-60, H-2 phenyl and H-6 phenyl), 7.40e7.28 (m, 3H, H-3
phenyl, H-4 phenyl and H-5 phenyl), 7.02 (s, 1H, H-5), 4.39e4.30
(m, 2H, OCH2), 4.12 (q, 2H, J¼ 7.20 Hz, OCH2),1.31 (t, 3H, J¼ 7.20 Hz,
CH3), 1.15 (t, 3H, J ¼ 7.20 Hz, CH3). HRMS-ESI m/z [M þ Na]þ Calcd
for C22H20N2O6Na: 431.1219, Found: 431.1224.

5.1.6.2. Ethyl 1-(2-nitrophenyl)-3-phenyl-pyrrole-2,4-dicarboxylate
(5b). Yellow oil (89%/95%). 1H NMR (CDCl3) d: 8.19 (dd, 1H,
J ¼ 7.80 and 1.50 Hz, H-30), 7.77 (ddd, 1H, J ¼ 7.80, 7.80 and 1.50 Hz,
H-40), 7.67 (ddd, 1H, J ¼ 7.80, 7.80 and 1.50 Hz, H-50), 7.59 (s, 1H, H-
5), 7.51 (dd, 1H, J ¼ 7.80 and 1.50 Hz, H-60), 7.39e7.35 (m, 5H, 5H
phenyl), 4.14 (q, 2H, J ¼ 7.20 Hz, OCH2), 3.89e3.80 (m, 2H, OCH2),
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1.13 (t, 3H, J¼ 7.20 Hz, CH3), 0.77 (t, 3H, J¼ 7.20 Hz, CH3). HRMS-ESI
m/z [M þ Na]þ Calcd for C22H20N2O6Na: 431.1219, Found: 431.1236.

5.1.6.3. Ethyl 1-(2-nitrophenyl)-5-phenyl-pyrrole-2,3-dicarboxylate
(5c). Yellow oil (65%/76%). 1H NMR (CDCl3) d: 8.05e8.01 (m, 2H,
H-30 and H-60), 7.62e7.56 (m, 2H, H-2 phenyl and H-6 phenyl), 7.31
(t, 1H, J ¼ 7.50 Hz, H-40), 7.25e7.04 (m, 4H, H-50, H-3 phenyl, H-4
phenyl and H-5 phenyl), 6.77 (s, 1H, H-4), 4.34 (q, 2H, J ¼ 6.90 Hz,
OCH2), 4.12 (q, 2H, J ¼ 6.90 Hz, OCH2), 1.38e1.14 (m, 6H, 2CH3).
HRMS-ESIm/z [MþNa]þ Calcd for C22H20N2O6Na: 431.1219, Found:
431.1248.

5.1.6.4. Ethyl 1-(2-nitrophenyl)-5-phenyl-pyrrole-2,4-dicarboxylate
(5d). Yellow oil (28%/). 1H NMR (CDCl3) d: 8.04 (dd, 1H, J ¼ 7.50
and 1.80 Hz, H-30), 7.66 (s, 1H, H-3), 7.52 (ddd, 1H, J ¼ 7.50, 7.50 and
1.80 Hz, H-40), 7.46 (ddd, 1H, J ¼ 7.50, 7.50 and 1.80 Hz, H-50),
7.26e7.16 (m, 6H, H-60 and 5H phenyl), 4.17 (q, 2H, J ¼ 6.90 Hz,
OCH2), 4.15 (q, 2H, J ¼ 6.90 Hz, OCH2), 1.27 (t, 3H, J ¼ 6.90 Hz, CH3),
1.18 (t, 3H, J ¼ 6.90 Hz, CH3). HRMS-ESI m/z [MþNa]þ Calcd for
C22H20N2O6Na: 431.1219, Found: 431.1240.

5.1.7. General procedure for ethyl 4,5-dihydro-4-oxo-5H-
ph�enylpyrrolo[1,2-a]quinoxaline-carboxylate (6a-d)

A suspension of 5 (2.6 mmol) and iron powder (9.5 mmol) in
11 mL of acetic acid was heated under reflux for 2 h. The reaction
mixture was cooled, suspended in 20 mL of a 1 M aqueous solution
of HCl, agitated, then filtered off, washed with HCl 1 M (8 mL),
water, Et2O and dried to give 6 as a fluffy white solid.

5.1.7.1. Ethyl 4,5-dihydro-4-oxo-5H-2-phenylpyrrolo[1,2-a]quinoxa-
line-3-carboxylate (6a). Beige crystals (69%), mp 239e241 �C. IR
(KBr) 3200, 2750 (NH),1720 (COO),1660 (CON). 1H NMR (DMSO-d6)
d: 11.49 (s, 1H, NH), 8.58 (s, 1H, H-1), 8.17 (d, 1H, J ¼ 8.10 Hz, H-9),
7.55 (d, 2H, J ¼ 7.50 Hz, H-2 phenyl and H-6 phenyl), 7.45 (t, 2H,
J ¼ 7.50 Hz, H-3 phenyl and H-5 phenyl), 7.34e7.27 (m, 4H, H-4
phenyl, H-6, H-7 and H-8), 4.30 (q, 2H, J ¼ 7.20 Hz, OCH2), 1.25 (t,
3H, J¼ 7.20 Hz, CH3). 13C NMR (DMSO-d6) d: 157.0 (C-4), 155.2 (C-7),
129.7 (C-9a), 122.6 (C-5a), 117.7 (C-1), 116.8 (C-3a), 116.0 (C-6), 112.3
(C-3), 111.0 (C-2), 108.9 (C-9), 100.8 (C-8), 55.4 (CH3O). Anal. Calcd.
for C12H10N2O2: C, 67.28; H, 4.71; N, 13.08. Found: C, 67.40; H, 4.81;
N, 12.94.

5.1.7.2. Ethyl 4,5-dihydro-4-oxo-5H-3-phenylpyrrolo[1,2-a]quinoxa-
line-2-carboxylate (6b). Beige crystals (88%), mp > 310 �C. IR (KBr)
3200, 2800 (NH), 1720 (COO), 1665 (CON). 1H NMR (DMSO-d6) d:
11.25 (s, 1H, NH), 8.80 (s, 1H, H-1), 8.28 (d, 1H, J ¼ 7.80 Hz, H-9),
7.34e7.27 (m, 7H, H-6, H-8 and 5H phenyl), 7.21 (t, 1H, J ¼ 7.80 Hz,
H-7), 4.09 (q, 2H, J ¼ 6.90 Hz, OCH2), 1.09 (t, 3H, J ¼ 6.90 Hz, CH3).
13C NMR (DMSO-d6) d: 157.0 (C-4), 155.2 (C-7), 129.7 (C-9a), 122.6
(C-5a), 117.7 (C-1), 116.8 (C-3a), 116.0 (C-6), 112.3 (C-3), 111.0 (C-2),
108.9 (C-9), 100.8 (C-8), 55.4 (CH3O). Anal. Calcd. for C12H10N2O2: C,
67.35; H, 4.78; N, 13.15. Found: C, 67.47; H, 4.92; N, 13.30.

5.1.7.3. Ethyl 4,5-dihydro-4-oxo-5H-1-phenylpyrrolo[1,2-a]quinoxa-
line-3-carboxylate (6c). White crystals (58%), mp ¼ 218e220 �C. IR
(KBr) 3200, 2700 (NH),1700 (COO),1670 (CON). 1H NMR (DMSO-d6)
d: 11.50 (s, 1H, NH), 7.56e7.53 (m, 5H, 5H phenyl), 7.32 (d, 1H,
J ¼ 7.70 Hz, H-9), 7.24 (t, 1H, J ¼ 7.70 Hz, H-8), 6.97 (d, 1H,
J¼ 7.70 Hz, H-6), 6.84 (t, 1H, J¼ 7.70 Hz, H-7), 6.81 (s, 1H, H-2), 4.27
(q, 2H, J ¼ 6.90 Hz, OCH2), 1.30 (t, 3H, J ¼ 6.90 Hz, CH3). Anal. Calcd.
for C12H10N2O2: C, 67.21; H, 4.64; N, 13.01. Found: C, 67.33; H, 4.74;
N, 12.76.

5.1.7.4. Ethyl 4,5-dihydro-4-oxo-5H-1-phenylpyrrolo[1,2-a]quinoxa-
line-2-carboxylate (6d). White crystals (84%), mp ¼ 229e231 �C. IR
(KBr) 3200, 2700 (NH),1695 (COO),1665 (CON). 1H NMR (DMSO-d6)
d: 11.53 (s, 1H, NH), 7.61e7.53 (m, 3H, 3H phenyl), 7.50e7.47 (m, 2H,
2H phenyl), 7.44 (s, 1H, H-3), 7.29 (d, 1H, J ¼ 7.90 Hz, H-6), 7.20 (t,
1H, J ¼ 7.90 Hz, H-8), 6.75 (t, 1H, J ¼ 7.90 Hz, H-7), 6.64 (d, 1H,
J ¼ 7.90 Hz, H-9), 4.02 (q, 2H, J ¼ 6.90 Hz, OCH2), 1.30 (t, 3H,
J ¼ 6.90 Hz, CH3). Anal. Calcd. for C12H10N2O2: C, 67.31; H, 4.74; N,
13.11. Found: C, 67.43; H, 4.95; N, 12.86.

5.1.8. General procedure for ethyl 4-chloro-phenylpyrrolo[1,2-a]
quinoxaline-carboxylate (7a-d)

A solution of 5H-pyrrolo[1,2-a]quinoxalin-4-one 6 (4 mmol) in
POCl3 (8 mL) was refluxed for 2 h. After removing excess of reactive
under vacuum, the residue was carefully dissolved in water at 0 �C
and the resulting solution was made basic with sodium carbonate.
The precipitate was filtered, dried and recrystallized from ethyl
acetate to give 7.

5.1.8.1. Ethyl 4-chloro-2-phenylpyrrolo[1,2-a]quinoxaline-3-
carboxylate (7a). White crystals (77%), mp ¼ 109e111 �C. IR (KBr)
1715 (COO). 1H NMR (CDCl3) d: 7.97 (s,1H, H-1), 7.87 (dd,1H, J¼ 8.10
and 1.20 Hz, H-9), 7.80 (dd, 1H, J¼ 8.10 and 1.20 Hz, H-6), 7.58e7.32
(m, 7H, H-7, H-8 and 5H phenyl), 4.41 (q, 2H, J¼ 7.20 Hz, OCH2), 1.34
(t, 3H, J ¼ 7.20 Hz, CH3). HRMS-ESI m/z [MþH]þ Calcd for
C20H15N2O2ClNa: 351.0900, Found: 351.0918.

5.1.8.2. Ethyl 4-chloro-3-phenylpyrrolo[1,2-a]quinoxaline-2-
carboxylate (7b). Beige crystals (96%), mp ¼ 144e146 �C. IR (KBr)
1715 (COO). 1H NMR (CDCl3) d: 8.56 (s, 1H, H-1), 7.93 (dd, 1H,
J ¼ 8.10 and 1.50 Hz, H-9), 7.88 (dd, 1H, J ¼ 8.10 and 1.50 Hz, H-6),
7.59 (ddd,1H, J¼ 8.10, 7.90 and 1.50 Hz, H-8), 7.52 (ddd,1H, J¼ 8.10,
7.90 and 1.50 Hz, H-7), 7.44e7.37 (m, 5H, 5H phenyl), 4.19 (q, 2H,
J ¼ 7.20 Hz, OCH2), 1.14 (t, 3H, J ¼ 7.20 Hz, CH3). HRMS-ESI m/z
[MþH]þ Calcd for C20H15N2O2ClNa: 351.0900, Found: 351.0933.

5.1.8.3. Ethyl 4-chloro-1-phenylpyrrolo[1,2-a]quinoxaline-3-
carboxylate (7c). Beige crystals (94%), mp ¼ 108e110 �C. IR (KBr)
1720 (COO). 1H NMR (CDCl3) d: 7.91 (d, 1H, J ¼ 8.10 Hz, H-9),
7.55e7.48 (m, 5H, 5H phenyl), 7.41 (t, 1H, J ¼ 8.10 Hz, H-8), 7.33 (d,
1H, J ¼ 8.10 Hz, H-6), 7.17 (t, 1H, J ¼ 8.10 Hz, H-7), 7.09 (s, 1H, H-2),
4.44 (q, 2H, J ¼ 7.20 Hz, OCH2), 1.44 (t, 3H, J ¼ 7.20 Hz, CH3). HRMS-
ESI m/z [MþH]þ Calcd for C20H15N2O2ClNa: 351.0900, Found:
351.0903.

5.1.8.4. Ethyl 4-chloro-1-phenylpyrrolo[1,2-a]quinoxaline-2-
carboxylate (7d). Orange crystals (90%), mp ¼ 178 �C. IR (KBr)
1710 (COO). 1H NMR (CDCl3) d: 7.86 (dd, 1H, J ¼ 8.10 and 1.30 Hz, H-
6), 7.63e7.55 (m, 4H, 3H phenyl and H-3), 7.50e7.46 (m, 2H, 2H
phenyl), 7.37 (ddd, 1H, J¼ 8.10, 7.85 and 1.30 Hz, H-8), 7.10 (ddd,1H,
J¼ 8.10, 7.85 and 1.30 Hz, H-7), 7.01 (dd, 1H, J¼ 8.10 and 1.30 Hz, H-
9), 4.19 (q, 2H, J ¼ 7.20 Hz, OCH2), 1.18 (t, 3H, J ¼ 7.20 Hz, CH3).
HRMS-ESI m/z [M þ H]þ Calcd for C20H15N2O2ClNa: 351.0900,
Found: 351.0925.

5.1.9. General procedure for ethyl 4-(4-formylphenyl)-
phenylpyrrolo[1,2-a]quinoxaline-carboxylate (8a-d)

To suspension of compound 7a-d (4.64 mmol), and Pd(PPh3)4
(0.232 mmol) in a mixture of toluene/EtOH (75/4.1 mL) under ni-
trogen were added K2CO3 (5.1 mmol) and 4-formylphenylboronic
acid (5.1 mmol). The reaction mixture was refluxed for 24 h, and
the cooled suspension was extracted with CH2Cl2 (3 � 80 mL). The
organic layer waswashedwith a saturated solution of NaCl (95mL),
and the combined organic extracts were dried over sodium sulfate,
filtered, and evaporated under reduced pressure. The crude residue
was triturated in ethanol. The resulting precipitate was filtered,
washed with ethanol, and purified by column chromatography on
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silica gel using dichloromethane as eluent gave the pure product 8.

5.1.9.1. Ethyl 4-(4-formylphenyl)-2-phenylpyrrolo[1,2-a]quinoxaline-
3-carboxylate (8a). Yellow crystals (83%), mp ¼ 76e78 �C. IR (KBr)
1720 (COO), 1700 (CHO). 1H NMR (CDCl3) d: 10.13 (s, 1H, CHO), 8.12
(dd, 1H, J ¼ 8.10 and 1.30 Hz, H-9), 8.10 (s, 1H, H-1), 8.04 (d, 2H,
J ¼ 7.80 Hz, H-30 and H-50), 8.00 (dd, 1H, J ¼ 8.10 and 1.30 Hz, H-6),
7.96 (d, 2H, J ¼ 7.80 Hz, H-20 and H-60), 7.67 (ddd, 1H, J ¼ 8.10, 7.85
and 1.30 Hz, H-8), 7.64e7.52 (m, 3H, H-7 and 2H phenyl), 7.48e7.39
(m, 3H, 3H phenyl), 3.63 (q, 2H, J ¼ 6.90 Hz, OCH2), 0.89 (t, 3H,
J ¼ 6.90 Hz, CH3). HRMS-ESIm/z [M þ H]þ Calcd for C27H20N2O3Na:
421.1552, Found: 421.1552.

5.1.9.2. Ethyl 4-(4-formylphenyl)-3-phenylpyrrolo[1,2-a]quinoxaline-
2-carboxylate (8b). Yellow crystals (60%), mp ¼ 160e162 �C. IR
(KBr) 1715 (COO), 1700 (CHO). 1H NMR (CDCl3) d: 9.93 (s, 1H, CHO),
8.69 (s, 1H, H-1), 8.09 (d, 1H, J ¼ 7.80 Hz, H-9), 8.05 (d, 1H,
J¼ 7.80 Hz, H-6), 7.66 (t, 1H, J¼ 7.80 Hz, H-8), 7.58 (t, 1H, J¼ 7.80 Hz,
H-7), 7.53 (d, 2H, J¼ 7.20 Hz, H-30 and H-50), 7.38 (d, 2H, J¼ 7.20 Hz,
H-20 and H-60), 7.03e6.95 (m, 5H, 5H phenyl), 4.23 (q, 2H,
J ¼ 6.90 Hz, OCH2), 1.20 (t, 3H, J ¼ 6.90 Hz, CH3). HRMS-ESI m/z
[MþH]þ Calcd for C27H20N2O3Na: 421.1552, Found: 421.1532.

5.1.9.3. Ethyl 4-(4-formylphenyl)-1-phenylpyrrolo[1,2-a]quinoxaline-
3-carboxylate (8c). Pale yellow crystals (79%), mp ¼ 178e180 �C. IR
(KBr) 1720 (COO), 1695 (CHO). 1H NMR (CDCl3) d: 10.14 (s, 1H, CHO),
8.09e8.06 (m, 1H, H-9), 8.04 (d, 2H, J ¼ 8.10 Hz, H-30 and H-50), 7.97
(d, 2H, J ¼ 8.10 Hz, H-20 and H-60), 7.58e7.56 (m, 5H, 5H phenyl),
7.48e7.44 (m, 2H, H-6 and H-8), 7.25e7.20 (m, 1H, H-7), 7.21 (s, 1H,
H-2), 3.80 (q, 2H, J ¼ 7.20 Hz, OCH2), 0.99 (t, 3H, J ¼ 7.20 Hz, CH3).
HRMS-ESI m/z [M þ H]þ Calcd for C27H20N2O3Na: 421.1552, Found:
421.1573.

5.1.9.4. Ethyl 4-(4-formylphenyl)-1-phenylpyrrolo[1,2-a]quinoxaline-
2-carboxylate (8d). Yellow crystals (89%), mp ¼ 182e184 �C. IR
(KBr) 1700 (COO and CHO). 1H NMR (CDCl3) d: 10.18 (s, 1H, CHO),
8.20 (d, 2H, J ¼ 7.95 Hz, H-30 and H-50), 8.12 (d, 2H, J ¼ 7.95 Hz, H-20

and H-60), 8.02 (d, 1H, J ¼ 7.80 Hz, H-6), 7.62e7.48 (m, 6H, 5H
phenyl and H-3), 7.42 (t, 1H, J¼ 7.80 Hz, H-8), 7.13e7.09 (m, 2H, H-7
and H-9), 4.16 (q, 2H, J¼ 7.20 Hz, OCH2),1.13 (t, 3H, J¼ 7.20 Hz, CH3).
HRMS-ESI m/z [M þ H]þ Calcd for C27H20N2O3Na: 421.1552, Found:
421.1566.

5.1.10. General procedure for ethyl 4-{4-[(4-(2-oxo-2,3-dihydro-
1H-benzimidazol-1-yl)piperidin-1-yl)benzyl]}-phenylpyrrolo[1,2-a]
quinoxaline-carboxylate, ethyl 4-{4-[(4-(5-fluoro-1H-benzimidazol-
2-yl)piperidin-1-yl)benzyl]}-phenylpyrrolo[1,2-a]quinoxaline-
carboxylate and ethyl 4-{4-[4-(3-(pyridin-2-yl)-1,2,4-triazol-5-yl)
piperidin-1-yl)benzyl]}-phenylpyrrolo[1,2-a]quinoxaline-
carboxylate (1a-l)

The pH of a solution of the aldehyde 8a-d (0.784 mmol) and 4-
(2-ketobenzimidazolin-1-yl)piperidine or 4-(5-chloro-2-
ketobenzimidazolin-1-yl)piperidine or 2-(3-piperidin-4-yl-1H-
1,2,4-triazol-5-yl)pyridine (0.941 mmol) in 15 mL methanol was
adjusted to 6 by the dropwise addition of acetic acid. Powered
sodium cyanoborohydride (2.15 mmol) was then added, and the
resultant mixture was refluxed for 5 h. After removal of the
methanol by rotary evaporation, the residuewas triturated inwater
and extractedwith dichloromethane. The organic layer waswashed
with water, dried over magnesium sulfate and evaporated to dry-
ness. Column chromatography of the residue on silica gel using
ethyl acetate - cyclohexane (1/1) then methanol-chloroform (1/9)
as eluents gave the crude product. This solid was then triturated
with diethyl ether, filtered, washed with diethyl ether and dried
under reduced pressure to give the compounds 1a-l.
5.1.10.1. Ethyl 4-{4-[(4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)
piperidin-1-yl)benzyl]}-2-phenylpyrrolo[1,2-a]quinoxaline-3-
carboxylate (1a). White crystals (53%), mp 185e187 �C. 1H NMR
(CDCl3) d: 9.68 (s,1H, NH), 8.10 (d, J¼ 7.8 Hz,1H, H-9), 8.08 (s,1H, H-
1), 7.96 (d, J¼ 7.5 Hz,1H, H-6), 7.78 (d, J¼ 7.8 Hz, 2H, H-20 and H-60),
7.64e7.53 (m, 6H, H-7, H-8, H-30, H-50, H-4 benzimid. and H-7
benzimid.), 7.45e7.30 (m, 4H, H-2 phenyl, H-3 phenyl, H-5 phenyl
and H-6 phenyl), 7.10e7.07 (m, 3H, H-4 phenyl, H-5 benzimid. and
H-6 benzimid.), 4.46e4.37 (m, 1H, CH pip.), 3.67 (q, J ¼ 6.9 Hz, 2H,
CH2), 3.66 (s, 2H, CH2N), 3.13e3.08 (m, 2H, NCH2 pip.), 2.58e2.44
(m, 2H, NCH2 pip.), 2.28e2.20 (m, 2H, CH2 pip.), 1.88e1.84 (m, 2H,
CH2 pip.), 0.92 (t, J ¼ 6.9 Hz, 3H, CH3). 13C NMR (CDCl3) d: 166.94
(C]O), 156.52 (C-4), 155.69 (C]O benzimid.), 141.51 (C-3a and C-
5a), 139.74 (C-40 and C-1 phenyl), 137.42 (C-7a benzimid.), 134.64
(C-10), 131.82 (C-6), 130.59 (C-3 and C-5 phenyl), 130.37 (C-30 and C-
50), 129.86 (C-20 and C-60), 129.71 (C-4 phenyl), 129.33 (C-2 and C-6
phenyl), 129.04 (C-7), 127.57 (C-8), 127.19 (C-2 and C-3a benzimid.),
125.08 (C-9a), 122.49 (C-5 benzimid. and C-6 benzimid.), 115.18 (C-
9), 114.61 (C-3), 114.37 (C-1), 111.15 (C-4 benzimid. and C-7 benzi-
mid.), 64.05 (NCH2), 62.47 (CH2), 54.56 (NCH2 pip.), 52.12 (CH pip.),
30.65 (CH2 pip.), 15.08 (CH3). HRMS-ESI m/z [MþNa]þ Calcd for
C39H35N5O3Na: 644.2637, Found: 644.2634.

5.1.10.2. Ethyl 4-{4-[(4-(5-fluoro-1H-benzimidazol-2-yl)piperidin-1-
yl)benzyl]}-2-phenylpyrrolo[1,2-a]quinoxaline-3-carboxylate (1b).
Cream crystals (61%), mp 162e164 �C. 1H NMR (CDCl3) d: 8.08 (s,1H,
H-1), 8.04 (d, J ¼ 7.8 Hz, 1H, H-9), 7.96 (d, J ¼ 7.8 Hz, 1H, H-6), 7.70
(d, J ¼ 7.2 Hz, 2H, H-20 and H-60), 7.59 (t, J ¼ 7.2 Hz, 1H, H-7),
7.55e7.47 (m, 3H, H-30, H-50 and H-8), 7.44e7.33 (m, 7H, H-2
phenyl, H-3 phenyl, H-5 phenyl, H-6 phenyl, H-4 benzimid., H-6
benzimid. and H-7 benzimid.), 6.93 (t, J ¼ 7.2 Hz, 1H, H-4 phenyl),
3.61 (q, J ¼ 7.0 Hz, 2H, CH2), 3.54 (s, 2H, CH2N), 2.91 (d, 2H,
J ¼ 10.2 Hz, NCH2 pip.), 2.84 (t, J ¼ 11.4 Hz, 1H, CH pip.), 2.05 (t,
J ¼ 10.8 Hz, 2H, CH2 pip.), 1.99 (d, J ¼ 11.4 Hz, 2H, NCH2 pip.),
1.94e1.85 (m, 2H, CH2 pip.), 0.87 (t, J ¼ 7.0 Hz, 3H, CH3). 13C NMR
(CDCl3) d: 165.68 (C]O), 160.05 (d, J ¼ 234 Hz, C-5 benzimid.),
158.46 (C-4), 139.78 (C-40), 138.14 (C-1 phenyl, C-10, C-2 benzimid.,
C-5a and C-3a benzimid.), 135.91 (C-3a and C-5a), 133.21 (C-6 and
C-7a benzimid.), 130.55 (C-20 and C-60), 129.99 (C-30 and C-50),
129.23 (C-7), 128.91 (C-8), 128.51 (C-4 phenyl), 127.95 (C-2 phenyl,
C-3 phenyl, C-5 phenyl and C-6 phenyl), 127.73 (C-9a), 125.85 (C-2),
123.62 (C-3), 113.95 (C-9), 113.48 (C-1 and C-7 benzimid.), 113.24
(C-4 benzimid. and C-6 benzimid.), 62.71 (NCH2), 61.16 (CH2), 53.17
(NCH2 pip.), 36.50 (CH pip.), 30.74 (CH2 pip.), 13.63 (CH3). HRMS-ESI
m/z [MþH]þ Calcd for C39H35N5O2F: 624.2775, Found: 624.2751.

5.1.10.3. Ethyl 4-{4-[4-(3-(pyridin-2-yl)-1,2,4-triazol-5-yl)piperidin-
1-yl)benzyl]}-2-phenylpyrrolo[1,2-a]quinoxaline-3-carboxylate (1c).
White crystals (56%), mp 142e144 �C. 1H NMR (CDCl3) d: 8.73 (d,
J ¼ 3.0 Hz, 1H, H-6 pyr.), 8.22 (d, J ¼ 7.8 Hz, 1H, H-5 pyr.), 8.08 (d,
J ¼ 8.4 Hz, 1H, H-6), 8.06 (s, 1H, H-1), 7.94 (d, J ¼ 8.4 Hz, 1H, H-9),
7.84 (t, J ¼ 7.8 Hz, 1H, H-4 pyr.), 7.74 (d, J ¼ 7.8 Hz, 2H, H-20 and H-
60), 7.58 (t, J ¼ 7.8 Hz, 1H, H-7), 7.56e7.49 (m, 4H, H-30, H-50, H-2
phenyl and H-6 phenyl), 7.44e7.40 (m, 2H, H-3 phenyl and H-5
phenyl), 7.38e7.34 (m, 2H, H-4 phenyl and H-3 pyr.), 7.28 (m,1H, H-
8), 3.65 (s, 2H, CH2N), 3.64 (q, J ¼ 7.2 Hz, 2H, CH2), 3.06 (d, 2H,
J ¼ 10.8 Hz, NCH2 pip.), 2.97e2.89 (m, 1H, CH pip.), 2.23 (t,
J ¼ 10.2 Hz, 2H, CH2 pip.), 2.12 (d, J ¼ 12.0 Hz, 2H, NCH2 pip.),
2.10e2.00 (m, 2H, CH2 pip.), 0.91 (t, J ¼ 7.2 Hz, 3H, CH3). 13C NMR
(CDCl3) d: 165.56 (C]O), 154.36 (C-4, C-3 Triazole and C-2 pyr.),
149.50 (C-6 pyr.), 147.15 (C-5 Triazole), 138.36 (C-40 and C-4 pyr.),
137.48 (C-1 phenyl, C-10 and C-5a), 136.04 (C-3a), 133.31 (C-6),
130.40 (C-20 and C-60), 129.41 (C-30, C-50 and C-7), 128.97 (C-8),
128.47 (C-4 phenyl), 128.31 (C-2 phenyl and C-6 phenyl), 127.95 (C-
3 phenyl and C-5 phenyl), 127.62 (C-9a), 125.83 (C-2), 124.60 (C-3
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pyr.), 123.69 (C-3), 121.79 (C-5 pyr.), 113.78 (C-9), 113.32 (C-1), 63.02
(CH2N), 61.19 (CH2), 53.39 (CH pip. and NCH2), 30.74 (CH2 pip.),
13.68 (CH3). HRMS-ESI m/z [MþNa]þ Calcd for C39H35N7O2Na:
656.2750, Found: 656.2768.

5.1.10.4. Ethyl 4-{4-[(4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)
piperidin-1-yl)benzyl]}-3-phenylpyrrolo[1,2-a]quinoxaline-2-
carboxylate (1d). White crystals (60%), mp 259e262 �C. 1H NMR
(CDCl3) d: 9.95 (s, 1H, NH), 8.67 (s, 1H, H-1), 8.07 (d, J ¼ 8.0 Hz, 1H,
H-6), 8.03 (d, J¼ 8.0 Hz,1H, H-9), 7.61 (t, J¼ 8.0 Hz,1H, H-7), 7.55 (t,
J ¼ 8.0 Hz, 1H, H-8), 7.34 (d, J ¼ 7.2 Hz, 1H, H-4 benzimid.), 7.23 (d,
J ¼ 7.8 Hz, 2H, H-20 and H-60), 7.15e7.07 (m, 3H, H-5 benzimid., H-6
benzimid., H-7 benzimid.), 7.06e6.96 (m, 7H, H-30, C-50, H-2
phenyl, H-3 phenyl, H-4 phenyl, H-5 phenyl and H-6 phenyl), 4.45
(t, 1H, CH pip.), 4.23 (q, 2H, CH2), 3.46 (s, 2H, CH2N), 3.00 (d,
J ¼ 10.2 Hz, 2H, NCH2 pip.), 2.52 (q, J ¼ 7.2 Hz, 2H, CH2 pip.), 2.15 (t,
J ¼ 11.4 Hz, 2H, NCH2 pip.), 1.88 (d, J ¼ 10.8 Hz, 2H, CH2 pip.), 1.19 (t,
J ¼ 7.2 Hz, 3H, CH3). 13C NMR (CDCl3) d: 165.54 (C]O), 158.05 (C-4),
156.58 (C]O benzimid.), 140.33 (C-40), 137.93 (C-10), 137.56 (C-3a
and C-5a), 135.22 (C-1 phenyl), 132.62 (C-3a benzimid., C-3 phenyl,
C-4 phenyl and C-5 phenyl), 131.80 (C-6), 130.70 (C-7a benzimid.),
130.06 (20 and C-60), 129.54 (C-7, C-30 and C-50), 128.20 (C-2 phenyl
and C-6 phenyl), 127.80 (C-8), 126.81 (C-9a), 124.41 (C-2), 122.61 (C-
5 benzimid.), 122.52 (C-6 benzimid.), 120.66 (C-3), 119.65 (C-1),
115.21 (C-9) 111.25 (C-7 benzimid.), 111.17 (C-4 benzimid.), 64.03
(CH2N), 61.79 (CH2), 54.50 (NCH2 pip.), 52.37 (CH pip.), 30.81 (CH2
pip.), 15.53 (CH3). HRMS-ESI m/z [MþH]þ Calcd for C39H36N5O3:
622.2818, Found: 622.2795.

5.1.10.5. Ethyl 4-{4-[(4-(5-fluoro-1H-benzimidazol-2-yl)piperidin-1-
yl)benzyl]}-3-phenylpyrrolo[1,2-a]quinoxaline-2-carboxylate (1e).
White crystals (78%), mp 244e247 �C. 1H NMR (CDCl3) d: 9.87 (s,1H,
NH), 8.67 (s, 1H, H-1), 8.04 (d, J¼ 7.0 Hz, 1H, H-9), 8.03 (t, J¼ 7.0 Hz,
1H, H-6), 7.61 (t, J¼ 7.0 Hz,1H, H-7), 7.54 (t, J¼ 7.0 Hz,1H, H-8), 7.18
(d, J ¼ 8.0 Hz, 2H, H-20 and H-60), 7.06e6.96 (m, 7H, H-30, H-50, H-2
phenyl, H-3 phenyl, H-4 phenyl, H-5 phenyl, H-6 phenyl, H-4
benzimid., H-6 benzimid. and H-7 benzimid.), 4.23 (q, J ¼ 7.2 Hz,
2H, CH2), 3.41 (s, 2H, CH2N), 2.97e2.86 (m, 3H, NCH2 pip. and CH
pip.), 2.11 (d, J ¼ 11.6 Hz, 2H, CH2 pip.), 2.08 (t, J ¼ 11.6 Hz, 2H, NCH2
pip.), 1.93 (m, 2H, CH2 pip.), 1.20 (t, J ¼ 7.2 Hz, 3H, CH3). 13C NMR
(CDCl3) d: 165.56 (C]O), 161.10 (d, J ¼ 236 Hz, C-5 benzimid.),
158.21 (C-4), 140.16 (C-40), 138.00 (C-1 phenyl, C-10, C-2 benzimid.
and C-3a benzimid.), 137.57 (C-3a and C-5a), 135.19 (C-7a benzi-
mid.), 131.62 (C-6), 130.11 (C-20 and C-60), 129.64 (30 and C-50),
129.54 (C-7), 128.19 (C-8), 128.04 (C-2 phenyl, C-3 phenyl, C-4
phenyl, C-5 phenyl and C-6 phenyl), 127.77 (9a), 124.44 (C-2),
120.69 (C-3), 119.69 (C-1), 115.31 (C-9 and C-7 benzimid.), 111.90 (C-
4 benzimid. and C-6 benzimid.), 64.24 (CH2N), 61.92 (CH2), 54.66
(NCH2 pip.), 38.34 (CH pip.), 32.34 (CH2 pip.),15.60 (CH3). HRMS-ESI
m/z [M þ H]þ Calcd for C39H35N5O2F: 624.2775, Found: 624.2783.

5.1.10.6. Ethyl 4-{4-[4-(3-(pyridin-2-yl)-1,2,4-triazol-5-yl)piperidin-
1-yl)benzyl]}-3-phenylpyrrolo[1,2-a]quinoxaline-2-carboxylate (1f).
Pale yellow crystals (53%), mp 138e140 �C. 1H NMR (CDCl3) d: 8.73
(d, J ¼ 3.0 Hz, 1H, H-6 pyr.), 8.64 (s, 1H, H-1), 8.23 (d, J ¼ 7.8 Hz, 1H,
H-5 pyr.), 8.02 (d, J ¼ 8.4 Hz, 1H, H-9), 7.99 (d, J ¼ 8.4 Hz, 1H, H-6),
7.84 (t, J ¼ 7.8 Hz, 1H, H-4 pyr.), 7.56 (t, J ¼ 7.8 Hz, 1H, H-7), 7.50 (t,
J ¼ 7.2 Hz, 1H, H-8), 7.36 (t, J ¼ 6.0 Hz, 1H, H-3 pyr.), 7.17 (d,
J ¼ 7.2 Hz, 2H, H-20 and H-60), 7.06e7.02 (m, 1H, H-4 phe-
nyl),7.01e6.94 (m, 6H, H-30, H-50, H-2 phenyl, H-3 phenyl, H-5
phenyl, and H-6 phenyl), 4.20 (q, J ¼ 7.2 Hz, 2H, CH2), 3.49 (s, 2H,
CH2N), 3.01e2.93 (m, 3H, NCH2 pip. and CH pip.), 2.23e2.13 (m, 4H,
NCH2 pip. and CH2 pip.), 2.12e2.03 (m, 2H, CH2 pip.), 1.17 (t,
J ¼ 7.2 Hz, 3H, CH3). 13C NMR (CDCl3) d: 164.07 (C]O), 156.45 (C-4,
C-3 Triazole and C-2 pyr.), 149.47 (C-6 pyr.), 147.36 (C-5 Triazole),
138.47 (C-40 and C-4 pyr.), 136.63 (C-1 phenyl and C-10), 135.97 (C-
5a), 133.63 (C-3a), 130.21 (C-6), 128.64 (C-20 and C-60), 128.48 (C-30

and C-50), 128.09 (C-7), 126.77 (C-8), 126.49 (C-3 phenyl, C-4 phenyl
and C-5 phenyl), 126.42 (C-2 phenyl and C-6 phenyl), 126.31 (9a),
125.41 (C-3 pyr.), 122.87 (C-2), 121.87 (C-5 pyr.), 119.12 (C-3), 118.26
(C-9), 113.76 (C-1), 62.64 (CH2N), 60.34 (CH2), 53.03 (NCH2 pip.),
35.14 (CH pip.), 30.41 (CH2 pip.), 14.07 (CH3). HRMS-ESI m/z
[M þ H]þ Calcd for C39H36N7O2: 634.2930, Found: 634.2952.

5.1.10.7. Ethyl 4-{4-[(4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)
piperidin-1-yl)benzyl]}-1-phenylpyrrolo[1,2-a]quinoxaline-3-
carboxylate (1g). Pale yellow crystals (66%), mp 167e169 �C. 1H
NMR (CDCl3) d: 10.52 (s, 1H, NH), 8.10 (d, J ¼ 8.0 Hz, 1H, H-6), 7.82
(d, J ¼ 7.6 Hz, 2H, H-20 and H-60), 7.62e7.53 (m, 8H, H-4 benzimid.,
H-2 phenyl, H-3 phenyl, H-4 phenyl, H-5 phenyl, H-6 phenyl, H-30

and H-50), 7.44 (d, J ¼ 8.0 Hz, 1H, H-9), 7.43 (t, J ¼ 8.0 Hz, 1H, H-7),
7.33 (d, J ¼ 8.0 Hz, 1H, H-5 benzimid.), 7.21e7.02 (m, 4H, H-2, H-8,
H-6 benzimid. and C-7 benzimid.), 4.52e4.36 (m, 1H, CH pip.), 3.79
(q, J ¼ 7.2 Hz, 2H, CH2), 3.69 (s, 2H, CH2N), 3.13 (d, J ¼ 10.8 Hz, 2H,
NCH2 pip.), 2.62e2.48 (m, 2H, CH2 pip.), 2.27 (t, J ¼ 10.8 Hz, 2H,
NCH2 pip.), 1.86 (d, J ¼ 14.8 Hz, 2H, CH2 pip.), 0.98 (t, J ¼ 7.2 Hz, 3H,
CH3). 13C NMR (CDCl3) d: 166.54 (C]O), 156.74 (C]O benzimid.),
155.97 (C-4), 141.21 (C-3a and C-40), 140.77 (C-5a), 134.78 (C-10),
133.44 (C-1 phenyl and C-3a benzimid.), 131.68 (C-6), 131.12 (C-30

and C-50), 130.56 (C-7a benzimid.), 130.37 (C-2 phenyl, C-3 phenyl,
C-4 phenyl, C-5 phenyl and C-6 phenyl), 129.64 (C-20 and C-60),
129.46 (C-7), 128.66 (C-8), 127.22 (C-9a), 122.56 (C-1, C-3 and C-5
benzimid.), 120.22 (C-2 and C-6 benzimid.), 118.10 (C-9), 111.22 (C-7
benzimid.), 111.19 (C-4 benzimid.), 64.09 (CH2N), 62.27 (CH2), 54.60
(NCH2 pip.), 52.18 (CH pip.), 30.69 (CH2 pip.), 15.27 (CH3). HRMS-ESI
m/z [M þ H]þ Calcd for C39H36N5O3: 622.2818, Found: 622.2802.

5.1.10.8. Ethyl 4-{4-[(4-(5-fluoro-1H-benzimidazol-2-yl)piperidin-1-
yl)benzyl]}-1-phenylpyrrolo[1,2-a]quinoxaline-3-carboxylate (1h).
Pale yellow crystals (60%), mp 156e158 �C. 1H NMR (CDCl3) d: 11.40
(s, 1H, NH), 8.02 (d, J ¼ 7.6 Hz, 1H, H-6), 7.74 (d, J ¼ 8.0 Hz, 2H, H-20

and H-60), 7.61e7.52 (m, 5H, H-2 phenyl, H-3 phenyl, H-4 phenyl, H-
5 phenyl and H-6 phenyl), 7.46 (d, J¼ 8.0 Hz,1H, H-9), 7.44e7.37 (m,
3H, H-7, H-30 and H-50), 7.21e7.15 (m, 4H, H-2, H-8, H-4 benzimid.
and H-7 benzimid.), 6.96 (td, J ¼ 9.2 Hz and 1.6 Hz, 1H, H-6 ben-
zimid.), 3.72 (q, J ¼ 7.2, 2H, CH2), 3.55 (s, 2H, CH2N), 2.98e2.84 (m,
3H, NCH2 pip. and CH pip.), 2.13e1.98 (m, 4H, NCH2 pip. and CH2
pip.), 1.96e1.81 (m, 2H, CH2 pip.), 0.92 (t, J ¼ 7.2 Hz, 3H, CH3). 13C
NMR (CDCl3) d: 166.61 (C]O), 160.7 (d, J ¼ 235 Hz, C-5 benzimid.),
156.16 (C-4), 141.49 (C-40), 140.40 (C-3a and C-5a), 138.66 (C-2
benzimid. and C-3a benzimid.), 134.65 (C-1 phenyl), 133.67 (C-7a
benzimid.), 131.22 (C-30 and C-50), 131.11 (C-3 phenyl, C-4 phenyl
and C-5 phenyl), 130.63 (C-6, C-2 phenyl and C-6 phenyl),130.39 (C-
7), 129.35 (C-20 and C-60), 128.72 (C-8), 128.54 (C-9a), 127.38 (C-1, C-
3 and C-7 benzimid.), 120.33 (C-6 benzimid.), 118.21 (C-9), 111.50
(C-4 benzimid.), 64.19 (CH2N), 62.32 (CH2), 54.70 (NCH2 pip.), 38.34
(CH pip.), 32.34 (CH2 pip.), 15.21 (CH3). HRMS-ESI m/z [MþH]þ

Calcd for C39H35N5O2F: 624.2775, Found: 624.2800.

5.1.10.9. Ethyl 4-{4-[4-(3-(pyridin-2-yl)-1,2,4-triazol-5-yl)piperidin-
1-yl)benzyl]}-1-phenylpyrrolo[1,2-a]quinoxaline-3-carboxylate (1i).
Pale yellow crystals (69%), mp 145e147 �C. 1H NMR (CDCl3) d: 9.12
(s, 1H, NH), 8.68 (d, J ¼ 4.0 Hz, 1H, H-6 pyr.), 8.20 (d, J ¼ 8.0 Hz, 1H,
H-5 pyr.), 8.06 (dd, J ¼ 8.2 and 1.6 Hz, 1H, H-6), 7.86 (td, J ¼ 7.6 and
1.6 Hz, 1H, H-4 pyr.), 7.78 (d, J ¼ 7.4 Hz, 2H, H-20 and H-60),
7.57e7.54 (m, 5H, H-2 phenyl, H-3 phenyl, H-4 phenyl, H-5 phenyl
and H-6 phenyl), 7.52 (d, J ¼ 7.4 Hz, 2H, H-30 and H-50), 7.43 (d,
J ¼ 8.2 Hz, 1H, H-9), 7.41 (t, J ¼ 7.2 Hz, 1H, H-7), 7.38 (dd, J ¼ 6.4 and
1.2 Hz, 1H, H-9), 7.37 (d, J ¼ 7.2 Hz, 1H, H-3 pyr.), 7.18 (td, J ¼ 7.2 Hz
and 1.6 Hz, 1H, H-8), 7.17 (s, 1H, H-2), 3.78 (q, J ¼ 7.2, 2H, CH2), 3.73



V. Desplat et al. / European Journal of Medicinal Chemistry 113 (2016) 214e227 225
(s, 2H, CH2N), 3.14e3.12 (m, 2H, NCH2 pip.), 3.00e2.88 (m, 1H, CH
pip.), 2.37e2.30 (m, 2H, CH2 pip.), 2.19e2.05 (m, 4H, 2 CH2 pip.),
0.97 (t, J ¼ 7.2 Hz, 3H, CH3). 13C NMR (CDCl3) d: 166.40 (C]O),
157.58 (C-2 pyr.), 155.85 (C-4), 148.75 (C-3 triazole), 150.77 (C-6
pyr.), 140.93 (C-5 triazole), 139.77 (C-3a), 138.84 (C-4 pyr.), 138.70
(C-5a), 134.70 (C-40), 133.41 (C-10 and C-1 phenyl), 131.59 (C-7),
131.06 (C-30 and C-50), 130.91 (C-3 phenyl and C-5 phenyl), 130.49
(C-8), 130.32 (C-20 and C-60), 129.46 (C-2 phenyl and C-6 phenyl),
128.61 (C-9a), 128.37 (C-6), 127.16 (C-9), 125.92 (C-4 phenyl), 125.77
(C-3), 123.23 (C-3 pyr.), 120.22 (C-5 pyr.), 118.04 (C-2), 115.92 (C-1),
64.02 (NCH2), 62.24 (CH2), 54.44 (NCH2 pip.), 36.29 (CH pip.), 31.67
(CH2 pip.), 15.22 (CH3). HRMS-ESI m/z [M þ H]þ Calcd for
C39H36N7O2: 634.2930, Found: 634.2959.

5.1.10.10. Ethyl 4-{4-[(4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)
piperidin-1-yl)benzyl]}-1-phenylpyrrolo[1,2-a]quinoxaline-2-
carboxylate (1j). White crystals (70%), mp 165e167 �C. 1H NMR
(CDCl3) d: 10.19 (s, 1H, NH), 8.03 (d, J ¼ 7.8 Hz, 1H, H-6), 8.02 (d,
J¼ 7.8 Hz, 2H, H-20 and H-60), 7.67e7.57 (m, 6H, H-7, H-3 phenyl, H-
4 phenyl, H-5 phenyl, H-30 and H-50), 7.55 (s,1H, H-3), 7.54e7.51 (m,
2H, H-2 phenyl and H-6 phenyl), 7.41e7.33 (m, 2H, H-9 and H-4
benzimid.), 7.14e7.05 (m, 4H, H-8, H-5 benzimid., H-6 benzimid., H-
7 benzimid.), 4.47 (t, J ¼ 12.0 Hz, 1H, CH pip.), 4.17 (q, J ¼ 7.2 Hz, 2H,
CH2), 3.73 (s, 2H, CH2N), 3.23e3.08 (m, 2H, NCH2 pip.), 2.65e2.50
(m, 2H, CH2 pip.), 2.37e2.23 (m, 2H, NCH2 pip.), 1.89 (d, J ¼ 10.2 Hz,
2H, CH2 pip.), 1.13 (t, J ¼ 7.2 Hz, 3H, CH3). 13C NMR (CDCl3) d: 165.59
(C]O), 156.75 (C-4), 156.60 (C]O benzimid.), 139.29 (C-5a and C-
3a benzimid.), 138.22 (C-10), 136.20 (C-3a and C-1 phenyl), 131.88
(C-6), 131.85 (C-2 phenyl and C-6 phenyl), 130.85 (C-7a benzimid.),
130.80 (C-4 phenyl), 130.51 (C-30 and C-50), 130.24 (C-7), 130.12 (C-3
phenyl and C-5 phenyl), 129.67 (C-20 and C-60), 128.19 (C-8), 127.34
(C-9), 126.61 (C-2), 120.81 (C-1), 118.12 (C-5 benzimid. and C-6
benzimid.), 111.94 (C-3 and C-4 benzimid.), 111.20 (C-7 benzimid.),
64.01 (CH2N), 61.61 (CH2), 54.61 (NCH2 pip.), 52.15 (CH pip.), 30.67
(CH2 pip.), 15.42 (CH3). HRMS-ESI m/z [MþH]þ Calcd for
C39H36N5O3: 622.2818, Found: 622.2846.

5.1.10.11. Ethyl 4-{4-[(4-(5-fluoro-1H-benzimidazol-2-yl)piperidin-1-
yl)benzyl]}-1-phenylpyrrolo[1,2-a]quinoxaline-2-carboxylate (1k).
White crystals (46%), mp 195e197 �C. 1H NMR (CDCl3) d: 7.97 (d,
J¼ 7.8 Hz, 1H, H-6), 7.93 (d, J¼ 7.2 Hz, 2H, H-20 and H-60), 7.64e7.56
(m, 3H, H-7, H-9 and H-4 phenyl), 7.55e7.47 (m, 6H, H-3, H-3
phenyl, H-5 phenyl, H-30, H-50 and H-4 benzimid.), 7.36 (t,
J¼ 6.6 Hz, 2H, H-2 phenyl and H-6 phenyl), 7.09 (d, J¼ 7.8 Hz,1H, H-
8), 7.08 (d, J ¼ 7.8 Hz, 1H, H-7 benzimid.), 6.98 (t, J ¼ 7.8 Hz, 1H, H-6
benzimid.), 4.16 (q, J ¼ 7.2 Hz, 2H, CH2), 3.62 (s, 2H, CH2N), 2.99 (d,
J ¼ 11.4 Hz, 2H, NCH2 pip.), 2.94 (t, J ¼ 12 Hz, 1H, CH pip.), 2.15 (t,
J ¼ 11.4 Hz, 2H, NCH2 pip.), 2.06 (d, J ¼ 11.4 Hz, 2H, CH2 pip.),
1.98e1.89 (m, 2H, CH2 pip.), 1.11 (t, J ¼ 7.2 Hz, 3H, CH3). 13C NMR
(CDCl3) d: 165.75 (C]O), 160.57 (d, J ¼ 235 Hz, C-5 benzimid.),
156.90 (C-4), 142.10 (C-40), 139.21 (C-5a), 137.97 (C-10), 136.42 (C-2
benzimid. and C-3a benzimid.), 134.60 (C-1 phenyl), 132.51(C-9a),
131.90 (C-30 and C-50), 131.52 (C-3a), 130.91 (C-6), 130.84 (C-3
phenyl and C-5 phenyl), 130.32 (C-7a benzimid.), 130.05 (C-7, C-9
and C-4 phenyl.), 129.58 (C-20 and C-60), 128.37 (C-8), 127.52 (C-2
phenyl and C-6 phenyl), 120.93 (C-1 and C-2), 118.28 (C-7 benzi-
mid.), 111.82 (C-3 and C-6 benzimid.), 111.64 (C-4 benzimid.), 64.24
(CH2N), 61.79 (CH2), 54.74 (NCH2 pip.), 38.31 (CH pip.), 32.35 (CH2

pip.), 15.41 (CH3). HRMS-ESI m/z [MþH]þ Calcd for C39H35N5O2F:
624.2775, Found: 624.2747.

5.1.10.12. Ethyl 4-{4-[4-(3-(pyridin-2-yl)-1,2,4-triazol-5-yl)piper-
idin-1-yl)benzyl]}-1-phenylpyrrolo[1,2-a]quinoxaline-2-carboxylate
(1l). White crystals (42%), mp 144e146 �C. 1H NMR (CDCl3) d: 8.69
(d, J ¼ 4.6 Hz, 1H, H-6 pyr.), 8.19 (d, J ¼ 7.8 Hz, 1H, H-5 pyr.), 7.99 (d,
J ¼ 7.0 Hz, 1H, H-6), 7.94 (d, J ¼ 7.0 Hz, 2H, H-20 and H-60), 7.83 (td,
J¼ 7.6 and 1.6 Hz,1H, H-4 pyr.), 7.62e7.45 (m, 8H, H-3, H-7, H-9, H-3
phenyl, H-4 phenyl, H-5 phenyl, H-30 and H-50), 7.40e7.29 (m, 3H,
H-2 phenyl, H-6 phenyl and H-3 pyr.), 7.04 (d, J ¼ 7.0 Hz, 1H, H-8),
4.14 (q, J ¼ 7.1 Hz, 2H, CH2), 3.67 (s, 2H, CH2N), 3.07 (d, J ¼ 11.0 Hz,
2H, NCH2 pip.), 2.99e2.79 (m, 1H, CH pip.), 2.34e1.90 (m, 6H, NCH2
pip. and 2� CH2 pip.),1.10 (t, J¼ 7.1 Hz, 3H, CH3). 13C NMR (CDCl3) d:
165.65 (C]O),156.79 (C-4 and C-2 pyr.), 150.99 (C-3 Triazole and C-
6 pyr.), 148.41 (C-5 Triazole), 139.39 (C-40), 138.86 (C-5a and C-4
pyr.), 138.18 (C-10), 134.72 (C-1 phenyl), 131.94 (C-3a, C-30 and C-50),
130.98 (C-6), 130.86 (C-3 phenyl and C-5 phenyl), 130.11 (C-7, C-9
and C-4 phenyl), 129.56 (C-20 and C-60), 128.22 (C-8), 127.37 (C-3
pyr., C-2 phenyl and C-6 phenyl), 123.11 (C-2, C-9a and C-5 pyr.),
120.84 (C-1), 112.01 (C-3), 64.51 (CH2N), 61.68 (CH2), 55.03 (NCH2
pip.), 32.32 (CH2 pip. and CH pip.), 15.49 (CH3). HRMS-ESI m/z
[M þ H]þ Calcd for C39H36N7O2: 634.2930, Found: 634.2962.

5.2. X-ray data

The structure of compounds 2b-d, 1a, 1d, 1g, 1j and 1k has been
established by X-ray crystallography (Figs. 3 and 4). Colorless single
crystal of 2b was obtained by slow evaporation from chloroform:
monoclinic, space group P21/c, a ¼ 11.9390(11) Å, b ¼ 13.8893(9) Å,
c ¼ 18.5001(19) Å, a ¼ 90�, b ¼ 100.959(7)�, g ¼ 90�, V ¼ 3011.8(5)
Å3, Z ¼ 8, d(calcd) ¼ 1.267 Mg m�3, FW ¼ 287.31 for C16H17NO4,
F(000) ¼ 1216. Colorless single crystal of 2c was obtained by slow
evaporation from methanol/dichloromethane (20/80) solution:
monoclinic, space group P21/n, a ¼ 14.653(3) Å, b ¼ 5.1458(12) Å,
c ¼ 18.842(4) Å, a ¼ 90�, b ¼ 94.447(14)�, g ¼ 90�, V ¼ 1416.4(5) Å3,
Z ¼ 4, d(calcd) ¼ 1.347 Mg m�3, FW ¼ 287.31 for C16H17NO4,
F(000) ¼ 608. Colorless single crystal of 2d was obtained by slow
evaporation from methanol/dichloromethane (20/80) solution:
triclinic, space group P-1, a ¼ 8.628(9) Å, b ¼ 9.798(2) Å,
c ¼ 10.095(3) Å, a ¼ 73.02(2)�, b ¼ 71.00(3)�, g ¼ 73.95(5)�,
V ¼ 756.1(8) Å3, Z ¼ 1, d(calcd) ¼ 1.262 Mg m�3, FW ¼ 574.61 for
C32H34N2O8, F(000) ¼ 304. Colorless single crystal of 1a was ob-
tained by slow evaporation from methanol/dichloromethane (30/
70) solution: triclinic, space group P-1, a ¼ 10.0140(10) Å,
b ¼ 10.877(2) Å, c ¼ 17.580(2) Å, a ¼ 79.642(9)�, b ¼ 86.041(8)�,
g ¼ 65.016(8)�, V ¼ 1707.3(4) Å3, Z ¼ 2, d(calcd) ¼ 1.311 Mg m�3,
FW ¼ 673.96 for C39H35N5O3,0.48(CH2Cl2O2),0.19(O), F(000) ¼ 710.
Colorless single crystal of 1d was obtained by slow evaporation
from methanol/dichloromethane (30/70) solution: triclinic, space
group P-1, a ¼ 8.3759(10) Å, b ¼ 12.6418(13) Å, c ¼ 16.6718(18) Å,
a ¼ 109.502(7)�, b ¼ 96.482(8)�, g ¼ 103.928(7)�, V ¼ 1578.7(3) Å3,
Z ¼ 2, d(calcd) ¼ 1.308 Mg m�3, FW ¼ 621.72 for C39H35N5O3,
F(000) ¼ 656. Colorless single crystal of 1g was obtained by slow
evaporation from methanol/dichloromethane (20/80) solution:
triclinic, space group P-1, a ¼ 9.6882(14) Å, b ¼ 11.2689(13) Å,
c ¼ 19.639(2) Å, a ¼ 77.504(8)�, b ¼ 83.067(11)�, g ¼ 72.264(11)�,
V ¼ 1990.4(4) Å3, Z ¼ 2, d(calcd) ¼ 1.347 Mg m�3, FW ¼ 807.16 for
C39H35N5O3,1.56(CHCl3), F(000) ¼ 836. Colorless single crystal of 1j
was obtained by slow evaporation from methanol/dichloro-
methane (30/70) solution: triclinic, space group P-1, a ¼ 9.7518(8)
Å, b ¼ 11.1004(8) Å, c ¼ 17.9247(12) Å, a ¼ 86.622(5)�,
b ¼ 82.713(5)�, g ¼ 66.141(5)�, V ¼ 1760.1(2) Å3, Z ¼ 2,
d(calcd) ¼ 1.398 Mg m�3, FW ¼ 741.09 for C39H35N5O3,CHCl3,
F(000) ¼ 772. Pale-yellow single crystal of 1kwas obtained by slow
evaporation from methanol/dichloromethane (30/70) solution:
monoclinic, space group C2/c, a ¼ 18.0617(14) Å, b ¼ 9.4210(8) Å,
c¼ 43.021(3) Å, a ¼ 90�, b¼ 93.345(5)�, g¼ 90�, V¼ 7307.9(10) Å3,
Z ¼ 8, d(calcd) ¼ 1.296 Mg m�3, FW ¼ 712.78 for
C39H34FN5O2,5(H2O) F(000) ¼ 3016. Full crystallographic results
have been deposited at the Cambridge Crystallographic Data Centre
(CCDC-1014944, CCDC-891817, CCDC-891816, CCDC-891812, CCDC-
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891811, CCDC-891813, CCDC-891814, CCDC-891815, respectively),
UK, as Supplementary Material [38]. The data were corrected for
Lorentz and polarization effects and for empirical absorption
correction [39]. The structure was solved by direct methods Shelx
2013 [40] and refined using Shelx 2013 [40] suite of programs.

5.3. Biology

5.3.1. Cell culture
The human leukemic cell lines U937, K562, HL60, U266 and

Jurkat were grown in RPMI 1640 medium (Life Technology, France)
supplemented with 10% fetal calf serum (FCS), antibiotics (100 U/
mL penicillin, 100 mg/mL streptomycin) and L-glutamin, (Eurobio,
France) at 37 �C, 5% CO2 in air. The toxicity of various molecules was
also evaluated on non-activated, freshly isolated normal human
peripheral blood mononuclear cells (PBMNC), as well as phytohe-
magglutinin (T lymphoproliferative agent) (PHA)-induced cells.
PBMNC from blood of healthy volunteers were obtained following
centrifugation on Ficoll gradient. Cells were then incubated in
medium alone or induced to enter cell cycle by the addition of PHA
(5 mg/mL, Murex Biotech Limited, Dartford, UK).

5.3.2. Cytotoxicity test
The MTS cell proliferation assay (Promega, France) is a colori-

metric assay system, which measures the reduction of a tetrazo-
lium component (MTS) into formazan produced by the
mitochondria of viable cells. Cells were washed twice in PBS
(Phosphate Buffer Saline) and plated in quadruplicate into
microtiter-plate wells in 100 mL culture media with or without our
various compounds at increasing concentrations (0, 1, 5, 10, 20 and
50 mM) during 1, 2 and 3 days. After 3 h of incubation at 37 �C with
20 mL MTS/well, the plates were read by using an ELISA microplate
reader (Thermo, Electrocorporation) at 490 nm wavelength. The
amount of colour produced was directly proportional to the num-
ber of viable cells. The results are expressed as the concentrations
inhibiting cell growth by 50% after a 3 days incubation period. The
50% cytotoxic concentrations (CC50) were determined by linear
regression analysis, expressed in mM ± SD (Microsoft Excel).

5.3.3. Annexin V staining by flow cytometry
Cells (2 � 105) were incubated for 3 days with increasing doses

of 1e (0, 1, 5, and 10). Experiments were performed with APC-
Annexin V (Biolegend, CA) according to the manufacturer's in-
structions. Briefly, cells (2 � 104) were incubated with 5 mL of APC-
Annexin V resuspended in 295 mL of 1X binding buffer for 10 min
at room temperature in the dark. Then, cells were analyzed by flow
cytometry. The APC-Annexin V-positive cells were considered as
apoptotic. Flow cytometry analysis was performed with a BD FACS
Canto II flow cytometer (Becton-Dickinson, France) and experi-
ments were analyzed using the Diva software.

5.3.4. Computational prediction of toxicity and drug relevant
properties

Calculations of Clog P and calculations of Topological Polar
Surface Area (TPSA), number of hydrogen bond acceptor (nON) and
donor (nNH/OH) atoms, and any violations to the Lipinski's “rule of
five” (logP � 5, molecular weight �500, number of hydrogen bond
acceptors �10, and number of hydrogen bond donors �5) [34];
were performed using the MIPC server at http://www.
molinspiration.com/cgi-bin/properties [33].
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