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Abstract: The past decades have seen rapid advancements in space-based monitoring of essential 
water cycle variables, providing products related to precipitation, evapotranspiration, and soil 
moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle 
variability at regional to global scales, they are less suitable for sustainable management of local 
water resources, which needs detailed information to represent the spatial heterogeneity of soil and 
vegetation. The following questions are critical to effectively exploit information from remotely 
sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to 
the local scale using multiple sources and scales of EO data? How to explore and apply the 
downscaled information at the management level for a better understanding of soil-water-
vegetation-energy processes? How can such fine-scale information be used to improve the 
management of soil and water resources? An integrative information flow (i.e., iAqueduct 
theoretical framework) is developed to close the gaps between satellite water cycle products and 
local information necessary for sustainable management of water resources. The integrated 
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iAqueduct framework aims to address the abovementioned scientific questions by combining 
medium-resolution (10 m–1 km) Copernicus satellite data with high-resolution (cm) unmanned 
aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-
data analytics with machine learning algorithms. This paper provides a general overview of the 
iAqueduct theoretical framework and introduces some preliminary results. 

Keywords: unmanned aerial system (UAS); soil moisture; pedotransfer function (PTF); soil 
spectroscopy; ecohydrological modelling; sustainable water resources management 

 

1. Introduction 

1.1. Background 

Water resources in many regions, including Europe, are under increasing pressure, due to 
population growth, economic development, and climate change [1,2]. The main water challenge for 
Europe is to develop appropriate skills, knowledge, and tools to offer solutions that guarantee 
sustainable use of resources in natural and agricultural ecosystems while maintaining their economic 
prosperity [3]. Addressing such a challenge requires, among others, developing tools for sustainable 
integrative management of water resources, establishing networks and information sharing among 
existing research facilities/field labs and disciplines, and connecting science to society [3]. 

Water resources management requires new monitoring tools and strategies to better understand 
hydrological processes. This is crucial to analyze and forecast the effectiveness of water management 
options, in particular in adaptation to climate changes. Observation of hydrological cycle components 
can be obtained from different sources [4–8]. While in situ observations provide the most reliable data 
for the relevant observation scale (e.g., at the centimeter scale for typical soil moisture sensors), such 
observations are in general inadequate in addressing water management problems, which require 
continuous space–time information from the local to field scale [4,5,9]. At low spatial scales, various 
satellite missions monitor the global water cycle, especially for the variables related to precipitation, 
evapotranspiration, and soil moisture but often at (tens of) kilometer scales [5]. Whilst these data are 
highly effective to characterize water cycle variation at the regional to global scale, they are less 
suitable for the management of water resources at field and catchment scales [10–12]. While there are 
sensors in orbits that provide high-spatial resolution observations (15–40 m) of certain water cycle 
components (e.g., with ASTER [13], LANDSAT 7/8 [14], ECOSTRESS [15]), they lack daily data to 
satisfy the information needs for operational water management. 

Water resource management needs to consider a wide range of spatial scales and addresses a 
variety of problems linked to droughts and water availability [16], requiring the measurement of 
water cycle variables (e.g., root zone soil moisture, evapotranspiration, precipitation, stream 
discharge as well as groundwater levels, etc.). Next, we focus primarily on the current state-of-the-
art in precipitation, evapotranspiration, and soil moisture that can be routinely provided by global 
satellites at low to medium spatial (e.g., 25 km to 1 km) and daily temporal resolutions: 

Precipitation: Numerous evaluations of available satellite precipitation products have been 
conducted [17] for different climates, and several data sets, for example, CMORPH, CHIRPS, and 
TRMM (and by extension GPM [18]), showed consistently high performance [19]. Nevertheless, there 
remains the necessity for downscaling these global products to local estimates, while accounting for 
their spatiotemporal error characteristics and the relation of such errors to rain rates [20]. 

Evapotranspiration (ET): In the past years, several satellite evapotranspiration products have 
been generated, among which, the MOD16 (MODIS, Moderate Resolution Imaging 
Spectroradiometer) -ET [21] at a 1-km and daily interval, PM (Penman-Monteith) -ET [22] at an 8-km 
and monthly interval, GLEAM (Global Land Evaporation Amsterdam Model)-ET [23] at a 25-km and 
daily interval, ALEXI (Atmosphere-Land Exchange Inverse)-ET [24] at various spatial and temporal 
scales, and SEBS (Surface Energy Balance System)-ET [25–27] at a 5-km and monthly and daily scale. 
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Evaluations of these and other global evapotranspiration products (e.g., [28–30]) concluded that all 
have different uncertainties for local scale studies. It was found that ET differences between the 
models are mainly due to the difference in aerodynamic conductance and associated roughness 
length estimation uncertainties, which are intrinsically connected to uncertainties of the radiometric 
surface temperature, vapor pressure deficit, and vegetation cover [31]. 

Soil moisture: Satellite observation of soil moisture has significantly advanced in the last decade 
as demonstrated by two dedicated missions (the Soil Moisture Ocean Salinity—SMOS [32], and the 
Soil Moisture Active and Passive—SMAP [33]. Most recently, the terrestrial water storage anomaly 
data acquired from the Gravity Recovery and Climate Experiment (GRACE) satellite has also been 
used to derive soil moisture and found to be highly correlated with the SMAP and SMOS soil 
moisture products [34]. These efforts provide soil moisture products at nearly daily temporal 
resolution (but monthly for GRACE soil moisture) and low spatial resolution (e.g., 35–50 km for 
SMOS, 36 km for SMAP, and 300 km for GRACE). 

The spatial scale of the abovementioned products is, however, too coarse for a large variety of 
applications. Therefore, there is a growing need to develop a downscaling procedure in order to reach 
a reference scale comparable with the emerging hyper-resolution modelling trend [35] and much 
finer resolution for water resources management. The spatial and temporal variability of the soil 
moisture process has been investigated by several authors that provided a clear path for the 
description of its dynamics [9,36–40]. In this context, Qu et al. (2015) [41] developed a method to 
predict the sub-grid variability of soil moisture based on basic soil data. 

To estimate soil moisture at higher resolution, active microwave synthetic aperture radars 
(SARs) have been employed (such as Sentinel-1), which are capable of providing 1-km daily soil 
moisture products [42,43]. Other methods exploit optical and thermal images to downscale low-
resolution products to 1km (e.g.,[44]) often in combination with modelling approaches [45]. Optical 
remote sensing methods can be used to assess the surface soil moisture from airborne hyperspectral 
sensors [46,47]. Broadband thermal imaging is a potential mean to measure soil moisture via the 
water stress of the leaves [48]. Estimation of soil water evaporation using broad-band thermal 
imagery acquired from the ground was also possible [49,50]. 

Soil moisture monitoring is also limited because satellite sensors only provide surface 
measurements (up to 5cm in the soil). Therefore, methods able to infer root-zone soil moisture 
(RZSM) from surface measurements are highly desirable [51,52]. To do so, Wagner et al. [53] 
suggested the use of an exponential filter, and recently, a new simplified formal mathematical 
description was proposed [16]. The SMAR (soil moisture analytical relationship) model has been 
coupled with ensemble Kalman filter (EnKF) to reduce bias [54] and predict RZSM over broad spatial 
extents. 

1.2. Motivation 

Other than Earth observations, models provide an alternative way to link different scales and 
different processes, but the reliability of model output strongly depends on the physical processes 
considered, which in turn requires detailed information on the state of the soil and vegetation systems 
and relevant forcing at the scale of interest. Therefore, there is a pressing need to harmonize the 
available information on the soil/vegetation system to develop a feasible approach for actual water 
management. Furthermore, such detailed information needs to be communicated to the stakeholders 
(in particular citizens) so as to support them towards desirable behavior in water management. The 
recent example is the 2018 summer drought, which posed challenges for water availability in vast 
regions in Europe, including some ill prepared to cope with water scarcity [55]. Climate change 
presents additional challenges regarding the preparedness and adaptation to future extremes, 
because similar or worse future events to that in 2018 may be expected more frequently[56]. 

In order to address these challenges/needs, new strategies and methods must be developed to 
further exploit satellite water cycle observation (at low resolution), the Copernicus satellite data, and 
future missions (with medium spatial resolutions (10 m–1 km) and high spectral resolutions), 
enabling the end-user-oriented description of agricultural and natural ecosystems. Those ecosystems, 
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especially in Europe and the Mediterranean basin, are characterized by high spatial heterogeneity in 
physical characteristics and as a consequence in soil moisture and evapotranspiration patterns. Such 
heterogeneity can be measured only via in situ observations or by airborne sensors and UAS 
(unmanned aerial system) with high resolutions (spatially in centimeters and spectrally in tens of 
bands). This last technology may open a new potential strategy in the study of soil properties, soil 
moisture, and vegetation coverage and states, given its ability to provide observations with a level of 
detail comparable with field observations but over much larger areas than the latter can achieve [4]. 

Although there is a wealth of studies deploying in situ, UAS, airborne, satellite sensors, and 
relevant models for sustainable water resource management [9,57–59], the fully integrated use of 
different monitoring technologies and modelling approaches is rarely reported to discover physical 
connections between soil properties, soil moisture, and evapotranspiration from the point scale to 
regional scales. With multiple sources/scales of Earth observation (EO) data and models, an 
integrative information flow (i.e., the iAqueduct theoretical framework) can be realized to close the 
gaps between satellite water cycle products and local information needs for sustainable management 
of water resources. In what follows, we will address the stakeholder requirements, knowledge gaps, 
and theoretical framework of iAqueduct (in Section 2); the detailed working blocks of the iAqueduct 
framework and some preliminary results for the “proof of concepts” (in Section 3); and a perspective 
toward sustainable water management (in Section 4). 

2. Connecting Science to Society: iAqueduct Framework 

2.1. Stakeholder Requirements and Potential Knowledge Gaps 

To address the panoply of scaling issues described above and the multitude of user requirements 
(see Appendix A), iAqueduct will deploy six field observatories (five across Europe and one in Israel) 
for intensive studies: i) The Twente site in the Netherlands, which serves as a core international site 
for SMOS/SMAP cal/val activities; ii) the Zala catchment in Hungary, which has served as a study 
site for analyzing the performance of the European pedotransfer functions in deriving soil hydraulic 
maps; iii) the Sde Yoav field in Israel, which is a well-documented site for soil investigation in Israel; 
iv) the Alento River Hydrological Observatory in Italy, where intensive soil moisture and 
hydrological observations and modelling have been conducted; v) the Corleto area in Italy, which 
has been used for detailed UAS research; and vi) the Barranco del Carraixet area in Spain, a study 
site for dry land water management and interaction with stakeholders. The detailed description of 
each observatory and associated stakeholder requirements are given in Appendix A. 

The analysis of stakeholder requirement identifies the need to support and facilitate the 
establishment of water management policies; addressing rapid climatic changes by involving 
researchers, water management authorities, companies, and farmers; and strongly supporting 
progress based on previous findings in each site/catchment and by dealing with local needs. In other 
words, the stakeholder calls for the translation of science and knowledge (about the response of 
hydrological cycle and water resources to climate change), into marketable tools, services, and/or 
products for the sustainable management of water resources. This is actually demanding the 
establishment of a science–policy–business–society interface to allow for continuous dialogues and 
interactions across different scales and levels, influencing stakeholders towards desirable 
behaviors[3]. 

To address the aforementioned stakeholder requirements, it requires the development of 
beyond the state-of-the-art approaches to derive local field-scale soil, vegetation, and water states 
and information (e.g., mainly precipitation, evapotranspiration, and profile soil moisture), using 
satellite, UAS, in situ observations, as well as modelling and big data analytics tools for water 
management under climate change. It is well-known that space-based EOs are highly effective to 
characterize water cycle variation at the regional to global scale (see Section 1.1) but are less so at the 
local and field scale to provide more detailed information for the sustainable management of water 
resources. To this aspect, it is important to consider the heterogeneous characteristics of the soil and 
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vegetation at these finer scales and to effectively bridge existing knowledge at different scales. We 
thus need to answer the following questions: 

- How to downscale the global water cycle products to the local scale using multiple sources and 
scales of EO data? 

- How to explore and apply the downscaled information at the management level for a better 
understanding of water–energy–soil–vegetation processes? 

- How can such fine-scaled information be used to improve the management of soil and water 
resources? 

In the next section, we present the iAqueduct theoretical framework to address the above 
questions. 

2.2. iAqueduct Framework 

Figure 1 describes the iAqueduct framework of methodologies and approaches. It includes six 
closely connected working blocks (WBs). WB1 deals with the scaling from global satellite water cycle 
products to field-scale water states, which includes both the surface and profile information on soil 
water states. Specifically, WB1 will advance the space-time characterization of soil moisture and 
evapotranspiration processes through the combined use of field, UAS, and satellite observations. In 
particular, the combined use of high-resolution soil characteristics and satellite data will increase our 
capabilities to describe soil moisture and evapotranspiration processes with high-level detail. 

 
Figure 1. Theoretical framework of iAqueduct: the interconnected working blocks (WBs) and the 
corresponding sections, with the study sites listed. 

It has been demonstrated that soil hydraulic and thermal properties (SHP/STP) play a critical 
role in determining soil water and heat flow at field/plot scales, while such information is rarely 
available at such detailed scales [60,61]. WB2 will apply pedotransfer functions to derive local field 
specific SHP/STP properties for the modelling of soil water and heat dynamics at field-scale precision. 
It will bridge soil spectral information that can be obtained at a high resolution by satellites and UAS 
and the needed soil properties that are traditionally obtained at limited locations by in situ sample 
collections. 

Using the information obtained from the two previous WBs, WB3 attempts to retrieve field- and 
grid-specific relationship functions between soil properties, soil moisture, and evapotranspiration. 
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Such a relationship function is expected to advance the current hydrological modelling concepts, in 
which the actual evapotranspiration is parameterized on the availability of soil moisture using 
untested (linear) assumptions. Field-specific functions will be developed on the basis of downscaled 
satellite observation of soil moisture and evapotranspiration, and their combined analysis with in 
situ measurements and UAS observations. 

WB4 is expected to advance ecohydrological modelling by intercomparing models with different 
levels of complexity, in terms of the soil–water–vegetation–atmosphere transfer processes involved. 
It sets to explore the advantages and disadvantages of these different models, while aiming at 
reducing the reliance on in situ observations for model parameterization and taking full advantage 
of UAS, airborne, and satellite observations. It focuses on the parameterization of the minimalist soil 
moisture models, coupled soil and plant models, and crop growth models. 

WB5 will then demonstrate the benefits in closing water cycle gaps from the global to local scale, 
in terms of how to effectively handle spatiotemporal data (from in situ, UAS, and satellites), 
regarding ecohydrological model calibrations and accuracy evaluations of simulated spatial patterns 
of ecohydrological variables. Particularly, numerical experiments will be conducted for the 
calibration of a parsimonious-distributed ecohydrological daily model in ungauged basins using 
exclusively spatiotemporal information obtained from WB1, WB2, and WB3, to link the scales from 
plant to plot, sub-catchment, and catchment/basin. 

WB6 is about disseminating and communicating generated knowledge, data, and tools to water 
managers, companies, and farmers for actual sustainable water management of their responsible 
domains. Particularly, to address stakeholders’ requirements, iAqueduct will develop an integrative 
information system (an open source iAqueduct toolbox), which will integrate models, soil 
parameters, forcing and field-scale observation, and gridded water states and fluxes to support the 
translation of science knowledge into water productivity information for the smart management of 
water resources. The goal is to develop potentially effective approaches connecting science to the 
society, thus influencing citizens towards desirable behavior in water management. 

To address iAqueduct challenges, Table 1 lists the essential ecohydrological variables and 
parameters to be obtained or measured directly by means of various techniques from in situ, UAS, 
airborne, to satellite. 

Table 1. Essential variables/parameters measured in iAqueduct observatories. 

Variables/Parameters Targeted 
Research In Situ 1 UAS 2 Airborne 3 Satellite 

Missions 4 
Precipitation Downscaling X   X 
Air Temperature  X    
Air Pressure  X    
Humidity  X    
Wind speed/direction  X    
Four-component (and Net) 
Radiation 

 X   X5 

Soil Heat Flux  X    
Evaporation/transpiration Downscaling    X 
Runoff  X X   
Stream Flow  X    
Groundwater level  X    
Soil Properties (texture, hydraulic, 
thermal, etc.) 

Retrieval X X X X 

Soil Moisture (surface, profile) Downscaling X X  X 
Soil Temperature (surface, profile)  X X X X 
Soil Freeze-Thaw (surface, profile)  X X X X 
Snow Depth  X X X X 
Snow Water Equivalent     X 
Land Cover Types  X X  X 
Vegetation Coverage  X X X X 
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Plantation Structure  X X   
Leaf Area Index  X X  X 
Vegetation Structure Parameters 
(density, canopy height, crown 
diameter, etc.) 

 X X  X 

Biomass (NPP and NEE)  X X X X 
DEM   X  X 
Laser altimetry   X  X 

Reflectance (optical range) 
Energy balance 
and vegetation 

dynamics 
X X X X 

Fluorescence (optical range)   X  X 

Emittance (thermal range) 
Energy balance 

and temperature 
downscaling 

X X X X 

Brightness temperature (microwave 
range) 

Soil moisture 
downscaling 

  X X 

Backscattering coefficient 
(microwave range) 

Soil moisture 
downscaling 

   X 

1 In Situ spatial resolution: 1cm to 5cm; temporal resolution: seconds to minutes, hours, and days. 2 
UAS spatial resolution: 5cm to 15cm; temporal resolution: hours to days. 3 Airborne spatial resolution: 
15cm −10m; temporal resolution: hours to days. 4 Satellite spatial resolution: 10 m–25 km; temporal 
resolution: days to weeks.5 Only Albedo, Land Surface Temperature. 

3. iAqueduct Technological Platform 

3.1. Downscaling of Satellite Water Cycle Products (WB1) 

This WB will focus on the monitoring and downscaling of soil moisture data based on remotely 
sensed data. The aim is to enhance the level of accuracy and knowledge about soil moisture, in terms 
of its spatial distribution at surface layers and its vertical distribution at soil profiles (e.g., moving 
from the skin surface to root depth). Specifically, we aim at the spatial description of soil moisture 
and the prediction of soil moisture in the root zone. Soil moisture forms a natural link between 
precipitation, evapotranspiration, and runoff at different spatiotemporal scales. Its spatial and 
temporal patterns are influenced by several physical features that influence the structure of this 
pattern (Figure 2a). Moreover, soil moisture is measured through different systems and 
methodologies, but each of them provides information at specific temporal and spatial scales. In this 
context, the use of UAS may help to fill the existing gap between field observations and satellite data. 

3.1.1. Spatial Downscaling Procedures 

Before describing a number of procedures to downscale remotely sensed water cycle products 
to scales suitable for water management purposes, we first present a general framework for water 
budget closure for a basin by means of the mass conservation equation in the form of [6]: డௌడ௧ = 𝑃 ௉஼௉ − 𝐸ௌா஻ௌ − 𝑄௢ ∙ 𝑓(𝑃௜,௝, 𝐸௜,௝), (1) 

where 𝑆 is the amount of water stored at the surface and subsurface, 𝑃𝐺𝑃𝐶𝑃 is the GPCP (Global 
Precipitation Climatology Project) precipitation data; 𝐸𝑆𝐸𝐵𝑆  is the SEBS-derived land 
evapotranspiration (ET); 𝑄𝑂 is the (in situ) observed river discharge; 𝑓൫𝑃௜,௝, 𝐸௜,௝൯ = (𝑃௜,௝ − 𝐸௜,௝)/(𝑃 −𝐸)  is a scaling factor to distribute the observed discharge to each pixel; 𝑃௜,௝, 𝐸௜,௝  are GPCP 
precipitation and SEBS ET for pixel (i, j); and P, E are the mean GPCP precipitation and SEBS ET for 
the catchment area of interest, all expressed in water depth. It is understood that 𝑃 ௉஼௉,  𝐸ௌா஻ௌ can be 
replaced by any other remotely sensed similar data. In this mathematical form, Equation (1) can be 
applied for any catchment after integration. 
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From a remote sensing point of view, 𝜕𝑆 𝜕𝑡⁄  can be obtained from the GRACE satellite 
observation of the change in terrestrial water storage (TWS) [62,63]. However, due to the rather coarse 
spatial resolution (e.g., 300 km), the GRACE TWS is of main utility for large river basins [64]. It is to 
note that, with earlier versions of GRACE data, the comparison of GRACE TWS with satellite/surface 
observation-based TWS shows the underestimation of seasonal cycles of TWS [62]. On the other hand, 
with the new development of local mascon solutions, GRACE data are no longer limited to large-
basin hydrology, and are useful for groundwater monitoring [65–67]. For a much smaller catchment, 
we propose to utilize the generalized TOPMODEL concept [68,69] as follows to derive the total 
drainage: 𝑄௢ = 𝑄௦ ∙ ቀ1 − ఋഥ௡ቁ௡

, (2) 

𝑄௦ = ஺ఊ೙, (3) 

𝛾 = ଵ஺ ׬ ඥ𝜉೙஺ , (4) 𝜉 = ௔బ்∙௧௔௡ఉ, (5)  𝛿 = 𝐷/𝑚, (6) 

where 𝑄௦ is the drainage at saturation, 𝐴 is the area of the catchment, and 𝛾 is the spatial average 
of the soil topographic index; 𝛿̅ is the average of 𝛿 with 𝐷 as the local soil moisture storage deficit 
(i.e., the difference between the maximum and the actual soil moisture storage), and 𝑚 a scaling 
parameter describing the decrease of the subsurface transmissivity 𝑇  with depth; 𝑛  is a 
nondimensional scale parameter of the catchment; 𝑎, 𝑇଴, 𝛽 are the drainage area per unit contour for 
a specific location within the catchment, the subsurface transmissivity at saturation, and the local 
slope of the terrain, respectively. 

Similarly, the local subsurface transmissivity can be written as: 𝑇 = 𝑇଴ ∙ ቀ1 − 𝛿𝑛ቁ𝑛
, (7) 

and be related to the effective local recharge ൫𝑃௜,௝ − 𝐸௜,௝൯ in the form of: 𝑇 ∙ 𝑡𝑎𝑛𝛽=𝑎 ∙ ൫𝑃௜,௝ − 𝐸௜,௝൯, (8) 

or by inserting Equation (3): 𝑇଴ ∙ 𝑡𝑎𝑛𝛽 ∙ ቀ1 − 𝛿𝑛ቁ𝑛
=𝑎 ∙ ൫𝑃௜,௝ − 𝐸௜,௝൯. (9) 

Equations (8) and (9) are derived by assuming that the local water table is parallel to the local 
topography and that the steady state assumption for downslope discharge can be assumed as a power 
function. Equations (1)–(9) can then be used to link the forcing ൫𝑃௜,௝ − 𝐸௜,௝൯ and drainage 𝑄௢ to the 
storage change డௌడ௧. The obvious challenge in applying such a framework is to quantify the scaling 
parameters 𝑓(−), 𝑚, 𝑛 from the observation scale (e.g., pixel scale) to the scale of management 
interest (i.e., field or a basin scale). Each of the scaling parameters mainly represents the land-
atmospheric processes (e.g., f), the vertical soil properties (e.g., m), and the lateral hydrological 
processes (e.g., n), and can be derived from satellite observations of precipitation, evapotranspiration, 
and soil moisture. Next, we present a number of procedures for downscaling individual variables: 

(1) Bayesian statistical bias correction of satellite data based on in situ observation. The calibration 
and validation of coarse-resolution satellite water cycle products at selected field sites with in 
situ observation is an integral part of this procedure (at the kilometer scale but corrected for 
spatio-temporal error, e.g., due to topography, soil texture, and climate, cf. those by [19] for 
precipitation;[26] for evapotranspiration; and [8] for soil moisture); 
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(2) Development of downscaling methods based on Copernicus Sentinel data (from kilometer to 
hectometer scale). This procedure concerns evapotranspiration and soil moisture (by assuming 
the precipitation is homogeneous at the kilometer scale). Downscaling will be achieved by the 
combined use of optical, thermal, and radar data from Sentinel-1, 2, and 3; 

(3) Generation of high-resolution water cycle products of soil moisture, vegetation patterns, and 
vegetation stress (sub-meter spatial scale and daily interval). High-resolution maps will be 
provided with UAS equipped with thermal cameras, multispectral, and hyperspectral cameras. 
Such data will support the development of downscaling procedures, linking satellite to point 
measurements for calibration and validation at the selected field sites; 

(4) Characterization of the spatiotemporal distribution of soil moisture and evapotranspiration 
processes will be conducted after validation of the high-resolution imagery from UAS with 
outcomes of field measurements and outputs from ecohydrological models. The proper 
description of the controlling factors for the spatial variability of soil moisture is crucial to further 
advance the potential of downscaling methodologies; 

(5) Downscaling of the remote sensing data to the field scale (from the hectometer to plot scale) can 
be achieved by using a Bayesian approach exploiting the predicted variance and spatial 
correlation of the soil moisture process along with the ancillary data derived from UAS and WB2 
activities on the physical characteristics of soil and vegetation. In particular, WB2 will support 
the development of new strategies aimed at the mapping of soil hydraulic and physical 
characteristics that will enhance the capabilities of soil moisture downscaling procedures (see, 
e.g.,[11,42,43]). 

  
Figure 2. (a) Physical features influencing the spatial dynamic of soil moisture; (b) Identification of 
the temporal and spatial scales of different monitoring techniques. 

3.1.2. Preliminary Results of Downscaling Surface Soil Moisture 

This subsection will focus on surface soil moisture and present the preliminary results of 
downscaling satellite data with UAS measurements. Because soil moisture is determined by several 
physical features characterized by strong spatial gradients (e.g., terrain morphology and soil texture) 
and also temporal variability (e.g., vegetation patterns), these dynamics and features have to be taken 
into consideration in order to reach a reliable estimate of soil moisture using EO (Figure 2a). As such, 
the use of combined technologies may help in describing the spatial patterns of land surface features 
closely related to soil moisture (or directly soil moisture itself), providing measurements over a range 
of scales moving from centimeters up to several meters, and thus enabling links to EO data from tens 
of meters to kilometers (Figures 2b and 3). It is to note from Figure 2b that it is not only about 
downscaling to the scale of interest but also upscaling. Thus, an evaluation of the physical consistency 
between different scales and corresponding used downscaling approaches and strategies is always 
needed [7,70]. 

Furthermore, ecohydrological model-based simulations at hyper-resolutions can reproduce the 
scale invariance property of soil moisture, which can be used to link scales from hundreds of meters 

(a) (b) 
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in the field to tens of kilometers of satellite observations [59]. Big data analytics with machine learning 
(e.g., random forest, RF) can also effectively downscale satellite observations to UAS/in situ 
scales[58]. In the following, the RF-based soil moisture downscaling was demonstrated with 
preliminary results (Figure 3). The RF-based downscaling workflow is depicted in Figure 3a with 
four steps: 

Step 1 is to train and test the RF model with both predictors (i.e., land surface features) and soil 
moisture datasets (Sentinel-1) at a 1-km resolution. The relative importance of predictors (Figure 3b) 
shows that the LST (land surface temperature), NDVI (normalized difference vegetation index), and 
DEM (digital elevation model) are the top three predictors; 

Step 2 is to train and test the RF model with only the three top predictors as identified in step 1; 
Step 3 is to apply the trained RF model (from step 2) with the UAS-derived surface features at 

15cm to predict high-resolution soil moisture at 15cm; 
Step 4 is to compare the predicted high-resolution soil moisture with in situ measurements. 

 
Figure 3. (a) Soil moisture downscaling workflow based on random forest regression (RF); (b) The 
importance of land surface features for the RF model; (c) RF-based downscaling of Sentinel-1 soil 
moisture products at 1km to 15cm, taking land surface features derived from UAS as predictors over 
the MFC2-Alento catchment. The UAS thermal image taken at sunrise 05:13 14 June 2019 was used to 
derive LST, the multispectral image taken 15:42, 13 June 2019 was used to derive NDVI; (d) the 
comparison of the downscaled soil moisture with in situ measurements. 

Figure 3c shows the preliminary result of RF-based downscaling of Sentinel-1 soil moisture 
products at 1km to 15 cm, taking land surface features derived from UAS (e.g., LST, NDVI and DEM) 
as predictors over the MFC2 sub-catchment of Alento catchment (hereafter as MFC2-Alento) (see 
Appendix A.3). Figure 3d shows the comparison between the downscaled soil moisture and in situ 
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measurements. The downscaled soil moisture had 0.07 cm3/cm3 unbiased root mean square error, and 
its Pearson correlation was 0.42 with the in situ measurements. 

3.1.3. From Surface Moisture Information to Profile Soil Moisture 

While downscaling coarse-resolution remotely sensed water cycle products to a fine spatial 
resolution is achievable as described in the previous section, the remote sensing products typically 
refer to surface information that needs to be transferred to the depth, at least to the root zone, and be 
linked up with a physically consistent manner. We next describe how to derive profile soil moisture 
from surface soil moisture information: 

1) Prediction of root-zone soil moisture (RZSM) with the SMAR-EnKF (soil moisture analytical 
relationship-ensemble Kalman filter) [16,54]. Such an approach derives RZSM based on the relative 
fluctuations of surface soil moisture (SSM) retrieved from the satellite or UAS. Figure 4 shows the 
workflow for this procedure with satellite data [71], while the same can be applied to UAS and/or 
downscaled data. Furthermore, given the physically based nature of the model, it will benefit from 
the information collected on the hydraulic characteristics of the soil (see WB2). Furthermore, the CDF 
(cumulative distribution function) depth scaling can be also used to derive RZSM from SSM[71].The 
prediction of RZSM will help to derive useful information on dynamics of vegetation (e.g., via 
evapotranspiration). It is to note that both SSM and RZSM can be applied to determine the local soil 
moisture storage deficit, which is needed for estimating the total discharge (see Equation (6) in 
Section 3.1.1). 

 
Figure 4. The example workflow for deriving root zone soil moisture (RZSM) from surface soil 
moisture (SSM), which results in ~10-year consistent surface and root zone soil moisture over Tibetan 
Plateau (adopted from [71]). 

2) Other than the above approach, the physical process-based model can be used to simulate 
SSM and RZSM, and to understand the mechanism behind the relationship of soil property, soil 
moisture, and evapotranspiration. The STEMMUS (Simultaneous Transfer of Energy, Momentum 
and Mass in Unsaturated Soil) – SCOPE (Soil Canopy Observation, Photochemistry, and Energy 
fluxes) numerical soil-water-atmosphere continuum model [72–75] can be applied to analyze the 
sensitivities of the predicted RZSM at sites with detailed observation of the soil hydro-thermal 
properties (soil hydraulic and thermal parameters) and states (profiles of soil moisture and soil 
temperature and surface radiation, sensible, and latent heat flux, precipitation and other 
meteorological forcing) [72,76–79]. Figure 5 shows the physical processes considered in STEMMUS-
SCOPE [80]. This modelling approach will provide high-resolution spatiotemporal patterns of RZSM 
that can be linked to the spatial distribution patterns of soil properties (see WB2) and 
evapotranspiration (see WB3) in different catchments. 
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Figure 5. The main physical processes in the STEMMUS-SCOPE continuum model, integrating 
radiative transfer, vegetation photosynthesis, energy balance, root system dynamic, and soil moisture 
and soil temperature dynamic. The coupled model integrates vegetation photosynthesis and transfer 
of energy, mass, and momentum in the soil–vegetation system, via a simplified 1-D root growth 
model and a resistance scheme (from soil, through root zones and plants, to atmosphere)[80]. 

3.2. Retrieval of Soil Hydraulic and Thermal Properties (WB2) 

3.2.1. Towards a Protocol for Field-Scale Data Collection 

To establish the prediction model (or spectral transfer function) of soil properties, it needs to 
collect information on soil physical and hydraulic properties, terrain and environmental attributes 
(topographical, geological, pedological, and land-use/land-cover information together with hydro-
meteorological datasets and soil physical and hydraulic properties), and topsoil spectral data [81]. 

In order to collect accurate and reliable spectral information from the field with physical 
meanings, the development of a protocol for field spectral measurements under a non-destructive 
scope is needed. Such a protocol will minimize soil disturbance, which will enhance the 
characterization of the soil surface hydraulic properties based on spectral data, because sampling soil 
to the laboratory may disturb the soil surface and hence its hydraulic properties may be 
compromised. In addition, the protocol to calibrate the field and airborne data and to measure soil 
temperature and emissivity should be developed as well [81]. Figure 6 shows the appearance of the 
disturbed and undisturbed soil surfaces at Afeka site, Israel. 

 
Figure 6. The undisturbed and disturbed soil surfaces at Afeka site, Israel [82]. 
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3.2.2. Preliminary Results of Soil Spectroscopy and Hyperspectral Remote Sensing 

The prediction model established from the field soil spectral library (SSL) can be upscaled to 
hyperspectral remote sensing. To achieve this, the soil spectral measurement performed in the field 
will be compared with the one acquired in the laboratory and from the remote sensing sensors (i.e., 
both airborne and spaceborne). We will focus on the spectral signature related to a) soil properties, 
which are routinely measured and influence the soil hydrological processes, such as soil texture and 
organic matter content, and also b) directly the soil hydraulic properties, such as soil water retention, 
hydraulic conductivity, and water infiltration in soil. In addition, the spectral signature in 
hyperspectral remote sensing (e.g., visible to near infrared) is expected to be extended to the thermal 
region. 

As the first step, this WB has analyzed the relationship between the spectral information of the 
undisturbed soil surface and water infiltration into the soil. This soil hydraulic property is highly 
correlated with water runoff and soil erosion and therefore is important for the description of soil 
hydrological processes. This is done with a dataset containing 69 soil samples taken from the study 
areas of MFC2-Alento, Sde Yoav, and from an urban area with exposed soil in the neighborhood of 
Afeka in the city of Tel Aviv, Israel (see Appendix A.6). 

This dataset contains infiltration rate measurements, laboratory spectral measurements, and 
field spectral measurements of undisturbed soil surfaces. For the measurements of the infiltration 
rate, we used the MiniDisk Infiltrometer (METER Group Inc., Pullman, WA, USA [83]), and for the 
reflectance measurements, we used an ASD Spectrometer. 

For the field reflectance measurements, we connected the ASD spectrometer to SoilPRO® [82], in 
order to obtain optimal spectral measurements in the field, and to neutralize atmospheric attenuation. 
SoilPRO® (US patent number 10,473,580 B2) is an apparatus that can be connected to any portable 
spectrometer in order to extract the un-disturbed reflectance properties of soil field condition with a 
near laboratory quality. It consists of a large and lightweight closed chamber covering a wide surface 
area with a controllable illumination and a constant geometry [82]. The partial least squares 
regression (PLSR) models using the Scikitlearn package in Python [84] was then used to estimate the 
infiltration rate from the spectral measurements. 

For every model, we adopted 5 components for estimation of the soil infiltration rate using soil 
reflectance in the 450–2400 nm spectral range. This analysis was applied to laboratory spectral 
measurements as well as to field spectral measurements to explore field sampling issues. Before the 
application of PLSR, the spectral data was pre-processed using the Savitsky–Golay derivative [85]. 
The Savitsky–Golay first derivative is a pre-processing method to calculate the variation of the 
measured reflectance in a given wavelength in relation to its neighbor bands. This pre-processing is 
a good alternative to enhance spectral properties/signals and reduces physical effects [85–87]. 

 
Figure 7. The results of the PLSR model of the field-based dataset (a) and the lab-based dataset (b) 
using the 450–2400 nm spectral range; (c) histogram of the measured infiltration rate values at 
different study areas. 

In Figure 7a, the result using the field-based model is presented, Figure 7b presents the result 
using the lab-based model, and Figure 7c presents a histogram of frequencies with the measured 
infiltration rate (cm/sec) in the different study areas. The PLSR model that was generated using the 
non-disturbed samples (at field) demonstrated that it is possible to use different soil types and still 
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develop excellent models. The field-based model predicted the infiltration rate much better than the 
lab-based model. This is because with the application of laboratory protocols, we lost important 
information of the soil crust for the estimation of soil infiltration rate (see Figure 6). 

Given that the soil types in the study areas in question are very diverse, the nature of the samples 
varies. This implicates that field-spectral data has the potential to predict the infiltration rate using a 
generic approach for different soils using field-based spectral models (e.g., with SoilPRO®). Based on 
the current results, the next step will be to examine the adaptation of field-based spectral models to 
UAS and satellite platforms specifically in the study area of MFC2-Alento (see Appendix A.3). 

3.2.3. Basic and Advanced Pedotransfer Functions 

With the collected data in MFC2-Alento, the application and evaluation of already established 
pedotransfer functions (PTFs) [88–90] will be carried out to calculate soil hydraulic parameters. The 
3-D Soil Hydraulic Database of Europe at a 250-m resolution [91] will be used as a baseline dataset. 
As such, this task will explore if and to what extent the predictive capability of these basic PTFs can 
be suitably improved, through in situ and remote measurements of spatial patterns of land cover, for 
the mapping of soil hydraulic and thermal properties [60]. 

Basic and advanced PTFs will enable soil hydraulic and thermal parameters (SHP/STP) to be 
estimated from spectral signatures and the knowledge of near-surface soil moisture dynamics. The 
world Soil Spectral Library [92], European Spectral Soil Library (LUCAS) [93], and some local SSL 
(e.g., the GEO-CRADLE Mediterranean Balkan SSL) will be used to generate global to local spectral-
based models to assess soil properties. Spectral transfer functions (STFs) [94] will be derived to 
predict soil properties (SHP/STP) from high spatial-resolution EO data. 

As the first step, we will validate STFs on the test set and samples of the MFC2-Alento catchment. 
We collected disturbed soil sample and undisturbed soil cores in the MFC2-Alento catchment at 20 
locations, corresponding to the positions of the wireless sensor network end-devices (SoilNET) [95] 
(Figure 8). We measured in the laboratory the soil particle-size distribution, oven-dry bulk density, 
soil organic carbon content, and the hydraulic properties of soil-water retention and hydraulic 
conductivity at the full suction range. Furthermore, we also acquired visible (VIS), hyperspectral, and 
thermal images with the UAS platform and conducted spectral analysis in the laboratory and in the 
field (Table 2, Figures 8 and 9). These data will be used to relate soil spectral information with soil 
basic and hydrothermal properties. 
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Table 2. Spectral information acquired by spectrometer and UAS platform for the MFC2-Alento 
Catchment. 

Acquired Spectral 
Data 

State of Soil 
Sample 

Extension of 
Survey Equipment Used for the Survey Date of Survey 

1 2 3 4  
soil reflectance in the 
450–1000 and 450–2400 
nm range 

 x x  
20 points, close to 
the SoilNET probes 

ASD Spectrometer with SoilPRO 13 June 2019 

soil reflectance in the 
450–1000 and 450–2400 
nm range 

x  x  
20 points, close to 
the SoilNET probes 

ASD Spectrometer, Laboratory 
3–4 October 
2018 
13 June 2019 

soil reflectance in the 
450–950 nm range, 125 
channels 

 x x  7.5 ha of study site 

Cubert UHD-185 hyperspectral 
snapshot camera on UAS 
platform with a spatial 
resolution of 5cm 

15 June 2019 

soil reflectance in the 
450–2400 nm spectral 
range 

x   x 
20 points, close to 
the SoilNET probes 

SoilPRO in situ measurement & 
spectral analysis in laboratory  

4 October 2018, 
13 June 2019 

soil reflectance in the 
7.5–13.5 µm range 

 x x  7.5 ha of study site 
FLIR Tau 336 thermal camera on 
UAS platform with a spatial 
resolution of 15cm 

3–4 October 
2018, 
13–14 June 2019 

RGB in VIS range  x x  
18 ha of sub-
catchment  

Fuji X-T20 snapshot camera on 
UAS platform 

13 June 2019 

Notes: state of soil samples - 1-Disturbed; 2-Undisturbed; 3-Actual moisture content; 4-Dry. 

 
Figure 8. Map of the MFC2-Alento catchment. Red crosses indicate the locations of SoilNet sensors 
installed at soil depths of 15 and 30 cm. The positions of the SoilNet sensors correspond to soil 
sampling locations. The RGB-VIS coverage area is 18 ha, and the thermal and hyperspectral coverage 
area is 7.5 ha. 
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Figure 9. (a) a RGB image taken on 13 June 2019, 12:23, MFC2-Alento; (b) a multispectral image (Band1 
NIR (Near Infrared), Band2 Red, Band3 Green) taken on 13 June 2019 at 15:42, MFC2-Alento; (c) a 
hyperspectral image in RGB colors with the hyperspectral data cube and mean spectral curves of 
forest, grass, and soil features taken on 15 June 2019, between 9:50 and 10:30, MFC2-Alento; (d) the 
workflow on the combined use of different sources of data to produce soil texture information and 
corresponding soil hydro-thermal properties. (EU-STF-LUCAS -spectrotransfer functions derived 
based on the European Spectral Soil Library [93]; 3D EU-SoilHydroGrids – Soil Hydraulic Database 
of Europe at 250 m [91], EU-PTF - EU-HYDI – pedotransfer functions derived based on the European 
Hydropedological Data Inventory [96]. 

Figure 8 shows the hydrographic basin of MFC2-Alento (detailed geographical location is 
referred to Appendix A.3), the wireless sensor network, the spatial coverage of RGB (red, green, blue) 
VIS, thermal, multispectral, and hyperspectral UAS imageries. Figure 9a shows the RGB image of 
MFC2-Alento, taken at noon time, Figure 9b the multispectral image taken at afternoon, and Figure 
9c the hyperspectral image taken in the morning and the corresponding hyperspectral data cube and 
mean spectral curves of forest, grass, and soil features. The timing of UAS flights follow the best 
practice according to local conditions. Figure 9d shows the workflow on the combined use of different 
sources of data to produce soil texture information and corresponding soil hydro-thermal properties 
for the top 5cm and root zone layers. 

3.3. Linking Soil Properties, Soil Moisture, and Evapotranspiration (WB3) 

With the downscaled water cycle products, as well as soil hydrothermal properties, this WB will 
retrieve field- and grid-specific relationship functions between soil properties, soil moisture, and 
evapotranspiration and their generalization. With the pilot study at MFC2-Alento, the field and grid-
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specific relationship function will be firstly derived with hierarchical multi-scale EO data, i.e., from 
the local scale (by the wireless sensor network), to the field scale (by the cosmic-ray neutron probe), 
to the catchment scale (e.g., by UAS, Sentinel 1-2-3, etc.), and to the regional scale (e.g., by SMOS, 
SMAP, MODIS, etc.). Both upscaling and downscaling relationships will be developed to link soil 
properties, soil moisture, and evapotranspiration (see Figure 2). Tests will be done at other sites to 
validate the proposed procedures. 

It is expected that different selected sites (i.e., with different climate zones) will have different 
specific relationship functions between soil properties, soil moisture, and evapotranspiration. 
However, as iAqueduct work is still in progress, we are not able to show the sensitivity of such 
relationship functions under different climate zones (and with the wide-enough variation range of 
soil properties) from the selected iAqueduct field sites. Nevertheless, in order to demonstrate this 
concept, we will use existing data from WaPOR (Water Productivity Open-access portal), FAO’s 
(Food and Agriculture Organization) portal to monitor water productivity through open-access of 
remotely sensed derived data [97–99]. It is to note that the WaPOR data coverage is over Africa, which 
is different from the iAqueduct study sites (see Figure 1 and Appendices A.1–A.6). 

3.3.1. Example: WaPOR Database 

WaPOR includes the products of soil moisture and evapotranspiration over Africa and the 
Middle East between 2009 and 2018 at the spatial resolution of 250 m [98,99]. Figure 10 shows that 
the actual evapotranspiration (AET) increases generally with the soil moisture across all climate 
zones over Africa. Nevertheless, there are different characteristics within different climate zones. 

For the hot (BWh) and cold (BWk) desert climates, one can see a slight positive relationship 
between soil moisture (SM) and actual evapotranspiration (AET), indicating the AET is limited by 
soil moisture for these arid zones, with a maximum rate of 1.5 mm d−1. For the hot (BSh) and cold 
(BSk) semi-arid climates, the AET–SM relationship is generally positive with flat slopes alike for 
desert climates. The BSk is close to desert climates, as it is simultaneously limited by available energy 
(i.e., cold semi-arid climates) and partially by SM, while BSh has a higher AET as it is not limited by 
energy and has higher SMs than arid zones. 

For the humid subtropical climates with dry winter (Cwa) or fully humid ones without a dry 
season (Cfa), it is clear that the AET is not limited by soil moisture and has no or a slight negative 
relationship between SM and AET, respectively. For the hot-summer Mediterranean climate (Csa) 
and temperate oceanic climates (Cfb), AET-SM is clearly negative, indicating the control of available 
energy on AET. While for the tropical wet savanna (Aw) and tropical dry savanna (As) climates, the 
tropical monsoon (Am), and tropical rainforest (Af) climates, the AET is generally high, but there is 
no relationship with SM. 
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Figure 10. (a) Koeppen–Geiger climate classifications across the WaPOR domain of the Africa and the 
Middle-East; (b) Mean Actual Evapotranspiration (AET) versus root zone relative soil moisture (i.e., 
saturation degree) stratified by the Koeppen–Geiger climate classifications. 

3.3.2. Approach of iAqueduct 

It is noted that the WaPOR relative soil moisture is derived using the trapezoid approach, which 
needs calibrations for different soils and vegetation covers, due to its assumption of constant 
meteorology and constant resistance (to heat transfer) [98,99]. The iAqueduct will use a more 
consistent way with the surface energy balance system (SEBS) equations[25], by which the relative 
evaporation (RE) can be calculated as [100]: 𝑅𝐸 = 1 − ுିுೢ೐೟ு೏ೝ೤ିுೢ೐೟, (10) 

where H is the sensible heat flux, 𝐻௪௘௧, 𝐻ௗ௥௬ are the sensible heat flux at the wet limit (i.e., the surface 
is completely wet and the AET is not limited by soil moisture) and dry limit (i.e., there is no AET due 
to absence of soil moisture), respectively. As 𝐻 = 𝜌𝑐௉(𝑇௦ − 𝑇௔)/𝑟௔௛  (𝜌 − air density, 𝑐௉ − specific 
heat capacity of air, 𝑇௦ − land surface temperature, 𝑇௔ − air temperature, 𝑟௔௛ − aerodynamic 
resistance for heat transfer), if we assumed the climate (i.e., assuming 𝑇௔ constant) and land cover 
(i.e., assuming 𝑟௔௛ constant) do not change spatially over the area of interest, we can rewrite RE as 
below: 𝑅𝐸 = 1 − ೞ்ି ೞ்_ೢ೐೟்ೞ_೏ೝ೤ି ೞ்_ೢ೐೟, (11) 

where 𝑇௦ is modulated by SM; and 𝑇௦_ௗ௥௬, 𝑇௦_௪௘௧ are land surface temperatures at the wet limit and 
dry limit. Equation (11) then describes the theoretical boundaries of the trapezoid approach (i.e., in 
the space of 𝑇௦ versus the albedo or vegetation index), when considering the uncertainties raised by 
assuming 𝑇௔ and 𝑟௔௛ constants can be addressed by calibrating the system under different surface 
conditions. Because 𝑇௦  can be easily measured at various spatial resolutions by remote sensors, 
Equation (11) will relate ET and SM accordingly, which can be expressed as a sigmoid function by 
considering its dependence on soil texture [80,100]. 
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Such a soil texture-dependent sigmoid function can be derived from multiscale data. It is 
expected with the availability of multiscale hierarchical information of soil moisture and 
evapotranspiration (e.g., from satellite, UAS, in situ measurements) for the selected study sites of 
iAqueduct (see Figure 1 and Appendix A), both upscaling and downscaling relationships can be 
developed to link soil properties, soil moisture, and evapotranspiration. Figure 11 shows an example 
of global evapotranspiration derived from MODIS satellite data in combination with global 
meteorological information, using the SEBS model [27]. This daily evapotranspiration dataset is at 
spatial resolution of 1km. With Equation (11) and the ancillary data used to produce Figure 11, it is 
expected that the relationship function, as learned in iAqueduct, can be extended to the pan-
European and global scale. 

 
Figure 11. An example of global evapotranspiration derived from the MODIS satellite data in 
combination with global meteorological information using the SEBS model [27]. 

3.4. Developing Plant- and Plot-Level Ecohydrological Models Using Remote Sensing Information (WB4) 

Both ecologists and hydrologists have long recognized the important interactions between water 
availability and ecosystems [101]. Vegetation represents the main return path of terrestrial water to 
the atmosphere [102] and modifies the surface albedo and roughness [103], thereby the ecosystem 
species composition and structure exert strong controls on hydrologic fluxes at multiple scales [101]. 
These plant–water interactions have been captured by plant- and plot-level ecohydrological models, 
ranging in complexity from minimalist soil water balances to detailed descriptions of the water, 
energy, carbon, and momentum fluxes in the soil, canopy, and atmosphere (see [104,105] for reviews). 
WB4 will use information retrieved from WBs 1 through 3 to develop and parameterize 
ecohydrological models of increasing complexity at the plot and plant level and evaluate to what 
extent this information enhances descriptions of the soil–plant–atmosphere system to inform 
resource management. 

The soil ‘bucket filling’ model (e.g., [106,107]) is the simplest description of interactions between 
soil water and vegetation. This approach mechanistically represents the soil water balance over the 
rooting zone, generally at a daily time scale, but the effects of vegetation are included via an empirical 
closure, linking directly soil water availability to losses via evapotranspiration [107–109]. ‘Bucket 
filling’ models have often been used to investigate the role of rainfall unpredictability, because, 
thanks to their simplicity, the probability density function of soil moisture [107] and plant water stress 
[110] can be obtained analytically. In some cases, this minimalist description has been linked to the 
plant carbon balance, to quantify the assimilation rate of carbon dioxide (CO2) and its probability 
density function [111–113]. The minimalist soil moisture balance has been extended to include 
irrigation [114] and obtain analytically the probability density function of crop yield and irrigation 
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requirements, thus directly linking to the management of water resources [115]. Once parameterized, 
these models provide a simple and practical output for WB6. 

The ‘big-leaf’ approximation is a more realistic description of vegetation effects on the soil water 
balance. This approach couples lumped soil moisture dynamics to lumped vegetation models at daily 
or sub-daily time scales (see [116] for an example). ‘Big-leaf’ models up-scale mechanistic descriptions 
of leaf-level carbon and water fluxes to the whole canopy, assuming the entire canopy is subject to 
the same conditions and behaves in the same way [117,118]. ‘Big-leaf’ models allows also coupling 
the soil–vegetation water balance with the plant carbon balance, using various levels of complexity 
(see examples with increasing physiological detail in [105,113,119–121]). The most mechanistic 
models include a canopy energy balance (e.g., [75,122]), describing explicitly the interactions between 
leaf activity and leaf temperature; or carbon and nitrogen dynamics, thus accounting for the cycling 
of critical resources also in the soil (see [123] for some examples). In addition, to enhance model 
realism while maintaining low parameter and computational requirements, vegetation and soil can 
be stratified in two or more discrete layers [123]. The more detailed models include energy, carbon, 
and possibly nitrogen flux information beyond the water flux provided by ‘bucket-filling’ models. 
The ‘big-leaf’ approximation can be a valuable alternative to ‘bucket filling’ models in WB6 for 
managers of agricultural systems, when information for their parameterization is available. 

Vertically distributed models represent the highest level of detail, where water and energy 
balances are fully resolved and discretized over thin layers. Vertically distributed canopy models are 
often based on the same mechanistic principles informing big leaf models, but they explicitly describe 
water transport within the soil–plant–atmosphere continuum (see [124] for a review) and the 
interactions between leaves at different positions inside the canopy and the surrounding conditions. 
Similarly to the lumped models, vertically distributed models in the soil can focus on the soil water 
dynamics, incorporating a simplified description of the aboveground component [73,125,126], or 
considering the full above- and belowground details (e.g., [123,127,128]). 

Increasing levels of detail can enhance the model performance but are inevitably associated to 
increasing parameter requirements and hence difficulties in parameterization when specific in situ 
observations are not available. In addition to hydrometeorological variables and soil moisture, 
information about vegetation structure, biomass, temperature, and activity can be retrieved from the 
iAqueduct platform at various temporal and spatial scales (Table 1), to develop simple to complex 
ecohydrological models. ’Bucket-filling’ soil moisture balances require basic information on soil (soil 
porosity and hydraulic conductivity) and vegetation (active rooting depth, maximum 
evapotranspiration rate, and response to water stress). These ecohydrological parameters have been 
inferred successfully from point-, footprint-, and satellite-scale observations [129] and improve the 
description of soil moisture dynamics compared to reference constants [130]. Coupled soil and plant 
models, including a two-pool soil moisture model and vegetation dynamics relying on the radiation 
use efficiency approach, have been parameterized with satellite data [131]. Most recently, remote 
sensing has also contributed to the development of crop growth models (see [132,133] for a review). 

The work within WB4 will follow these lines, exploiting downscaled data from WB1, data 
collected in WB2, and information derived from them in WB3. Particular attention will be devoted to 
the appropriate characterization of vegetation activity and its interactions with soil moisture 
dynamics. The ultimate goal is to explore the advantages and disadvantages of the different 
approaches to modelling soil–vegetation–atmosphere interactions when aiming at reducing the 
reliance on in situ observations and at taking full advantage of UAS, airborne, and satellite 
observations. The most promising models will be included in the iAqueduct toolbox and be available 
to improve distributed ecohydrological models in WB5. 

3.5. Improving Distributed Catchment-Scale Ecohydrological Models Using Spatial Information (WB5) 

Leaf- to plot-level plant activity affects and is affected by the spatial scale. The heterogeneity of 
soil moisture (vertical and horizontal) depends on the distribution of plant types [38,134,135]. At the 
same time, plants need water to survive, and thus, the composition and structure of plant 
communities are directly influenced by spatiotemporal patterns in water availability [136]. Piedallu 
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et al. [137] demonstrated how an adequate spatial distribution of soil moisture can improve the 
performance of ecohydrological models by refining the prediction of the spatial distributions of 
species. It is obvious that the water cycle processes and their evolution in time and space are both a 
cause and consequence of vegetation [138]. 

Despite the pivotal role of plants on the water cycle, traditional hydrological models have 
neglected most plant–water interactions and vegetation dynamics [139,140]. Most traditional 
hydrological models include vegetation as a static parameter, which represents observed discharge 
fairly well at the catchment outlet [141]. As a consequence, there is still a lack of knowledge transfer, 
and the inclusion of vegetation in spatially distributed models remains challenging [35]. For instance, 
many recent large-scale models still incorporate vegetation as a constant or by using fixed phenology 
[142,143]. Fortunately, although including vegetation dynamics is not the norm yet, this trend is 
changing. During the last decade, new improved ecohydrological models have emerged, e.g., 
RHESSyS [144], SWIM [145], GEOTOP [146], LPJ-GUESS coupled with TOPMODEL [147], TETIS 
[136], STEMMUS-SCOPE [80], and STEMMUS-TeC [148]. 

The calibration of a hydrological model has traditionally relied on the temporal variation of the 
discharge at the catchment outlet. However, the discharge provides only limited insight on the spatial 
behavior of the catchment [149]. The development of distributed ecohydrological models and the 
availability of spatiotemporal data appear as a key alternative to overcome those limitations and can 
facilitate a spatial pattern-oriented model calibration [136]. In recent years, some researchers have 
used different sources of remotely sensed information from satellites to improve the implementation 
of ecohydrological models. For example, actual evapotranspiration was used by Immerzeel and 
Droogers (2008) [150], Demirel et al. (2018) [151], and Herman et al. (2018) [152]; NDVI by Ruiz-Pérez 
et al. (2017) [136]; LAI and actual evapotranspiration by Rajib et al. (2018) [153]; land surface 
temperature by Silvestro et al. (2013) [154] and Zink et al. (2018) [155]; large-scale total water storage 
anomaly by Lo et al. (2010) [156]; and near-surface soil moisture by Li et al. (2018) [157], Yang et al. 
(2019) [158], and Echeverría et al. (2019) [159]. 

In this WB, iAqueduct will advance how to effectively handle the multiscale multi-source water 
cycle products, regarding model calibration, and how to evaluate the accuracy of the simulated 
spatial patterns of vegetation and water states, at sub-catchment and catchment scales. Numerical 
experiments will be conducted for the calibration of a parsimonious distributed ecohydrological daily 
model in ungauged basins using exclusively spatiotemporal information obtained from WB1, WB2, 
and WB3. As such, this WB links the scales from the plant to plot, subcatchment, and catchment/basin, 
respectively, with the representative size of 1–10 m2 to 50–500 m2, 1–10 km2, and >100 km2, as derived 
by means of, for example, TDR observations, to cosmic ray/drone observations, drone/satellite, and 
satellite observations, respectively. 

4. Towards Sustainable Water Management (WB6) 

4.1. Summary 

The main water challenge for many regions, including Europe, is to achieve the sustainable 
exploitation of natural and agricultural ecosystems, while enabling economic growth, under current 
and future climates. Addressing such challenge requires, among others, developing tools for 
sustainable integrative management of water resources, establishing networks and information 
sharing among existing research facilities/field labs and disciplines, and connecting science to society 
[3]. 

With the established framework of methodology and approaches, iAqueduct will enable the 
understanding of the space-time variability of EO data (e.g., regarding soil physical characteristics, 
soil moisture, and evapotranspiration fluxes) from the in situ/plot scale, to field and regional, and to 
global scales. As such, it will enable local-scale soil, vegetation, and water state information to be 
derived using satellite, UAS, in situ observations, ecohydrological modelling, and big data analytics 
tools, for sustainable integrative water management under climate change. 
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Several case studies are proposed at the local level, which cover a variety of climates, and 
hydrological and soil conditions, ensuring the generality of the methods developed. Meanwhile, 
iAqueduct establishes networks and information-sharing practices among existing research 
facilities/field labs, analytical methods, monitoring tools, and programs. Such knowledge, 
technology, and data hub complements available field sites with data products from satellite 
observations (e.g., bias corrected with in situ observation), and harmonizes protocols for the retrievals 
of soil properties and scaling between soil moisture and evapotranspiration for pan-European 
applications. 

Furthermore, an end-to-end system will be developed to translate scientific data and knowledge 
into tailored water productivity information, establish a science–policy–business–society interface to 
allow for continuous dialogues and interactions across different scales and levels, influencing 
stakeholders towards desirable behaviors for sustainable water management. In the following 
section, we delineate the iAqueduct toolbox as an end-to-end system connecting science to society, 
and discuss the challenges to address science questions framing the scope of iAqueduct. 

4.2. iAqueduct Toolbox 

To address stakeholders’ requirement (Section 2.1, Appendix A), WB6 will develop an 
integrative information flow to close the gaps between satellite observations of the water cycle and 
local sustainable management of water resources (iAqueduct). The generic iAqueduct open source 
toolbox will integrate models, soil parameters, forcing, and field-scale observation, and gridded 
water states and fluxes to support the translation of science knowledge into water productivity 
information for the sustainable management of water resources. 

The functionality of iAqueduct toolbox centers on: 1) Monitoring soil, vegetation, and water state 
information of the selected field sites (Table 1); 2) assessing the long-term and extreme event impacts 
on local agricultural and natural ecosystems, based on different policy options and climate scenarios; 
and 3) informing stakeholders and the general public about the actual status of the water resources. 
The toolbox is to be designed to facilitate the consumption of multiscale multi-source EO data, uses 
of ecohydrological models, and dissemination of data products via a web-based dashboard. The 
architecture design and main components were prototyped and the technical details can be found in 
[160]. The toolbox will use inputs/outputs from WB1-WB5 and make emulated visualization for users 
and stakeholders, and also as a tool to engage them to help iteratively develop the scenario storylines 
(policy interventions) for improved scenario assessment. 

As a start, scenarios can be worked out for each of the selected sites using a technique developed 
in the EC CORE-CLIMAX project [6], whereby the distribution of forcings can be derived from the 
2018 summer European drought period (as an example) and by replacing the distribution with that 
of another site, mimicking potential future climate changes and impact to water resources. For 
example, the observed climate in the Twente region (Appendix A.1) during the drought of 2018 
summer will be replaced by that of the Spanish (Appendix A.5) or Italian sites (Appendix A.3) and 
the spatiotemporal water situation in the Twente region be simulated. In collaboration with the water 
authority, potential management scenarios will be developed, and citizens will be invited to propose 
additional measures (e.g., water-saving measures) as a preparation for such a scenario, thus 
connecting science to the society more effectively and influencing citizens towards desirable 
behavior. 

4.3. Challenges 

There are challenges to answer the questions framing the scope of iAqueduct (Section 2.1), in 
order to address stakeholders’ requirements: 

- How to downscale the global water cycle products to the local scale using multiple sources and 
scales of EO data? 

WB1 is specifically designed to address this question, and is going to use multiple sources and 
scales of EO data, including in situ, UAS, medium-resolution satellites (e.g., Sentinel 1-2-3), and 
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coarse-resolution satellites. Particularly, a number of procedures will be implemented to downscale 
remotely sensed water cycle products to scales suitable for water management purposes. The 
challenge here is to understand the physical consistency of the original satellite data and the 
downscaled one, when compared with in-situ measurements. 

Taking soil moisture data as example, SMOS and SMAP are dedicated satellite missions for 
monitoring soil moisture globally at a 5-cm depth. However, Lv et al. [161,162] found that the soil 
moisture sensing depth of the L-Band sensor actually varies with the soil moisture itself. This means 
the direct comparison of in situ measured soil moisture (at 5 cm) to SMOS or SMAP observations 
may not be the optimal way to do the validation, which brings difficulties to the evaluation of the 
accuracy of downscaled soil moisture data. If we used the X-band sensor, the soil moisture sensing 
depth will be only limited to the top 1–2 cm [58], which renders the difficulties to placing soil moisture 
sensors in situ for a direct comparison with X-band data. These potential mismatches (between what 
we measure in situ and what is remotely sensed) highlight the need to understand physical processes 
behind different soil moisture products, which will guide the associated downscaling strategies and 
methodologies. Similar issues exist for other water cycle products [6,7,70]. 

- How to explore and apply the downscaled information at the management level for a better 
understanding of water-energy- soil-vegetation processes? 

The EO data alone is not sufficient to understand water–energy–soil–vegetation processes, 
which requires synergetic use of soil–plant–atmosphere continuum (SPAC) models. There is a wide 
diversity of SPAC models, ranging from minimalist models to detailed descriptions of the water, 
energy, carbon, and momentum fluxes in the soil–plant–atmosphere system (see Section 3.4). The 
challenge is to identify the advantages and disadvantages of these models, while aiming at reducing 
the reliance on in situ observations for model parameterization and at taking full advantage of UAS, 
airborne, and satellite observations. Another dimension of this challenge is to provide model inputs 
at various spatial scales, from plant to plot, sub-catchment, and catchment/basin. As such, it is 
possible to evaluate the optimal model complexity (e.g., either minimalist or complex model) for 
different scales. The optical and thermal sensors (e.g., space-based or UAS-based), together with soil 
spectroscopy and associated pedotransfer functions, can provide the model-required soil hydro-
thermal properties at a high resolution (of the order of centimeters). However, there are well-known 
constraints for sensors in VIS-NIR and TIR regions of the electromagnetic spectrum, the applicability 
of which depends on vegetation cover. For the purpose of deriving soil texture information and soil 
hydro-thermal properties, these sensors can only be applied over the non-vegetated soil surface. How 
to address this constraint is vital to answering the second iAqueduct question, which may be 
examined based on a global-scale approach to evaluate clean soil areas [163]. 

- How can such fine-scale information be used to improve the management of soil and water 
resources? 

The aim of iAqueduct is to disseminate and communicate the generated knowledge and tools to 
water managers, companies, and farmers for actual sustainable water management. In order to be 
effective, stakeholders need to be engaged actively for the effective transfer of science knowledge and 
data into marketable tools, services, and/or products for addressing the actual needs for real life water 
management. This is actually demanding the establishment of an end-to-end system (iAqueduct 
toolbox), to enable a science–policy–business–society interface for continuous dialogues and 
interactions with stakeholders. The iAqueduct toolbox will build upon the existing open-source 
software system, MajiSys water information system [160], and will then be used for robust application 
(including machine learning algorithms) to the selected sites and also for use by stakeholders. The 
challenge here is how to facilitate such a dialogue to enable policy learning. 

To sum up, iAqueduct will integrate various components from the global water cycle 
observation to local soil, vegetation, and water states in an open-source water information system, 
and test and demonstrate their utility at a set of carefully selected research sites for sustainable 
management of water resources. Furthermore, as iAqueduct links scales from plant to plot, field, 
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catchment, and region, it is expected that the developed approach can be further upscaled to the pan-
European scale. 
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Appendix A: Selected Observatories for iAqueduct 

Appendix A.1. Twente, the Netherlands (Temperate Maritime Climate) 

Water safety and climate change have emerged as one of the first public concerns in the last 
years in the Twente area, the Netherlands. The major challenge is water management under climate 
change that needs to take into account periods of extremes, such as when it rains more and harder 
and when longer periods of drought persist, in maintaining the safeties and functionalities of the 
quays, dikes, weirs, and pumping stations. To meet this challenge, local and regional monitoring of 
the actual state of the water system and the anticipation of near future situations are needed. 
Agricultural water management requires, on the other hand, operational management of soil and 
water for adequate agricultural productions in the growth seasons at a field level. Other requirements 
are related to water quality management for nature conservation, including water treatments. A 
shortage of precipitation (i.e., precipitation minus potential evaporation) is used as a measure for 
water excess or shortage for the abovementioned tasks. 

A regional soil moisture monitoring network has been installed since 2009 in the Twente region 
of The Netherlands [164], consisting of 20 stations continuously measuring soil moisture and soil 
temperature over an area of approximately 50 km × 40 km. The main objectives of Twente monitoring 
network are: i) To investigate the sensitivity of active and passive microwave data to surface 
parameters, such as soil moisture, soil temperature, and vegetation cover; ii) to run, calibrate, and 
validate new soil moisture retrieval algorithms; and iii) to study new approaches to upscale soil 
moisture information from the point to large scale. 

The precipitation data are available at the Royal Netherlands Meteorological Institute (KNMI). 
There are 15 KNMI stations measuring the precipitation in the area of the network since 1950 and the 
daily accumulated precipitation is available at http://www.knmi.nl/klimatologie/. According to the 
Koeppen Classification System, the climate in The Netherlands is a warm temperate humid climate 
(Cfb Climate). Other meteorological data are provided by KNMI at the Twente station located near 
Enschede. The precipitation is spread all over the year with an average of approximately 760 mm per 
year. The monthly average air temperature ranges between 3 °C in January to approximately 17 °C 
in July. 

Detailed Land use map of Twente area are available as the Atlas of Overijssel by the Province of 
Overijssel (http://gisopenbaar.overijssel.nl/website/bodematlas/bodematlas.html). There are four 
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main soil types in Twente: Sandy soils rich or poor of loam, loamy soils rich or poor of sand, man-
made sandy thick earth soils, and peat soils covered by a layer of peat or sand. This information was 
retrieved from the soil maps (Bodemkaart van Nederland) by Stichting voor Bodemkartering 
(Wageningen) with a 1:50,000 scale and by Alterra, Wageningen UR (website www.bodemdata.nl). 
Groundwater monitoring data can be obtained from the Geological Survey of the Netherlands (TNO) 
(https://www.dinoloket.nl/en). Hydrological and water management information can be obtained at 
the water authority Vechtstromen (https://www.vechtstromen.nl/). The Twente SMST network 
serves as an SMOS and SMAP calibration and validation site [33]. 

Appendix A.2. Zala, Hungary (Cold, Humid Winter, Warm Summer) 

One of the main threats in the catchment of Zala river is the more frequently occurring extreme 
weather events at the catchment. Information on the impact of potential future climate changes to 
water resources and possible management scenarios to adapt to future extreme weather events will 
be shared with the General Directorate of Water Management, the farmer organizations (e.g., 
AGRYA, Agrion Top Kft.) and public bodies (e.g., Hungarian Chamber of Agriculture, Zala County, 
Zala County Office of Agricultural and Rural Development Agency). At the catchment, it is also 
important to analyse how the transport of fertilizers, pesticides, and herbicides will change due to 
the extreme weather events. Recently, the amount of nitrate and pesticide in the groundwater at the 
catchment is close to the threshold value of groundwater pollution, and at a few plots, even exceeds 
it. 

The catchment of river Zala in western Hungary belongs to the watershed of Lake Balaton. The 
catchment area of the Zala River is 2622 km2, it is situated in Zala Hills. Mean discharge of Zala is 5.6 
m3 s−1. The climate is moderately warm, moderately humid, and the number of sunshine hours per 
year ranges between 1800 and 2000 h. The mean annual temperature of the region is about 10 ˚C. The 
average amount of rainfall is between 600 and 700 mm year−1. 

In total, 37% of the total catchment area is arable land, which is much lower than the national 
average; 27% is forest, which exceeds the national average; 15% of the land is under grassland 
management; 5% is horticulture; 3% is pomiculture; 2% is viticulture; and 1% is reed management 
and fish farming. The “Kis-Balaton” nature conservation area, which is a wetland under protection 
of the Ramsar Convention habitat, is situated within the watershed of river Zala. The dominant soil 
types are Luvisols and Cambisols. Gleysols and Histosols occur in poorly drained valley bottoms 
[165,166]. 

Long-term data is available on water quantity and the water quality of Zala river, e.g., runoff, 
nutrients, dissolved oxygen, total dissolved solids, and water temperature. The depth of the 
groundwater level and daily rainfall are registered at 39 locations at the catchment of Zala river. Soil 
moisture is monitored with a TDR/MUX/mpts meter (Easy Test [167]) at two soil profiles till a 0.9-m 
depth at Vése and Keszthely since April 2018. Time series meteorological data for the sites is also 
available. Map of soil organic carbon content, texture, calcium-carbonate content, and pH [168] 
(http://dosoremi.hu/table.html) are available at a 100-m resolution at six soil depths up to 2 m. Soil 
water content at saturation, field capacity, wilting point (https://www.mta-taki.hu/en/kh124765), and 
saturated hydraulic conductivity have been mapped at a 100-m resolution at three soil depths up to 
0.90 m [169]. For the mapping of soil properties, over 150 environmental parameters were collected 
to describe the topography, climate, parent material, state of vegetation, and land cover of the 
catchment. 

Appendix A.3. Alento, Italy (Temperate, Dry Hot Summer) 

This study area partly belongs to the “Cilento and Vallo di Diano” National Park, the largest 
national park in Italy, and is included as a representative site within the UNESCO-HELP program. 
The Alento River Catchment is usually split in the Upper Alento, a hilly and mountain marginal area 
that suffered from severe land abandonment and subsequent land-use changes, and the Lower 
Alento, characterized by a flourishing economy especially because of tourism along the entire 
coastline. A system of barrages, the largest being the “Piano della Rocca” earthen dam, were built 
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and is managed by the “Velia” Bureau of Reclamation to increase irrigated agriculture and the quality 
of livestock methods, hence reducing the gap between the two parts of the catchment. 

However, as in most water-stressed zones of the Mediterranean belt, this area is experiencing an 
excessive demand for water partly because of the competition among different users, which could 
yield conflicts among them, especially during summer. Decision-makers and stakeholders are now 
concerned about future benefits and constraints deriving from the changes observed in land uses and 
climate seasonality, and are therefore interested in addressing the following main issues: a) 
Predicting the storage capacity of the artificial reservoirs in view of projected climate and land-use 
changes so as to meet short- and medium-term water requirements from households, agriculture, 
tourism, and hydropower generation; b) promoting the most effective demand-side adaptation 
options; and c) identifying optimal land resource management to ensure adequate water availability 
to all sectors, reduce fire risk during the prolonged dry seasons, and, at the same time, alleviate 
natural hazards, such as flooding and soil erosion, during the wet season. 

To meet these needs, the Alento River catchment is becoming a science-driven critical zone 
observatory (CZO), with a major aim of supporting the issues of rural environmental protection and 
sustainable management of natural resources. The “Alento” CZO not only relies on background 
geological, pedological, and hydrological studies carried out over the last decades but also benefits 
from a series of investigations currently underway in the Upper Alento catchment [95]. Since 2016, 
wireless sensor networks (WSNs) and cosmic-ray neutron probes (CRNPs) monitor soil moisture in 
two small sub-catchments, named MFC2 and GOR1, having different topographic, pedological, and 
land-use characteristics as well as slightly different weather conditions. 

More hydrologically oriented investigations have been carried out in three sub-catchments 
(MFC1, MFC2, and GOR1) of UARC, each with drainage areas ranging from 6 to 10 hectares [43]. 
MFC1 is a small sub-catchment (area of about 5 ha) located near the village of Monteforte Cilento. 
This experimental area was subject to intense monitoring activities from 2006 to 2011. The MFC2 sub-
catchment is situated near MFC1 and both represent typical farmland areas with olive orchards, 
vineyards, fruit trees and crops. A portion of MFC2 is planted with cherry and walnut trees for wood 
production only. Another sub-catchment, named GOR1, is instead located close to the rural village 
of Gorga and reflects a typical forested area with mixed chestnut and oak woods. Apart from their 
different land-use/land-cover features, the MFC2 and GOR1 test sites should also be viewed as 
representative of two different hydrogeological settings. On March 2016, the MFC2 and GOR1 sub-
catchments were both instrumented with a wireless sensor network (WSN) and a cosmic-ray neutron 
probe (CRNP). 

Each wireless sensor network (SoilNet, Forschungszentrum Jülich, Germany) comprises an 
array of 20 underground measuring nodes that are distributed in space to account for the local 
geomorphological and pedological features. The following sensors were embedded at the soil depths 
of 0.15 and 0.30 m of each node: i) GS3 sensor (METER, Pullman, WA, USA) to measure 
simultaneously soil permittivity (converted to soil moisture using empirical calibration equations), 
soil temperature, and soil electrical conductivity, and ii) MPS-6 sensor (METER, Pullman, WA, USA) 
to measure soil matric pressure head. In each of these sub-catchments, one cosmic-ray neutron probe 
(CRS2000/B, Hydroinnova LLC, Albuquerque, USA) complements the SoilNet sensor network by 
providing area-averaged soil moisture values over a footprint of approximately 7-14 ha. To our 
knowledge, these two cosmic-ray neutron probes are the first to be installed and operational since 
2016 in a catchment of central/southern Italy. Streamflow gauging stations are operating at the outlet 
of both the MFC2 and GOR1 sub-catchments. One weather station in close proximity to each sub-
catchment acquires rainfall, air temperature, relative humidity, wind speed, and net solar radiation 
(four-component net radiation sensors, Hukseflux Thermal Sensors, www.hukseflux.com) at hourly 
time-steps. Wind speed and air temperature are measured at about a 3-m height while solar radiation 
is measured at a 2-m height. At each weather station, three GS3 sensors and three MPS-6 sensors were 
installed at depths of 15, 30, and 45 cm. 

Appendix A.4. Fiumarella of Corleto, Italy (Temperate, Hot Humid Summer) 
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Fiumarella of Corleto belongs to the Basilicata region that is characterized by a significant 
diversity in terms of climatic conditions. For instance, the mean annual rainfall ranges between 400 
and 2000mm. Such variability reflects the regional hydrological patterns with areas affected by 
droughts and others that experience several floods and landslides. In this context, the study of river 
basin hydrology becomes critical from several points of view. The Fiumarella of Corleto is located in 
the water-rich part of the region that is crucial for the water supply of the region but also for the water 
supply of the Puglia region, which strongly relies on external resources for their agricultural and 
economical activities. 

The experimental basin “Fiumarella of Corleto”, located in Basilicata region (southern Italy), is 
a tributary of the Sauro river (Agri basin) and has an area of 32.5 km2. It is situated in a sub-humid 
climatic zone with a mean annual rainfall of approximately 720 mm and characterized by hot-humid 
summers and chilly to mild winters. The interest towards this basin is due to its peculiarities. In fact, 
the two slopes of the catchment have different land uses: The slope on the left is covered mostly by 
forests, the slope on the right is covered by agricultural land. In order to characterize with a high 
level of details the morphology of the two slopes, a DSM of the basin at high-resolution (1 × 1 m) was 
derived with a LiDAR. 

Catchment pedology was investigated through field campaigns and laboratory measurements 
aimed at identifying the main soil and units of the basin by Santini et al. (1999) [170] and by Romano 
and Santini, 1997 [171] and Romano and Palladino (2002) [172]. These data were reported in the land 
cover map elaborated by Carriero et al. (2007) [173] to define the soil hydraulic properties of each 
unit. 

Meteorological variables are monitored on both slopes with the aim to characterize differences 
between the two. Moreover, an additional rainfall station and streamflow gauge is placed at the basin 
outlet. Soil moisture is monitored on a transect of about 60 m with a sampling frequency of 1 h. The 
installed instrumental system consists of a TDR100 system connected to 22 probes located in 11 
sampling sites at two different depths of 30 and 60 cm. The datalogger is a CR10X produced by 
Campbell Scientific that transmits the soil moisture values, elaborated by the TDR100, in real time 
via the GSM network. 

Appendix A.5. Carraixet Creek, Spain (Semiarid, Steppe, Mediterranean) 

Barranco del Carraixet (or Carraixet Creek) is located in the east coast of Spain, has a catchment 
area of 314 km2, draining directly to the Mediterranean Sea, with a natural park in the upper part of 
the basin and with anthropogenic pressures in the middle and low basin. The human effect is quite 
important in this study site: The lowlands are characterized by alternation of the urban and industrial 
zones and agricultural fields, while the upper part is frequently affected by wildfires and it is a highly 
frequented leisure zone, subject to multiple pressures (hunters, several outdoor sports, owners, etc.). 
The climate is semiarid Mediterranean, with a mean annual precipitation of around 400 mm highly 
variable and potential evapotranspiration of 1100 mm. The hydrology is characterized by low or 
absent base flow, typical of Mediterranean ephemeral streams. Urban and irrigation water demands 
are supplied by the aquifer, mainly recharged by the upper catchment. The actual trend of the 
catchment is towards forest expansion in abandoned lands of the upper part and urbanization in the 
lower part. The main concern in Carraixet Creek is to improve forest management in order to increase 
aquifer recharge, increase the forest health, and to better control soil erosion. For this project, we will 
consider the upper and medium parts of the catchment, with an area of 250 km2. Within this area, 
there is one experimental watershed of 1 km2 (with 3 meteorological stations, 1 cosmic ray, and 1 
flowgauge) and 1 experimental forest plot heavily sensorized. At the catchment scale and operated 
by the Jucar Basin Water Authority, there is one additional flowgauge station and several raingauges 
and piezometric observations. 

Appendix A.6. Kibbutz Sde Yoav and Afeka, Israel (Arid, Dry Hot Summer) 

Kibbutz Sde Yoav is an agricultural settlement located in south-central Israel, between the cities 
of Ashkelon, Kyriat Gat, and Kyriat Malakhi. Like Sde Yoav, in Israel, there are several agricultural 
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settlements that were created during the establishment of the state of Israel in order to ensure the 
food supply. In order to monitor the fields that sustain these settlements, farmers need 
chemical/physical analyses. However, traditional soil survey methods are expensive, time-
consuming, and need high skilled professionals. Moreover, in order to represent these parameters 
spatially in these large agricultural fields, it is necessary to take several samples for a correct kriging 
methodology, and the measurements in question varies seasonally. Additionally, farmers cannot see 
the status of every point of interest in these fields with a common frequency. 

Given the lack of rains and the dry climate of the region [174], water is a critical resource that is 
necessary to manage carefully. Remote sensing is a potential solution for this problem, because it can 
replace field chemical/physical measurements, and could monitor the infiltration rate in the fields of 
interest in a spatial scale. 

Study sites for the estimation of water infiltration rate using surface spectra include not only 
Kibbutz Sde Yoav, and Afeka, Israel but also the Alento catchment. The idea is to create a dataset 
with infiltration rate measurements, with laboratory and field spectral measurements. The study sites 
from which we collected samples until now are the following: 

(i) Kibbutz Sde Yoav, Israel (30 Samples): Kibbutz Sde Yoav is an agricultural settlement located in 
south-central Israel, between the cities of Ashkelon, Kyriat Gat, and Kyriat Malakhi. According 
to a detailed map of the soils of Israel, the soil type of the study area of Kibbutz Sde Yoav is 
alluvial, and according to an updated version of the Koeppen climate classification [174], the 
climate of Sde Yoav is hot-semiarid (Bsh). In this study area, 30 samples were collected. 

(ii) Afeta, Tel Aviv, Israel (18 Samples): Afeka is a residential neighborhood located in the north of 
Tel Aviv. The soil type of the study area of Afeka is brown-red sandy soil, and the climate 
according the classification of Rubel and Kottek, 2010 [174] is hot-summer Mediterranean 
climate (Csa). From Afeka, we collected 18 samples. In Afeka, we only collected samples for the 
calibration of the model and to expand our dataset. We did not carry out UAS campaigns there 
because they are forbidden. 

(iii) Alento, Italy (21 Samples): The Alento River Catchment is located in the Campania Region 
(Salerno Province, Italy). As in Afeka, the climate of Alento according the classification of Rubel 
and Kottek, 2010 is hot-summer Mediterranean climate (Csa). According to [175] in the book 
“Soils of Italy”, Alento is located in an area characterized by three soil types: Cambisols, 
Leptosols, and Luvisols. In this book, Costantini and Dazzi remark that this area is characterized 
hills and mountains on limestones covered by volcanic ashes, including alluvial and coastal 
plains.  

References 

1. Ligtvoet, W.; Bouwman, A.; Knoop, J.; de Bruin, S.; Nabielek, K.; Huitzing, H.; Janse, J.; van Minne, J.; 
Gernaat, D.; van Puijenbroek, P. The Geography of Future Water Challenges; PBL Environmental Assessment 
Agency: The Hague, The Netherlands, 2018; ISBN 978-94-92685-04-9.: 2019. 

2. The United Nations Educational, S.a.C.O. The United Nations World Water Development Report 2019: Leaving 
No One behind; UNESCO: Paris, France, 2019; ISBN 978-92-3-100309-7: 2019. 

3. Water-JPI. Strategic Research & Innovation Agenda 2.0. 2018. Available online: 
http://www.waterjpi.eu/images/documents/SRIA 2.0.pdf (accessed on 27 March 2020). 

4. Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; 
Estes, L.; Ciraolo, G., et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote 
Sens. 2018, 10, 641, doi:10.3390/rs10040641. 

5. McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, 
R.; Verhoest, N.E.C.; Franz, T.E., et al. The Future of Earth Observation in Hydrology. Hydrol. Earth Syst. 
Sci. 2017, 21, 3879–3914, doi:10.5194/hess-21-3879-2017. 

6. Su, Z.; Timmermans, W.; Zeng, Y.; Schulz, J.; John, V.O.; Roebeling, R.A.; Poli, P.; Tan, D.; Kaspar, F.; Kaiser-
Weiss, A.K., et al. An overview of european efforts in generating climate data records. Bull. Am. Meteorol. 
Soc. 2018, 99, 349–359, doi:10.1175/BAMS-D-16-0074.1. 



Water 2020, 12, 1495 29 of 37 

 

7. Zeng, Y.; Su, Z.; Barmpadimos, I.; Perrels, A.; Poli, P.; Boersma, K.F.; Frey, A.; Ma, X.; de Bruin, K.; Goosen, 
H., et al. Towards a traceable climate service: Assessment of quality and usability of essential climate 
variables. Remote Sens. 2019, 11, 1–28, doi:10.3390/rs11101186. 

8. Zeng, Y.J.; Su, Z.B.; van der Velde, R.; Wang, L.C.; Xu, K.; Wang, X.; Wen, J. Blending Satellite Observed, 
Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau. Remote Sens. 2016, 8, 
doi:10.3390/rs8030268. 

9. Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and 
Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616, doi:10.1029/2018rg000618. 

10. Pachepsky, Y.; Hill, R.L. Scale and scaling in soils. Geoderma 2017, 287, 4–30, 
doi:10.1016/j.geoderma.2016.08.017. 

11. Nasta, P.; Penna, D.; Brocca, L.; Zuecco, G.; Romano, N. Downscaling near-surface soil moisture from field 
to plot scale: A comparative analysis under different environmental conditions. J. Hydrol. 2018, 557, 97–108, 
doi:10.1016/j.jhydrol.2017.12.017. 

12. DeBell, L.; Anderson, K.; Brazier, R.E.; King, N.; Jones, L. Water resource management at catchment scales 
using lightweight UAVs: current capabilities and future perspectives. J. Unmanned Veh. Syst. 2016, 4, 7–30, 
doi:10.1139/juvs-2015-0026. 

13. Shimoda, H.; Kimura, T. Japanese Space Program. In Comprehensive Remote Sensing, Liang, S., Ed. Elsevier: 
Oxford, UK, 2018; Volume 1–9, pp. 246–279. ISBN 9780128032206 

14. Markham, B.L.; Arvidson, T.; Barsi, J.A.; Choate, M.; Kaita, E.; Levy, R.; Lubke, M.; Masek, J.G. 1.03 - 
Landsat Program. In Comprehensive Remote Sensing, Liang, S., Ed. Elsevier: Oxford, UK, 2018; Volume 1–9, 
pp. 27–90, ISBN 9780128032206. 

15. Hulley, G.; Hook, S.; Fisher, J.; Lee, C. ECOSTRESS, A NASA Earth-Ventures Instrument for studying links 
between the water cycle and plant health over the diurnal cycle. In Proceedings of 2017 IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5494–
5496. 

16. Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J. A physically based approach for the 
estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci. 2014, 18, 1199–
1212, doi:10.5194/hess-18-1199-2014. 

17. Maggioni, V.; Meyers, P.C.; Robinson, M.D. A Review of Merged High-Resolution Satellite Precipitation 
Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol. 2016, 17, 
1101–1117, doi:10.1175/jhm-d-15-0190.1. 

18. Gebregiorgis, D.; Hathorne, E.C.; Giosan, L.; Clemens, S.; Nurnberg, D.; Frank, M. Southern Hemisphere 
forcing of South Asian monsoon precipitation over the past ~1 million years. Nat Commun 2018, 9, 4702, 
doi:10.1038/s41467-018-07076-2. 

19. Kimani, M.W.; Hoedjes, J.C.; Su, Z. An assessment of satellite-derived rainfall products relative to ground 
observations over East Africa. Remote sens. 2017, 9, 430. 

20. AghaKouchak, A.; Nakhjiri, N. A near real-time satellite-based global drought climate data record. Environ. 
Res. Lett. 2012, 7, 044037, doi:10.1088/1748-9326/7/4/044037. 

21. Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm 
based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536, 
doi:10.1016/j.rse.2007.04.015. 

22. Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land 
surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, doi:10.1029/2009wr008800. 

23. Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.; Dolman, A.J. Global land-surface 
evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences 2011, 15, 453–
469, doi:10.5194/hess-15-453-2011. 

24. Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonzalez-Dugo, M.P.; 
Cammalleri, C.; d'Urso, G.; Pimstein, A., et al. Mapping daily evapotranspiration at field to continental 
scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239, 
doi:10.5194/hess-15-223-2011. 

25. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. 
Sci. 2002, 6, 85–99, doi:10.5194/hess-6-85-2002. 



Water 2020, 12, 1495 30 of 37 

 

26. Chen, X.; Su, Z.; Ma, Y.; Liu, S.; Yu, Q.; Xu, Z. Development of a 10-year (2001-2010) 0.1 degrees data set of 
land-surface energy balance for mainland China. Atmos. Chem. Phys. 2014, 14, 13097–13117, doi:10.5194/acp-
14-13097-2014. 

27. Chen, X.; Su, Z.; Ma, Y.; Middleton, E.M. Optimization of a remote sensing energy balance method over 
different canopy applied at global scale. Agric. For. Meteorol. 2019, 279, 107633, 
https://doi.org/10.1016/j.agrformet.2019.107633. 

28. Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, 
J.B.; Guo, Z., et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 
simulations. Geophys. Res. Lett. 2011, 38, doi:10.1029/2010gl046230. 

29. Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate 
studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. 
Environ. t 2011, 115, 801–823, doi:10.1016/j.rse.2010.11.006. 

30. Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, 
climatology, and climatic variability. Rev. Geophys. 2012, 50, doi:10.1029/2011rg000373. 

31. Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional evapotranspiration from an image-
based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation 
across an aridity gradient in the conterminous US. Hydrol. Earth Syst. Sci. 2018, 22, 2311–2341, 
doi:10.5194/hess-22-2311-2018. 

32. Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, 
F.; Gruhier, C.; Juglea, S.E., et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote 
Sens. 2012, 50, 1384–1403, doi:10.1109/tgrs.2012.2184548. 

33. Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; 
Pashaian, L., et al. Validation of SMAP surface soil moisture products with core validation sites. Remote 
Sens. Environ. 2017, 191, 215–231, doi:10.1016/j.rse.2017.01.021. 

34. Sadeghi, M.; Gao, L.; Ebtehaj, A.; Wigneron, J.-P.; Crow, W.T.; Reager, J.T.; Warrick, A.W. Retrieving global 
surface soil moisture from GRACE satellite gravity data. J. Hydrol. 2020, 584, 124717, 
doi:https://doi.org/10.1016/j.jhydrol.2020.124717. 

35. Bierkens, M.F.P. Global hydrology 2015: State, trends, and directions. Water Resour. Res. 2015, 51, 4923–
4947, doi:10.1002/2015wr017173. 

36. Isham, V.; Cox, D.R.; Rodríguez-Iturbe, I.; Porporato, A.; Manfreda, S. Representation of space–time 
variability of soil moisture. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 4035–4055, 
doi:10.1098/rspa.2005.1568. 

37. Manfreda, S.; McCabe, M.F.; Fiorentino, M.; Rodríguez-Iturbe, I.; Wood, E.F. Scaling characteristics of 
spatial patterns of soil moisture from distributed modelling. Adv. Water Resour.2007, 30, 2145–2150, 
doi:10.1016/j.advwatres.2006.07.009. 

38. Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; 
Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. 
Water Resour. Res. 2012, 48, W10544, doi:10.1029/2011WR011518. 

39. Wang, T.; Franz, T.E.; Li, R.; You, J.; Shulski, M.D.; Ray, C. Evaluating climate and soil effects on regional 
soil moisture spatial variability using EOFs. Water Resour. Res. 2017, 53, 4022–4035, 
doi:10.1002/2017WR020642. 

40. Mwangi, S.; Zeng, Y.; Montzka, C.; Yu, L.; Su, Z. Assimilation of Cosmic-Ray Neutron Counts for the 
Estimation of Soil Ice Content on the Eastern Tibetan Plateau. J. Geophys. Res. Atmos. 2020, 125, 
e2019JD031529, doi:10.1029/2019jd031529. 

41. Qu, W.; Bogena, H.R.; Huisman, J.A.; Vanderborght, J.; Schuh, M.; Priesack, E.; Vereecken, H. Predicting 
subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 2015, 42, 789–796, 
doi:10.1002/2014gl062496. 

42. Montzka, C.; Rötzer, K.; Bogena, H.; Sanchez, N.; Vereecken, H. A New Soil Moisture Downscaling 
Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sens. 2018, 10, 
doi:10.3390/rs10030427. 

43. Nasta, P.; Schonbrodt-Stitt, S.; Bogena, H.; Kurtenbach, M.; Ahmadian, N.; Vereecken, H.; Conrad, C.; 
Romano, N. Integrating ground-based and remote sensing-based monitoring of near-surface soil moisture 
in a Mediterranean environment. In Proceedings of the 2019 IEEE International Workshop on Metrology 



Water 2020, 12, 1495 31 of 37 

 

for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; Institute of Electrical and 
Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 274–279. 

44. Mishra, V.; Ellenburg, W.L.; Griffin, R.E.; Mecikalski, J.R.; Cruise, J.F.; Hain, C.R.; Anderson, M.C. An initial 
assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the 
continental United States. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 92–104, doi:10.1016/j.jag.2018.02.005. 

45. Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote 
sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 
52–68, https://doi.org/10.1016/j.rse.2017.05.041. 

46. Haubrock, S.N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface soil moisture quantification models 
from reflectance data under field conditions. Int. J. Remote Sens. 2010, 29, 3–29, 
doi:10.1080/01431160701294695. 

47. Ben-dor, E.; Goldshleger, N.; Braun, O.; Kindel, B.; Goetz, A.F.H.; Bonfil, D.; Margalit, N.; Binaymini, Y.; 
Karnieli, A.; Agassi, M. Monitoring infiltration rates in semiarid soils using airborne hyperspectral 
technology. Int. J. Remote Sens. 2010, 25, 2607–2624, doi:10.1080/01431160310001642322. 

48. Ben-Gal, A.; Agam, N.; Alchanatis, V.; Cohen, Y.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Sprintsin, M.; Dag, 
A. Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal 
imagery. Irrig. Sci. 2009, 27, 367–376, doi:10.1007/s00271-009-0150-7. 

49. Agam, N.; Berliner, P.R.; Zangvil, A.; Ben-Dor, E. Soil water evaporation during the dry season in an arid 
zone. J. Geophys. Res. D Atmos.2004, 109, D16103-D16103, doi:10.1029/2004JD004802. 

50. de Oliveira Costa, J.; José, J.V.; Wolff, W.; de Oliveira, N.P.R.; Oliveira, R.C.; Ribeiro, N.L.; Coelho, R.D.; da 
Silva, T.J.A.; Bonfim-Silva, E.M.; Schlichting, A.F. Spatial variability quantification of maize water 
consumption based on Google EEflux tool. Agric. Water Manag. 2020, 232, 106037, 
https://doi.org/10.1016/j.agwat.2020.106037. 

51. Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, 
K.M.; Njoku, E.G.; Small, E.E., et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. 
Am. J. 2013, 77, 1888–1919, doi:10.2136/sssaj2013.03.0093. 

52. Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, 
T.J.; Jones, L.A.; Kimball, J.S., et al. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture 
Product Using In Situ Measurements. J. Hydrometeorol. 2017, 18, 2621–2645, doi:10.1175/jhm-d-17-0063.1. 

53. Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil 
data. Remote Sens. Environ. 1999, 70, 191–207, doi:10.1016/s0034-4257(99)00036-x. 

54. Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E.A.H. Predicting root zone soil moisture with soil 
properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 
546, 393–404, doi:10.1016/j.jhydrol.2017.01.020. 

55. Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the drought 2018 on European ecosystems in 
comparison to 2003. Biogeosciences Discuss. 2019, 2019, 1–23, doi:10.5194/bg-2019-286. 

56. Vogel, M.M.; Zscheischler, J.; Wartenburger, R.; Dee, D.; Seneviratne, S.I. Concurrent 2018 Hot Extremes 
Across Northern Hemisphere Due to Human-Induced Climate Change. Earth's Future 2019, 7, 692–703, 
doi:10.1029/2019ef001189. 

57. Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed 
soil moisture. Rev. Geophys. 2017, 55, 341–366, doi:10.1002/2016rg000543. 

58. Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil 
moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580, 
doi:https://doi.org/10.1016/j.rse.2018.02.065. 

59. Mascaro, G.; Ko, A.; Vivoni, E.R. Closing the Loop of Satellite Soil Moisture Estimation via Scale Invariance 
of Hydrologic Simulations. Sci. Rep. 2019, 9, 1–8, doi:10.1038/s41598-019-52650-3. 

60. Zhao, H.; Zeng, Y.; Lv, S.; Su, Z. Analysis of soil hydraulic and thermal properties for land surface modeling 
over the Tibetan Plateau. Earth Syst. Sci. Data 2018, 10, 1031–1061, doi:10.5194/essd-10-1031-2018. 

61. Su, Z.; de Rosnay, P.; Wen, J.; Wang, L.; Zeng, Y. Evaluation of ECMWF's soil moisture analyses using 
observations on the Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 5304–5318, doi:10.1002/jgrd.50468. 

62. Tang, Q.; Gao, H.; Yeh, P.; Oki, T.; Su, F.; Lettenmaier, D.P. Dynamics of Terrestrial Water Storage Change 
from Satellite and Surface Observations and Modeling. J. Hydrometeorol. 2010, 11, 156–170, 
doi:10.1175/2009JHM1152.1. 



Water 2020, 12, 1495 32 of 37 

 

63. Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass 
Variability in the Earth System. Science 2004, 305, 503, doi:10.1126/science.1099192. 

64. Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging 
trends in global freshwater availability. Nature 2018, 557, 651–659, doi:10.1038/s41586-018-0123-1. 

65. Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 
2016, 121, 7547–7569, doi:10.1002/2016jb013007. 

66. Zhang, L.; Yi, S.; Wang, Q.; Chang, L.; Tang, H.; Sun, W. Evaluation of GRACE mascon solutions for small 
spatial scales and localized mass sources. Geophys. J. Int. 2019, 218, 1307–1321, doi:10.1093/gji/ggz198. 

67. Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and 
Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. 

68. Duan, J.; Miller, N.L. A generalized power function for the subsurface transmissivity profile in 
TOPMODEL. Water Resour. Res. 1997, 33, 2559–2562, doi:10.1029/97WR02186. 

69. Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology / Un 
modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 
24, 43–69, doi:10.1080/02626667909491834. 

70. Zeng, Y.; Su, Z.; Calvet, J.C.; Manninen, T.; Swinnen, E.; Schulz, J.; Roebeling, R.; Poli, P.; Tan, D.; Riihelä, 
A., et al. Analysis of current validation practices in Europe for space-based climate data records of essential 
climate variables. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 150–161, doi:10.1016/j.jag.2015.06.006. 

71. Zhuang, R.; Zeng, Y.; Manfreda, S.; Su, Z. Quantifying Long-Term Land Surface and Root Zone Soil 
Moisture over Tibetan Plateau. Remote Sens. 2020, 12, 509–509, doi:10.3390/rs12030509. 

72. Zeng, Y.; Su, Z. STEMMUS : Simultaneous Transfer of Engery, Mass and Momentum in Unsaturated Soil. (ITC-
WRS Report), University of Twente, Faculty of Geo-Information and Earth Observation (ITC): Enschede, 
The Netherlands, 2013, pp. 6161–6164; ISBN: 978-90-6164-351-7.  

73. Yu, L.; Zeng, Y.; Su, Z.; Cai, H.; Zheng, Z. The effect of different evapotranspiration methods on portraying 
soil water dynamics and ET partitioning in a semi-arid environment in Northwest China. Hydrol. Earth 
Syst. Sci. 2016, 20, 975–990, doi:10.5194/hess-20-975-2016. 

74. Yu, L.; Zeng, Y.; Wen, J.; Su, Z. Liquid-Vapor-Air Flow in the Frozen Soil. J. Geophys. Res. Atmos. 2018, 123, 
7393–7415, doi:10.1029/2018JD028502. 

75. van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy 
spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 
3109–3129, doi:10.5194/bg-6-3109-2009. 

76. Zeng, Y.; Su, Z.; Wan, L.; Yang, Z.; Zhang, T.; Tian, H.; Shi, X.; Wang, X.; Cao, W. Diurnal pattern of the 
drying front in desert and its application for determining the effective infiltration. Hydrol. Earth Syst. Sci. 
2009, 13, 703–714, doi:10.5194/hess-13-703-2009. 

77. Zeng, Y.; Su, Z.; Wan, L.; Wen, J. A simulation analysis of the advective effect on evaporation using a two-
phase heat and mass flow model. Water Resour. Res. 2011, 47, doi:10.1029/2011WR010701. 

78. Zeng, Y.; Su, Z.; Wan, L.; Wen, J. Numerical analysis of air-water-heat flow in unsaturated soil: Is it 
necessary to consider airflow in land surface models? J. Geophys. Res. Atmos. 2011, 116, 
doi:10.1029/2011JD015835. 

79. Zeng, Y.J.; Wan, L.; Su, Z.B.; Saito, H.; Huang, K.L.; Wang, X.S. Diurnal soil water dynamics in the shallow 
vadose zone (field site of China University of Geosciences, China). Environ. Geology 2009, 58, 11–23, 
doi:10.1007/s00254-008-1485-8. 

80. Wang, Y.; Zeng, Y.; Su, Z.; Yu, L.; Yang, P.; Van der Tol, C.; Cai, H. Integrated Modeling of Photosynthesis 
and Transfer of Energy, Mass and Momentum in the Soil-Plant-Atmosphere Continuum System. Geosci. 
Model Develop. Discuss. 2020, under review. 

81. Ben-Dor, E. Soil Spectral Imaging: Moving from Proximal Sensing to Spatial Quantitative Domain. ISPRS 
Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I–7, 67–70, doi:10.5194/isprsannals-I-7-67-2012. 

82. Ben-Dor, E.; Granot, A.; Notesco, G. A simple apparatus to measure soil spectral information in the field 
under stable conditions. Geoderma 2017, 306, 73–80, doi:10.1016/j.geoderma.2017.06.025. 

83. Dohnal, M.; Dusek, J.; Vogel, T. Improving Hydraulic Conductivity Estimates from Minidisk Infiltrometer 
Measurements for Soils with Wide Pore-Size Distributions. Soil Sci. Soc. Am. J. 2010, 74, 804–811, 
doi:10.2136/sssaj2009.0099. 



Water 2020, 12, 1495 33 of 37 

 

84. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; 
Weiss, R.; Dubourg, V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–
2830. 

85. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. 
Anal. Chem. 1964, 36, 1627–1639, doi:10.1021/ac60214a047. 

86. Ben-Dor, E. Quantitative remote sensing of soil properties. In Advances in Agronomy; Academic Press: 
Cambridge, MA, USA, 2002; Volume 75, pp. 173–243. ISBN 0120007932. 

87. Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M. Characterization of Soil Properties Using Reflectance 
Spectroscopy. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation, CRC Press: 
Boca Raton, FL, USA, 2018; pp 187–247. 

88. Nasta, P.; Romano, N.; Assouline, S.; Vrugt, J.A.; Hopmans, J.W. Prediction of spatially variable 
unsaturated hydraulic conductivity using scaled particle-size distribution functions. Water Resour. Res. 
2013, 49, 4219–4229, doi:10.1002/wrcr.20255. 

89. Toth, B.; Weynants, M.; Nemes, A.; Mako, A.; Bilas, G.; Toth, G. New generation of hydraulic pedotransfer 
functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238, doi:10.1111/ejss.12192. 

90. Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; 
Pachepsky, Y.A.; Padarian, J., et al. Pedotransfer Functions in Earth System Science: Challenges and 
Perspectives. Rev. Geophys. 2017, 55, 1199–1256, doi:10.1002/2017rg000581. 

91. Tóth, B.; Weynants, M.; Pásztor, L.; Hengl, T. 3D soil hydraulic database of Europe at 250m resolution. 
Hydrol. Process. 2017, 31, 2662–2666, doi:10.1002/hyp.11203. 

92. Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; 
Stenberg, B.; Stevens, A.; Adamchuk, V., et al. A global spectral library to characterize the world's soil. 
Earth-Science Rev. 2016, 155, 198–230, doi:10.1016/j.earscirev.2016.01.012. 

93. Toth, G.; Jones, A.; Montanarella, L. The LUCAS topsoil database and derived information on the regional 
variability of cropland topsoil properties in the European Union. Environ Monit Assess 2013, 185, 7409–7425, 
doi:10.1007/s10661-013-3109-3. 

94. Babaeian, E.; Homaee, M.; Vereecken, H.; Montzka, C.; Norouzi, A.A.; van Genuchten, M.T. A Comparative 
Study of Multiple Approaches for Predicting the Soil-Water Retention Curve: Hyperspectral Information 
vs. Basic Soil Properties. Soil Sci. Soc. Am. J. 2015, 79, 1043–1058, doi:10.2136/sssaj2014.09.0355. 

95. Romano, N.; Nasta, P.; Bogena, H.; De Vita, P.; Stellato, L.; Vereecken, H. Monitoring Hydrological 
Processes for Land and Water Resources Management in a Mediterranean Ecosystem: The Alento River 
Catchment Observatory. Vadose Zone J. 2018, 17, 180042, doi:10.2136/vzj2018.03.0042. 

96. Weynants, M.; Montanarella, L.; Tóth, G. European HYdropedological Data Inventory (EU-HYDI). Office of the 
European Union: Brussels, Belgium, 2013; ISBN 978-92-79-32355-3.  

97. FAO. WaPOR, FAO’s portal to monitor Water Productivity through Open access of Remotely sensed 
derived data. . Availabe online: https://wapor.apps.fao.org/home/WAPOR_2/1 (accessed on 22 May). 

98. FAO. WaPOR Database Methodology: Level 1 Data; Food and Agriculture Organization of the United Nations: 
Rome, Italy, 2018. 

99. Blatchford, M.L.; Mannaerts, C.M.; Njuki, S.M.; Nouri, H.; Zeng, Y.; Pelgrum, H.; Wonink, S.; Karimi, P. 
Evaluation of WaPOR V2 evapotranspiration products across Africa. Hydrol. Process. 10.1002/hyp.13791, 
doi:10.1002/hyp.13791. 

100. Su, Z.; Yacob, A.; Wen, J.; Roerink, G.; He, Y.; Gao, B.; Boogaard, H.; van Diepen, C. Assessing relative soil 
moisture with remote sensing data: theory, experimental validation, and application to drought monitoring 
over the North China Plain. Phys. Chem. Earth 2003, 28, 89–101, doi:https://doi.org/10.1016/S1474-
7065(03)00010-X. 

101. Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; Van Osch, F.P.; Rietkerk, M.; Chen, 
J.; Gotsch, S.; Tobón, C.; Geissert, D.R., et al. Ecohydrological advances and applications in plant-water 
relations research: A review. J. Plant Ecol. 2011, 4, 3–22, doi:10.1093/jpe/rtr005. 

102. Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by 
transpiration. Nature 2013, 496, 347–350, doi:10.1038/nature11983. 

103. Pielke, R.A.; Avissar, R.; Raupach, M.; Dolman, J.A.; Zeng, X.; Denning, S.A. Interactions between the 
atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Chang. Biol. 1998, 4, 461–
475, doi:10.1046/j.1365-2486.1998.00176.x. 



Water 2020, 12, 1495 34 of 37 

 

104. Fatichi, S.; Pappas, C.; Ivanov, V.Y. Modeling plant-water interactions: an ecohydrological overview from 
the cell to the global scale. Wiley Interdiscip. Rev. Water 2016, 3, 327–368, doi:10.1002/wat2.1125. 

105. Mencuccini, M.; Manzoni, S.; Christoffersen, B. Modelling water fluxes in plants: from tissues to biosphere. 
New Phytol. 2019, 222, 1207–1222, doi:10.1111/nph.15681. 

106. Milly, P.C.D. Climate, soil water storage, and the average annual water balance. Water Resour. Res.1994, 30, 
2143–2156, doi:10.1029/94WR00586. 

107. Rodriguez-Iturbe, I.; Porporato, A.; Rldolfi, L.; Isham, V.; Cox, D.R. Probabilistic modelling of water balance 
at a point: The role of climate, soil and vegetation. Proc. R. Soc. A Math. Phys. Eng. Sci. 1999, 455, 3789–3805, 
doi:10.1098/rspa.1999.0477. 

108. Allen, R.; Pereira, L.; Raes, D.; Smith, M. Guidlines for Computing Crop Water Requirements, In FAO Irrigation 
and Drainage Paper 56, ; FAO - Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. 
ISBN: 92-5-104219-5. 

109. Verhoef, A.; Egea, G. Modeling plant transpiration under limited soil water: Comparison of different plant 
and soil hydraulic parameterizations and preliminary implications for their use in land surface models. 
Agric. For. Meteorol. 2014, 191, 22–32, doi:10.1016/j.agrformet.2014.02.009. 

110. Porporato, A.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: Active role 
in hydrologie processes and responce to water stress III. Vegetation water stress. Adv. Water Resour. 2001, 
24, 725–744, doi:10.1016/S0309-1708(01)00006-9. 

111. Daly, E.; Porporato, A.; Rodriguez-Iturbe, I. Coupled dynamics of photosynthesis, transpiration, and soil 
water balance. Part II: Stochastic analysis and ecohydrological significance. J. Hydrometeorol. 2004, 5, 559–
566. 

112. Farrior, C.E.; Rodriguez-Iturbe, I.; Dybzinski, R.; Levin, S.A.; Pacala, S.W. Decreased water limitation under 
elevated CO2 amplifies potential for forest carbon sinks. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7213–7218, 
doi:10.1073/pnas.1506262112. 

113. Vico, G.; Porporato, A. Modelling C3 and C4 photosynthesis under water-stressed conditions. Plant and 
Soil 2008, 313, 187–203, doi:10.1007/s11104-008-9691-4. 

114. Vico, G.; Porporato, A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation 
scheme with stochastic soil moisture. Adv. Water Resour. 2011, 34, 263–271, 
doi:10.1016/j.advwatres.2010.11.010. 

115. Vico, G.; Porporato, A. Probabilistic description of crop development and irrigation water requirements 
with stochastic rainfall. Water Resour. Res. 2013, 49, 1466–1482, doi:10.1002/wrcr.20134. 

116. Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; Monson, R.K.; 
Hollinger, D.; Falk, M., et al. Modeling and measuring the effects of disturbance history and climate on 
carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 2002, 113, 185–222, 
doi:10.1016/S0168-1923(02)00108-9. 

117. Amthor, J.S. Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynth. Res. 1994, 
39, 321–350, doi:10.1007/BF00014590. 

118. Jarvis, P.G.; Mcnaughton, K.G. Stomatal Control of Transpiration: Scaling Up from Leaf to Region. Adv. 
Ecol. Res. 1986, 15, 1–49, doi:10.1016/S0065-2504(08)60119-1. 

119. Medlyn, B.E. Physiological basis of the light use efficiency model. Tree Physiol. 1998, 18, 167–176, 
doi:10.1093/treephys/18.3.167. 

120. Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation 
in leaves of C3 species. Planta 1980, 149, 78–90, doi:10.1007/BF00386231. 

121. Damour, G.; Simonneau, T.; Cochard, H.; Urban, L. An overview of models of stomatal conductance at the 
leaf level. Plant. Cell Environ. 2010, 33, 1419–1438, doi:10.1111/j.1365-3040.2010.02181.x. 

122. Tuzet, A.; Perrier, A.; Leuning, R. A coupled model of stomatal conductance, photosynthesis and 
transpiration. Plant. Cell Environ. 2003, 26, 1097–1116, doi:10.1046/j.1365-3040.2003.01035.x. 

123. Hanson, P.J.; Amthor, J.S.; Wullschleger, S.D.; Wilson, K.B.; Grant, R.F.; Hartley, A.; Hui, D.; Hunt, E.R.; 
Johnson, D.W.; Kimball, J.S., et al. Oak forest carbon and water simulations: Model intercomparisons and 
evaluations against independent data. Ecol. Monogr. 2004, 74, 443–489, doi:10.1890/03-4049. 

124. Manzoni, S.; Vico, G.; Porporato, A.; Katul, G. Biological constraints on water transport in the soil-plant-
atmosphere system. Adv. Water Resour. 2013, 51, 292–304, doi:10.1016/j.advwatres.2012.03.016. 



Water 2020, 12, 1495 35 of 37 

 

125. Schymanski, S.J.; Sivapalan, M.; Roderick, M.L.; Hutley, L.B.; Beringer, J. An optimality-based model of the 
dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 2009, 45, 
doi:10.1029/2008WR006841. 

126. Guswa, A.J.; Celia, M.A.; Rodriguez-Iturbe, I. Models of soil moisture dynamics in ecohydrology: A 
comparative study. Water Resour. Res. 2002, 38, 1166, doi:10.1029/2001wr000826. 

127. Drewry, D.T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.Z.; Sivapalan, M. Ecohydrological responses of 
dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic 
pathway. J. Geophys. Res. 2010, 115, G04022, doi:10.1029/2010JG001340. 

128. Launiainen, S.; Katul, G.G.; Lauren, A.; Kolari, P. Coupling boreal forest CO2, H2O and energy flows by a 
vertically structured forest canopy - Soil model with separate bryophyte layer. Ecol. Modell. 2015, 312, 385–
405, doi:10.1016/j.ecolmodel.2015.06.007. 

129. Bassiouni, M.; Higgins, C.W.; Still, C.J.; Good, S.P. Probabilistic inference of ecohydrological parameters 
using observations from point to satellite scales. Hydrol. Earth Syst. Sci 2018, 22, 3229–3243, doi:10.5194/hess-
22-3229-2018. 

130. Bassiouni, M.; Good, S.P.; Still, C.J.; Higgins, C.W. Plant Water Uptake Thresholds Inferred from Satellite 
Soil Moisture. Geophys. Res. Lett. 2020, 47, e2020GL087077, doi:10.1029/2020GL087077. 

131. Ruiz-Pérez, G.; González-Sanchis, M.; Del Campo, A.D.; Francés, F. Can a parsimonious model 
implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-
controlled environments? Ecol. Modell. 2016, 324, 45–53, doi:10.1016/j.ecolmodel.2016.01.002. 

132. Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing 
and crop models. Eur. J. Agron. 2018, 92, 141–152, doi:10.1016/j.eja.2017.11.002. 

133. Kasampalis, D.; Alexandridis, T.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote 
Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52, doi:10.3390/jimaging4040052. 

134. Christensen-Dalsgaard, K.K.; Tyree, M.T.; Mussone, P.G. Surface tension phenomena in the xylem sap of 
three diffuse porous temperate tree species. Tree Physiol. 2011, 31, 361–368, doi:10.1093/treephys/tpr018. 

135. Caylor, K.K.; D'Odorico, P.; Rodriguez-Iturbe, I. On the ecohydrology of structurally heterogeneous 
semiarid landscapes. Water Resour. Res. 2006, 42, doi:10.1029/2005WR004683. 

136. Ruiz-Pérez, G.; Koch, J.; Manfreda, S.; Caylor, K.; Francés, F. Calibration of a parsimonious distributed 
ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of 
NDVI. Hydrol. Earth Syst. Sci. 2017, 21, 6235–6251, doi:10.5194/hess-21-6235-2017. 

137. Piedallu, C.; Gégout, J.C.; Perez, V.; Lebourgeois, F. Soil water balance performs better than climatic water 
variables in tree species distribution modelling. Glob. Ecol. Biogeogr. 2013, 22, 470–482, 
doi:10.1111/geb.12012. 

138. Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water 
Resour. Res. 2000, 36, 3–9, doi:10.1029/1999WR900210. 

139. Snyder, K.A.; Williams, D.G. Water sources used by riparian trees varies among stream types on the San 
Pedro River, Arizona. Agric. For. Meteorol. 2000, 105, 227–240, doi:https://doi.org/10.1016/S0168-
1923(00)00193-3. 

140. Aydin, M.; Yang, S.L.; Kurt, N.; Yano, T. Test of a simple model for estimating evaporation from bare soils 
in different environments. Ecol. Modell. 2005, 182, 91–105, 
doi:https://doi.org/10.1016/j.ecolmodel.2004.07.013. 

141. Quevedo, D.I.; Francés, F. A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrol. 
Earth Syst. Sci. 2008, 12, 1175–1187, doi:10.5194/hess-12-1175-2008. 

142. Gosling, S.N.; Arnell, N.W.; Lowe, J.A. The implications of climate policy for avoided impacts on water 
scarcity. Procedia Environ. Sci. 2011, 6, 112–121, doi:10.1016/j.proenv.2011.05.012. 

143. Visser, M.E.; Caro, S.P.; van Oers, K.; Schaper, S.V.; Helm, B. Phenology, seasonal timing and circannual 
rhythms: towards a unified framework. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3113–3127, 
doi:10.1098/rstb.2010.0111. 

144. Tague, C.L.; Band, L.E. RHESSys: Regional Hydro-Ecologic Simulation System—An Object-Oriented 
Approach to Spatially Distributed Modeling of Carbon, Water, and Nutrient Cycling. Earth Interact. 2004, 
8, 1–42, doi:10.1175/1087-3562(2004)8<1:rrhsso>2.0.co;2. 

145. Krysanova, V.; Srinivasan, R. Assessment of climate and land use change impacts with SWAT. Reg. Environ. 
Chang. 2015, 15, 431–434, doi:10.1007/s10113-014-0742-5. 



Water 2020, 12, 1495 36 of 37 

 

146. Rigon, R.; Bertoldi, G.; Over, T.M. GEOtop: A distributed hydrological model with coupled water and 
energy budgets. J. Hydrometeorol. 2006, 7, 371–388, doi:10.1175/JHM497.1. 

147. Wolf, S.; Eugster, W.; Potvin, C.; Buchmann, N. Strong seasonal variations in net ecosystem CO2 exchange 
of a tropical pasture and afforestation in Panama. Agric. For. Meteorol. 2011, 151, 1139–1151, 
doi:10.1016/j.agrformet.2011.04.002. 

148. Yu, L.; Zeng, Y.; Fatichi, S.; Su, Z. How vadose zone mass and energy transfer physics affects the 
ecohydrological dynamics of a Tibetan meadow? Cryosphere Discuss. 2020, https://doi.org/10.5194/tc-2020-
5188. 

149. Conradt, T.; Wechsung, F.; Bronstert, A. Three perceptions of the evapotranspiration landscape: comparing 
spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-
basin water balances. Hydrol. Earth Syst. Sci. Discuss 2013, 17, 2947–2966, doi:10.5194/hess-17-2947-2013. 

150. Immerzeel, W.W.; Droogers, P. Calibration of a distributed hydrological model based on satellite 
evapotranspiration. J. Hydrol. 2008, 349, 411–424, doi:10.1016/j.jhydrol.2007.11.017. 

151. Demirel, M.C.; Mai, J.; Mendiguren, G.; Koch, J.; Samaniego, L.; Stisen, S. Combining satellite data and 
appropriate objective functions for improved spatial pattern performance of a distributed hydrologic 
model. Hydrol. Earth Syst. Sci 2018, 22, 1299–1315, doi:10.5194/hess-22-1299-2018. 

152. Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; 
Anderson, M.C.; Sadeghi, A.M.; Hain, C.R.; Sharifi, A. Evaluating the role of evapotranspiration remote 
sensing data in improving hydrological modeling predictability. J. Hydrol. 2018, 556, 39–49, 
doi:10.1016/j.jhydrol.2017.11.009. 

153. Rajib, A.; Evenson, G.R.; Golden, H.E.; Lane, C.R. Hydrologic model predictability improves with spatially 
explicit calibration using remotely sensed evapotranspiration and biophysical parameters. J. Hydrol. 2018, 
567, 668–683, doi:10.1016/j.jhydrol.2018.10.024. 

154. Silvestro, F.; Gabellani, S.; Delogu, F.; Rudari, R.; Boni, G. Exploiting remote sensing land surface 
temperature in distributed hydrological modelling: The example of the Continuum model. Hydrol. Earth 
Syst. Sci. 2013, 17, 39–62, doi:10.5194/hess-17-39-2013. 

155. Zink, M.; Mai, J.; Cuntz, M.; Samaniego, L. Conditioning a Hydrologic Model Using Patterns of Remotely 
Sensed Land Surface Temperature. Water Resour. Res. 2018, 54, 2976–2998, doi:10.1002/2017WR021346. 

156. Lo, M.H.; Famiglietti, J.S.; Yeh, P.J.F.; Syed, T.H. Improving parameter estimation and water table depth 
simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. 
Res. 2010, 46, doi:10.1029/2009WR007855. 

157. Li, Y.; Grimaldi, S.; Pauwels, V.R.N.; Walker, J.P. Hydrologic model calibration using remotely sensed soil 
moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. J. 
Hydrol. 2018, 557, 897–909, doi:10.1016/j.jhydrol.2018.01.013. 

158. Yang, H.; Xiong, L.; Ma, Q.; Xia, J.; Chen, J.; Xu, C.-Y. Utilizing Satellite Surface Soil Moisture Data in 
Calibrating a Distributed Hydrological Model Applied in Humid Regions Through a Multi-Objective 
Bayesian Hierarchical Framework. Remote Sens. 2019, 11, 1335–1335, doi:10.3390/rs11111335. 

159. Echeverría, C.; Ruiz-Pérez, G.; Puertes, C.; Samaniego, L.; Barrett, B.; Francés, F. Assessment of Remotely 
Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation. Water 2019, 
11, 2613–2613, doi:10.3390/w11122613. 

160. Morales, J.; Becht, R.; Munyao, J.N. Supporting sustainable water management in Lake Naivasha Basin, 
Kenya: A water information system tailored for users. GIM Int. 2015, 29, 26–29. 

161. Lv, S.; Zeng, Y.; Su, Z.; Wen, J. A Closed-Form Expression of Soil Temperature Sensing Depth at L-Band. 
IEEE Trans. Geosci. Remote Sens. 2019, 57, 4889–4897, doi:10.1109/TGRS.2019.2893687. 

162. Lv, S.; Zeng, Y.; Wen, J.; Zhao, H.; Su, Z. Estimation of Penetration Depth from Soil Effective Temperature 
in Microwave Radiometry. Remote Sens. 2018, 10, 519, doi:doi:10.3390/rs10040519. 

163. Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite 
processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–
2014). Remote Sens. Environ. 2018, 205, 1–17, doi:https://doi.org/10.1016/j.rse.2017.11.004. 

164. Dente, L.; Su, Z.; Wen, J. Validation of SMOS soil moisture products over the Maqu and Twente regions. 
Sensors 2012, 12, 9965–9986, doi:10.3390/s120809965. 

165. Dövényi, Z. Magyarország kistájainak katasztere (Inventory of Microregions in Hungary), 2nd ed.; MTA 
Földrajztudományi Kutatóintézet: Budapest, Hungary, 2010. 



Water 2020, 12, 1495 37 of 37 

 

166. Kisgyörgy  Botond, G., Tyson, J.M., S. Water quality management and legislation in Hungary — A river 
basin approach. Water Sci. Technol. 1999, 40, doi:10.1016/s0273-1223(99)00677-0. 

167. Skierucha  Wilczek, A., Walczak, R.T., W. Recent software improvements in moisture (TDR method), 
matric pressure, electrical conductivity and temperature meters of porous media. Int. Agrophys. 2006, 20, 
229–235. 

168. Pásztor Laborczi, A.; Takács, K.; Szatmári, G.; Bakacsi, Z.; Szabó, J.; Illés, G.L. DOSoReMI as the national 
implementation of GlobalSoilMap for the territory of Hungary. In Proceedings of the Global Soil Map 2017 
Conference, Moscow, Russia, 4–6 July 2017; pp. 17–22. 

169. Szabó, B.; Szatmári, G.; Takács, K.; Laborczi, A.; Makó, A.; Rajkai, K.; Pásztor, L. Mapping soil hydraulic 
properties using random-forest-based pedotransfer functions and geostatistics. Hydrol. Earth Syst. Sci. 2019, 
23, 2615–2635, doi:10.5194/hess-23-2615-2019. 

170. Santini, A.; Coppola, A.; Romano, N.; Terribile, F. Interpretation of the Spatial Variability of Soil Hydraulic 
Properties Using a Land System Analysis. Model. Transp. Processes Soils 1999, 1, 491–500. 

171. Romano, N.; Santini, A. Effectiveness of using pedo-transfer functions to quantify the spatial variability of 
soil water retention characteristics. J. Hydrol. 1997, 202, 137–157, doi:10.1016/S0022-1694(97)00056-5. 

172. Romano, N.; Palladino, M. Prediction of soil water retention using soil physical data and terrain attributes. 
J. Hydrol. 2002, 265, 56–75, doi:10.1016/S0022-1694(02)00094-X. 

173. Carriero, D.; Romano, N.; Fiorentino, M. A simplified approach for determining hydrologic behavior and 
depth of soils at basin scale. J. Agric. Eng. 2007, 38, 1, doi:10.4081/jae.2007.2.1. 

174. Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the 
Köppen-Geiger climate classification. Meteorol. Zeitschrift 2010, 19, 135–141, doi:10.1127/0941-
2948/2010/0430. 

175. Costantini, E.A.C.; Dazzi, C. The Soils of Italy; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-
5641-0. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open 
access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


