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Abstract Building upon the formulation of transverse-mo-
mentum resummation for heavy-quark hadroproduction, we
present the first application of the qT subtraction formal-
ism to the computation of electroweak corrections to mas-
sive lepton pairs through the Drell–Yan mechanism. We then
study the power suppressed contributions to the qT subtrac-
tion formula in the parameter rcut, defined as the minimum
transverse momentum of the lepton pair normalised to its
invariant mass. We analytically compute the leading power
correction from initial and final-state radiation to the inclu-
sive cross section. In the case of initial-state radiation the
power correction is quadratic in rcut and our analytic result
is consistent with results previously obtained in the literature.
Final-state radiation produces linear contributions in rcut that
may challenge the efficiency of the qT subtraction procedure.
We explicitly compute the linear power correction in the case
of the inclusive cross section and we discuss the extension
of our calculation to differential distributions.

1 Introduction

The qT subtraction formalism [1] is a method to handle and
cancel the IR divergences appearing in QCD computations
at next-to-next-to-leading order (NNLO) and beyond. In its
original formulation it has been applied to carry out a variety
of NNLO QCD computations for the production of colour-
less final states in hadronic collisions [2–16]. Most of the
above computations are now publicly available in Matrix
[17]. A first application of qT subtraction to the computa-
tion of the approximate next-to-next-to-next-to-leading order
(N3LO) QCD corrections to Higgs boson production through
gluon fusion has been presented recently [18].
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In the last few years, thanks to the formulation of
transverse-momentum resummation for heavy-quark pro-
duction [19–23] the method has been extended and applied to
the production of top-quark pairs [24–26]. The qT subtrac-
tion counterterm is constructed by exploiting the universal
behavior of the associated transverse-momentum (qT ) dis-
tribution. Therefore, the subtraction is intrinsically non local
and in practice the computation is carried out by introduc-
ing a cut, rcut on the tranverse momentum of the colourless
system normalised to its invariant mass. When evaluated at
finite rcut both the contribution of the real emission and the
one of the counterterm exibit logarithmically divergent terms
plus additional power suppressed contributions that vanish as
rcut → 0. The efficiency of the subtraction procedure cru-
cially depends on the size of such power suppressed contri-
butions.

In the inclusive production of a colourless final state the
power suppressed contributions are known to be quadratic
in rcut (modulo logarithmic enhancements) [12]. This allows
us to obtain precise predictions by either evaluating the cross
section at sufficiently small rcut, or carrying out the rcut → 0
extrapolation1 [17]. The power suppressed contributions to
the next-to-leading order (NLO) total cross section have been
explicitly evaluated in Refs. [28,29]. In the case of heavy-
quark production the rcut dependence is found to be linear
[25,26,30], and it is an interesting question to investigate the
origin of this peculiar behavior.

Up to now the qT subtraction formalism has been applied
only to higher-order QCD computations. The formulation
of the method for heavy-quark production can be straight-
forwardly extended to the computation of NLO electroweak
(EW) corrections to the Drell–Yan process. The purpose of

1 The only exception is the production of direct photons (γ γ [3,4],
Zγ [6], Wγ [8]....), for which a fully inclusive cross section cannot
be defined, and an isolation prescription is required. The interplay of
the isolation prescription with the subtraction procedure makes the rcut
dependence stronger [17,27].
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the present paper is twofold. We first present and discuss the
first application of the qT subtraction formalism to the com-
putation of the NLO EW corrections to the production of
massive lepton pairs. Our computation consistently includes
initial-state radiation, final-state radiation from the massive
leptons and their interference, and our results are compared
with the ones obtained with the well established public gen-
erator Sanc [31] and to an independent computation that we
carry out with the dipole subtraction formalism [32]. Then,
we present the analytic computation of the power suppressed
contributions, and we confirm the linear rcut behaviour by
computing its NLO coefficient. We also extend our results to
the case in which cuts are applied.

The paper is organised as follows. In Sect. 2 we review the
qT -subtraction formalism, by detailing its implementation up
to NLO in the case of heavy-quark production. In Sect. 3 we
apply the formalism to the computation of NLO EW cor-
rections to the Drell–Yan process. In Sect. 4 we study the
power suppressed contributions and we explicitly compute
the leading power corrections in the case of final-state and
initial-state radiation. In Sect. 5 we summarise our results.

2 The qT subtraction formalism

The qT subtraction formalism [1] is a method to handle and
cancel the IR divergences appearing in higher-order QCD
computations. The method uses IR subtraction counterterms
that are constructed by considering and explicitly computing
the transverse-momentum qT distribution of the produced
final-state system. At Born level such distribution is propor-
tional to δ(q2

T ). At higher perturbative orders multiple radia-
tion of soft and collinear partons makes the distribution diver-
gent in the qT → 0 limit. If the produced final-state system
is composed of non-QCD (colourless) partons (e.g., leptons,
vector bosons or Higgs bosons), the small-qT behaviour has
a universal (process-independent) structure that is explicitly
known up to the NNLO level (and, in part, at N3LO [18,33])
through the formalism of transverse-momentum resumma-
tion [34]. These results on transverse-momentum resumma-
tion are sufficient to fully specify the qT subtraction formal-
ism for this entire class of processes. By using the formula-
tion of transverse-momentum resummation for heavy-quark
production [19–23], the qT subtraction formalism has been
recently extended to this class of processes [24–26].

According to the qT subtraction method [1], the parton

level differential cross section dσ
QQ̄
(N )NLO for the inclusive

production process pp → QQ̄ + X can be written as

dσ̂
QQ̄
(N )NLO = HQQ̄

(N )NLO ⊗ dσ̂
QQ̄
LO

+
[
dσ̂

QQ̄+jet
(N )LO − dσ̂

QQ̄,CT
(N )NLO

]
, (1)

where dσ̂
QQ̄+jet
(N )LO is the QQ̄+jet cross section at (N)LO accu-

racy. The square bracket term of Eq. (1) is IR finite in the

limit qT → 0, but its individual contributions, dσ̂
QQ̄+jet
(N )LO

and dσ̂
QQ̄,CT
(N )NLO , are separately divergent. The IR subtraction

counterterm dσ̂
QQ̄,CT
(N )NLO is obtained from the (N)NLO pertur-

bative expansion (see, e.g., Refs. [24,35]) of the resummation
formula of the logarithmically-enhanced contributions to the
qT distribution of the QQ̄ pair [19–21]: the explicit form

of dσ̂
QQ̄,CT
(N )NLO can be completely worked out up to NNLO

accuracy.
In the following we will limit ourselves to consider Eq. (1)

up to NLO accuracy. The explicit expression of dσ̂
QQ̄,CT
NLO in

the partonic channel ab → QQ̄ + X reads [24]

dσ̂
QQ̄,CT
NLO ab =

∑
c=q,q̄,g

αS

π
Σ

(1)
cc̄←ab ⊗ dσ̂

QQ̄
LO cc̄

dq2
T

M2 , (2)

where M is the invariant mass of the QQ̄ pair and the sym-
bol ⊗ denotes convolutions with respect to the longitudinal-
momentum fractions z1 and z2 of the colliding partons. The
functions Σ

(1)
cc̄←ab in Eq. (2) can be written as

Σ
(1)
cc̄←ab(z1, z2; r) = Σ

(1,2)
cc̄←ab(z1, z2) Ĩ2(r)

+ Σ
(1,1)
cc̄←ab(z1, z2) Ĩ1(r) (3)

where r = qT /M , and the coefficients Σ
(1,k)
cc̄←ab(z1, z2) (k =

1, 2) read

Σ
(1,2)
cc̄←ab(z1, z2) = −1

2
A(1)
c δcaδc̄bδ(1 − z1)δ(1 − z2) (4)

Σ
(1,1)
cc̄←ab(z1, z2) = −

[
δcaδc̄bδ(1 − z1)δ(1 − z2) B(1)

c

+ δcaδ(1 − z1) P(1)
c̄b (z2)

+ δc̄bδ(1 − z2) P(1)
ca (z1)

]

− δcaδc̄bδ(1 − z1)δ(1 − z2)

×
〈Mcc̄→QQ̄ |

(
�

(1)
t + �

(1)†
t

)
|Mcc̄→QQ̄〉

|Mcc̄→QQ̄ |2 .

(5)

The coefficients A(1)
c and B(1)

c are the first-order coefficients
for transverse-momentum resummation (A(1)

q = CF , A(1)
g =

CA, B(1)
q = −3/2CF , B(1)

g = −(11/6CA − nF/3)).

The functions P(1)
ab (z) are the lowest-order DGLAP ker-

nels (the overall normalisation is specified according to
the notation in Eq. (41) of Ref. [35]). The functions Ĩk(r)
(k = 1, 2), which appear in Eq. (3), encapsulate the singu-
lar behavior at small qT , and they read (see Appendix B of
Ref. [35])
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Ĩ1(r) = −b0

r
K1(b0r),

Ĩ2(r) = 2b0

r

[
K1(b0r) ln r − ∂Kν(b0r)

∂ν

∣∣∣∣
ν=1

]
, (6)

where b0 = 2e−γE and we have introduced the modified
Bessel function of imaginary argument

Kν(r) =
∫ ∞

0
dte−r cosh t cosh νt . (7)

The coefficient Σ
(1,2)
cc̄←ab(z1, z2) in Eq. (4) controls the lead-

ing logarithmic contribution at small qT , while the coeffi-
cient Σ

(1,1)
cc̄←ab(z1, z2) in Eq. (5) controls the next-to-leading

logarithmic term. The latter has a first term (first line in
Eq. 5) which is identical to what we have in the case of
the production of a colour singlet. The second term (sec-
ond line in Eq. 5) is due to soft radiation and it is an addi-
tional term that is specific of the qT subtraction method for
the case of heavy-quark pair production [24]. Here �

(1)
t is

the first-order contribution to the soft anomalous dimension
for transverse-momentum resummation in heavy-quark pro-
duction and its explicit expression is given in Eq. (33) of
Ref. [21]. The soft anomalous dimension is a matrix acting
on the colour indeces of the four hard partons in the Born
level scattering amplitude |Mcc̄→QQ̄〉. At this perturbative
order the soft anomalous dimension is expressed in terms
of colour correlators Ti · T j with definite kinematic depen-
dence, where the indices i and j refer to the hard-scattering
partons.

The first-order hard-collinear coefficientsHQQ̄
NLO in Eq. (1)

are also completely known [19–21]. In the next Section we
apply the method to the computation of EW corrections to
the Drell–Yan process.

3 NLO EW corrections to the Drell–Yan process

We consider the hadroproduction of a dilepton pair through
the Drell–Yan mechanism. NLO EW corrections to this
process have been considered in Refs. [36–39]. A tuned
comparison of various Monte Carlo codes is presented in
Ref. [40].

The NLO qT subtraction formalism for heavy-quark pro-
duction reviewed in Sect. 2 can be straightforwardly extended
to the computation of the NLO EW corrections to the Drell–
Yan process. In this case the heavy-quark pair is replaced
by a massive lepton pair and the abelian limit is carried out
along the lines of Ref. [41]. The partonic cross section up to
NLO EW can be evaluated by using

dσ̂NLO = HNLO ⊗ dσ̂LO +
[
dσ̂ R − dσ̂CT

]
, (8)

where dσ̂ R is the real emission cross section and the func-
tions HNLO and dσ̂CT are obtained from the corresponding
functions appearing in Eq. (1) with the replacements

CA → 0 CF → e2
f T2

i → e2
i Ti · T j → ei e j .

(9)

As is well known, at LO (i.e. O(α2)) both the qq̄ and the
γ γ partonic channels contribute and we can write for the
hadronic cross section

σLO = σ
qq̄
LO + σ

γγ

LO , (10)

where σ
qq̄
LO and σ

γγ

LO are the Born level cross sections in the
qq̄ and γ γ channels, respectively. At NLO EW we can write

σNLO = σ
qq̄
LO + σ

γγ

LO + Δσqq̄ + Δσqγ + Δσγγ (11)

where we have introduced the O(α3) correction in the qq̄
channel, Δσqq̄ , the corresponding correction in the q(q̄)γ

channel, Δσqγ , and the correction in the γ γ channel, Δσγγ .
Since the γ γ channel provides only a very small contribution
to the Drell–Yan cross section, Δσγγ will be neglected in the
following discussion.

Our calculation is carried out by using an extension of the
numerical program of Ref. [2]. All the required tree level
matrix elements are computed analytically while the virtual
EW corrections for qq̄ → l+l−, which include vertex and
box diagrams, are obtained by using Gosam [42,43]. We use
the setup of Ref. [44], and, in particular, we work in the Gμ

scheme with

GF = 1.16637 × 10−5 GeV−2 α(0) = 1/137.03599911

mW = 80.403 GeV mZ = 91.1876 GeV

ΓW = 2.141 GeV ΓZ = 2.4952 GeV
(12)

and use the complex-mass scheme [45] throughout. More
precisely, real and virtual photons emissions are controlled
by α(0), while the α2 in the LO cross section is derived from
GF , mZ and mW . Following Ref. [44], the MRST2004qed
[46] parton distribution functions (PDFs) are used setting the
factorization scale to μF = MZ .
The following set of cuts are applied

mll > 50 GeV pT,l > 25 GeV |yl | < 2.5. (13)

To validate our implementation, we have performed a
tuned comparison with the public generator Sanc setting
the mass of the heavy lepton to the muon mass ml ≡ mμ =
105.658369 MeV. In Table 1 we report our result for the low-
est order cross sections σ

qq̄
LO and σ

γγ

LO , and the NLO EW cor-
rections in the qq̄ and qγ channels, Δσqq and Δσqγ . The
NLO correction Δσqq̄ is obtained performing the calcula-
tion at different values of rcut and extrapolating to rcut → 0

123
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Table 1 Comparison of NLO EW corrections to Drell–Yan dimuon
production (ml ≡ mμ = 105.658369 MeV) computed with qT sub-
traction and with the Sanc generator. In the qq̄ channel the qT result is
obtained with a linear extrapolation in the rcut → 0 limit (see Fig. 2),
while in the q(q̄)γ channel it is obtained at rcut = 0.01%. The LO
result in the qq̄ and γ γ channels is also reported for reference. The
small discrepancy in the σ

qq̄
LO cross section, below 0.5 per mille, can be

ascribed to the use of the complex mass scheme in our computation

qT + GoSam Sanc

σ
qq̄
LO (pb) 739.45 ± 0.02 739.17 ± 0.01

σ
γγ

LO (pb) 1.289 ± 0.005 1.29 ± 0.01

Δσqq (pb) −29.18 ± 0.03 −29.23 ± 0.02

Δσqγ (pb) −0.777 ± 0.002 −0.78 ± 0.01

through a linear fit. This procedure will be fully motivated
by an analytic computation presented in the next section. We
find that the agreement is quite good, at few per mille on
the NLO correction. The small discrepancy in the σ

qq̄
LO cross

section, below 0.5 per mille, is consistent with the use of dif-
ferent schemes to handle unstable particles. In particular, at
variance with what is done in Sanc, complex couplings are
used within our computations.

The comparison with Sanc can be extended to differential
distributions. In Fig. 1 we compare the invariant mass (mll )
and rapidity (yll ) distribution of the dilepton pair, the trans-
verse momentum and rapidity of the positively charged lep-
ton (pT,l+ and yl+ ) obtained with our implementation with
the corresponding results obtained with Sanc. For ease of
reference, we plot also the LO result in black. We see that
the agreement is good, the differences typically being well
below the percent level. In addition, we have repeated our
calculation by using the dipole subtraction method2 [32] and
the independent matrix-element generator Recola [48,49]
for the virtual corrections, finding the same level of agree-
ment as reported in Table 1.

4 Power corrections

In this section we are going to analytically study the power
suppressed contributions to the qT subtraction formula in
Eq. (8). In particular, we will show that the leading power
suppressed contributions have a soft origin. In order to avoid
complications due to the small lepton mass, which are sensi-
tive to collinear logarithmic contributions and could obscure
the rcut behavior, in the following we will consider a pair of
heavy leptons of mass ml = 10 GeV. By using the setup of
Sect. 3 (see Eqs. 12, 13), we have studied the dependence

2 An early comparison of phase-space slicing and dipole subtraction
methods in the case of final-state radiation off a heavy-quark pair was
presented in Ref. [47].

of the NLO corrections for the fiducial cross section on rcut.
We have varied rcut in the range 0.01% ≤ rcut ≤ 1% and
we have used the rcut-independent cross section computed
with our inhouse implementation of the dipole subtraction
method as normalisation. The results for the rcut dependent
correction δqT = Δσ/σ

qq̄
LO in the qq̄ and qγ channels are

shown in Fig. 2. A distictive linear behavior in the dominant
qq̄-annihilation channel emerges. Nonetheless, as reported
in Ref. [17], it is known that symmetric cuts on the trans-
verse momenta of the final state leptons challenge the con-
vergence of qT -subtraction leading to a stronger dependence
on rcut even in the case in which a charge-neutral final state
is produced. In Fig. 3 we show the dependence of the NLO
corrections for the inclusive cross section on rcut when no
cuts are applied. Again a distinct linear behavior in the dom-
inant qq̄-annihilation channel emerges, in agreement with
what has already been observed for the case of the t t̄ cross
section [25], which can be clearly interpreted as a genuine
new effect due to the emission of radiation off the massive
final-state leptons.

In the following we analytically study the behavior of
NLO cross sections computed with qT subtraction in the
rcut → 0 limit. We are interested in determining the structure
of the leading power correction to the inclusive cross section,
and in identifying the origin of the linear behavior observed
in Fig. 3. We recall that when applying the qT subtraction
formula the second term on the right hand side of Eq. (8) is
computed by introducing a lower limit rcut on theqT /M ratio.
With such a cutoff we can treat separately the real contribu-
tion dσ̂ R and the counterterm dσ̂CT . We start our discussion
from the contribution of the counterterm. From Eq. (2) we
have

dσ̂CT
ab (rcut) =

∑
c=q,q̄,γ

∫ ∞

rcut

2rdr
αS

π
Σ

(1)
cc̄←ab ⊗ dσ̂ l+l−

LO cc̄ .

(14)

The NLO coefficient Σ
(1)
cc̄←ab depends on r = qT /M only

through the functions Ĩi (r). Therefore we have

dσ̂CT
ab (rcut)

drcut
= −2rcut

αS

π

(
Σ

(1,2)
cc̄←ab Ĩ2(rcut)

+ Σ
(1,1)
cc̄←ab Ĩ1(rcut)

)
⊗ dσ̂ l+l−

LO cc̄ . (15)

In the small r limit the integrals Ĩ1(r) and Ĩ2(r) read

Ĩ1(r) = − 1

r2 + b2
0

4
(1 − 2 ln r) + O(r2),

Ĩ2(r) = 4 ln r

r2 + b2
0

2

(
−1 + 2 ln2 r

)
+ O(r2) , (16)
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Fig. 1 Tuned comparison for the dilepton invariant mass distribution
(top left), rapidity distribution (top right), pT distribution of the pos-
itively charged lepton (bottom left) and rapidity distribution (bottom

right) with the Sanc generator. The qT result is obtained by fixing
rcut = 0.01% and with ml = mμ = 105.658369 MeV. For reference,
also the LO result in showed (black line)

i.e., they depend quadratically on r modulo logarithmic
terms. This results holds also at NNLO and beyond. It fol-
lows that the leading power corrections from the counterterm
are always quadratic in rcut, independently on the perturba-
tive order. As a consequence, the linear behavior with rcut that
we observe in heavy-quark production and in the EW correc-
tions to dilepton production must be due to the real emission.
In the following we analytically compute the real-emission
contribution at small values of rcut.

We consider the production of a massive lepton pair in
pure QED in the diagonal channel

q(p1) + q̄(p2) → l+(p3) + l−(p4) + γ (k) (17)

with p2
3 = p2

4 = m2. We define the variables

s = (p1 + p2)
2 M2 = (p3 + p4)

2 t = (p1 − k)2

u = (p2 − k)2 q2
T = ut/s (18)

123
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Fig. 2 NLO EW correction as a function of rcut in the dominant qq
diagonal channel (left panel) and in the off-diagonal q(q̄)γ channel
(right panel) at 14 TeV. The NLO result is normalised to the rcut-

independent cross section computed with dipole subtraction. The lepton
mass is fixed to ml = 10 GeV. The fiducial cuts in Eq. (13) are applied

Fig. 3 NLO EW correction as a function of rcut in the dominant qq
diagonal channel (left panel) and in the off-diagonal q(q̄)γ channel
(right panel) at 14 TeV. The NLO result is normalised to the rcut-

independent cross section computed with dipole subtraction. The lepton
mass is fixed to ml = 10 GeV. No cuts are applied

and

z = M2/s . (19)

Since there is a lower limit on the ratio r = qT /M we can
safely work in d = 4 dimensions. The differential cross reads

d2σ̂qq̄

dM2dq2
T

= 1

32s2

1

(2π)4

1√
(1 − z)2 − 4zq2

T /M2

×
√

1 − 4m2

M2

∫
dΩ|M|2 (20)

and the angular integral is defined in the centre-of-mass frame
of the final-state leptons. By integrating Eq. (20) over q2

T and
M2 and keeping into account the phase space constraints we
obtain

dσ̂qq̄

dr2
cut

= − 1

32

1

(2π)4

∫ zmax

zmin

z dz√
(1 − z)2 − 4zr2

cut

×
√

1 − zmin

z

∫
dΩ|M|2. (21)

123
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where

zmin = 4m2

s
zmax = 1 − 2rcut

√
1 + r2

cut + 2r2
cut .

(22)

The matrix element squared |M|2 can be divided into three
separate gauge invariant contributions: final state radiation,
initial state radiation and interference. The interference con-
tribution is odd under the exchange p3 ↔ p4 and therefore
vanishes after angular integration. We now discuss the final-
and initial-state contributions in turn.

4.1 Final-state radiation

The integration of the matrix element squared corresponding
to final state radiation over the angular variables can be car-
ried out along the lines of Ref. [50]. After partial fractioning,
the required angular integrals have the form

I (k,l) =
∫ π

0
sin ϑ1dϑ1

∫ π

0
dϑ2(a + b cos ϑ1)

−k

× (A + B cos ϑ1 + C sin ϑ1 cos ϑ2)
− j (23)

where the coefficients a, b, A, B,C are functions of the
invariants s, M2, u, t . The ensuing contribution todσ̂qq̄/dr2

cut
can be expressed in the following form

dσ̂ FS
qq̄

dr2
cut

= −4α3e2
q

3s

∫ zmax

zmin

dz

⎡
⎣ K1(z; zmin)

(1 − z)2
√

(1 − z)2 − 4zr2
cut

+ K2(z; zmin)r2
cut

(1 − z)4
√

(1 − z)2 − 4zr2
cut

⎤
⎦ (24)

in terms of two coefficient functions, K1 and K2, which are
regular at z = 1 (soft limit) and do not depend on the cut-off
parameter rcut:

K1(z; zmin) = −
[
zminz

2 + z(1 + z)2
]√

1 − zmin

z

+ z

(
1 + z2 + zminz − z2

min

2

)
ln

1 +
√

1 − zmin

z

1 −
√

1 − zmin

z

,

(25)

and

K2(z; zmin) = 2z2

⎧⎪⎪⎨
⎪⎪⎩

[1 + z(6 + z) + zminz]

√
1 − zmin

z

−
(

1 + z2 + zmin(2 + z) − z2
min

2

)

× ln
1 +

√
1 − zmin

z

1 −
√

1 − zmin

z

⎫⎪⎪⎬
⎪⎪⎭

. (26)

In the small-rcut limit the integral in Eq. (24) can be computed
by using the expansions

Θ(zmax − z)Θ(z − zmin)

(1 − z)2
√

(1 − z)2 − 4zr2
cut

= 1

4
δ(1 − z)

1

r2
cut

+ π

8

[
δ(1 − z) + 2δ′(1 − z)

] 1

rcut
+ O(1)

Θ(zmax − z)Θ(z − zmin)r2
cut

(1 − z)4
√

(1 − z)2 − 4zr2
cut

= 1

24
δ(1 − z)

1

r2
cut

+ π

64

[
3δ(1 − z) + 2δ′(1 − z)

] 1

rcut
+ O(1) (27)

and we obtain for the rcut dependence of the partonic cross
section

σ̂ FS
qq̄ (s; rcut) = σ0(s)

α

2π

{[
2 − (1 + β2)

β
ln

1 + β

1 − β

]
ln (r2

cut)

− 3π

8

[
6(5 − β2)

3 − β2 + −47 + 8β2 + 3β4

β(3 − β2)

× ln
1 + β

1 − β

]
rcut

}
+ O(r2

cut)

≡ σ̂ FS
LP (s; rcut) + σ̂ FS

NLP(s; rcut) + O(r2
cut) (28)

where we have dropped terms which do not depend on rcut

and we have introduced the Born cross section

σ0(s) = 2π

9s
α2e2

qβ(3 − β2) (29)

with β =
√

1 − 4m2

s .
Equation (28) shows that the final-state contribution to

the NLO cross section, integrated down to rcut, contains the
expected single logarithmic term in rcut, which is due to soft
emission and will be cancelled by the subtraction countert-
erm [more precisely, by the abelian limit of the term in the
second line in Eq. (5)]. The next-to-leading power contribu-
tion σ̂ FS

NLP(s; rcut) is linear in rcut and it is responsible for the
behavior observed in Fig. 3.

4.2 Initial-state radiation

The integration of the matrix element squared corresponding
to initial-state radiation over the angular variables is straight-
forward and we obtain
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dσ̂ IS
qq̄

dr2
cut

= −4α3e4
q

9s

∫ zmax

zmin

dz

[
K3(z; zmin)

r2
cut

√
(1 − z)2 − 4zr2

cut

+ K4(z; zmin)√
(1 − z)2 − 4zr2

cut

]
(30)

where the coefficient functions K3 and K4 now read

K3(z; zmin) =
√

1 − zmin

z

(
z + zmin

2

) 1 + z2

z2

K4(z; zmin) = −2K3(z; zmin)
z

1 + z2 . (31)

The coefficient function K3(z; zmin) controls the most singu-
lar term, and is proportional to the Altarelli–Parisi splitting
function. In order to evaluate the integral in Eq. (30) we have
to expand the distribution

T (z, rcut, zmin) = Θ(z − zmin)Θ(zmax − z)√
(1 − z)2 − 4zr2

cut

(32)

in the small rcut limit. Since we know that linear terms in rcut

are absent, we have to expand up to O(r2
cut). Such expansion

is tricky, because the functions K3(z; zmin) and K4(z; zmin)

contain a square root which vanishes at z = zmin. At variance
with the case of final-state radiation, this leads to spurious
singularities when the distributions appearing in the expan-
sion involve derivatives at z = zmin. We found it convenient
to split the integration over z as follows

∫ zmax

zmin

dz =
∫ a

zmin

dz +
∫ zmax

a
dz, zmin < a < zmax . (33)

The integral from zmin to a can be safely computed by
expanding in rcut. The integral from a to zmax can be com-
puted by using the expansion

T (z, rcut, a) = −1

2
δ(1 − z) ln r2

cut +
(

1

1 − z

)

a

+ ln(1 − a)δ(1 − z)

− 1

2

(
δ(2)(1 − z) − 2δ(1)(1 − z)

)
r2

cut ln r2
cut

+
[

(1 + ln (1 − a)) δ(2)(1 − z)

− [1 + 2 ln (1 − a)]δ(1)(1 − z) − 1

2
δ(1 − z)

+ 1 − 2a

(1 − a)2 δ(z − a) − a

1 − a
δ(1)(z − a)

+ D(2)(z, a) + 2D(1)(z, a)

]
r2

cut + O(r4
cut).

(34)

where we have defined the distributions δ(n)(z−b),
(

1
1−z

)
a
,

D(1)(z, a) and D(2)(z, a) through their action on a test func-
tion f (z) as

∫ 1

0
dz f (z)δ(n)(z − b) = (−1)n f (n)(b), b ∈ [0, 1], (35)

∫ 1

0
dz f (z)

(
1

1 − z

)

a
=
∫ 1

a
dz

f (z) − f (1)

1 − z
, (36)

∫ 1

0
dz f (z)D(1)(z, a) =

∫ 1

a
dz

f (1)(z) − f (1)(1)

1 − z
, (37)

∫ 1

0
dz f (z)D(2)(z, a) =

∫ 1

a
dz

z f (2)(z) − f (2)(1)

1 − z
. (38)

By combining the two contributions zmin < z < a and a <

z < zmax the dependence on a cancels out and we obtain for
the rcut dependence of the partonic cross section

σ̂ IS
qq̄(s; rcut)

= σ0(s)
α

2π
e2
q

{
ln2 r2

cut

− 4

(
2 ln 2− 4

3
−ln

1−β2

β2 − 1

β(3−β2)
ln

1+β

1−β

)
ln r2

cut

− 3

2

(1 + β2)(1 − β2)2

β4(3 − β2)

×
(

1 − 4 ln 2 + 2 ln
(1 − β2)rcut

β2

)
r2

cut

}
+ · · ·

≡ σ̂ IS
LP(s; rcut) + σ̂ IS

NLP(s; rcut) + · · · (39)

where we have dropped terms which do not depend on rcut

and the dots stand for terms that vanish faster than r2
cut as

rcut → 0. At variance with Eq. (28), Eq. (39) contains a
double and a single logarithmic term in rcut, which will be
cancelled by the subtraction counterterm. As expected, the
next-to-leading power contribution σ̂ IS

NLP(s; rcut) is quadratic
in rcut, modulo logarithmic enhancements.

As a byproduct of our calculation, we can reobtain the
power suppressed terms in the case of the production of a
vector boson of mass M . To get rid of the decay it is enough
to carry out them → 0 limit, while the constraint on the mass
of the vector boson M eliminates the integration over the z
variable. By using the expansion in Eq. (34) with a = 0 the
contributions from the functions K3(z; zmin) and K4(z; zmin)

agree with the results in Eq. (4.7) and (4.8) in Ref. [29].

4.3 Numerical validation

In order to check the results presented in Sects. 4.1, 4.2 we
have numerically implemented the exact real emission con-
tribution to the cross section and the expansions in Eqs. (28)
and (39).
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Fig. 4 Subtracted partonic cross section for final-state radiation (left
panel) and initial-state radiation (right panel). The solid lines represent
the subtraction of the leading-power term, while the red solid line is
obtained by subtracting also the next-to-leading power terms in Eqs. (28)

and (39), respectively. The upper panels show the result normalised to
the Born cross section, while the lower panels show the result nor-
malised to the rcut → 0 limit. The computation is carried out at fixed
β = 0.6

In Fig. 4 we report the exact real emission partonic cross
section in the qq̄ channel for β = 0.6 as a function of rcut

from which we have subtracted the leading-power contribu-
tion (black curve) and both the leading and next-to-leading
power contributions (red curve). The numerical computa-
tion is separately carried out for the final-state radiation (left
panel) and initial-state radiation (right panel) contributions.
Both for final-state radiation and initial-state radiation the
leading-power contribution exactly matches the divergent
behavior of the real emission cross section which is finite
in the small-rcut limit. The subtraction of the leading-power
contribution exactly corresponds (up to quadratic terms in
rcut, see Eq. 16) to the second term on the right hand side
of Eq. (8) and it is thus what is usually done in the standard
qT subtraction procedure. In the case of final-state radiation
(left panel) the subtracted cross section exibits the expected
linear behavior, while for initial-state radiation (right panel)
the subtracted cross section scales quadratically with rcut.
When besides the leading-power contribution, also the next-
to-leading power (linear) term is subtracted the final-state
subtracted cross section (red curve) behaves quadratically
with rcut, consistently with the result in Eq. (28). In the case of
initial-state radiation, the additional subtraction of the next-

to-leading power (quadratic) term makes the subtracted cross
section almost independent on rcut.

4.4 Hadronic cross section

We now briefly comment upon the behavior of the hadron-
ic cross section. In the following, we will show that when
the fully inclusive cross section is considered, the convolu-
tion with the PDFs potentially introduces an additional linear
term in rcut. In the case of final-state radiation such con-
tribution could modify the parton level result. In the case
of initial-state radiation such contribution could potentially
change the power counting, by making the power correction
linear. However, we will argue that, both for final-state and
initial-state radiation, such additional term vanishes.

The real contribution to the hadronic cross section reads

σ(S, rcut) =
∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1, μF ) fb(x2, μF )

× σ̂ab(s, rcut)δ(x1x2S − s) (40)

where S is the hadronic CM-energy. The presence of a finite
rcut implies that
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s >
4m2

zmax
. (41)

where zmax, defined in Eq. (22), behaves linearly with rcut

zmax = 1 − 2rcut + O(r2
cut) . (42)

The hadronic cross section in Eq. (40) can be rewritten as

σ(S, rcut)

=
∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1, μF ) fb(x2, μF )

× Θ

(
x1x2S − 4m2

zmax

)
σ̂ab (s = x1x2S, rcut)

= z0

∑
a,b

∫ zmax

z0

dz

z2

∫ − ln
√
z0/z

ln
√
z0/z

dy

× fa

(√
z0

z
ey, μF

)
fb

(√
z0

z
e−y, μF

)

× σ̂ab

(
s = 4m2

z
, rcut

)

≡
∑
a,b

∫ zmax

z0

dz Lab(z, z0;μF ) σ̂ab

(
s = 4m2

z
, rcut

)

(43)

where in the last step, we have performed the change of vari-
ables

x1 =
√
z0

z
ey, x2 =

√
z0

z
e−y, z0 ≡ 4m2

S
. (44)

The presence of zmax as an upper integration limit in Eq. (43)
could potentially induce an additional linear term in rcut when
the hadronic cross section is evaluated. However, the partonic
cross section vanishes at the kinematical limit z = zmax

σ̂ab

(
s = 4m2

zmax
, rcut

)
= 0 . (45)

This is a sufficient mathematical condition to prevent the
appearance of a further linear term through integration. We
thus conclude that, as anticipated, in the case of final-state
radiation the linear term in rcut is completely driven by the
parton level result, while for initial-state radiation the con-
volution with PDFs will not produce linear terms in rcut.

4.5 Final-state radiation at next-to-leading power: beyond
inclusive observables

In Sect. 4.1, we have established by means of an analytical
computation that in the case of final-state radiation off mas-
sive emitters the leading power corrections are linear in rcut

and we have explicitly evaluated the coefficient of the lin-
ear term. The feasibility of our computation and the methods
involved crucially rely on the fact we consider a sufficiently
inclusive observable as the total cross section. In the fol-
lowing we propose a way to promote the calculation of the
final-state radiation contribution to differential level.

Our starting point is the expansion of the real contribution
to the differential cross section in the soft limit. According to
the discussion in Appendix A, the leading soft contribution
allows us to obtain the leading-power term in rcut, while the
next-to-soft contribution will allow us to obtain the next-to-
leading power. By inspection of Eq. (27) which involves the
derivative of the δ-distribution, we indeed expect that higher
order terms in the soft expansion contribute to the next-to-
leading power.

In the following we propose a strategy to numerically
prove the above result, which in turns provides a procedure
to compute the next-to-leading power in a fully differential
way. From the soft contributions we can construct a local
counterterm which cancels the singularities of the real cross
section but does not contribute to the next-to-leading power.
Then the subtracted cross section is finite in four dimensions
and can be integrated numerically in the unresolved region
r < rcut. By construction, since the standard qT subtraction
counterterm does not lead to linear contributions in rcut (see
Eq. 16), the combination of the standard qT subtraction for-
mula for r > rcut with such an additional subtracted term for
r < rcut will be free of linear terms in rcut.

To construct the additional counterterm we need a map-
ping which reabsorbs the radiation into a Born-like config-
uration. Among the available mappings at NLO, we choose
the mapping proposed in Ref. [51]. It is a massive FKS [52]
mapping dedicated to the case of the radiative emission off
final state massive emitters and present some peculiar fea-
tures:

– the radiation is reabsorbed in such a way not to modify
the partonic CM energy;

– the energy of the radiation (in the CM frame), which
controls the way the soft limit is approached, appears
explicitly among the variables of the mapping.

In the above mapping, we identify an emitter and a radiated
parton. The radiation variables are given by the radiation
energy fraction ξ = 2Erad/

√
s (s is the partonic CM energy),

the cosine of the angle between the emitter and the radiated
partons y and an azimuthal angle φ (we refer to Ref. [51] for
more details). The phase space reads

dΦR = dΦB × J (ξ, y, φ)dξdydφ (46)

where dΦB is the Born phase space element and the jaco-
bian J is given in Eq. (49) of Ref. [51], and reduces to
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Fig. 5 NLO EW correction as a function of rcut for the complete
Drell–Yan process in the dominant qq diagonal channel without cuts
(left panel) and with asymmetric cuts (right panel) at 7 TeV. The stan-
dard result obtained with qT subtraction (grey band) is compared with

the result obtained by including the power suppressed contribution in
Eq. (48). The NLO result is normalised to the rcut-independent cross
section computed with dipole subtraction

J (0) = s ξ/(4π)3 in the soft limit. The local soft counterterm
is defined as

dσ̂CT
S = dσ̂LO (ΦB) × e2

4π3s

dξ

ξ
dydφ

×
[

s−2m2

(1−βyphy)(1+βyphy)
− m2

(1−βyphy)2 − m2

(1+βyphy)2

]

(47)

where β = √
1 − 4m2/s and yphy is the cosine of the physical

angle between the emitted photon and the leptons in the Born
configuration (in practice we have either yphy = y or yphy =
−y [51]). The next-to-leading power correction as function
of rcut is obtained by subtracting the new soft counterterm
from the real emission contribution in the unresolved region
r < rcut

dσ̂ FS
NLP(rcut) = dσ̂ FSΘ(rcutM(ΦR) − qT )

− dσ̂CT
S Θ(rcut

√
s − qT ) (48)

where in the argument of the second theta function, we take
the soft limit M(φR) → M(ΦB) = √

s.
The expression in Eq. (48) is fully differential, so that it

can be used also in the case in which cuts on the final state
are applied. The contribution in Eq. (48) can be combined
with the standard qT subtraction formula in Eq. (8) to obtain
an improved subtraction procedure. In Fig. 5 we study the
rcut dependence of the NLO EW correction to the complete
Drell–Yan process when the qT subtraction formula is sup-
plemented with the next-to-leading power term in Eq. (48).
We consider pp collisions at

√
S = 7 TeV and we com-

pute the rcut dependent correction δqT (rcut) in the case in
which no cuts are applied (Fig. 5 (left)) and when asymmet-

ric cuts on the transverse momenta and rapidities are applied:
pT,l− > 25 GeV, pT,l+ > 20 GeV and |yl | < 2.5 (Fig. 5
(right)). We see that in both cases the linear dependence with
rcut is nicely cancelled.3 The crucial point for this additional
subtraction to be effective is that the additional counterterm in
Eq. (47) scales like dξ/ξ , thereby leading to purely logarith-
mic contributions in rcut. We have checked that alternative
local subtractions which do not fulfill this property do not
lead to a cancellation of the linear term.

We conclude this section with few comments on the above
results. The subtraction of the linear rcut behavior through
Eq. (48) does not require any analytic integration. It just
requires an appropriate phase space mapping. The reader may
of course argue that there is no need to introduce the modifi-
cation of Eq. (48) to achieve a smooth cancellation of the soft
singularity. Indeed, at NLO one can simply use a local sub-
traction scheme like FKS or dipole subtraction to carry out
the fully differential computation. Nonetheless, the strategy
adopted here could prove itself useful when extending the
computation to the mixed QCD-EW corrections with the qT
subtraction formalism. In this case, given that we aim at the
computation of an effect of the order of few per mille, having
a quadratic instead of linear rcut behavior could dramatically
improve the numerical control of the O(ααS) contribution.

5 Summary

In this paper we have considered an application of the qT
subtraction formalism to the production of massive lepton

3 As discussed in Sect. 3, when symmetric cuts are applied a linear
dependence on rcut appears in the contribution from initial-state radia-
tion.
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pairs in hadron collisions, and we have used this process as a
case study to investigate the power suppressed contributions
in the parameter rcut. We have shown that qT subtraction
can be applied to evaluate NLO EW corrections to this pro-
cess through a straightforward abelianisation procedure from
heavy-quark production in QCD. The computation can be
carried out for lepton masses as small as the one of the muon
without substantial complications, and we have been able
to successfully reproduce inclusive and differential results
obtained with the numerical program Sanc. Our calculation
paves the way to possible applications to the computation of
mixed QCD-EW corrections [41,53–56] and to NNLO QED
corrections [41] to the Drell–Yan process.

We have then studied the power suppressed contributions
to the qT subtraction formula in the parameter rcut. As is
known, in the case of the inclusive cross section, initial state
radiation leads to power corrections quadratic in rcut, and
we have explicitly evaluated the corresponding NLO coef-
ficient. Generally speaking, linear power suppressed terms
arise when cuts on the lepton transverse momenta are applied.
We have shown that, even in the case of the inclusive cross
section, final state radiation leads to a linear power correc-
tion in rcut. We have explicitly computed the coefficient of
such linear term in the case of the inclusive cross section.
By exploiting the purely soft nature of final state singulari-
ties, we have also discussed how the result can be extended
to differential distributions. The method used to carry out
such extension could be used in future applications of the qT
subtraction formalism at O(ααS).
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Appendix A: Soft Power Counting

In this Appendix, we discuss the soft power counting for
final-state radiation. In the strictly soft limit, the phase space
of the emitted photon with momentum k exactly factorizes

dΦ3 = dΦ2 × d3k

(2π)32k0 . (A.1)

The leading power constribution to final-state radiation is
given by the soft-factorisation formula

|M(p1, p2, p3, p4, k)|2FSR

∼
(
e2

3 S33 + e2
4 S44 + 2e3e4 S34

)
|M(p1, p2, p3, p4)|2

(A.2)

where

Si j = pi · p j

(pi · k)(p j · k) . (A.3)

The power counting is more easily understood if we consider
light-cone coordinates

k± = k0 ± k3

√
2

d4k = dk+dk−d2k⊥ (A.4)

Then, the 1-body phase space volume has the form

∫
d4k

(2π)3 δ+(k2) =
∫

dk+dk−d2k⊥
(2π)3 δ+(2k+k− − k2⊥)

= 1

(2π)3

∫ ∞

0

dk+

2k+

∫
d2k⊥ (A.5)

with k− = k2⊥/2k+. Considering for example the contribu-
tion from S34, the leading power unconstrained soft integral
is given by

I soft
34 = 1

(2π)3

∫ ∞

0

dk+

2k+

∫ ∞

0

dk2⊥
2

∫ 2π

0
dθS34Θ(k2⊥−sr2

cut)

= p3 · p4

(2π)3

∫ ∞

sr2
cut

dk2⊥
2

∫ ∞

0

dk+

2k+

×
∫ 2π

0
dθ

1

p2⊥k2⊥

1

(a3 − cos θ)(a4 + cos θ)
(A.6)

ai = 1

p⊥k⊥

(
p+
i

k2⊥
2k+ + p−

i k
+
)

. (A.7)

In the above formula, we have enforced the soft kinematic
with two back-to-back massive leptons. The azimuthal aver-
age is straightforward, after disentangling the product occur-
ing in the denominator by means of the partial fractioning
relation
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1

(a3 − cos θ)(a4 + cos θ)
= 1

a3 + a4

×
(

1

a3 − cos θ
+ 1

a4+cos θ

)
,

(A.8)

and it gives

I soft
34 = p3 · p4

(2π)2

∫ ∞

sr2
cut

dk2⊥
2

∫ ∞

0

dk+

2k+
1

p2⊥k2⊥

1

a3 + a4

×
∑
i=3,4

1√
a2
i − 1

. (A.9)

To make the scaling with the transverse momentum manifest,
we apply the following change of variables at fixed k⊥:

x =
(
k+

k⊥

)2

, dk+ = k⊥
dx

2
√
x

. (A.10)

The soft integral becomes

I soft
34 = p3 · p4

(2π)2

1√
2s

∫ ∞

sr2
cut

dk2⊥
k2⊥

∫ ∞

0

dx

1 + 2x

×
∑
i=3,4

1√
4(p−

i )2x2 + 2(m2 − p2⊥)x + (p+
i )2

(A.11)

where s is the partonic CM energy.
We can complete the calculation of the leading power con-

tribution by performing the integration over the x variable.
The relevant integrals are of the form

T (a, b, c) =
∫ ∞

0

dx

1 + 2x

1√
ax2 + 2bx + c

= 1√
a − 4b + 4c

× ln

[
−2b + 4c + 2

√
c
√
a − 4b + 4c

−a + 2b + √
a
√
a − 4b + 4c

]

(A.12)

under the conditions b2 − ac < 0 and a, c > 0. Then, it is
straightforward to compute

∫ ∞

0

dx

1 + 2x

∑
i=3,4

1√
4(p−

i )2x2 + 2(m2 − p2⊥)x + (p+
i )2

= 1√
2p

ln
1 + β

1 − β
, p =

√
E2 − m2. (A.13)

We get the final expression

I soft
34 = 1

4(2π)2

1 + β2

β
ln

1 + β

1 − β

∫ ∞

sr2
cut

dk2⊥
k2⊥

(A.14)

which exactly matches the coefficient of the leading logarith-
mic divergence proportional to the charge product e3e4 = −1
in Eq. (28). The contributions from I soft

33 and I soft
44 can be

obtained in a similar way and reproduce the remaining term
in Eq. (28). The power counting for the linear power cor-
rection follows now easily observing that the energy of the
radiation scales with the transverse momentum

k0 = k+ + k−
√

2
= k⊥

√
x

2

(
1 + 1

2x

)
. (A.15)

This implies that corrections to the soft approximation will
produce linear terms in rcut.
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