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1 Introduction

Actual and planned CERN LHC operation opens the possibility to perform a large number
of accurate measurements in high energy physics. It is clear that for many of them the over-
all experimental uncertainty will be much smaller than the theory uncertainty estimated
based on next-to-leading order QCD corrections. Then, including higher order corrections
turns out to be mandatory for a meaningful comparison among theory predictions and
experimental data. Thus, next-to-next-to-leading order (NNLO) computation has received
considerable attention and several approaches for performing these calculations have been
proposed. These include the qT [1] and N -jettiness [2, 3] slicing methods, as well as sub-
traction schemes, like antenna [4–12], CoLoRFulNNLO [13–22], residue-improved [23–26],
nested soft-collinear [27–31] and projection-to-Born [32] with yet other approaches under
development [33–35].

From the mathematical point of view, computations at NNLO are more elaborate than
ones at NLO and for this reason the level of automation is still much less advanced. On the
one hand, difficulties lie in the computation of the double virtual amplitudes for processes
with many particles in the final state and with masses. On the other hand, there are still
no fully satisfactory, complete and general algorithms for the regularization of the infrared
divergences for fully differential NNLO computation as there are for the NLO case. Here
by general, we refer to a scheme that applies to any kind of singularity coming from both
initial and massive or massless final state particles. By complete, we mean that the set of
subtractions defining a scheme is given in full detail together with the complete integrated
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versions. This last point is of course mandatory to allow for independent applications,
validations or just implementations for analysis purposes.

Here we consider the CoLoRFulNNLO method that has been formulated in refs. [13–
22]. The basic ideas of the method are quite general and apply to final state as well as
initial state singularities. We focus on the final state infrared singularities and in partic-
ular, on the production of a massive quark-antiquark pair from a colourless initial state.
NNLO corrections to such processes have been computed in the literature previously [36–
40] but still, a complete procedure for the local subtraction of all infrared singularities,
supplemented by a compact analytic expression for the sum of the integrated counterterms
has been missing. In the present paper we fill this gap by providing a complete scheme for
the pair creation of a heavy quark-antiquark pair out of a colourless initial state.

The paper is organized as follows. In section 2 we define the problem we want to
address and set up our notation. In section 3, we compute the NLO correction to heavy
quark production from a general colourless initial state. We introduce the set of NNLO
counterterms in section 4, where we also present a complete and compact analytic expres-
sion for the integrated form of the sum of all counterterms. In section 5, we present the
application of our subtraction scheme to the production of heavy quarks in the decay of
the Standard Model Higgs boson. Finally, we draw our conclusions in section 6.

2 Heavy quark-antiquark pair production from colourless initial states

Let us consider the production of a heavy quark-antiquark pair from a generic colourless
initial state X. The list of relevant subprocesses up to NNLO accuracy in QCD is given by

LO X → QQ̄ tree-level

NLO X → QQ̄ one-loop
X → QQ̄g tree-level

NNLO X → QQ̄ two-loop
X → QQ̄g one-loop
X → QQ̄gg tree-level
X → QQ̄qq̄ tree-level
X → QQ̄QQ̄ tree-level

In the above list the heavy quarks are denoted by Q and Q̄, while radiated gluons and light
quarks are denoted by g and qq̄ respectively. The matrix elements for all of these partonic
processes are well-known for scalar, pseudo-scalar, as well as vector and axial currents. In
particular the two-loop form factors were first computed in [41–44] up to finite terms in
the parameter of dimensional regularization ε. Recently these results have been extended
up to O(ε1) terms in ref. [45].
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For amplitudes, we use the colour-space notation of [46] where |M〉 is an abstract
vector in colour- and spin-space, such that the matrix element summed over colours and
spins can be written as

|M|2 = 〈M|M〉 . (2.1)

Then, the insertion of colour charge operators, such as T iT k or the anti-commutator
{T iT k,T jT l}, as well as polarization-dependent tensors such as the Altarelli-Parisi split-
ting kernels P̂fifr (to be specified below), into a given amplitude interference will be denoted
as

T iT k ⊗ |M|2 ≡ 〈M|T iT k|M〉 , (2.2)
{T iT k,T jT l} ⊗ |M|2 ≡ 〈M|{T iT k,T jT l}|M〉 , (2.3)

P̂fifr ⊗ |M|
2 ≡ 〈M|P̂fifr |M〉 . (2.4)

The amplitude |M〉 has the formal loop expansion

|M〉 = |M(0)〉+ |M(1)〉+ |M(2)〉+ . . . . (2.5)

We consider amplitudes computed in conventional dimensional regualrization with the
strong coupling αs renormalized in the MS scheme, while the heavy quark mass and wave
function are renormalized on-shell. Furthermore, assuming nl light flavours, plus a single
heavy flavour Q, we implement the transition that allows us to use nl + 1 active flavours
in the running strong coupling [47]. In particular,

αBs µ
2ε
0 = αsµ

2ε
R

C(ε)

[
1− αs

4π
β0
ε

+ O(α2
s )
]
, (2.6)

where αBs is the bare coupling, while αs denotes the renormalized coupling which will
appear in all subsequent equations. Furthermore, the beta-function coefficient β0 reads

β0 = 11
3 CA −

4
3TR(nl + 1) (2.7)

and
C(ε) = (4π)εΓ(1 + ε) . (2.8)

Note that C(ε) as defined above is different form the usual expression in the MS scheme of
SMS
ε = (4π)ε exp(−εγE) and agrees with the convention of refs. [41–44]. However, for the

processes considered here the perturbative expansion starts at α0
s , therefore the inclusion

of the NNLO corrections implies just one-loop renormalization for the coupling constant.
For this reason, the O(ε2) difference between these two conventions turns out to have no
impact on the physical result.

Throughout we denote by P the total incoming momentum of the process and make
use of the following definitions

sij ≡ 2pi · pj , yij ≡
sij
P 2 and y(ij)k ≡ yik + yjk . (2.9)
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We also employ this notation for mapped momenta (see eqs. (3.10) and (4.16) below), so
that e.g.,

s
î k̂
≡ 2 p̂ i · p̂ k , s

î r
≡ 2 p̂ i · pr and s

ĩ k̃
≡ 2 p̃ i · p̃ k . (2.10)

The phase space of n outgoing particles of total momentum P is defined as

dφn(p1, . . . , pn;P ) =
n∏
i=1

ddpi
(2π)d−1 δ+(p2

i −m2
i )(2π)dδ(4)(p1 + . . .+ pn − P ) . (2.11)

Finally, integrated subtractions are given in terms of multiple polylogarithms (G),
which can be defined recursively by the iterated integral [48, 49]

Ga1,...,an(y) =
∫ y

0
dt 1
t− a1

Ga2,...,an(t) (2.12)

with G(y) = 1. In the special case where all the ai’s are zero, the multiple polylogarithm
is defined as

G01,...,0n(y) = 1
n! lnn y , (2.13)

which is consistent with G(y) = 1 for n = 0. For completeness we note that for ai ∈ {0,±1},
the G’s are related to the harmonic polylogarithms (H) of [50] by the relation

Ga1,...,an(y) = (−1)pHa1,...,an(y) , ai ∈ {0,±1} (2.14)

where p denotes the number of ai’s that are equal to +1.

3 Subtractions at NLO

Consider the NLO correction to the production of the heavy quark-antiquark pair, which
is the sum of the real contribution involving the emission of an extra gluon and the virtual
contribution containing the one-loop correction,

ΓNLO[J ] =
∫

3
dΓRJ3 +

∫
2

dΓVJ2 . (3.1)

Here
∫

3 and
∫

2 denote the integration over the QQ̄g and QQ̄ phase space, while J3 and
J2 are the values of some infrared-safe observable J computed with the corresponding 3-
and 2-parton kinematics. By introducing an appropriate local subtraction term to regulate
infrared divergences, we rewrite eq. (3.1) as a sum of two finite terms

ΓNLO[J ] =
∫

3
dΓNLO

3 +
∫

2
dΓNLO

2 , (3.2)

with the regularized real and regularized virtual contributions1 given by

dΓNLO
3 = dΓRJ3 − dΓR,A1J2 , (3.3)

dΓNLO
2 =

[
dΓV +

∫
[1]

dΓR,A1

]
J2 . (3.4)

Above
∫

[1] denotes the integration of the subtraction terms over the radiation variables of
the extra gluon.

1Here and in the following, a regularized contribution will refer to an expression that is free of both
explicit ε-poles as well as non-integrable kinematic singularities.
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3.1 Regularized real contribution

Let us consider first the real emission process, X(P ) → Q(p1) + Q̄(p2) + g(p3). Denoting
by F the flux factor,2 we have

dΓR = 1
F

dφ3(p1, p2, p3;P )|M(0)
QQ̄g
|2 (3.5)

and
dΓR,A1 = 1

F
dφ3(p1, p2, p3;P )A1|M(0)

QQ̄g
|2 . (3.6)

We note that throughout this subsection, p1, p2 and p3 refer to the momenta of the heavy
quark Q, the heavy antiquark Q̄ and the gluon g in the three-particle real emission phase
space. The matrix element is singular only in the pµ3 → 0 soft gluon limit, thus the structure
of the approximate matrix element is very simple and we have just one subtraction term,

A1|M(0)
QQ̄g
|2 = S(0)

g3 . (3.7)

Single soft subtraction. The subtraction term follows the structure of the general
formula for the approximation of a tree-level n + 1-parton matrix element in the pµr → 0
soft limit [51] and is given by

S(0)
gr (p1, p2, p3) ≡ −8παsµ

2ε
R

C(ε)
∑
î , k̂

1
2S î k̂ (r) T

î
T
k̂
⊗ |M(0)

n ( p̂ 1, p̂ 2)|2 , (3.8)

where the summation indices î and k̂ run over the labels of the hard momenta that appear
in the factorized matrix element (i.e., 1̂ and 2̂ , see below), and the eikonal factor is also
computed using these momenta,

S
î k̂

(r) =
2s

î k̂

s
î r
s
k̂ r

= ( p̂ i · p̂ k)
( p̂ i · pr)( p̂ k · pr)

and S
î î

(r) =
2s

î î

s2
î r

= p̂ 2
i

( p̂ i · pr)2 . (3.9)

The 3→ 2 mapping {p1, p2, p3} → { p̂ 1, p̂ 2} that specifies the hatted momenta which
enter the factorized matrix element in eq. (3.8) is defined as follows (to be clear, the heavy
quark Q and anitquark Q̄ carry momenta p̂ 1 and p̂ 2 in the two-parton matrix element on
the right hand side of eq. (3.8)),

p̂ µ1 = Λµν ( K̂ ,K) 1
∆(pµ1 − γ1p

µ
3 ) ,

p̂ µ2 = Λµν ( K̂ ,K) 1
∆(pµ2 − γ2p

µ
3 ) ,

(3.10)

where ∆ and γ1,2 are

∆ =
√

1− s13s23s3P
P 2s13s23 −m2

Qs
2
3P

, (3.11)

2The flux factor is F = 2mX for the decay of a heavy particle X, while for e+e− collisions it reads
F = 2P 2 (the electron and positron are assumed to be massless).
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and

γ1 =
m2
Qs23s3P

P 2s13s23 −m2
Qs

2
3P

, γ2 =
m2
Qs13s3P

P 2s13s23 −m2
Qs

2
3P

. (3.12)

With these definitions we have p̂ 2
1 = p̂ 2

2 = m2
Q and K̂

2 = K2, where

Kµ = Pµ and K̂
µ = 1

∆[pµ1 + pµ2 − (γ1 + γ2)pµ3 ] . (3.13)

Finally, Λµν ( K̂ ,K) is a (proper) Lorentz transformation that takes Kµ into K̂ µ, its explicit
form can be chosen e.g., as

Λµν ( K̂ ,K) = gµν −
2(K + K̂ )µ(K + K̂ )ν

(K + K̂ )2
+ 2 K̂ µ

Kν

K2 . (3.14)

3.2 Regularized virtual contribution

Turning to the two terms in eq. (3.4), the virtual contribution dΓV involves the one-loop
correction to the process X(P )→ Q(p1) + Q̄(p2) and we have

dΓV = 1
F

dφ2(p1, p2;P )2<〈M(0)
QQ̄
|M(1)

QQ̄
〉 (3.15)

with ∫
[1]

dΓR,A1 = 1
F

dφ2(p1, p2;P ) I1(p1, p2; ε)⊗ |M(0)
QQ̄
|2 (3.16)

where the I1(p1, p2; ε) operator corresponds to the integral of the only subtraction term,
S(0)
g3 . We remark that throughout this subsection, p1 and p2 denote the momenta of the

heavy quark Q and antiquark Q̄ in the two-body phase space.
After resolving the summation in eq. (3.8) using the colour algebra relations T 2

1 =
T 2

2 = CF and T 1T 2 = −CF, the insertion operator can be computed in a straightforward
way by integrating S(0)

gr over the full three body phase space and simply dividing by the
volume of the (massive) two particle phase space, which is a constant. The result of the
integration can be cast in the form

I1(p1, p2; ε) = αs
2π

(
µ2
R

P 2

)ε
CF

(1
ε
a−1 + a0 + ε a1 + O(ε2)

)
, (3.17)

where the coefficients of the Laurent expansion are functions of the customary variable

y ≡

√
P 2 −

√
P 2 − 4m2

Q
√
P 2 +

√
P 2 − 4m2

Q

, (3.18)

which is real for the physical decay process. The coefficients appearing in eq. (3.17) above
can be expressed in terms of multiple polylogarithms defined in eq. (2.12), always with
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argument y. Setting Ga1,...,an(y) = Ga1,...,an for ease of notation, we have

a−1 = 2+ 2(1+y2)
1−y2 G0 , (3.19)

a0 = 4−8G1−
2(1+2y+5y2)

1−y2 G0 + 2(1+y2)
1−y2 (4G−1,0−G0,0−4G0,1 +2G1,0−4ζ2) , (3.20)

a1 = 8−16G1 +32G1,1−
2

1−y2

[
2(1+2y+5y2)G0−8y(1+3y)ζ2 +4(3+2y+3y2)G−1,0

−(1+2y+5y2)(G0,0 +4G0,1)+2(7+2y−y2)G1,0−(1+y2)(16G−1,−1,0−4G−1,0,0

−16G−1,0,1 +8G−1,1,0−12G0,−1,0 +G0,0,0 +4G0,0,1−14G0,1,0 +16G0,1,1 +8G1,−1,0

−2G1,0,0−8G1,0,1 +4G1,1,0−16G−1ζ2−8G1ζ2−8ζ3)
]
. (3.21)

For the NLO cross section only the first two terms in the expansion of I1(p1, p2; ε) are
needed. Nevertheless, the order ε term will enter the integrated subtraction for the single
unresolved limit of real-virtual emission at NNLO and so we present it here.

Note that in eq. (3.17) we have expanded the factor of C(ε) that appears in the
denominator of eq. (3.8) which cancels, as usual, terms of γE and ln(4π) coming from
phase space integration. If the strong coupling is defined with a different ε-dependent
prefactor in eq. (2.6), the explicit forms of the expansion coefficients change accordingly.
In particular, adopting the standard MS factor of SMS

ε = (4π)ε exp(−εγE), we would have

aMS
1 = a1 + ζ2

2 a−1 , (3.22)

while the lower order expansion coefficients remain unchanged.

4 Subtractions at NNLO

The NNLO correction is the sum the double real, real-virtual and double virtual parts,

ΓNNLO[J ] =
∫

4
dΓRRJ4 +

∫
3

dΓRVJ3 +
∫

2
dΓVVJ2 , (4.1)

which we rearrange into three finite contributions by including appropriate subtraction
terms,

ΓNNLO[J ] =
∫

4
dΓNNLO

4 +
∫

3
dΓNNLO

3 +
∫

2
dΓNNLO

2 . (4.2)

The regularized double real, regularized real-virtual and regularized double virtual contri-
butions are

dΓNNLO
4 = dΓRRJ4 − dΓRR,A1J3 − dΓRR,A2J2 + dΓRR,A12J2 (4.3)

dΓNNLO
3 =

[
dΓRV +

∫
[1]

dΓRR,A1

]
J3 −

[
dΓRV,A1 +

(∫
[1]

dΓRR,A1

)
A1
]
J2 (4.4)

dΓNNLO
2 =

[
dΓVV +

∫
[2]

dΓRR,A2 −
∫

[2]
dΓRR,A12 +

∫
[1]

dΓRV,A1 +
∫

[1]

(∫
[1]

dΓRR,A1

)
A1
]
J2 .

(4.5)

Above
∫

[1] and
∫

[2] denote the integration of subtraction terms over the radiation variables
of one and two extra partons.
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4.1 Regularized double real contribution

Considering all possible subprocesses with one heavy flavour Q and nl massless flavours q,
the sum of all such contributions reads

dΓRR = 1
F

dφ4(p1, p2, p3, p4;P )
[1

2 |M
(0)
QQ̄gg

|2 + nl|M
(0)
QQ̄qq̄

|2 + 1
4 |M

(0)
QQ̄QQ̄

|2
]
, (4.6)

where we have explicitly reported the statistical factors in front of the matrix elements for
the production of two gluons and the one for the production of two heavy quark-antiquark
pairs. We label the particles such that the heavy quark Q and heavy antiquark Q̄ always
carry momenta p1 and p2, while p3 and p4 are the momenta associated with the extra
emissions (either two gluons gg, a light quark-antiquark pair qq̄, or one more heavy quark
and antiquark, QQ̄). We emphasize that p1, p2, p3 and p4 denote momenta in the four-
particle double real emission phase space throughout this subsection. The subtraction
terms introduced in eq. (4.3) are

dΓRR,A1 = 1
F

dφ4(p1, p2, p3, p4;P )
[1

2A1|M(0)
QQ̄gg

|2 + nlA1|M(0)
QQ̄qq̄

|2
]
, (4.7)

dΓRR,A2 = 1
F

dφ4(p1, p2, p3, p4;P )
[1

2A2|M(0)
QQ̄gg

|2 + nlA2|M(0)
QQ̄qq̄

|2
]
, (4.8)

dΓRR,A12 = 1
F

dφ4(p1, p2, p3, p4;P )
[1

2A12|M(0)
QQ̄gg

|2 + nlA12|M(0)
QQ̄qq̄

|2
]
. (4.9)

Starting with the X(P ) → Q(p1) + Q(p2) + g(p3) + g(p4) subprocess, the |M(0)
QQ̄gg

|2

matrix element requires regularization by subtraction only in the following infrared limits:3

1. the pµ3 ||p
µ
4 single unresolved collinear limit

2. the pµ3 → 0 soft limit

3. the pµ4 → 0 soft limit

4. the pµ3 → 0, pµ4 → 0 double soft gluon limit

Hence, the single, double and iterated single unresolved approximate matrix elements for
this subprocess have the following structure,

A1|M(0)
QQ̄gg

|2 = C(0)
g3g4F

C
34 +

(
S(0)
g3 − Cg3g4S

(0)
g3

)
FS3 +

(
S(0)
g4 − Cg3g4S

(0)
g4

)
FS4 , (4.10)

A2|M(0)
QQ̄gg

|2 = S(0)
g3g4 , (4.11)

A12|M(0)
QQ̄gg

|2 = Cg3g4S
(0)
g3g4F

C
34 +

(
Sg3S

(0)
g3g4 − Cg3g4Sg3S

(0)
g3g4

)
FS3

+
(
Sg4S

(0)
g3g4 − Cg3g4Sg4S

(0)
g3g4

)
FS4 . (4.12)

3Although potentially useful to stabilize numerical computation in the limit of small quark mass, in
this paper we do not include subtraction terms for quasi-collinear limits and the production of two heavy
quark-antiquark pairs.
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In eq. (4.10), the subtraction terms Cg3g4S
(0)
g3 and Cg3g4S

(0)
g4 are included to avoid double sub-

traction over those regions of phase space where the collinear and soft limits overlap. More-
over, note that formally A12 = A1A2, i.e., the form of the iterated single unresolved approx-
imate matrix element agrees with that of the single unresolved approximate matrix element.

Although the structure of eqs. (4.10)–(4.12) is dictated by the types of infrared limits
which require regularization, the explicit definition of the subtraction terms is obviously not
unique. Different choices can have various advantages and drawbacks (e.g., locality of sub-
tractions versus full analytic control over the integrated subtraction terms). In particular, a
general issue for any subtraction scheme at NNLO concerns the integration of counterterms,
which can turn out to be a very elaborate task. Thus, on practical grounds, once the gen-
eral structure of the counterterms is defined and momentum conservation has been imple-
mented, one may seek to exploit the freedom in the definitions of counterterms to simplify
the integration. This consideration motivates the inclusion of the collinear factor FC34 and
the soft factors FS3 and FS4 in the above formulae.4 Clearly, the collinear and soft factors
must go to the identity in the corresponding limit. Furthermore, to preserve the structure
of cancellations among the subtraction terms in all limits, we find that in our construction
the soft-collinear overlap must be multipiled with the soft factor, while A12|M(0)

QQ̄gg
|2 in-

herits the pattern of modifications of A1|M(0)
QQ̄gg

|2. In the following, we present a concrete
example of a constructive procedure for obtaining factors that lead to a fully analytic result
for the sum of all integrated subtraction terms which is very compact, see section 4.3.

Turning to the X(P ) → Q(p1) + Q̄(p2) + q(p3) + q̄(p4) subprocess, the only infrared
limits of |M(0)

QQ̄qq̄
|2 that require regularization by subtraction are:

1. the pµ3 ||p
µ
4 single collinear limit

2. the pµ3 → 0, pµ4 → 0 double soft quark-antiquark limit

Correspondingly, the structure of the subtractions is very simple and each approximate
matrix element is built form a single term,

A1|M(0)
QQ̄qq̄

|2 = C(0)
q3q̄4F

C
34 , (4.13)

A2|M(0)
QQ̄qq̄

|2 = S(0)
q3q̄4 , (4.14)

A12|M(0)
QQ̄qq̄

|2 = Cq3q̄4S
(0)
q3q̄4F

C
34 , (4.15)

As previously, A12 = A1A2 formally.
Before presenting the explicit expressions of each subtraction term, let us first discuss

the kinematics and in particular the momentum mappings used to enforce exact phase space
factorization. The definition of subtraction terms involves the specification of functions
which map the double real emission phase space into phase spaces of lower multiplicity
plus radiation variables. In particular, we find that all single unresolved subtraction terms
can be defined using just one 4→ 3 momentum mapping. The mapping appropriate to the
double unresolved and iterated single unresolved subtractions is then obtained simply by

4Similar considerations have been discussed also in ref. [52].
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applying the 3→ 2 mapping discussed in section 3.1 to the output of the 4→ 3 mapping
presented below. Given momenta {p1, p2, p3, p4} where p2

1 = p2
2 = m2

Q and p2
3 = p2

4 = 0, to
be mapped to { p̂ 1, p̂ 2, p̂ 34} with p̂ 2

1 = p̂ 2
2 = m2

Q and p̂ 2
34 = 0, we set

p̂ µ34 = 1/β(pµ3 + pµ4 − αP
µ) ,

p̂ µn = Λµν ( K̂ ,K)pνn , n = 1, 2 ,
(4.16)

where α and β are

α = 1
2
[
y(34)P −

√
y2

(34)P − 4y34
]

and β =

√
y2

(34)P − 4y34

y(34)P − y34
. (4.17)

With these definitions p̂ 34 is massless and the momenta

Kµ = Pµ − pµ3 − p
µ
4 and K̂

µ = Pµ − p̂ µ34 (4.18)

have the same mass, K2 = K̂
2. Hence, Λµν ( K̂ ,K) is a (proper) Lorentz transformation

that takes Kµ into K̂
µ, whose explicit form can be chosen as in eq. (3.14). We note that

this mapping is equivalent to the final state mapping presented in ref. [53].
The momentum mapping introduced above leads to the exact factorization of the four

particle phase space in the following form,

dφ4(p1, p2, p3, p4;P ) = dφ3( p̂ 1, p̂ 2, p̂ 34;P )[dp] , (4.19)

where the measure for the factorized radiation variables [dp] reads

[dp] = x−1+2εP
2

2π

∫ αmax

αmin
dα (1− α)−3+2ε(x− 2α+ α2)2−2εdφ2(p3, p4;αP + β p̂ 34) , (4.20)

with
x ≡ y3̂4P = 2 p̂ 34 · P

P 2 , (4.21)

and expressing β of eq. (4.17) in terms of α and x we find

β = x− 2α+ α2

x(1− α) . (4.22)

Since p̂ 2
34 = 0 we have

αmin = 0 and αmax = 1−
√

1− x . (4.23)

Before going on, let us anticipate some difficulties which appear when integrating the
single unresolved subtraction terms over the measure in eq. (4.20). First, the definition
of the collinear subtraction term involves the specification of a momentum fraction zr
(r = 3, 4) associated with the splitting. However, a natural candidate for this variable,
zr = pr·P

(p3+p4)·P , turns out to be a somewhat complicated function of the radiation variables.
Second, the soft subtraction term involves the eikonal factor with the hard momenta p̂ 1
and p̂ 2. In addition, the measure [dp] evidently depends also on p̂ 34. Thus, the result of
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the integration will depend on all independent dot-products between these three vectors
in a very complicated way. Last, the upper limit in eq. (4.23) is a square root function
of the invariant x, which implies that the integrated counterterms will also be function of
this square root. Regardless of the first two issues, this last point alone leads to difficulties
when computing the iterated single unresolved subtraction terms.

However, exploiting the freedom in the definition of the subtraction terms, one can
devise a strategy to tackle the above mentioned difficulties. First, a more convenient choice
of momentum fractions can be made upon examination of the explicit form of the collinear
integral without affecting the structure of singularities. Second, as anticipated in eq. (3.8)
we multiply the soft integral by an appropriate function FSr that reduces to one in the
unresolved limit in d dimensions. This function can be chosen in such a way that it cancels
regular factors, effectively reducing the multiple angular dependence of the integrand. Last,
one can restrict the phase space of the subtraction.5 This restriction can be implemented
by adopting an appropriate functional form of the upper limit of integration with respect
to x (e.g., linear) which avoids the dependence on square roots of invariants.

Single collinear subtraction. In order to define the collinear subtraction term, we start
from the well-known approximation to the matrix element in this limit [57]

|M(0)
QQ̄f3f4

(p1, p2, p3, p4)|2 ' 8παsµ
2ε
R

C(ε)
1
s34

P̂f3f4(z3, k⊥; ε)⊗ |M(0)
QQ̄g

(p1, p2, p3 + p4)|2 (4.24)

where P̂f3f4(z3, k⊥; ε) is the d-dimensional Altarelli-Parisi splitting kernel for the f(34) →
f3 + f4 splitting (here f denotes the parton flavour) that are functions of the momentum
fraction (z3) and the transverse momentum (k⊥) of the splitting. For our calculation only
gluon splitting is relevant, for which the kernels are given explicitly by

Pµνgg (z3, k⊥) = 2CA

[
− gµν

(
z3

1− z3
+ 1− z3

z3

)
− 2(1− ε)z3(1− z3)k

µ
⊥k

ν
⊥

k2
⊥

]
, (4.25)

Pµνqq̄ (z3, k⊥) = TR

[
− gµν + 4z3(1− z3)k

µ
⊥k

ν
⊥

k2
⊥

]
. (4.26)

To build a proper subtraction counterterm from the above limit formula, as usual we
need to evaluate the factorized matrix element on the right hand side with mapped mo-
menta, that respect momentum conservation and the mass shell conditions. Furthermore,
the momentum fractions and k⊥ must be properly defined over the full phase space. A
straightforward choice for z3 would read

z3 = p3 · P
(p3 + p4) · P and 1− z3 = p4 · P

(p3 + p4) · P . (4.27)

Although it is a simple exercise to construct the subtraction term in this way, using the
momentum mapping of eq. (4.16), it turns out that the integrated form of this subtraction
is rather cumbersome. In order to exhibit the reasons behind this, we recall the mea-
sure for the radiation variables, eq. (4.20), and note that the two-particle phase space

5A well-known practice in various NLO subtraction schemes [54–56].
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dφ2(p3, p4;αP + β p̂ 34) appearing there can be parametrised as follows,

dφ2(p3, p4;αP + β p̂ 34) = 1
8π

(4π)ε

Γ(1− ε)(P 2)−εdv α−ε(α+ βx)−εv−ε(1− v)−εΘ(v)Θ(1− v) ,

(4.28)
where β is given in eq. (4.22), while v is defined implicitly by the following relation,

z3 = α(1− α) + (x− 2α+ α2)v
x− α2 . (4.29)

Notice that 1− z3 is obtained by v → 1− v in the above expression. Furthermore, in this
parametrization the two-paricle invariant y34 reads

y34 = α(x− α)
1− α , (4.30)

so the colliner limit (when y34 → 0) corresponds to α → 0 (note that αmax = 1 −
√

1− x
so x− α > 0, since 0 < x < 1), and in the limit v is simply the momentum fraction of the
splitting.

Examining the explicit forms of the Altarelli-Parisi splitting kernels, it is clear that
integrals involving 1/z3 must be evaluated, and the quadratic expression in the numerator
of z3 appears in the denominator of the integrand, causing the presence of square root
functions of x in the integrated expressions. Because of this, integrating these expres-
sions further, as is necessary when computing the integrals of iterated single unresolved
subtraction terms, becomes extremely complicated.

In order to avoid such complications, let us drop all terms that are not linear in α

and in v in the numerator of z3, so that this numerator simply reads α + xv. Enforcing
the correct collinear limit (z3 → v as α → 0) as well as the correspondence between
(v, z3)↔ (1− v, 1− z3), we define the new variable6

ẑ3 = α+ xv

2α+ x
. (4.31)

The last requirement ensures the preservation of the symmetry between the daughter par-
tons in the splitting at the integrand level. Thus our choice for the collinear subtraction
term is

C(0)
f3f4

(p1, p2, p3, p4) ≡ 8παsµ
2ε
R

C(ε)
1
s34

P̂f3f4(ẑ3, k̂⊥; ε)⊗ |M(0)
QQ̄g

( p̂ 1, p̂ 2, p̂ 34)|2 , (4.32)

where the hatted momenta appearing in the factorized matrix element are given in
eq. (4.16). We note that ẑ3 can be expressed in terms of z3 of eq. (4.27) as follows,

ẑ3 = 2x(x+ y34)z3 − (x− r)(x+ y34 − r)
2r(2x+ y34 − r)

,

1− ẑ3 = 2x(x+ y34)(1− z3)− (x− r)(x+ y34 − r)
2r(2x+ y34 − r)

,

(4.33)

6Notice that assuming ẑ3 = α+xv
D3

with D3 independent of v, requiring 1 − ẑ3 = α+x(1−v)
D3

immediately
fixes the denominator as D3 = 2α+ x.
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where
r =

√
(x+ y34)2 − 4y34 . (4.34)

The definition of the transverse momentum k̂⊥ that enters the Altarelli-Parisi splitting
kernel reads

k̂µ⊥ = ζ3p
µ
4 − ζ4p

µ
3 + ζ34 p̂

µ
34 , (4.35)

where

ζ3 = z3−
y34

αy(34)P
, ζ4 = (1−z3)− y34

αy(34)P
and ζ34 = y34

αx
[(1−z3)−z3] . (4.36)

Notice that in the above equation, we have made use of z3 of eq. (4.27). With this definition
k̂µ⊥ is perpendicular to the parent momentum p̂ 34 and also k̂µ⊥ → 0 in the pµ3 ||p

µ
4 collinear

limit.
However, even after introducing the new variable in eq. (4.31), the issue of square root

functions of invariants in the integrated form of C(0)
f3f4

is still present due to the appearance
of the factor (x−2α+α2)2−2ε in eq. (4.20). We deal with this factor by exploiting the free-
dom to multiply the subtraction term with a suitable regular function FC34, see eq. (4.10).
To make an optimal choice, we take the occasion to collect all factors coming from the fac-
torized measure and the factor of 1/s34 which is common to all collinear integrals. Inserting
the explicit expression for dφ2(p3, p4;αP + β p̂ 34) from eq. (4.28) into eq. (4.20), we find

[dp] 1
s34

= (4.37)

= x−1+2ε

(4π)2
(4π)ε

Γ(1−ε)(P 2)−εdvα−1−εv−ε(1−v)−ε(1−α)−2+3ε(x−α)−1−ε(x−2α+α2)2−2ε .

We note that the product of the last three factors,

G(α, x; ε) ≡ (1− α)−2+3ε(x− α)−1−ε(x− 2α+ α2)2−2ε , (4.38)

does not play a role in regularizing any divergent behaviour, hence the integrand may be
simplified (without changing the pole structure of the integral) by multiplying with

lim
α→0
G(α, x; ε)

G(α, x; ε) = x1−3ε(1− α)2−3ε(x− α)1+ε(x− 2α+ α2)−2+2ε . (4.39)

The final source of square roots in the integral is the upper limit of integration in
eq. (4.23). Since we are free to restrict the action of the counterterm to a region of phase
space around the singular limit, we choose an upper limit α0(x) ≤ αmax such as to avoid
the presence of square roots. One simple choice is

α0(x) = K · x2 < 1−
√

1− x , K, x ∈ (0, 1] . (4.40)

As the final physical results cannot depend on the constant K, varying its value gives a
strong check on the correct implementation of the subtraction scheme. Thus the final form
of the regular function FC34 is given by

FC34 ≡ x1−3ε(1− α)2−3ε(x− α)1+ε(x− 2α+ α2)−2+2εΘ[α0(x)− α] . (4.41)
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Single soft subtraction. The single soft subtraction to the double real contribution is
structurally identical to the NLO soft subtraction term given in eq. (3.8) and we have,

S(0)
gr (p1, p2, p3, p4) ≡ −8παsµ

2ε
R

C(ε)
∑
î , k̂

1
2S î k̂ (r) T

î
T
k̂
⊗ |M(0)

QQ̄g
( p̂ 1, p̂ 2, p̂ 34)|2 . (4.42)

The mapped momenta that appear in the 3-parton factorized matrix element above can
be chosen to coincide with those used to define the collinear subtraction and are given in
eq. (4.16). We recall that the summation indices î and k̂ in eq. (4.42) run over the labels
of the mapped momenta that enter the factorized matrix element (i.e., î , k̂ = 1̂ , 2̂ , 3̂4 ).

The integration of the soft counterterm is plagued by similar difficulties as the collinear
case discussed above. In particular, the (x− 2α+α2)2−2ε factor in eq. (4.20) is present, as
well as the square root in the upper limit of integration. As with the collinear subtraction,
we can overcome these problems by a suitable choice of the FSr function that appears in
eq. (4.10). In order to obtain this factor, consider the most elaborate soft integral, which
involves the eikonal factor

s
1̂ 2̂

s
1̂ r
s

2̂ r
. It is convenient to write this integral in the rest frame

of P , oriented such that p̂ µ34 lies along the z-axis,

Pµ =
√
P 2(1, . . .) ,

p̂ µ34 = Ê34(1, . . . , 1) ,

p̂ µ1 = Ê1(1, ~β1) ,

p̂ µ2 = Ê2(1, ~β2) ,

(4.43)

where . . . denote components that vanish.7 In this frame pr reads

pµr = Er(1, ~nr) = Er(1, . . . angles . . . , sinϕ sinϑr, sinϕ cosϑr, cosϑr) , (4.44)

where “. . . angles . . .” are angular components on which the integrand does not depend. In
this frame, dφ2(p3, p4;αP + β p̂ 34) can be written in the following form

dφ2(p3, p4;αP + β p̂ 34) =

= 2−3−2επ−2+ε Γ(1− ε)
Γ(1− 2ε)(P 2)−εdξ dη α1−2εξ−ε(1− ξ)−εη−

1
2−ε(1− η)−

1
2−ε

× (α+ βx)1−2ε(α+ βxξ)−2+2εΘ(ξ)Θ(1− ξ)Θ(η)Θ(1− η) , (4.45)

where
cosϑr = 1− 2ξ and cosϕ = 1− 2η . (4.46)

Then we find

s 1̂ 2̂
s 1̂ 3s 2̂ 3

= 2 p̂ 1 · p̂ 2
(2 p̂ 1 · pr)(2 p̂ 1 · pr)

= 2 p̂ 1 · p̂ 2

[2Ê1Er(1− ~β1 · ~nr)][2Ê2Er(1− ~β2 · ~nr)]
(4.47)

7Clearly the components of e.g., p̂ µ2 are not independent, since p̂
µ
2 = Pµ − p̂

µ
1 − p̂

µ
34, but this will not

play a role in what follows.
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while the energy Er takes the form

Er = α(α+ βx)
α+ βxξ

√
P 2 . (4.48)

Hence (using Ê1 = y 1̂PP
2/2 and Ê2 = y 2̂PP

2/2)

[dp]
s1̂ 2̂
s1̂3s2̂3

=2−4−2επ−3+ε Γ(1−ε)
Γ(1−2ε)(P 2)−ε

y1̂ 2̂
y1̂P y2̂P

dξdηα−1−2ε ξ
−ε(1−ξ)−εη−

1
2−ε(1−η)−

1
2−ε

(1−~β1 ·~nr)(1−~β2 ·~nr)
×x−1+2ε(1−α)−2+2ε(x−α)−1−2ε(x−2α+α2)2−2ε[α(1−α)+(x−2α+α2)ξ]2ε . (4.49)

We note that the product of factors on the second line,

G(α, x, ξ; ε) ≡ x−1+2ε(1−α)−2+2ε(x−α)−1−2ε(x−2α+α2)2−2ε[α(1−α)+(x−2α+α2)ξ]2ε ,
(4.50)

does not play a role in regularizing any divergent behaviour, hence the integrand may be
simplified (without altering its pole structure) if we multiply it with

lim
α→0
G(α, x, ξ; ε)

G(α, x, ξ; ε) = ξ2εx1−2ε(1− α)2−2ε(x− α)1+2ε(x− 2α+ α2)−2+2ε

× [α(1− α) + (x− 2α+ α2)ξ]−2ε .

(4.51)

As was the case with the collinear subtraction term, the upper limit of integration
again leads to the appearance of square roots in the integral. Following the same strategy
as in the case of the collinear subtraction, we arrive at the following formula for FSr

FSr ≡ ξ2εx1−2ε(1− α)2−2ε(x− α)1+2ε(x− 2α+ α2)−2+2ε

× [α(1− α) + (x− 2α+ α2)ξ]−2εΘ[α0(x)− α] .
(4.52)

With the above choice of FSr , the soft integral can be performed to yield a fully analytic
and reasonably compact expression which is suitable for further integration, as is necessary
when computing the integrated forms of the iterated single unresolved counterterms.

Single soft-collinear overlap. The only single unresolved subtraction term in eq. (4.10)
that we have not yet specified is the soft-collinear overlap Cg3g4S

(0)
gr . Our choice is

Cg3g4S
(0)
g3 (p1, p2, p3, p4) ≡ 8παsµ

2ε
R

C(ε)
2

s3 3̂4

1− z3, 3̂4
z3, 3̂4

CA |M
(0)
QQ̄g

( p̂ 1, p̂ 2, p̂ 34)|2 , (4.53)

Cg3g4S
(0)
g4 (p1, p2, p3, p4) ≡ 8παsµ

2ε
R

C(ε)
2

s4 3̂4

1− z4, 3̂4
z4, 3̂4

CA |M
(0)
QQ̄g

( p̂ 1, p̂ 2, p̂ 34)|2 . (4.54)

Note that in this subtraction term, the momentum fractions must be evaluated with hat-
ted momenta, so that they match the soft subtraction in the collinear limit. Hence the
momentum fractions z3, 3̂4 and z4, 3̂4 are defined as

z3, 3̂4 = p3 · P
( p̂ 34 + p3) · P and z4, 3̂4 = p4 · P

( p̂ 34 + p4) · P . (4.55)
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The mapped momenta entering the factorized matrix elements in eqs. (4.53) and (4.54) are
once again given by eq. (4.16).

We can now clarify the reason that the soft-collinear overlap terms in eq. (4.10) have
to be multiplied with the same FSr functions as the soft subtractions. In the pµr → 0 soft
limit both FC34 → 1 as well as FSr → 1. Thus Cg3g4S

(0)
gr properly regularizes C(0)

g3g4 in the
soft limit. On the other hand, in the pµ3 ||p

µ
4 collinear limit FSr 6→ 1 in d dimensions. So to

ensure the proper cancellation of S(0)
gr with Cg3g4S

(0)
gr in the collinear limit, the latter must

be multiplied by the same factor of FSr as the former.

Double soft subtraction. Turning to the double unresolved subtraction, we recall that
only the double soft limit requires regularization by subtraction. We choose to define the
subtraction term for this limit as follows. For double soft gluon emission we define

S(0)
g3g4(p1, p2, p3, p4) ≡

[
8παsµ

2ε
R

C(ε)

]2 { ∑
i,j,k,l=1,2

1
8Sik(3)Sjl(4) {T

ĩ
T
k̃
,T

j̃
T
l̃
} (4.56)

− 1
4CA

∑
i,k=1,2

[
Sik(3, 4)− Smass

ik (3, 4)
]
T
ĩ
T
k̃

}
⊗ |M(0)

QQ̄
( p̃ 1, p̃ 2)|2 ,

while for a soft quark-antiquark pair we set

S(0)
q3q̄4(p1, p2, p3, p4) ≡

[
8παsµ

2ε
R

C(ε)

]2 1
s2

34
TR (4.57)

×
∑

i,k=1,2

si3sk4 + si4sk3 − siks34
(si3 + si4 + s34)(sk3 + sk4 + s34)T

ĩ
T
k̃
⊗ |M(0)

QQ̄
( p̃ 1, p̃ 2)|2 .

The eikonal factors Sik(r) and Sjl(r) read

Sik(3) = 2sik
si3sk3

= (pi · pk)
(pi · p3)(pk · p3) and Sjl(4) = 2sjl

sj4sl4
= (pj · pl)

(pj · p4)(pl · p4) . (4.58)

Furthermore, for Sik(3, 4) we have

Sik(3,4)=S
(s.o.)
ik (3,4)+4 si3sk4+si4sk3

(si3+si4+s34)(sk3+sk4+s34)

[1−ε
s2

34
− 1

8S
(s.o.)
ik (3,4)

]
− 4
s34

Sik(34),

(4.59)
where the S(s.o.)

ik (3, 4) is the strongly-ordered limit of this expression in either the pµ3 → 0
or pµ4 → 0 limit (it is symmetric in 3 and 4),

S
(s.o.)
ik (3, 4) = Sik(4)

(
Si4(3)+Sk4(3)−Sik(3)

)
= 4sik
si3sk4s34

+ 4sik
si4sk3s34

− 4s2
ik

si3si4sk3sk4
(4.60)

and
Sik(34) = 2sik

(si3 + si4 + s34)(sk3 + sk4 + s34) . (4.61)

Last, Smass
ik (3, 4) is directly proportional to the square of the heavy quark mass,

Smass
ik (3, 4) = si3

si3 + si4 + s34
S

mass,(s.o.)
ik (3, 4) + sk4

sk3 + sk4 + s34
S

mass,(s.o.)
ki (4, 3)

− 2
s34

si3sk4 + si4sk3
(si3 + si4 + s34)(sk3 + sk4 + s34)

[
sii
si3si4

+ skk
sk3sk4

]
,

(4.62)
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where Smass,(s.o.)
ik (3, 4) and Smass,(s.o.)

ki (4, 3) are the strongly-ordered limits of Smass
ik (3, 4) in

the pµ4 → 0 and pµ3 → 0 limit,

S
mass,(s.o.)
ik (3, 4) = Sii(3)

(
Sk3(4)− Sik(4)

)
, (4.63)

S
mass,(s.o.)
ki (4, 3) = Skk(4)

(
Si4(3)− Sik(3)

)
. (4.64)

Summations over all indices in eq. (4.56) run over i, j, k, l = 1, 2 and the equivalence of any
and all indices is allowed.

We remark that contrary to the choice in eqs. (3.8) and (4.42), here the hard momenta
pi, pk, pj and pl that appear in the various functions just defined are simply the original mo-
menta of the heavy quarks in the four-particle phase space and not the mapped momenta.
This choice is quite convenient for the present calculation, since it allows us to use known
results for massive four particle phase space integrals [58, 59] to compute the integrated
subtraction term. For similar reasons, we prefer to define the subtractions in eqs. (4.56)
and (4.57) by retaining the subleading (in the double soft limit) s34 term in denominators
of the form (si3 + si4 + s34) and (sk3 + sk4 + s34) throughout. Thus, our subtraction terms
differ by these subleading terms from the double soft limit formulae of [25, 60].

To complete the definition of the subtraction term, we must specify the momenta p̃ 1
and p̃ 2 that enter the factorized matrix element. Starting from the four momenta of the
double real emission phase space, we apply the 4 → 3 mapping of eq. (4.16), followed by
the 3→ 2 mapping presented in eq. (3.10) in order to obtain p̃ 1 and p̃ 2.

Finally, as remarked above, all master integrals that are needed to compute the inte-
grated double soft subtraction term are known in the literature [58, 59], and so we find it
most convenient to not include any additional factors with the double soft subtraction, see
eqs. (4.11) and (4.14).

Single collinear-double soft subtraction. In order to cancel the singularities of the
double soft subtraction term in the single collinear limit, as well as the singularities of the
single collienar subtraction term in the double soft limit, we introduce the iterated single
unresolved counterterm

Cf3f4S
(0)
f4f4

(p1, p2, p3, p4) ≡
[
8παsµ

2ε
R

C(ε)

]2 1
s34

∑
î , k̂= 1̂ , 2̂

2 p̂ i,µ p̂ k,ν
s
î 3̂4 s k̂ 3̂4

× Pµνf3f4
(ẑ3, k̂⊥; ε)T

ĩ
T
k̃
⊗ |M(0)

QQ̄
( p̃ 1, p̃ 2)|2 ,

(4.65)

where the Altarelli-Parisi kernels are given in eqs. (4.25) and (4.26), while ẑ3 and k̂µ⊥
are defined in eqs. (4.33) and (4.35). The momenta p̂ i, p̂ k and p̂ 34 that appear in the
uncontracted eikonal factor above are those obtained by the 4→ 3 mapping of eq. (4.16),
while the factorized matrix element is evaluated with the same momenta p̃ 1 and p̃ 2 that
enter the definition of the double soft subtraction term.

We remark that this term enters eq. (4.12) multiplied with the factor of FC34. Since this
function goes to one in the collinear limit, Cqr q̄sS

(0)
qr q̄s correctly regularizes S(0)

qr q̄s in this limit.
On the other hand, in the double soft limit FC34 6→ 1, so CgrgsS

(0)
grgs must be multiplied with

FC34 to ensure the proper cancellation of this term with C(0)
grgsFC34 in the double soft limit.
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Single soft-double soft subtraction. The iterated single soft-double soft subtraction
term regularizes the double soft subtraction term in the pµs → 0 single soft limit, as well as
the single soft subtraction term S(0)

gs in the double soft limit,

SgsS
(0)
grgs(p1, p2, p3, p4) ≡

[
8παsµ

2ε
R

C(ε)

]2 { ∑
î , k̂ , ĵ , l̂= 1̂ , 2̂

1
8S î k̂ ( 3̂4 )S

ĵ l̂
(s) {T

ĩ
T
k̃
,T

j̃
T
l̃
}

− 1
4CA

∑
î , k̂= 1̂ , 2̂

[
S
î k̂

( 3̂4 )
(
S
î 3̂4 (s) + S

k̂ 3̂4 (s)− S
î k̂

(s)
)

(4.66)

− S
î î

( 3̂4 )
(
S
k̂ 3̂4 (s)− S

î k̂
(s)
)]

T
ĩ
T
k̃

}
⊗ |M(0)

QQ̄
( p̃ 1, p̃ 2)|2 .

As always, summation indices can be equal. For the sake of clarity, we emphasize that

S
î k̂

( 3̂4 ) = ( p̂ i · p̂ k)
( p̂ i · p̂ 34)( p̂ k · p̂ 34) and S

î î
( 3̂4 ) = p̂ 2

i

( p̂ i · p̂ 34)2 . (4.67)

Furthermore we have e.g.,

S
ĵ l̂

(s) =
( p̂ j · p̂ l)

( p̂ j · ps)( p̂ l · ps)
and S

î 3̂4 (s) = ( p̂ i · p̂ 34)
( p̂ i · ps)( p̂ 34 · ps)

, (4.68)

with obvious generalizations for the other terms not displayed explicitly. Here the set of
hatted momenta are obtained from the original momenta via the 4→ 3 mapping given in
eq. (4.16). The tilded momenta entering the factorized matrix element are again equal to
those in the double soft subtraction.

Let us remark that this term enters eq. (4.12) multiplied with a factor of FSs . Since
this function goes to one as pµs → 0, SgsS

(0)
grgs regularizes S(0)

grgs correctly in this limit. On
the other hand, in the double soft limit, FSs 6→ 1, hence SgsS

(0)
grgs must be multiplied by the

same factor as S(0)
gs in order to ensure the cancellation of these terms in the double soft limit.

Soft-collinear-double soft overlap. The set of subtractions listed so far leads to dou-
ble subtraction in the soft-collinear limit. In order to avoid this, we introduce the last
counterterm in eq. (4.12), given by

Cg3g4Sg3S
(0)
g3g4(p1, p2, p3, p4) ≡ −

[
8παsµ

2ε
R

C(ε)

]2 ∑
î , k̂= 1̂ , 2̂

1
2S î k̂ ( 3̂4 )

× 2
s3 3̂4

1− z3, 3̂4
z3, 3̂4

CA T
ĩ
T
k̃
⊗ |M(0)

QQ̄
( p̃ 1, p̃ 2)|2 , (4.69)

Cg3g4Sg4S
(0)
g3g4(p1, p2, p3, p4) ≡ −

[
8παsµ

2ε
R

C(ε)

]2 ∑
î , k̂= 1̂ , 2̂

1
2S î k̂ ( 3̂4 )

× 2
s4 3̂4

1− z4, 3̂4
z4, 3̂4

CA T
ĩ
T
k̃
⊗ |M(0)

QQ̄
( p̃ 1, p̃ 2)|2 . (4.70)
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|M(0)
QQ̄gg

|2

S(0)
34

S(0)
r

SrS
(0)
34

C(0)
34 C34S

(0)
r

C34S
(0)
34 C34SrS

(0)
34

p 3||
p 4

pr → 0

p
3,
p

4
→

0

Figure 1. Schematic view of the pattern of cancellations among the matrix element and subtraction
terms for double real emission.

Above z3, 3̂4 and z4, 3̂4 are defined in eq. (4.55). As before, hatted momenta are obtained
from the 4→ 3 mapping of eq. (4.16), while the tilded momenta are given as in the double
soft subtraction term, by applying the 3→ 2 mapping of eq. (3.10).

The factor multiplying CgrgsSgsS
(0)
grgs in eq. (4.12) is doubly constrained. In fact, this

term must regularize SgsS
(0)
grgsFSs in the collinear limit as well as CgrgsS

(0)
gs FSs in the double

soft limit. Moreover FSs 6→ 1 in either of these limits, so we must multiply CgrgsSgsS
(0)
grgs

by FSs in eq. (4.12) to achieve the correct pattern of cancellations.

Pattern of cancellations. Finally, the pattern of cancellations in the various limits
among the matrix element and subtraction terms we have introduced is schematically
illustrated in figure 1 for the case of double gluon emission. The three directions identify
the three singular limits, namely single soft (horizontal arrows), single collinear (diagonal
double arrows) and double soft (vertical arrows with double arrowheads). The green, red
and blue boxes represent A1, A2 and A12-type subtraction terms. The contour of the
boxes reflects the multiplicity of the phase space over which the observable is computed:
solid, dashed or dotted for J4, J3 and J2 respectively. Last, the magenta vertical arrow
connects the two subtraction terms that are multiplied by FC34, while the cyan arrows
connect counterterms that are multiplied by FSr . Since for light quark-antiquark pair
emission only the single colliear and double soft limits require regularization, in that case
only the four leftmost terms in figure 1 are present.

4.2 Regularized real-virtual contribution

The real-virtual contribution to the differential decay rate involves one-loop corrections to
the process X(P )→ Q(p1) + Q̄(p2) + g(p3) and takes the form

dΓRV = 1
F

dφ3(p1, p2, p3;P )2<〈M(0)
QQ̄g
|M(1)

QQ̄g
〉 , (4.71)
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while the three other terms appearing in eq. (4.4) can be written as∫
[1]

dΓRR,A1 = 1
F

dφ3(p1, p2, p3;P )I1(p1, p2, p3; ε)⊗ |M(0)
QQ̄g
|2 , (4.72)

dΓRV,A1 = 1
F

dφ3(p1, p2, p3;P )A1
[
2<〈M(0)

QQ̄g
|M(1)

QQ̄g
〉
]
, (4.73)(∫

[1]
dΓRR,A1

)
A1 = 1

F
dφ3(p1, p2, p3;P )A1

[
I1(p1, p2, p3; ε)⊗ |M(0)

QQ̄g
|2
]
. (4.74)

Let us emphasize that throughout this subsection, p1, p2 and p3 denote the momenta of the
heavy quark, heavy antiquark and gluon in the three-particle real emission phase space.

Starting with
∫

[1] dΓRR,A1 , we note that due to the presence of the factors FC34 and FSr ,
the integrated counterterms can be computed straightforwardly by a direct evaluation of
their corresponding parametric integral representations. To perform the integrations and
manipulate the output, we used the PolyLogTools package of ref. [61]. In the case of
the soft subtraction, the angular integrals that appeared were evaluated using the results
of ref. [62]. After gathering all contributions, we find that the insertion operator can be
written as

I1(p1, p2, p3; ε) = αs
2π

(
µ2
R

P 2

)ε [
CACg(y3P ; ε) + (CA − 2CF)S(1,2)

mm (y1P , y2P , w; ε)

− CA
(
S(1,3)
m0 (y13, y3P ; ε) + S(2,3)

m0 (y23, y3P ; ε)
)

+ CF
(
S(1,1)
m (y13, y3P ; ε) + S(2,2)

m (y23, y3P ; ε)
)]
,

(4.75)

where the variable w is defined by

w =

√√√√1−
4m2

Q

s12 + 2m2
Q

. (4.76)

In order to write eq. (4.75), we used the colour algebra relations T 2
1 = T 2

2 = CF, T 2
3 = CA

together with

T 1T 2 = CA − 2CF
2 and T 1T 3 = T 2T 3 = −CA

2 . (4.77)

The various functions that enter eq. (4.75) are as follows. First, the integrated single
collinear and single soft-collinear subtraction terms are assembled into the function Cg,

Cg(x; ε) = 1
2[C34]gg(x; ε) + nl

TR
CA

[C34]qq̄(x; ε)− [C34Sr](x; ε) (4.78)

with

[C34]gg(x; ε) = 2
ε2

+
[11

3 − 4 ln(x)
]1
ε

+ 271
36 −

25
6 ln 2 + 12 ln 3

− 22
3 ln(x) + 4 ln2(x) + 4Li2(−2)− 4ζ2 + O(ε1) , (4.79)

[C34]qq̄(x; ε) = − 2
3ε −

43
36 −

5
6 ln 2 + 4

3 ln(x) + O(ε1) , (4.80)

[C34Sr](x; ε) = − 1
ε2

+ 2
ε

ln
(
x

2

)
− 2 ln2

(
x

2

)
+ O(ε1) , (4.81)
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where the expressions above are obtained by setting K = 1 in eq. (4.40). Choosing a value
of 0 < K < 1, the corresponding phase space cut is trivial to implement, however the
integrated subtraction terms (including poles) become K dependent. We find

[C34]gg(x,K;ε) = [C34]gg(x;ε)− 1
12

{1−K
1+K

+(44+48K) ln(K)−2ln
(1+K

2

)
(4.82)

+48[3 ln3−(2+K) ln(2+K)]+48
[
Li2(−2)−Li2

(
− 2
K

)]}
+O(ε1) ,

[C34]qq̄(x,K;ε) = [C34]qq̄(x;ε)+ 1
12

{1−K
1+K

−2ln
(1+K

2

)
+8ln(K)

}
+O(ε1) , (4.83)

[C34Sr](x,K;ε) = [C34Sr](x;ε)+2ln(K)
{1
ε
−2ln

(
x

2

)
− ln(K)

}
+O(ε1) , (4.84)

and of course one must use these K-dependent functions in eq. (4.78). The single soft
subtraction involves a double summation over hard momenta, so the integrated soft coun-
terterm also takes the form of a sum, where the contributions correspond to the integrated
eikonal function involving two different massive hard momenta, S(1,2)

mm , one massive and one
massless hard momentum S(i,r)

m0 and finally a single massive hard momentum, S(i,i)
m ,

S(1,2)
mm (x1,x2,w;ε) =−1+w2

2w ln
(1−w

1+w

) 1
ε

+
(
1+w2)

8w (4.85)

×
{

4Li2
((1−w)(x2(1−x2)−x1(1−x1))

x1(w(2−x1−x2)+x1−x2)

)
−2Li2

((1−w)((1+w)x2−(1−w)x1)
4wx1

)
−4Li2

((1+w)(x1(1−x1)−x2(1−x2))
x1(w(2−x1−x2)+x2−x1)

)
+2Li2

((1+w)((1+w)x1−(1−w)x2)
4wx1

)
+2ln

((1−w)x1
(1+w)x2

)
ln
( (1+w)x2−(1−w)x1

(w(2−x1−x2)+x2−x1)2

)
+ln2(1−w)− ln2(1+w)

+ln
(1−w

1+w

)[
2ln(w(x1 +x2−1))+8ln(2−x1−x2)− ln(16x1x2)

]
+(1↔ 2)

}
+O(ε1) ,

S(i,r)
m0 (yir,yrP ;ε) = 1

2ε2 + 1
2 ln

(
4P 2y2

ir

m2
Qy

4
rP

)
1
ε

+ 1
4 ln2

(
4P 2y2

ir

m2
Qy

4
rP

)
+O(ε1) , (4.86)

S(i,i)
m (yir,yrP ;ε) = 2εS(i,r)

m0 (yir,yrP ;ε) . (4.87)

Again, the formulae above correspond to setting K = 1 in eq. (4.40), while their K-
dependence is given by

S(1,2)
mm (x1,x2,w,K;ε)=S(1,2)

mm (x1,x2,w;ε)+ln(K)
{1+w2

w
ln
(1−w

1+w

)}
+O(ε1), (4.88)

S(i,r)
m0 (yir,yrP ,K;ε)=S(i,r)

m0 (yir,yrP ;ε)−ln(K)
{1
ε

+ln
(

4P 2y2
ir

m2
Qy

4
rP

)
−ln(K)

}
+O(ε1), (4.89)

S(i,i)
m (yir,yrP ,K;ε)=2εS(i,r)

m0 (yir,yrP ,K;ε)=S(i,i)
m (yir,yrP ;ε)−2ln(K)+O(ε1). (4.90)

If K is different form one, these K-dependent forms must be used to compute
I1(p1, p2, p3; ε) in eq. (4.75). It is easy to verify that the poles of the insertion operator are
independent of K.
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With these definitions, it is straightforward to show that the sum

dΓRV +
∫

[1]
dΓRR,A1 (4.91)

is free of explicit poles in ε. However, both terms develop non-integrable singular behaviour
as the gluon becomes soft. We deal with these divergences by introducing appropriate
subtraction terms. Since only the pµ3 → 0 soft gluon limit requires regularization, the
structure of the approximate matrix elements are very simple,

A1
[
2<〈M(0)

QQ̄g
|M(1)

QQ̄g
〉
]

= S(1)
g3 , (4.92)

A[1]
[
I1(p1, p2, p3; ε)⊗ |M(0)

QQ̄g
|2
]

= S(I⊗0)
g3 . (4.93)

Real-virtual single soft subtraction. Starting with the real-virtual contribution, we
consider the general expression for the soft current at one-loop for massive amplitudes
computed in [63, 64]. Collecting terms in this formula that do not automatically vanish by
colour conservation and using the 3 → 2 momentum mapping {p1, p2, p3} → { p̂ 1, p̂ 2} of
eq. (3.10), our choice for the counterterm is given by

S(1)
gr (p1,p2,p3)≡−8παsµ

2ε
R

C(ε)

{ ∑
î,k̂=1̂,2̂

1
2S î k̂(r)T

î
T
k̂
⊗2<〈M(0)

QQ̄
(p̂1, p̂2)|M(1)

QQ̄
(p̂1, p̂2)〉

+2CA
∑

î,k̂=1̂,2̂
î 6=k̂

[1
2S î k̂(r)− 1

2S î î(r)
]
R
î k̂

T
î
T
k̂
⊗|M(0)

QQ̄
(p̂1, p̂2)|2 (4.94)

− αs
2π

1
C(ε)

1
2ε

[
β0+ 4

3TR

(
µ2
R

m2
Q

)ε] ∑
î,k̂=1̂,2̂

1
2S î k̂(r)T

î
T
k̂
⊗|M(0)

QQ̄
(p̂1, p̂2)|2

}
,

where the definition of the eikonal factor in eq. (3.9) is recalled here for convenience,

S
î k̂

(r) =
2s

î k̂

s
î r
s
k̂ r

= ( p̂ i · p̂ k)
( p̂ i · pr)( p̂ k · pr)

and S
î î

(r) =
2s

î î

s2
î r

= p̂ 2
i

( p̂ i · pr)2 . (4.95)

Note that the contribution on the last line of eq. (4.94) contains the terms that arise form
the renormalization of the one-loop soft current. The one-loop function R

î k̂
can be written

in the following form,

R
î k̂

= αs
2π

(1
2S î k̂ (r)µ2

R

)ε − 1
2ε2 −

1
2

1∑
n=−1

εnR
(n)
î k̂

 , (4.96)
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where we have adapted the prefactor to our conventions. The functional forms of the R(n)
î k̂

coefficients are taken from [64],

R
(−1)
î k̂

=ln(v̂+)− v̂−
v̂

(
ln
(
α
î

v̂+

)
+ln

(
α
k̂

v̂+

))
, (4.97)

R
(0)
î k̂

= 1
v̂

[
1

(d
î
+d

k̂
)

(
(α

î
v̂+−αk̂ v̂−)ln2

(
α
î

v̂+

)
+
(
α
k̂
v̂+−α î v̂−

)
ln2
(
α
k̂

v̂+

))
(4.98)

+
(

ln
(
α
î

v̂+

)
+ln

(
α
k̂

v̂+

))(
v̂+ ln(v̂+)−ln(v̂)

)
−Li2(x̂)

]
+ 1

2 ln2(v̂+)+ζ2

( 7
v̂
− 37

4

)
,

R
(1)
î k̂

= 1
(d
î
+d

k̂
)

{(
1−(d

î
+d

k̂
)
)[

ln
(

1−
α
î

v̂+

)
ln2
(
α
î

v̂+

)
+ln

(
1−

α
k̂

v̂+

)
ln2
(
α
k̂

v̂+

)

+2
(

ln
(
α
î

v̂+

)
Li2
(
α
î

v̂+

)
+ln

(
α
k̂

v̂+

)
Li2
(
α
k̂

v̂+

))
−Li2(x̂)

(
ln
(
α
î

v̂+

)
+ln

(
α
k̂

v̂+

))

+2
(

Li3(x̂)−Li3
(
α
î

v̂+

)
−Li3

(
α
k̂

v̂+

)
+ζ3

)]
−7ζ2

(
ln
(
α
î

v̂+

)
+ln

(
α
k̂

v̂+

))

+ 1
v̂

[((
α
k̂
v̂+−α î v̂−

)
ln2
(
α
î

v̂+

)
+
(
α
î
v̂+−αk̂ v̂−

)
ln2
(
α
k̂

v̂+

))
ln(v̂+)

+
(
α
î
−α

k̂

)(
ln2
(
α
î

v̂+

)
−ln2

(
α
k̂

v̂+

))
ln(v̂)−

(
d
î
ln
(
α
î

v̂+

)
+d

k̂
ln
(
α
k̂

v̂+

))(
Li2(x̂)

−7ζ2
)]}

+ 1
v̂

{[
ln(v̂+)

(3+ v̂

4 ln(v̂+)−ln(v̂)
)
−4v̂−ζ2

](
ln
(
α
î

v̂+

)
+ln

(
α
k̂

v̂+

))

− v̂−6

(
ln3
(
α
î

v̂+

)
+ln3

(
α
k̂

v̂+

))
+2Li3(1− x̂)+Li3(x̂)+12ζ2 ln(v̂)

−
[
Li2(x̂)+ζ2

(
5+10v̂

)]
ln(v̂+)

}
+ 1

6 ln3(v̂+)−
(5

2 + 1
v̂

)
ζ3 . (4.99)

Due to the different choice of prefactors, the forms given above are not exactly equal to
those in ref. [64]. In particular, R(1)

î k̂
differs from the expression presented in [64] by terms

proportional to ζ2R
(−1)
î k̂

. However, we note that the order ε coefficient R(1)
î k̂

is only relevant
to compute the integrated subtraction term, but otherwise does not enter the regularized
real-virtual contribution that is actually integrated numerically in four dimensions. The
variables in the equations above are defined as [64]

α
î
≡
m2
i s k̂ r

s
î k̂
s
î r

, α
k̂
≡

m2
k s î r

s
î k̂
s
k̂ r

, d
î
≡ 1− 2α

î
, d

k̂
≡ 1− 2α

k̂
,

v̂ ≡
√

1− 4α
î
α
k̂
, v̂ ± ≡

1± v̂

2 , x̂ ≡ v̂ −
v̂ +

.

(4.100)

Notice, that similarly to the tree-level single soft subtraction term in eq. (3.8), the eikonal
factors and variables are computed using the hard momenta which appear in the factorized
matrix elements in eq. (4.94). In our specific case, this leads to simplifications, since v̂
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2<〈M(0)
QQ̄g
|M(1)

QQ̄g
〉

I1 ⊗ |M(0)
QQ̄g
|2

S(1)
3

S(I⊗0)
3

p3 → 0
ε
→

0

Figure 2. Schematic view of the cancellations among the real-virtual matrix element, the integrated
single unresolved subtraction term, as well as the corresponding soft counterterms.

reduces to a function of just the (fixed) heavy quark mass and P 2. In particular, we find

v̂ = 1− y2

1 + y2 (4.101)

in terms of the variable y of eq. (3.18).

Single soft subtraction to the integrated single unresolved counterterm. Fi-
nally, the subtraction for the integrated single unresolved counterterm, eq. (4.74) can be
easily defined for our purpose as follows:

S(I⊗0)
g (p1, p2, p3) = −8παsµ

2ε
R

C(ε)
∑

î , k̂= 1̂ , 2̂

1
2S î k̂ (r) T

î
T
k̂
⊗I1,S(p1, p2, p3; ε)|M(0)

QQ̄
( p̂ 1, p̂ 2)|2 .

(4.102)
Similarly to the real-virtual single soft subtraction term, the momenta entering the factor-
ized matrix element in eq. (4.102) above are obtained from the 3→ 2 momentum mapping
of eq. (3.10). In the soft limit, the insertion operator reads

I1,S(p1, p2, p3; ε) = αs
2π

(
µ2
R

P 2

)ε [
CACg(y3P ; ε) + (CA − 2CF)S(1,2)

mm (y1P , y2P , wS ; ε)

− CA
(
S(1,3)
m0 (y13, y3P ; ε) + S(2,3)

m0 (y23, y3P ; ε)
)

+ CF
(
S(1,1)
m (y13, y3P ; ε) + S(2,2)

m (y23, y3P ; ε)
)]
,

(4.103)

and the only difference between I1,S and I1 is that S(1,2)
mm must be evaluated with the

variable w computed in the soft limit, that we denote as wS . Expressing wS with the
variable y of eq. (3.18), we find

wS = 1− y
1 + y

. (4.104)
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Pattern of cancellations. To finish this subsection, we illustrate the structure of can-
cellations among the various terms in figure 2. The soft limit of the real-virtual matrix
element is regulated in d dimensions by the S(1)

3 subtraction defined in eq. (4.94). We note
that the difference

[
2<〈M(0)

QQ̄g
|M(1)

QQ̄g
〉 − S(1)

3

]
, although free of non-integrable kinematical

singularities is not finite in ε. Similarly, I1⊗|M(0)
QQ̄g
|2 is regularized in the soft limit by the

subtraction term S(I⊗0)
g in eq. (4.102), but the difference

[
I1 ⊗ |M(0)

QQ̄g
|2 − S(I⊗0)

g

]
still con-

tains poles in ε. However, since the ε poles of 2<〈M(0)
QQ̄g
|M(1)

QQ̄g
〉 and I1⊗|M(0)

QQ̄g
|2 explicitly

cancel (see eq. (4.91)), we must have that the explicit poles in
[
S(1)

3 + S(I⊗0)
g

]
also can-

cel. This can be easily verified directly, using the explicit expressions presented above. In
figure 2, the cancellation of explicit ε-poles is represented by vertical arrows with full arrow-
heads, while the regularization of kinematic singularities in the single soft limit is denoted
by horizontal arrows. The contour of the boxes again reflects the multiplicity of the phase
space over which the observable is computed: dashed or dotted for J3 and J2 respectively.

4.3 Regularized double virtual contribution

Finally, the regularized double virtual contribution is the sum of the two-loop corrections
to the X(P )→ Q(p1) + Q̄(p2) process and the four integrated counterterms that we have
not yet discussed, see eq. (4.5). Note that throughout this subsection, p1 and p2 denote
the momenta of the heavy quark Q and the heavy antiquark Q̄.

In order to integrate the remaining subtraction terms, we follow a dual strategy. First,
the double soft subtraction terms can be reduced to known four-particle massive phase
space integrals [58, 59] via integration-by-parts (IBP) identities. The IBP reduction is
rather straightforward and so the integrated double soft subtraction can be obtained eas-
ily. As for the rest of the necessary integrated subtraction terms, we performed a direct
evaluation of their various parametric representations, similarly to the case of the single
unresolved subtraction terms discussed in 4.2.

The collection of all integrated counterterms in eq. (4.5) can be written in the following
form

∫
2

dΓRR,A2 −
∫

2
dΓRR,A12 +

∫
1

dΓRV,A1 +
∫

1

(∫
1

dΓRR,A1

)
A1 =

=
{

I2(p1, p2; ε)− αs
2π

1
C(ε)

1
2ε

[
β0 + 4

3TR

(
µ2
R

m2
Q

)ε]
I1(p1, p2; ε)

}
⊗ |M(0)

QQ̄
|2

+ I1(p1, p2; ε)⊗ 2<〈M(0)
QQ̄
|M(1)

QQ̄
〉 . (4.105)

Notice that the term proportional to I1(p1, p2; ε)⊗ |M(0)
QQ̄
|2 on the second line corresponds

precisely to the renormalization counteterm of the one-loop soft current in eq. (4.94). We
find it convenient to keep this term explicit for an easy conversion to the case of multiple
heavy quarks.
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The I1(p1, p2; ε) insertion operator has been given explicitly in eq. (3.17), while
I2(p1, p2; ε) takes the following form,

I2(p1, p2; ε) =
[
αs
2π

(
µ2
R

P 2

)ε]2 {
C2

F

(
b−2
ε2

+ b−1
ε

+ b0

)
+ CFCA

(
c−2
ε2

+ c−1
ε

+ c0

)
+ CFTRnl

(
d−2
ε2

+ d−1
ε

+ d0

)
+ O(ε1)

}
, (4.106)

where the coefficients of the Laurent expansion are functions of the y variable given in
eq. (3.18). Choosing K = 1 in eq. (4.40), the b, c and d coefficients are as follows (as before
we use compact notation Ga1,...,an = Ga1,...,an(y)),

b−2 =2+ 4(1+y2)
1−y2 G0+ 4(1+y2)2

(1−y2)2 G0,0 (4.107)

b−1 =8−16G1+ 4(1−3y)
1−y G0+ 8(1+y2)

1−y2 (2G−1,0−4G0,1−G1,0−2ζ2)− 4(1+y2)
(1−y2)2

×
[
(3+4y+9y2)G0,0−(1+y2)(8G−1,0,0+4G0,−1,0−3G0,0,0−8G0,0,1−2G0,1,0

+4G1,0,0−4G0ζ2)
]

(4.108)

b0 =−156−64(G1+ln2)+128G1,1−
32(1−3y)

1−y G0,1−
4

1−y2

[
2(11+20y+19y2)G0

+(11−23y−25y2)ζ2+12(1+y2)G0 ln2+2(19−3y+19y2)G−1,0+2(17+2y+y2)G1,0

+4(1+y2)(8G−1,0,1−2G−1,1,0−16G0,1,1−2G1,−1,0−4G1,0,1−7G1,1,0+2G1ζ2

+2G−1,0 ln2+2G1,0 ln2−ζ2 ln2)+4(8−y+8y2)G−1ζ2−8(2+y+2y2)G−1,−1,0
]

− 8(1−9y+17y2−25y3)
(1−y)(1−y2) G1,0,0−

8(23+27y)(1+y2)
(1+y)(1−y2) G0,1,0−

4
5(1−y2)2

×
[
5(16−y−20y2−19y3+64y4)G0,0−20(2+3y+4y2+5y3+6y4)ζ3+40(1+3y4)G0,0 ln2

−10(1+10y+24y2+12y3+17y4)G0ζ2+20(9+3y+24y2+y3+11y4)G−1,0,0

+40(8+5y+10y2+4y3+5y4)G0,−1,0−5(3+8y+44y2−4y3+13y4)G0,0,0

−40(1+y2)(3+4y+9y2)G0,0,1−(1+y2)(101+132y2)ζ2
2−10(1+y2)2(40G−1,−1,0,0

+28G−1,0,−1,0−32G−1,0,0,1−8G−1,0,1,0+10G0,−1,−1,0−16G0,−1,0,1+4G0,−1,1,0

+12G0,0,0,1−23G0,0,1,0+32G0,0,1,1+4G0,1,−1,0+8G0,1,0,1+14G0,1,1,0+24G1,0,−1,0

+6G1,0,0,0−16G1,0,0,1+4G1,0,1,0−24G1,1,0,0−10G−1,0ζ2−15G0,−1ζ2−4G0,1ζ2

−8G1,0ζ2−4G−1ζ3−12G1ζ3+8G−1,0,0 ln2−4G0,−1,0 ln2−4G0,1,0 ln2+8G1,0,0 ln2
+2G0ζ2 ln2+4ζ3 ln2)−10(1+y2)(1+5y2)G0ζ3−10(2−y2)(1+y2)G0,0ζ2 (4.109)
+80y2(1+y2)G0,0,0 ln2+20(1+y2)(3+11y2)G−1,0,0,0+10(1+y2)(21+17y2)G0,−1,0,0

+60(1+y2)(5+6y2)G0,0,−1,0−5(1+y2)(7+9y2)G0,0,0,0+10(9−7y2)(1+y2)G0,1,0,0
]

c−2 = 11
6 + 11(1+y2)

6(1−y2) G0 (4.110)
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c−1 = 181
18 −

44
3 G1+ 1

18(1−y2)
[
(1−132y−263y2)G0−6(47+71y2)ζ2

+12(1+y2)(19G−1,0−22G0,1+8G1,0)−6(11−y2)G0,0
]

+ (1+y2)
(1−y2)2

[
(1+y2)(−2G0,−1,0−2G0,1,0+ζ3)−(1+9y2)G0ζ2+4y2G0,0,0

]
(4.111)

c0 = 3277
27 −

724
9 G1+ 121

3 ln2−24ln3+ 352
3 G1,1+ 1

27(1−y2)
[
(541+642y−1631y2)G0

−216(1−y2+G0+y2G0)(Li2(−2)+ζ2)−3(370−471y−746y2)ζ2−648(1+y2)G0 ln3
+9(73+48y+73y2)G0 ln2−6(88+381y+88y2)G−1,0−12(1−132y−263y2)G0,1

−12(97+81y−167y2)G1,0−108(16−y+16y2)G−1ζ2−72(7−17y2)G1ζ2

−36(1+y2)(76G−1,0,1−12G−1,1,0−88G0,1,1−12G1,−1,0+32G1,0,1+9G1,1,0

−24G−1,0 ln2−12G1,0 ln2)+72(49+3y+49y2)G−1,−1,0+72(11−y2)G0,0,1

+648(1+y2)G0,−1,0,0
]
+ 1

90(1−y2)2

[
10(77−99y−534y2−657y3+565y4)G0,0

−60(163+54y+12y2+42y3−55y4)ζ3−120(2+12y−18y2−15y3−107y4)G0ζ2

+720(1+7y4)G0,0 ln2−120(35+45y+39y3+y4)G−1,0,0−240(17−12y−30y2−15y3

−38y4)G0,−1,0+60(23−6y−48y2+48y3+91y4)G0,0,0−60(91−60y−72y2−60y3

−91y4)G0,1,0−60(115+72y+48y2+72y3+173y4)G1,0,0−9(109+136y−54y2−136y3

−163y4)ζ2
2−180(1+y2)2(16G−1,−1,0,0+28G−1,0,−1,0+4G−1,0,1,0−32G−1,1,0,0

+10G0,−1,−1,0−8G0,−1,0,1+14G0,−1,1,0+14G0,1,−1,0−8G0,1,0,1+6G0,1,1,0−32G1,−1,0,0

+28G1,0,−1,0+12G1,0,1,0−64G1,1,0,0−11G0,−1ζ2−10G−1ζ3−22G1ζ3+16G−1,0,0 ln2
−8G0,−1,0 ln2−8G0,1,0 ln2+16G1,0,0 ln2+4G0ζ2 ln2+8ζ3 ln2)−90(21+8y+66y2−8y3

+45y4)G0ζ3−360(1+y2)(11+23y2)G−1,0ζ2+180(1−4y+4y2+4y3+3y4)G0,0ζ2

+180(1+y2)(9+41y2)G0,1ζ2−360(1+y2)(5+9y2)G1,0ζ2+360y2(1+y2)(−3G0,0,0,0

−8G0,0,0,1+8G0,0,0 ln2)−360(9+8y−8y2−8y3−17y4)G−1,0,0,0+360(9+4y+40y2

−4y3+31y4)G0,0,−1,0+360(5+4y+18y2−4y3+13y4)G0,0,1,0

−360(1+y2)(5+37y2)G0,1,0,0−360(1+y2)(15+13y2)G1,0,0,0
]

(4.112)

d−2 =−2
3−

2(1+y2)
3(1−y2)G0 (4.113)

d−1 =−34
9 + 16

3 G1+ 2(1+12y+25y2)
9(1−y2) G0

− 4(1+y2)
3(1−y2)(4G−1,0−G0,0−4G0,1+2G1,0−4ζ2) (4.114)

d0 =−284
27 + 10

3 ln2+ 272
9 G1−

128
3 G1,1+ 2

27(1−y2)
[
2(55+129y+259y2)G0

+3(43−93y−173y2)ζ2+45(1+y2)G0 ln2+6(49+39y+49y2)G−1,0 (4.115)
−24(1+12y+25y2)G0,1+6(53+18y−43y2)G1,0−18(1+y2)(28G−1,−1,0−4G−1,0,0
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−32G−1,0,1+12G−1,1,0−20G0,−1,0+2G0,0,0+8G0,0,1−22G0,1,0+32G0,1,1+12G1,−1,0

+2G1,0,0−16G1,0,1−30G−1ζ2+2G0ζ2−10G1ζ2−13ζ3)
]
+2(10−37y−23y2+14y3)

9(1−y)(1−y2) G0,0 .

As discussed above, the value ofK in eq. (4.40) can be freely chosen inK ∈ (0, 1]. Then, the
individual integrated subtraction terms (including poles) become K dependent. However,
in the sum of all counterterms, the K-dependence can only appear in the finite parts (b0,
c0 and d0) and reads

b0(K) = b0+ln(K)
{

64+ 16(1+y2)
1−y2 (3G0+2G−1,0+2G1,0−ζ2)+ 16

(1−y2)2

[
2(1+3y4)G0,0

−(1+y2)2(4G−1,0,0−2G0,−1,0−2G0,1,0+4G1,0,0+G0ζ2+2ζ3)+4y2(1+y2)G0,0,0
]}
,(4.116)

c0(K) = c0+ln(K)
{
− 74

3 +8K− 2
3(1−y2)

[
(13−12K+24y+13y2−12Ky2)G0

+12(1+y2)(4G−1,0+2G1,0)
]
− 8

(1−y2)2

[
(1+7y4)G0,0−(1+y2)2(4G−1,0,0−2G0,−1,0

−2G0,1,0+4G1,0,0+G0ζ2+2ζ3)+4y2(1+y2)G0,0,0
]}

+ 1−y2+(1+y2)G0
6(1−y2) (4.117)

×
{1−K

1+K −2ln
(1+K

2

)
+48

[
Li2(−2)−Li2

(
− 2
K

)]
+48[3ln3−(2+K)ln(2+K)]

}
,

d0(K) = d0−
1−y2+(1+y2)G0

3(1−y2)

{1−K
1+K −2ln

(1+K
2

)
+8ln(K)

}
. (4.118)

The independence of physical results from K provides a strong consistency check of the
whole implementation of our method.

Similarly to I1, in eq. (4.106) we have expanded a factor of 1/C(ε)2 coming from
the definition of the renormalized coupling, thereby canceling terms of γE and ln(4π).
Switching to the standard MS convention would imply

bMS
0 = b0 + ζ2b−2 , cMS

0 = c0 + ζ2c−2 and dMS
0 = d0 + ζ2d−2 , (4.119)

with the rest of the expansion coefficients unchanged.
Let us make two comments about the I2 operator. First, I2 corresponds to the sum of

all integrated counterterms which involve the tree-level factorized matrix element |M(0)
QQ̄
|2,

except for the renormalization term of the one-loop soft current which, as noted above,
we keep explicit. Second, although the Laurent expansion of I2 starts at 1/ε2, individual
contributions to this operator involve qubic poles. These poles come from on the one hand
double real configurations where the two gluons are collinear and both soft. Similarly, the
double poles of the real-virtual contribution are proportional to the tree level three-parton
matrix element that develops an extra pole upon integration over the soft region of phase
space. Given that the double virtual matrix element is free of triple poles, these must
cancel upon combining all integrated subtraction terms.

The above formulae, together with the subtraction terms given in the previous sections,
complete the full set of ingredients of our subtraction scheme. The implementation of the
entire procedure in a numeric code is then straightforward.
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5 Example: Higgs boson decay to massive bottom quarks

As stated in the Introduction, the construction given above can be applied to compute fully
differential NNLO QCD corrections to any process with a colourless initial state decaying
into a massive quark-antiquark pair at leading order. As an illustrative example, in this
section we report on such a computation for a Standard Model Higgs boson decaying into
a pair of massive bottom quarks.

We recall that the necessary two-loop currents have been computed in refs. [41–44] and
ref. [45]. We have verified the correctness of our implementations of these formulae by check-
ing the exact agreement among them, after accounting for the different conventions. We
note that these computations do not include diagrams with top quarks in the loop, which
give rise to terms proportional to both y2

bα
2
s and ybytα2

s . There exist approximated results
for both of these contributions [65, 66] that are very accurate for physical values of the three
involved masses (mH , mb, mt), as also confirmed by the recent fully analytic computation
of the ybytα2

s term [67]. Given their finiteness and relatively small numerical impact we do
not include such top-induced contributions in the following numerical analysis.

The three parton one-loop and four parton tree level matrix elements were ob-
tained with a straightforward, direct Feynman-diagram calculation and cross-checked with
GoSam [68, 69].

To validate our construction, we start by examining the total decay width, correspond-
ing to J = 1, evaluated in the on-shell renormalization scheme for the heavy quark,

Γ
bb̄

= ΓLO
bb̄

[
1 + αs

π
γ

(1)
bb̄

+
(
αs
π

)2
γ

(2)
bb̄

+ O(α3
s )
]
. (5.1)

The NLO correction given by γ
(1)
bb̄

has been known analytically for a long time [70, 71],
while γ(2)

bb̄
has been computed as a series expansion in (m2

b/m
2
H) up to the fourth power [72].

It has also been calculated exactly for physical values of the bottom quark and Higgs boson
masses recently [39, 40] and we find perfect agreement with these results.

In order to investigate the validity of the approximate formula for the NNLO correction
to the total decay width for values of heavy quark masses approaching the kinematic
threshold, in figure 3 we compare it to the exact computation. The upper panel shows
the value of γ(2)

bb̄
as a function of the heavy quark mass mb, with the Higgs boson mass

fixed to its physical value of mH = 125.09GeV. In order to better appreciate the level of
agreement, in the lower panels we present the ratio of the exact result to the approximate
one. We observe that up to around 38GeV (near the threshold for the production of four
heavy quarks), the agreement is well within 1%. The discontinuity seen in the ratio for
38GeV < mb < 39GeV is simply due to the fact that the exact and approximate results
vanish for slightly different values of the heavy quark mass. Between 40GeV and 46GeV,
the difference between the two results is still below 1%. For larger values of the heavy quark
mass approaching the threshold, an all-order expansion in (m2

b/m
2
H) would be needed, that

is indeed provided by the exact result.
We illustrate the computation of differential quantities by clustering the partons in

the final state into jets with the Durham algorithm [73] and evaluating jet decay rates
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Figure 3. The exact (red) and approximate (blue) NNLO correction γ(2)
bb̄

to the total decay rate of
a Standard Model Higgs boson into a heavy quark-antiquark pair as a function of the heavy quark
mass. The Higgs boson mass is fixed to its physical value of mH = 125.09GeV. The bottom panels
show the ratio of the calculations in two different magnification scales.

αs µR = mH/2 µR = mH µR = 2mH

NLO 0.125124 0.112636 0.102455
NNLO 0.125140 0.112626 0.102432

Table 1. The values of the strong coupling αs(µR) used in the numerical computation.

for various jet resolution parameters in the MS scheme. Throughout the computation we
employ the following numerical setup. The Higgs boson mass is set to mH = 125.09GeV,
while the on-shell bottom quark mass is mb = 4.78GeV. The electroweak parameters are
chosen as follows: we use GF = 1.16639 × 10−5 GeV−2 for the Fermi constant and set
mZ = 91.1876GeV and mW = 80.398GeV. These values lead to yb = mb(

√
2GF )1/2 =

1.94137 × 10−2 for the on-shell bottom quark Yukawa coupling. Furthermore, we set
αs(MZ) = 0.118 and use two- and three-loop running in the five-flavour MS scheme for
the NLO and NNLO computations, respectively. To estimate the theoretical uncertainty
of our calculation due to missing higher order contributions, we vary the renormalization
scale around mH by a factor of two in both directions. The corresponding values of the
strong coupling are presented in table 1.
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We recall that the relation between results computed in the on-shell and MS schemes
(denoted with a bar) is given as follows,

Γbb̄[J ] = ΓLO
bb̄ [J ] + ΓNLO

bb̄ [J ] + ΓNNLO
bb̄ [J ] + O(α3

s ) , (5.2)

where

ΓLO
bb̄ [J ] = y2

b(µR)
y2
b

ΓLO
bb̄

[J ] , (5.3)

ΓNLO
bb̄ [J ] = y2

b(µR)
y2
b

{
ΓNLO
bb̄

[J ] + r1
αs(µR)
π

ΓLO
bb̄

[J ]
}
, (5.4)

ΓNNLO
bb̄ [J ] = y2

b(µR)
y2
b

{
ΓNNLO
bb̄

[J ] + r1
αs(µR)
π

ΓNLO
bb̄

[J ] + r2

(
αs(µR)
π

)2
ΓLO
bb̄

[J ]
}
. (5.5)

Furthermore [74–77]
r1 = −2d1 and r2 = 3d2

1 − 2d2 (5.6)

with

d1 = −CF

(
1 + 3

4L
)
, (5.7)

d2 = C2
F

( 7
128 −

3
4ζ3 + 3 ln 2ζ2 −

15
8 ζ2 + 21

32L+ 9
32L

2
)

+ CACF

(
−1111

384 + 3
8ζ3 + 1

2ζ2 −
3
2 ln 2ζ2 −

185
96 L−

11
32L

2
)

+ CFTRnl

(71
96 + 1

2ζ2 + 13
24L+ 1

8L
2
)

+ CFTR

(143
96 − ζ2 + 13

24L+ 1
8L

2
)
, (5.8)

where L = ln(µ2
R/m

2
b). The relation between the Yukawa couplings in the two schemes is

given by

y2
b = y2

b

[
1 + r1

αs(µR)
π

+ r2

(
αs(µR)
π

)2
+ O(α3

s )
]
. (5.9)

Although in the MS scheme the running mass at the scale around the Higgs boson mass
is significantly reduced with respect to the on-shell value (see eq. (5.10) below), as is
customarily done, we prefer to keep the on-shell mass in the definition of the kinematics
for the outgoing heavy quark momenta in order to mimic the effects related to hadronization
that will produce mesons with masses close to that value.

Furthermore, to establish the range of variation of the bottom quark Yukawa coupling
with the renormalization scale µR, instead of using eq. (5.9) directly, we prefer to use the
relation yb(µR) = mb(µR)(

√
2GF )1/2 where mb(µR) denotes the two-loop running bottom

quark mass in the MS scheme evolved from mb(mb) = 4.18GeV,

mb(mH/2) = 2.96634GeV , mb(mH) = 2.79438GeV , mb(2mH) = 2.64904GeV . (5.10)

The MS Yukawa couplings obtained from these mass values are used at all perturbative
orders (LO, NLO and NNLO) during the computation.
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LO (α0
s )

ycut

µR 0.001 0.002 0.005 0.01 0.02 0.05

Γbb̄[2jet]
[MeV]

MH/2 2.14827 2.14827 2.14827 2.14827 2.14827 2.14827
MH 1.90641 1.90641 1.90641 1.90641 1.90641 1.90641
2MH 1.71326 1.71326 1.71326 1.71326 1.71326 1.71326

NLO (α1
s )

ycut

µR 0.001 0.002 0.005 0.01 0.02 0.05

Γbb̄[2jet]
[MeV]

MH/2 0.7415(5) 1.0649(5) 1.4553(4) 1.7157(4) 1.9395(4) 2.1733(4)
MH 0.9717(4) 1.2304(5) 1.5425(4) 1.7505(4) 1.9294(4) 2.1160(4)
2MH 1.1044(3) 1.3153(3) 1.5704(3) 1.7406(3) 1.8867(3) 2.0394(3)

Γbb̄[3jet]
[MeV]

MH/2 1.6657(1) 1.3423(1) 0.95183(8) 0.69142(6) 0.46770(4) 0.23388(3)
MH 1.33109(9) 1.0724(1) 0.76032(6) 0.55225(3) 0.37343(4) 0.18680(3)
2MH 1.08759(7) 0.8767(1) 0.62158(5) 0.45144(3) 0.30534(4) 0.15266(2)

NNLO (α2
s )

ycut

µR 0.001 0.002 0.005 0.01 0.02 0.05

Γbb̄[2jet]
[MeV]

MH/2 0.485(3) 0.793(2) 1.213(2) 1.508(1) 1.786(1) 2.089(1)
MH 0.610(2) 0.901(2) 1.295(1) 1.578(1) 1.828(1) 2.1006(9)
2MH 0.730(2) 1.010(9) 1.368(1) 1.6209(9) 1.8468(8) 2.0896(8)

Γbb̄[3jet]
[MeV]

MH/2 1.264(2) 1.211(1) 1.0109(9) 0.8111(5) 0.5850(3) 0.3061(2)
MH 1.303(1) 1.1948(9) 0.9582(5) 0.7448(3) 0.5305(2) 0.2761(1)
2MH 1.261(1) 1.116(8) 0.8765(4) 0.6743(2) 0.4756(2) 0.2461(1)

Γbb̄[4jet]
[MeV]

MH/2 0.6497(2) 0.3945(1) 0.17426(6) 0.07887(4) 0.02792(2) 0.00318(1)
MH 0.4659(1) 0.28284(9) 0.12540(5) 0.05667(3) 0.02014(2) 0.00231(1)
2MH 0.3469(1) 0.21062(7) 0.09325(3) 0.04220(2) 0.01493(1) 0.00168(1)

Table 2. Jet decay rates for a Standard Model Higgs boson decaying into massive bottom quarks
computed using the Durham clusrering algorithm and including up to O(α2

s ) corrections. The
quoted uncertainties correspond to statistical errors from numerical integration.

In table 2, we present our results for the two-, three- and four-jet decay rates in the MS
scheme for various values of the jet resolution parameter ycut. The two-jet rate at LO is
of course insensitive to the value of the jet resolution parameter. The higher-order partial
widths of the Higgs boson have been recently reported also in refs. [39, 40] for ycut = 0.01
and 0.05 and we find excellent agreement with those results.8 The numerical results re-
ported in table 2 were obtained with a few hours of runtime on a modern personal computer.

In order to visualize the results reported in table 2, in the left panel of figure 4 we
present the two-jet decay rate at LO, NLO and NNLO accuracy as a function of the
jet resolution parameter ycut. We observe that from ycut ' 0.025, the scale variation

8Note that refs. [39, 40] report the O(α1
s ) and O(α2

s ) coefficients of the jet decay rates. From those
results and the values of αs(µR) in table 1 as well as mb(µR) in eq. (5.10) it is straightforward to compute
the complete partial widths.
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Figure 4. Left: two-jet decay rate at LO (green), NLO (red) and NNLO (blue) accuracy as a
function of the jet resolution parameter ycut. Right: two- (blue), three- (red), and four-jet (green)
decay rates at O(α2

s ) accuracy as a function of the jet resolution parameter ycut. The bands represent
renormalization scale variation in the range µR ∈ [mH/2, 2mH ]. Jets are clustered with the Durham
algorithm.

bands for the NLO and NNLO results overlap, demonstrating the good convergence of the
perturbative expansion for larger values of the jet resolution parameter. On the other hand,
as is well-known, for smaller values of ycut fixed-order perturbation theory is challenged and
resummation is required, as can be appreciated by the fact that the scale variation bands at
NLO and NNLO do not overlap. One can also note that the small scale uncertainty of the
NLO result around ycut ' 0.01 must be considered an accident in light of the NNLO result
and in fact we observe a cross-over of the two-jet decay rate computed at µR = MH/2 and
µR = 2MH around that ycut value.

In the right panel of figure 4 we show the two-, three- and four-jet decay rates at
O(α2

s ) accuracy as a function of the jet resolution parameter ycut. For values of the jet
resolution parameter smaller than ycut ' 0.002, we observe a reduction in the uncertainty
as represented by the scale variation band for the three-jet partial width. This is again due
to the cross-over of the three-jet decay rate computed at µR = MH/2 and µR = 2MH so
that the standard methodology for estimating the uncertainty of the three-jet partial rate
due to missing higher orders is not reliable for such small values of ycut.

Finally, in figure 5, we present the differential decay rate in the MS scheme with respect
to the rapidity of the most energetic jet. In this computation the resolution variable was set
to ycut = 0.1. As can be seen on the figure, this observable has a non-singular distribution
already at LO and so genuine NNLO corrections contribute bin by bin. With the inclusion
of the NNLO corrections, we observe a nice convergence of the perturbative expansion and
the corresponding reduction in the leftover theoretical uncertainty parametrized by scale
variation.
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Figure 5. Distribution of the absolute value of the rapidity |yj1 | of the most energetic jet at
LO (green), NLO (red) and NNLO (blue) accuracy. The bands correspond to the variation of
the renormalization scale in the range µR ∈ [mH/2, 2mH ]. Jets are clustered with the Durham
algorithm and the resolution parameter is fixed at ycut = 0.1.

6 Conclusions

In this paper, we have presented a completely local subtraction scheme for computing fully
differential NNLO corrections to the production of a heavy quark-antiquark pair from a
colourless initial state. Following the CoLoRFulNNLO method, the construction of our
subtraction terms starts from the known singular limits of tree-level and one-loop massive
matrix elements supplemented by momentum mappings that enforce exact phase space
factorization. However, we furthermore employ a global strategy simplifying simultaneously
the computation of the integrated counterterms for single and iterated single unresolved
emission. This strategy is quite general and can be applied in principle also for more
generic processes. We have implemented further simplifications for the specific case of
heavy quark-antiquark pair production by including certain subleading contributions to
the general formulae in the double soft limit and the single soft limit for the one-loop
heavy quark current. As a result, we were able to obtain a very compact analytic result
for the sum of all integrated subtraction terms with a number of terms comparable to that
of the two-loop virtual amplitude.

Finally, we have shown the application of our method for the case of a Standard Model
Higgs boson decaying to a heavy quark-antiquark pair. First, we have compared our results
for the NNLO correction to the inclusive decay rate to the approximate formula of [72],
based on a series expansion in (m2

b/m
2
H). Varying the heavy quark mass, we find excellent

agreement up to values of the heavy quark mass where higher order effects in the mass
expansion can no longer be neglected. Furthermore, as illustrative examples of differential
calculations, we have presented jet decay rates and the leading jet rapidity distribution at
NNLO accuracy.

We conclude by remarking that the present paper contains in full detail all formulae
that are needed to reproduce the results discussed above, and to extend the computation
to other heavy quark-antiquark pair production processes from colourless initial states.
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