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Abstract—In this work, we implement a decentralized
and non-cooperative state estimation and control algorithm
to autonomously balance a team of robots in a circular
formation pattern. The group of robots includes a leader
periodically moving at a constant steering angle and a
set of followers that, by only leveraging intermittent and
noisy proximity measurements, independently implement
a fully decentralized state estimation control algorithm to
determine and adjust their relative position with closest
neighbors. The algorithm is conducted in a pause-and-
go sequence, where, during the pause, each robot stops
to gather and process the information coming from the
measurements, to then estimate the relative phase with
respect to the others, and identify its closest pursuant.
During the go, each robot accelerates to space from their
closest pursuant, to then move at a constant speed when
the desired spacing is achieved. The algorithm is tested
in an unprecedented experiment on a custom-made low-
cost caster wheeled robotic framework featuring sonar and
vision sensors mounted on a rotating platform to estimate
the proximity distance to closer neighbors. The control
scheme, which does not necessitate cooperation and is
capable of coping with uncertain and intermittent sensor
feedback data, is shown to be effective in balancing the
robot on the circle even when, at steady-state, no feedback
sensor data is available.

Index Terms—Formation control, autonomous vehicles,
ground robots, multi-agent systems, vision sensors, ul-
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I. INTRODUCTION

The autonomous coordination of multiple robotic ve-
hicles has been widely studied in the last decades due
to its diverse applications, including distributed search
and rescue missions [1], disaster relief and management
systems [2], exploration, surveillance and reconnais-
sance tasks [3], [4]. In the literature, formation control
algorithms have addressed the problem of tracking a
given path [5], positioning multiple robots on specific
configuration patterns [6], or achieving collective mo-
tion under environmental constraints [7]. To achieve
formation control, the existing control algorithms can be
subdivided into centralized schemes where information
is processed by a central unit [8], [9], decentralized
non-cooperative schemes where information is locally
gathered and independently processed by each unit [10],
or semi-decentralized and cooperative schemes where
information is locally shared among closer neighbors to
enhance accuracy [11].

Although in principle centralized approaches may
yield to superior performance, they may not meet
the requirements for real-world implementation of au-
tonomous systems. Indeed, this control scheme is known
to be less resilient in case of limited or unreliable
communications, transmission delays, and possible lim-
itations of computation power [8]. Decentralized and
local communication protocols are often employed since,
for their implementation, the individual agents need
less computation resources and sensing capabilities com-
pared to centralized approaches [12], [13]. Furthermore,
in localization problem in teams of autonomous vehi-
cles [14]–[16], each agent is required to independently
regulate its own dynamics based either on relative po-
sitions provided through internal kinematics [17], [18]
or on absolute positioning methods where sensors cap-



ture the interaction of the vehicles with their environ-
ments [19], [20].

To improve the accuracy of the localization and coor-
dination algorithms in multi-vehicles systems, coopera-
tive decentralized approaches with local communication
among closer neighbors have been proposed in the liter-
ature. Notably, in applications where the distance or the
medium allows to establish a wireless communication,
agents can exchange their estimated positions, which
can then be processed using distributed data fusion
algorithms, thereby improving the overall system state
estimation [21]–[23]. However, when cooperation among
agents cannot be enforced due to limited or absent com-
munication, individuals can only leverage information
gathered with their own sensors [24]. This is the case
in multi-spacecraft missions involving the interaction be-
tween non-cooperative vehicles, as in tracking of resident
space objects, on-orbit replenishment, and responsive
space missions [25].

Among formation control algorithms, leader-follower
approaches are implemented in several real world sys-
tems including unmanned aerial, underwater, or ground
vehicles [26]–[30]. In such systems, few agents, denoted
leader, possess knowledge of the path to be followed and
drive others towards a set of target locations. This control
scheme is known to be cost-efficient as only few vehicles
are required to operate costly and computationally inten-
sive navigation sensors such as LIDAR for Simultaneous
Localization and Mapping (SLAM) [31] or Differential
Global Positioning System (DGPS) [32] to follow the
path. The other vehicles, denoted followers, only need
cheap proximity sensors to achieve and maintain the
formation pattern. Popular proximity sensors in robotic
systems include sonar based on ultrasound and light/laser
sensors relying on light emitted and reflected on distant
objects and processed by on-board electronics to estimate
the position of distant objects or map the environment.
In recent applications, vision based sensors relying on
picture frames taken from an inexpensive camera have
also emerged as a viable method to both identify the
nature and estimate the depth to nearby objects. In
practice, these devices have a limited detection range and
their accuracy might vary depending on environmental
conditions [33].

Substantial research efforts have been devoted to im-
prove the reliability of both relative and absolute lo-
calization methods, notably through (i) improved robust
estimation methods [34], the use of multiple sensors of
different natures [35]–[37], or (iii) methods incorporating
non-linear Kalman Filter and modeling perturbations via
stochastic differential equations [19]. However, the local-
ization problem is only partially addressed in the absence

of feedback data or in case of intermittent proximity
sensor measurements. This is the case, for instance, when
obstacles may be encountered along the path, or when
the presence of variable lighting condition, fog, dust, or
vegetation limits or alters sensor readings [38], [39].

In this work, we seek to experimentally implement
a recent state estimation and control algorithm inspired
from the pioneering work in [24], [40], [41] on a multi-
robot system. The team of robots includes one or more
informed agents that are aware of the desired pace of
the group, and follower robots moving autonomously
and independently by predicting their relative position
with closer neighbors based on uncertain and intermittent
proximity measurements provided by either a sonar or
a vision sensor. Indeed, the limited sensor detection
range implies that the agents can detect the presence
of neighbors only within a certain distance and are
not allowed to transmit information about their state
to other team members. Depending on the availability
of proximity distance measurements and assuming a
bounded measurement error, we build uncertainty dis-
tance intervals allowing any follower to recursively and
independently estimate the relative angular position of
closer neighbors moving on the circle. The choice of a
circular formation is due to its relevance in applications,
including perimeter surveillance [42] and source seeking
[43], but the methods illustrated in this manuscript can
be extended to cope with generic Jordan curves [44].

Different from [24], [40], [41], our decentralized non-
cooperative approach is implemented in a pause-and-go
fashion, where, during the pause, each robot uses an
estimator to identify its closest pursuant and evaluate its
relative position. During the go, a three-level bang-bang
control strategy is employed to appropriately space from
nearby robots. The pause-and-go motion has notably
been evidenced in animal groups, where some animal
species tend to adopt a static posture to identify, localize
and estimate the position of distant objects, including a
potential prey or threat. This approach has been observed
to be more reliable as compared to a dynamic execution
where the animal own motion might compromise an
accurate appreciation of the distant object [45]. This
strategy has also been observed to be instrumental in
regulating the social behavior of some insects such as
locust nymphs, which are observed to stop their motion
to estimate and readjust their alignment with respect
to other group members [46]. As we show here, this
biologically inspired implementation is appropriate for
low costs robotic applications, where the limited payload
reduces the de facto on-board computational power, and
the sensors are inexpensive and potentially inaccurate.
Furthermore, this pause-and-go implementation is suit-
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able in all the scenarios that are not time-critical, but
where the accuracy of the formation needs to be granted
even when the sensing and computational resources are
limited, as for instance in distributed sensors place-
ment [47].

The outline of the paper is as follows. In Section II,
we describe the dynamics of the multi-robotic system,
together with the potential challenges for control. In
Section III, we present the state estimation and control
scheme and illustrate its convergence properties. In Sec-
tion IV, we describe the experimental setup including the
robotic platform, sensor measurements and constraints,
and the experiment arena. Finally in Section V, we
present and discuss the experimental results, before
drawing our concluding notes in Section VI.

II. MULTI-ROBOT SYSTEM: DYNAMICS AND
CONTROL

A. Modeling the dynamics

We consider the problem of balancing a group of
i = 1, ..., N mobile robots moving along a circle of
radius R > 0. At each discrete time instant k, the i-th
robot updates its angular position θi(k) according to the
following dynamics:

θi(k + 1) = θi(k) + ui(k) I(k), (1)

for i = 1, . . . , N , where ui(k) is the control input setting
the robot angular speed. Note that the control action is
not active at each time instant, since the pause-and-go
motion prescribes the robot to stay still while performing
the required estimations to determine the next input.
Therefore, model (1) includes an indicator function I,
which is 1 when the control law ui is applied and 0
otherwise, that is,

I(k) =

{
1, if (k/p) ∈ N,
0, otherwise,

(2)

where p ∈ N is the minimum number of time steps
required to perform the measurements and estimations
instrumental to compute the control input.

The objective of the control input is to steer the multi-
agent system towards a balanced formation on the circle.
In formal terms, the control design should find a control
law ui(k) which guarantees that the multi-robot system
achieves an ε bounded formation [24], that is, given any
pair (i, j) of consecutive agents,

lim sup
k→+∞

|ϑij(k)− ψ| ≤ ε, (3)

where ϑij(k) := rem(θi(k) − θj(k)) is the relative
phase between robots i and j1; where ψ = 2π/N is
the desired angular spacing between consecutive agents,
and ε determines the formation accuracy, with ε = 0
corresponding to a perfect balancing.

B. Challenges for control

In an ideal environment, where each robot can con-
tinuously measure the absolute position of the other
units, and is then capable to process in real time this
information, control objective (3) can be easily attained
by following standard control strategies. However, we
consider a scenario where the low-cost robots possess
minimal sensing and computing capabilities:

1) Each robot, say i, can only detect robots that are
within a proximity radius of ρv;

2) Given a robot j in its proximity radius at time k,
robot i can only measure its distance dij(k), this
implying that robot i cannot discriminate robot j’s
identity and if j is ‘in front’ or ‘behind’2;

3) The distance dij(k) is not perfectly obtained, but
only an inaccurate and/or intermittent measurement
d̃ij(k), affected by a bounded uncertainty δij(k), is
available;

4) Each robot only tries to collect measurements every
p steps, to have sufficient time in the pause phase
to process the information, estimate the relative
positions with other robots, and determine the next
control input.

To the best of our knowledge, none of the existing
approaches can simultaneously cope with these four
constraints, which, taken altogether, imply that the output
equation of robot i is

d̃ij(k) =

{
dij(k) + δij(k), if dij(k) ≤ ρv ∧ I(k) = 1,

n.a., otherwise,
(4)

where |δij | ≤ δmax, with δmax being the upper bound of
the measurement error.

Noting that Euclidean distances can be mapped into
distances along the circle, we observe that the visibility
angle ϕv along the curve can be computed as

ϕv = 2 arcsin(ρv/2R).

Every p time steps, so as to comply with the duration of
the pause, each robot can extract the information coming
from the output equation (4). Defining the relative phase

1rem(z) denotes the unique solution for r to the equation z =
2πw + r, where −π ≤ r < π, w ∈ Z.

2We say that robot i is in front of j at time k if ϑij(k) > 0,
otherwise we say that it is behind j.
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distance between agents i and j as ϕij(k) := |ϑij(k)|,
from Equation (4), we then know that3

ϕij(kp) ∈

{
Υij(kp), if ϕij(kp) ≤ ϕv,
Υ, otherwise,

(5)

where ϕv := 2 arcsin ρv/2R, Υ := (ϕv, π], and

Υij(kp) := [ max {ϕ̃ij(kp)− ϕmax, 0} ,
min {ϕ̃ij(kp) + ϕmax, ϕv}], (6)

with ϕ̃ij(kp) = 2 arcsin(d̃ij(kp)/2R) being the phase
distance corresponding to the measured Euclidean dis-
tance d̃ij(kp). The maximum possible uncertainty on
ϕij is quantified by ϕmax, which is defined as ϕmax :=
2 arcsin((ρv+δmax)/2R)−2 arcsin(ρv/2R). The graph-
ical illustration of the measurement process provided in
Figure 1 shows how the information contained in (5)
can be used to build two intervals (one in [0, π) and the
other in [−π, 0)) to which ϑij belongs. The width of
these uncertainty intervals, which we call Γij1 (kp) and
Γij2 (kp), can be successively shrunk using the informa-
tion coming from (5) and the knowledge of individual
dynamics in (1). The hull Hij(kp) of the multi-interval
composed by Γij(kp) = Γij1 (kp) ∪ Γij2 (kp) will then be
an overestimate of the uncertainty on ϑij(kp). Since the
implementation of the following estimation and control
algorithm leverages basic properties and operations on
intervals, we briefly recall them in the Appendix.

Fig. 1: Illustration of the information (5) that can be extracted
from the measurement equation (4). At a given time k̄ = kp,
robot i only perceives robot j, since it is the only robot in
its visibility range. Accordingly, robot i performs an uncer-
tain measurement of the distance dij(k̄) with respect to j.
Accordingly, robot i can deduce that robot j has to be in
one of the two blue arcs, which correspond to Υij(k̄) and
−Υij(k̄), respectively. The absence of a distance measurement
with respect to robot l will imply that it has to be in the red
arc, which corresponds to Υ.

3To make the notation lighter, and avoid using the indicator function,
all the quantities related to measured distance will be only defined at
time instants kp, with k being an integer.

III. ESTIMATION AND CONTROL METHODS

To cope with the challenges associated to the lim-
ited computing/sensing capabilities of each robot in the
group, we propose to adapt the synergistic control and
estimation strategy first proposed in [24]. The strategy
prescribes a random election of a leader that travels at the
desired angular speed, thus setting the pace of the multi-
agent system4. Without loss of generality, we assume
that the labels of the robots are progressively assigned
clockwise, starting with label 1 for the leader robot. The
leader’s control law then is

u1(k) = ωref , (7)

for all k. All the other robots i 6= 1 implement a three-
level bang-bang control law, instead. Specifically, all
the other robots (the followers) are initially assumed to
remain still, that is, ui(0) = 0 for all i 6= 1. This will
generate a relative motion between the followers and the
leader. Assuming that at the beginning the multi-agent
system is disconnected, that is, none of the robots is in
the visibility range of another robot, this relative motion
will determine a time-instant in which the leader will
approach (from behind) the next robot, that is, node 2,
thus entering its visibility cone. This triggers a chain
of reactions from the estimation and control strategy of
node 2, whose main steps can be summarized as follows:

1) u2 is initially set to zero;
2) After a certain number of time steps, node 2 start

sensing the presence of a node within its range.
Leveraging the knowledge of the system dynamics
and the information (5) coming from the measure-
ment process, it implements a prediction-correction
algorithm to perform an estimate ϑ̂2j of its distance
with respect to the other nodes.

3) At time k2, agent 2 will be able to discriminate its
closest pursuant (in this case, node 1).

4) Then, the control strategy is activated and, if node
1 is closer than the desired spacing ψ, u2 is set to
ωref +c, with c > 0, so as to increment the distance
between 1 and 2.

5) When the desired distance is achieved, the control
input u2 is switched to the desired pace ωref .

Note that, once robot 2 has identified its closest pursuant,
it starts moving thus finally entering the visibility cone
of the next robot, that is, robot 3. This chain of events

4Note that in our setting the leader has the same knowledge and
sensing abilities of all the other agents in the formation. This is the
reason why the role of leader and be taken by any agent and it can
randomly elected.
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will determine a sequential repetition of the above steps
for all pairs of consecutive robots, finally yielding an ε-
balanced formation. The main elements of the estimation
and control strategy are explained in details in the
following.

A. Control strategy
Robot i 6= 1 activates its control law only when it has

identified its closest pursuant. As anticipated in Section
II-B, at time kp, robot i possesses an interval estimate
Hij(kp|kp) of the relative phase ϑij(kp) with respect
to robot j, where the notation |kp means that the agent
i used all information collected until kp. Let us denote
H and H̄ the infimum and supremum of an interval H ,
respectively. If, at time kp, the conditions

Hi,i−1(kp|kp) > 0,

H̄i,i−1(kp|kp) < Γij1 (kp|kp), for all j 6= i− 1
(8)

are simultaneously met, then robot i can unambiguously
conclude that i− 1 is its closest pursuant. The smallest
time-instant, if it exists, such that (8) holds, is denoted
ki, and is the time-instant in which node i identifies
its closest pursuant. We can now define the three-level
control strategy, which will be activated as soon as k ≥
ki:

ui(k) =

{
ωref + c sgn+

(
ψ − ϑ̂i,i−1(k)

)
, if k ≥ ki,

0, otherwise,
(9)

for i = 2, . . . , N , where ϑ̂i,i−1(k) is selected as
H̄i,i−1(bk/pc|bk/pc). In what follows, we explain how
the multi-interval Γij(kp|kp) is updated.

B. Estimation strategy

The effective functioning of control strategy (7)-(9)
depends upon the selection of an appropriate estimation
strategy which combines the information coming from
the measurement process with those on the individual
dynamics of each robot. To this aim, the estimator Ei
of the i-th node first exploits the three-level bang-bang
structure of the control law to perform the following
interval estimate ûij(k) of the input acting on node i at
time k:

ûij(k) =


ωref , if k ≥ ki, dij > ρv, j = i− 1,

[ωref , ωref + c], if k ≥ ki, dij ≤ ρv, j = i− 1,

[0, ωref + c], otherwise.
(10)

for all i 6= 1. This estimation is then leveraged by Ei to
update the uncertainty on the relative phase. Notice that
the initial uncertainty that each node i has on ϑij is

Γij(0| − p) = [−π, π), (11)
for all i = 2, . . . , N, j 6= i. We remind the reader
that each robot requires p time instants to process
the measurement and compute the next control input,
therefore Γij is updated every p steps. Specifically,
the estimation Γij(kp|(k − 1)p) is updated by
exploiting the information (5) brought by the
presence (or by the absence) of a measurement as

Γij(kp|kp) =


∅, if kp ≥ ki, j 6= i− 1,

Γij(kp|(k − 1)p) ∩
(
Υ ∪ −Υ

)
, if kp ≥ ki, dij(kp) > ρv, j = i− 1,

Υ ∪ −Υ, if kp < ki, dij(kp) > ρv,

Γij(kp|(k − 1)p) ∩ (Υij(kp) ∪ −Υij(kp)) , otherwise.

(12)

Equation (12) prescribes that agent i, before the
time instant ki in which it discriminates its closest
pursuant does not perform the intersection between
Γij(kp|(k − 1)p) and (Υij(kp) ∪ −Υij(kp)) when no
measurement is available, i.e., when dij(kp) > ρv , just
setting Γij(kp|kp) to (Υij(kp) ∪ −Υij(kp)). After time
ki, agent i stops estimating the position of all other
agents except its closest pursuant i− 1.

Algorithms 1 and 2 report a schematic implementation
of the estimator (12). The uncertainty interval Γij(kp|kp)
is then projected p steps ahead by using the estimate (10)

agent i performed of the input of agent j:

Γij((k+1)p|kp) = Γij(kp|kp)+ ûij(kp), for all j 6= i,
(13)

where robot i’s estimate of the relative input with respect
to j is ûij(kp) := ui(kp)− ûij(kp).

Our estimator shares with the classic Kalman filter the
prediction-correction structure, however there are two
fundamental differences: i) the main objective of our
estimator is to provide an interval estimate rather than
a point estimate, and ii) we consider bounded measure-
ment uncertainty, but we do not make any assumption
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on the noise distribution, while white noise is considered
in the standard Kalman filter, see also [41].

C. Convergence towards the desired formation
The effectiveness of the estimation and control strat-

egy (7)-(13) has been demonstrated in [24]. These results
can be extended to cope with the pause-and-go imple-
mentation of the strategy. First, it is possible to provide
upper bound on the time steps required so that each robot
can identify its closest pursuant.

Theorem III.1. Let us consider the multi-robot system
(1), (2), (4). If

1) The initial position of the robot on the circle is such
that |ϑij(0)| ∈ [min{4ϕmax + 2ωref + 2c, ϕv}, π],
for all i = 1, . . . , N , i 6= j;

2) 2(ωref + c) < ϕv;
3) ωref > 0 and 0 < c < ε/(N − 1),

then each robot i ∈ {2, . . . , N} identifies its
closest follower in finite time, that is, there exist
k2, . . . , kN < +∞. Furthermore ki ≤ k̃i, where

k̃i =


p d(θ2(0)− θ1(0)− 2(ωref + c)) /ωrefe, if i = 2,

ki−1 + p d(ϑi,i−1(0)− ϕv)/ωrefe, if i 6= 2 ∧ ϑi,i−1(0) > ϕv,

ki−1 + p d(θi(0)− θi−1(0)− ϕv) /ωrefe, if i 6= 2 ∧ ϑi,i−1(0) < 0,

ki−1 + p d(ϑi,i−1(ki−1)− 4ϕmax) /ωrefe, otherwise.

(14)

Proof. From Theorems 4 and 5 in [24], and considering
the pause-and-go implementation of the estimation and
control strategy, the thesis follows.

Put it simple, for each agent i = 2, . . . , N , Theorem
III.1 provides an upper bound k̃i for the convergence
time ki of the estimator. These upper bounds are re-
cursively obtained: the calculation of k̃2 triggers the
recursion and, for all i > 2, k̃i is computed based
on the initial conditions, but also on k̃i−1. Note that,
to obtain tighter bounds, we discriminate between the
cases in which ϑij(0) is greater than ϕv , negative, or
positive but smaller than ϕv . Then, sufficient conditions
guaranteeing the achievement of an ε-balanced formation
can be derived, together with an estimate of the bound ε,
and of the time kci that each agent i = 2, . . . , N requires
to appropriately space from its closest follower.

Theorem III.2. Let us consider the multi-robot system
(1), (2), (4). If

1) The initial position of the robot on the circle is such
that |ϑij(0)| ∈ [min{4ϕmax + 2ωref + 2c, ϕv}, π],
for all i = 1, . . . , N , i 6= j;

2) 2(ωref + c) < ϕv;
3) ωref > 0 and 0 < c < ε/(N − 1);

then the estimation and control strategy (7)-(13) drives
the multi-robot system towards an ε-balanced formation.
Furthermore,

1) lim
k→+∞

|ϑij(k)− ψ| ≤ c, for all pairs of consecutive

agents i and j except of (N, 1);
2) The relative phase between a pair (i, j) of consec-

utive agents converges in finite time kcj ≤ k̄cj , with

k̄cj ≤


p
{

1 +
⌈
θ2(0)−θ1(0)−2(ωref+c)

ωref

⌉
+
⌊
ϕv−(ωref+c)

c

⌋
+
⌈
ψ−(ϕv+c)

c

⌉}
, if j = 2,

p
(

max
{
kj
p +

⌈
θj(0)−θj−1(0)−2(ωref+c)

ωref

⌉
,
kcj−1

p

}
+
⌈
ψ−(ϕv+c)

c

⌉)
, if j 6= 2 ∧ ϑj,j−1(0) > 0,

p
(

max
{
kj
p +

⌈
(2π+θj(0)−θj−1(0))−2(ωref+c)

ωref

⌉
,
kcj−1

p

}
+
⌈
ψ−(ϕv+c)

c

⌉)
, otherwise.

(15)

Proof. By combining Theorem III.1 with Theorems 5,
8 and 9 in [24], and considering the pause-and-go
implementation of the estimation and control strategy,

the thesis follows.

Theorem III.2 provides an upper bound for the con-
vergence time of the relative phase of consecutive agent.
Again, this is obtained recursively, in the sense that k̄cj
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Algorithm 1 Illustration of the estimation in (12), where λ(k) is the number of interval composing J(k) =
−Υij(kp) ∪ Υij(kp).

1: procedure INITIALIZATION (k < 0 ) . set ki < 0 to start with
2: J(0) = Υij(0) ∪ −Υij(0)
3: if ϑij(0) ≤ ϕv then . i can detect j
4: ki = 0 . set ki = 0
5: end if
6: while width(H(kp)) ≥ δ do
7: N l = λ(k − 1)
8: [λ(k), Jl(k|k)]← Evaluate{Jl(k|k − 1) ∩ Γij(kp|(k − 1)p)}
9: if d̃ij(kp) 6= n.a. then

10: if ki < 0 then
11: N l = min

(
N l, 3

)
12: ki = kp
13: end if
14: else
15: if ϕv ≤ π

3 then
16: λ(k) = 2 . Γij(kp|kp) has two intervals
17: else
18: λ(k) ≤ 1 . Γij(kp|kp) is either the empty set or a single interval
19: end if
20: end if
21: k = k + 1
22: width (H(kp)) = maxlJl(k)−minlJl(k)
23: end while
24: return Jl(k|k)
25: end procedure

Algorithm 2 Subroutine of Algorithm 1.

1: procedure
2: Evaluate{Jl(k|k − 1) ∩ Γij(kp|(k − 1)p)}
3: λ(k) = 0
4: for l = 1:N l do
5: if Jl(k|k − 1) ∩ Γij(kp|(k − 1)p) is a single interval then
6: λ(k) = λ(k) + 1
7: else if Jl(k|k − 1) ∩ Γij(kp|(k − 1)p) is the union of two intervals then
8: λ(k) = λ(k) + 2
9: end if

10: end for
11: return [λ(k), Jl(k|k − 1) ∩ Γij(kp|(k − 1)p)]
12: end procedure
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depends on k̃cj−1 for all j > 2, with k̃c2 triggering the
recursion, see (15). Finally, to obtain tighter bounds,
we discriminate between the cases in which ϑij(0) is
positive or negative.

Note that a key feature of our estimation and control
approach is that it can effectively work when only a
handful of robots are available. Indeed, the strategy
works when, at steady-state, the agents cannot receive
any measurement, since the desired spacing ψ is smaller
than the visibility range %v . This feature also confers
robustness to zero-mean actuation errors upon our ap-
proach, and a way to detect biased actuation errors.
Indeed, in the latter case at some point two consecutive
agents will be able to gather a measurement. This event
could be used to trigger a reset the estimation and control
strategy, similar to what has been proposed in [48].

Remark III.3. The fulfillment of the conditions guar-
anteeing that each agent identifies its closest pursuant,
and then appropriately space from it, can be enforced
by an appropriate selection of the control parameters c
and ωref . In particular, Assumption 1 requires that the
agents are sufficiently spaced at time 0. This guarantees
that, even in the presence of a measurement error of
ϕmax, collisions are avoided, since each agent is capable
of identifying its follower and react before a collision
may occur. Assumption 2 requires that the sampling time
is sufficiently small compared to the maximum relative
speed ωref among the agents. Finally, through an ap-
propriate choice of the control parameter c, Assumption
3 ensures that balancing is achieved with the desired
accuracy.

Remark III.4. A closer look at the assumptions of both
theorems, and at the upper bounds (14) and (15), shows
that the control parameter c can be used to regulate
the trade-off between the accuracy of the formation
and the convergence speed. Indeed, reducing c improves
accuracy, as Assumption 3) of Theorems III.2 implies
that, for a given c we can guarantee that ε is at most
c(N − 1). At the same time, reducing c increases the
upper bounds of the time that each agent needs to
identify its closest pursuant, see equation (14), and to
appropriately space from it, see equation (15). Note also
that the accuracy and convergence time increase linearly
with the number of agents in the formation. However,
we emphasize that the scenario that we are considering
implicitly assumes that only a handful of agents are
available. Indeed, our estimation and control strategy
explicitly assumes that the range of visibility is lower

than the desired spacing, which is ψ = 2π/N . Note
that, if N were large (i.e. in case of a very large robotic
network), then the agents would be able to perceive each
other at steady-state. This would remove one of the main
challenges of our scenario, and alternative approaches
could be used, see e.g. the control strategy used in [44].

Remark III.5. Note that the estimation and control
strategy described in this Section can be adapted to
balance the formation along any C0 Jordan curve.
The main difference with respect to considering the
circle, is that there is not a one-to-one correspondence
between Euclidean distances and distances along the
curve [44], [49]. Even if the Euclidean distance between
two agents were perfectly measured, the corresponding
distance along the curve would depend on their absolute
position. This would not prevent the application of the
approach presented in this Section, since the practical
implication would be a larger measurement uncertainty
(an increased ϕmax). The approach would be then still
viable, given that at the onset of the experiment the
robots are sufficiently spaced.

An additional challenge for the estimation and control
strategy might be due to possible faults, with one or
more agents forced to leave the formation. In that case,
the strategy can still work provided that the agents are
informed of the new desired spacing, which will be set
to 2π/(N − Nr), with Nr being the number of agents
leaving the formation. Note that, since the leader is the
same as any other agent, a fault affecting the leader is
not critical, since it suffices to randomly elect another
leader among the functioning robots.

IV. EXPERIMENTS

This section describes the complete apparatus includ-
ing the robots and sensors utilized, the experimental
arena, and the procedure followed when running the
experiments.

A. Custom made robot design

A custom made castor wheeled robotic platform, illus-
trated in Figure 2, was utilized in the experiments. Each
robot incorporates a multilayer chassis to store various
electronic components. The chassis’ layers were initially
designed in SolidWorks (Dassault Systemes, Concord,
MA) and laser cut in a 0.32 cm plexiglass acrylic sheet
(Colorado Plastic Products, CO). The chassis’ layers
were stacked and the components mounted on each layer
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using standoffs to maintain a distance of about 4.5 cm
between them. Additional orange colored 3D printed
plastic plates were mounted in front of and behind each
robot to ease sensor detection. The coloration was chosen
to contrast with the color of nearby objects making the
plate easy to detect by the computer vision code.

Each layer of the chassis in Figure 2(a) was designed
to house specific electronics. The two motors and the
infrared (IR) sensor for line following were mounted at
the bottom layer, while the motor driver and the battery
on top of the same layer. The middle layer was used
to house the Arduino micro-controller board (Arduino
project, Italy) converting the analog sensor readings from
the light and ultrasound sensors to digital values. The
top layer in Figure 2(c) was made to hold the motorized
sensor and the Raspberry Pi computer board (Raspberry
Pi Foundation, United Kingdom). A 9g servo motor
was utilized to rotate the proximity distance sensors
either frontward or backward. A schematic of the electric
circuit connecting components is shown in Figure 2(d).

The robot primarily operates with a single board
computer, a Raspberry Pi, featuring a wireless connec-
tion to a remote computer through secure shell (SSH).
The Raspberry Pi is programmed via multiple python
scripts that control the robot motion, implement the
algorithm, and process the sensors data readings. The
Wifi connection was only used to edit the scripts and to
start and stop the experiments from a remote computer.
The differential drive robots were actuated through DC
gear motors powered by a motor driver.

B. Phase distance measurements

We considered and compared two types of sensors to
estimate proximity distance to nearby robots. Namely,
we selected an ultrasound sensor used as sonar, and
a Raspberry Pi v.1 camera as vision sensor. Due to
the circular trajectory of the robots, to reduce mea-
surements errors when using the ultrasound sensor
with a limited measuring angle of 15 degrees (see the
part guide at https://cdn.sparkfun.com/datasheets/ Sen-
sors/Proximity/HCSR04.pdf), a servomotor was utilized
to rotate the sensors in order to measure distances
at three different angular positions, with each sample
measurement spaced by an angle of 7π/36 rad. Note that
the angular interval of 7π/36 rad was selected so that
the ultrasonic sensor could cover a cone of 7π/18 rad
corresponding to the camera angle of view. A custom-
made computer vision code built with opencv used the
frames captured by the camera to evaluate the distance
from the colored orange square plate identifying a nearby

robot, see Figure 2. By scaling the dimensions of the
detected plate to a predefined reference value, the closest
distance to the remote object was estimated.

At each angular position, a distance estimate was
obtained from the eight measurements performed by the
ultrasonic sensor: values less than 0.05 m or larger than
the circle’s diameter were discarded, and the median of
the remaining ones was selected as the distance estimated
at each of the three angles. In the experiments with
the more reliable camera sensors, a single measurement
was required to estimate the distance. To be consistent
with the experiments with the ultrasonic sensors, three
distance estimates were also obtained, but from mea-
surements at the same position. Finally, for both sensors,
the minimum of the three values was considered as the
distance to the closest robot. This conservative approach
has been taken to minimize the risk of collisions induced
by measurement inaccuracies. Further, in the case of the
ultrasonic sensor, this also allows to ensure that i) the
measurement is taken with respect to the closest robot
and ii) the selected sensor angle is the most aligned with
the target (closest) neighbor.

We emphasize that the proposed estimation and con-
trol strategy is designed to work also when the robot
fails to directly determine from measurements if a
neighboring robot is in front or in the back. In the
pilot experiments, we estimated that the sensors reading
started to substantially drop their accuracy when the
distances were higher than one meter, and therefore the
code processing the sensor readings was set to trash
values greater than a meter, this yielding a proximity
radius ρv = 1 m in the output equation (4).

To avoid overloading the Raspbery Pi computer, the
robots were controlled in a pause-and-go motion. During
the pause, one of the sensors was activated to estimate
the angular position of the closest robots in front and
behind by swiping in both direction an angle of 7π/36
rad, while, during the go, the sensor was deactivated
to allow the computer board to drive the robot. This
control mode resulted in a discrete pause-and-go motion
as described in model (1).

C. Experimental apparatus and procedure

The experimental setup in Figure 3 consisted of a
circle of radius R = 0.7 m. The radius of the circle was
set to maintain a blind sensing spot of π/6 rad prior
to reaching the balanced circular formation. The circle
was identified by a narrow black adhesive tape placed
on top of a wider white one. Custom python scripts
implementing a standard PID control with feedback from
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Fig. 2: Custom made robot prototype utilized in the experiments. Illustration of the base chassis and the line following system
including LED color sensors (a), the ultrasound transducers and the camera used as sonar and vision sensors, respectively, along
with the orange detection plates placed ahead and behind to improve robot localization (b), the Raspberry Pi 3 computer board
mounted on top and used to process sensors data and control the robot (c), and the electric circuit diagram (d).

Fig. 3: View of the experimental arena with the three robots. At
the end of the experiments, a protractor was superimposed on
top of the picture frames to manually track the angular position
of each robot.

encoders mounted on the wheels and from the light
sensors were utilized to maintain the robot along the
black stripe, see Refs. [50], [51] for details on the use
of PID controllers for line following in differential drive
robots. While following the line, the caster wheel was
observed to move erratically because of the zig-zagging
motion required to follow the line, thereby adding further
disturbances to the robot motion. The experiments were
recorded by an overhead camera (Logitech c270 HD
webcam) placed on one side of the circular arena to
obtain a wide complete view for the subsequent analysis
of the experimental results.

The experiments were performed at the University
of Colorado Boulder on a group of 3 robots. A single
robot was set as the leader with motion independent
from that of the other two robots. All robots were

equipped with sensors to detect and estimate distance
of nearby robots. For safety reasons, the leader was
also equipped with sensors to avoid potential collision in
case the robot ahead became irresponsive. Note that, in
principle, when the algorithm is correctly implemented
by all robots, in the absence of serious faults, this feature
is not needed as the closest follower would initiate its
motion when detecting the presence of an approaching
robot. The followers, instead, utilize proximity distance
to implement the state estimation and control algo-
rithm (8)-(13) leading to a fully decentralized and non-
cooperative implementation of the algorithm. Indeed, it
is independently run at each node, and no information
is exchanged among the robots. This constitutes a key
feature of the algorithm.

The robots’ motion was initiated through a remote
connection using Wifi. In all the trials, the initial posi-
tions of the robot was set so that the relative phase ϕij(0)
between two consecutive agents i and j was between
0.84 to 2.02 rad. Since the visibility angle was estimated
to be ϕv = 1.59 rad, this means that at the start of each
trial two consecutive robots do not necessarily perceive
each other. A pilot experiment allowed to determine the
duration of the pause time interval, which was estimated
to be 27 s when the camera sensor was utilized, and 55
s when measurement were gathered from the ultrasound
sensor. The latter was observed to require more time
since, as explained in the previous subsection, multiple
measurements had to be taken to compensate for the
reduced accuracy when the plates placed in front and
behind each robot were not directly aligned with the
sensor emitter and receiver.

As we set the duration of each time step in equation
(1) to 1 s, the number of time steps p in equation (2) is
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set to 27 and 55 for the camera and ultrasonic sensor,
respectively. For each sensor type, five experimental
trials were then video recorded using the overhead
camera. The duration of each trial was 15 min and
25 min when the vision and the sonar sensors were
employed, respectively. The motion of each robot was
then manually extracted from the video frames using a
protractor superimposed on top of each video frames (see
Figure 3).

V. RESULTS AND DISCUSSION

In this section, we analyze the convergence of the
experimental trials of the multi-robotic system driven
by the decentralized pause-and-go balancing cyclic for-
mation control scheme (7)-(13). We evaluate the time
trace of the phase distance estimated or provided by the
sonar and vision sensors, the variations of the angular
speed when approaching the ε-balanced formation, and
the evolution of the relative angular positions between
two consecutive agents.

A. Comparing the ultrasound and vision sensors

Table I reports the time trace of the phase distance
measured in two exemplary trials by either the ultrasound
or the vision sensors. Interestingly, since the desired
spacing distance is ψ = 2π/N = 2π/3 rad, at steady-
state the measurements are often not available, as the
sensor has an approximate threshold of ϕv = 1.59 rad
< ψ, and thus the robot may only rely on the estimation
and control strategy. Comparing the sensor outputs, more
stable, consistent, and accurate values were obtained
using the vision sensor as compared to the ultrasound
sensor which often does not return a measurement (sym-
bol “-” in the table), or the gathered measurements are
too inaccurate and are therefore discarded (symbol “Inf”
in the table)5.

A closer look at Table I also shows that there can be
false readings when using the ultrasound sensor. Indeed,
considering the dynamics of the agent and the control
law, there should be no readings from the back sensor
of robot 1, while we gathered a measurement in three
out of the total 10 iterations. This is due to the fact that
the ultrasound sensor requires the emitter and receiver to
be directly oriented toward the target to return accurate
measurements values, and the presence of occasional
objects (e.g. obstructions due to the presence of a human
supervising the experiment) can trigger an erroneous

5All measurement values over a threshold value of π/2 rad were
discarded resulting in the code returning a value “n.a.”.

reading of a measurement. In addition, at any given
time instant, it was not possible using the ultrasound
sensors to clearly differentiate the signal emitted from a
specific robot from another one. This further points to
the importance of the robustness of the estimation and
control scheme, which explicitly accounts the possibility
of having uncertain and ambiguous measurements. The
vision sensor, instead, has a broader angle of detection
(7π/18 rad) and only requires a single picture frame
independent of the orientation of the target, and imple-
menting the computer vision code to identify the distant
object, it generally provides more accurate measurements
of the phase distance.

B. Selection of the control parameters

In setting the control parameter c, we assume that the
reference pace of the formation is ωref = 0.1 rad/s,
and that we wish to guarantee the achievement of an
ε-balanced formation with a maximum formation error
of ε = 0.4 rad. Considering the trade-off between
convergence speed and accuracy (see Remark III.4), we
select the highest value c = 0.2 rad/s compatible with
the constraint ε ≤ 0.4 rad and such that Assumption
3) of Theorem III.2 is satisfied. Furthermore, we notice
that this parameter selection also fulfills Assumptions
1) and 2) of the Theorem. Indeed, 1) for each pair
of consecutive agents i and j, ϕij(0) ∈ [0.84, 2.02[⊂
[min{4ϕmax + 2ωref + 2c, ϕv}, π] = [0.68, π]6, and 2)
ωref + c = 0.3 rad < ϕv = 1.59 rad.

C. Actuation of the control input

The three-level bang-bang control law (7)-(9) pre-
scribes that, during the “go” phase, the leader (robot 1)
travels with an angular speed ωref = 0.1 rad/s, while
the follower robots 2 and 3 stay still until they identified
their closest pursuant, then start to move at a speed that
is ωref + c = 0.3 rad/s until their estimated relative
phase ϑ12 and ϑ23 from the robots 1 and 2, respectively,
becomes larger than the desired distance ψ = 2π/3 rad.
At this point, the followers adjust their pace to that of
the leader, that is, their angular speed is set to ωref . The
angular speed set by the decentralized control scheme
are provided as an input to a PID feedback controller,
whose goal is to set the desired pace prescribed by the
abstract controller, and, at the same time, to ensure that
the black circular stripe identifying the circle is followed.

6Note that ϕmax = 4.2 × 10−2 rad since δmax = 0.02 m. The
relationship between ϕmax and δmax is given below equation (6).
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TABLE I: Raw distances (in meters) returned by the sensors and then used by the robots to estimate their relative position and
control their motion in two sample experiments where a sonar or a camera is used, respectively

. Robot 1 is the leader, and is the closest pursuant of 2, which in turn is the closest pursuant of 3. The symbols “-” and “Inf” indicate that no
measurement is available and that the object is too far to obtain a meaningful measurement from the sensor, respectively. Both values

correspond to “n.a.” in the measurement equation (4). Iteration 0 corresponds to the start of the experiment.
Sensor Iteration Front 1 Back 1 Front 2 Back 2 Front 3 Back 3
Sonar 1 0.75 - - Inf - Inf

2 - - 1.31 0.59 - 1.22
3 - - - 1.01 - 0.87
4 - 0.92 1.07 1.50 - 0.54
5 - - 0.69 - - 0.85
6 - 0.85 0.71 Inf Inf 0.63
7 - Inf 0.74 - - 0.52
8 - 0.58 Inf 0.84 1.21 0.57
9 - Inf 0.69 - 1.30 0.77
10 - - 1.51 - - 0.91

Vision 1 1.11 - 1.13 0.89 - 0.95
2 0.95 - 0.82 0.78 - 0.96
3 0.85 - 1.10 0.65 - 0.95
4 0.97 - 0.76 0.85 - 0.67
5 1.56 - 0.91 0.99 - 0.68
6 - - 0.79 1.13 - 0.73
7 - - 0.82 - - 0.76
8 - - 0.79 - - 0.72
9 - - 0.57 1.53 - 0.70
10 - - 1.01 - - 0.89

Figure 4 compares the inputs u1, u2, and u3 as set
by the abstract controller (7)-(9) with the measured an-
gular speed of each robot in two exemplary experiments
where an ultrasound and a vision sensor are employed,
respectively. The changes in the set-points (the dashed
lines in Figure 4) testify that robots 2 and 3 are able
to identify their closest follower (ui switches from 0 to
0.3), and then to appropriately space from it (when ui
switches from 0.3 to 0.1). The oscillations around the set-
points and the occasional lack of response to the micro-
controller commands can be explained by several factors,
including the unavoidable zig-zagging when following
the black stripe, inaccurate encoders’ feedback, and the
wheel or caster wheel friction with the chassis, the floor,
or the connecting cables.

D. Convergence rate

According to Theorem III.2, with the selected control
parameters, an ideal implementation of the estimation
and control law (7)-(13) would yield a convergence
in finite-time towards an ε-balanced formation, with
ε ≤ 0.4 rad. However, the requirement of a low-
cost implementation poses additional challenges to the
robustness of the control strategy, due to the zig-zag
motion of the robot when following the black tape,
the actuation inaccuracies highlighted in Figure 4, and
the possible presence of false readings, especially when
using an ultrasound sensor, see the discussion in Section
V-A.

Table II presents some relevant statistics about the
convergence rate defined here as the number of iterations
performed by a follower to reach the balancing formation
scheme. The statistics are processed for a total of five
trials and include the minimum, mode, and maximum
number of iterations to converge. Notably, the balancing
error is never higher than 0.30 rad, which corresponds
to the maximum angle ωref +c spanned by the robot in a
single step, and is less than the value 0.40 rad guaranteed
by Theorem III.2, and this is true for both sensor types.
This indicates that the estimation and control strategy
is robust enough in view of a low-cost implementation,
and is capable of counterbalancing the occasional false
readings and inaccuracies of the ultrasound sensor. Note
that reducing the value of the control parameter c in the
experiments might further increase the accuracy of the
scheme, as discussed in Remark III.4.

TABLE II: Summary results on convergence rate, steady-state
relative phase ϑ̄ij between the two followers and their closest
pursuant, and maximum formation error obtained using the
ultrasound and the vision sensors, respectively.

Follower 1 kci /p (iterations) ϑij (rad) Max error (rad)
sensor min mode max mean (rad) se (rad) |ϑ̄ij − 2π

3
|

Ultrasound 6 7 7 2.02 0.15 0.23
Camera 6 6 6 2.11 0.25 0.28

Follower 2
Ultrasound 11 11 14 2.20 0.24 0.29

Camera 11 12 12 2.11 0.22 0.28

Furthermore, the results reported in Table II show
that the number of iterations kc2/p and kc3/p required by
follower robots 2 and 3 to appropriately space from their
closest pursuant never exceeds 7 and 14, respectively.
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Fig. 4: Time trace of the control law u1, u2 and u3 in (7)-(9) (dashed line, circular dots) and of the measured angular speed
(solid line, square dots) in successive iterations (i.e. every p time steps) for two exemplary experimental trials collected using
the ultrasound (first column) and the vision (second column) sensors.

This further points to the robustness of the control
strategy and of the theoretical predictions, since Theorem
III.2, for the range of initial conditions considered in the
experiments, establishes an upper bound for kc2/p and
kc3/p never lower than 10 and 22 iterations, respectively.
Additionally, leveraging the estimation strategy, each
follower identifies their closest pursuant in one iteration,
which is smaller than the upper bound obtained from
(14), that is, k2/p = 3 and k3/p = 10.

Although the performance of the estimation and con-
trol algorithm appears to be consistent regardless of the
sensor used, we point out that, when using the camera
sensor, the convergence rate achieved by the robots tends
to be less variable compared to the one observed with the
ultrasound sensor. Furthermore, we remark that, albeit
the number of iterations required for convergence is
comparable, the duration p of the pause phase when
the ultrasound sensor is used is more than doubled if
compared with the experiments with camera sensors.

E. Steady state formation

Figure 5 illustrates in an exemplary trial the relative
phase between the follower robot 2 and the leader robot
1, and between the follower robots 3 and 2, which tend
to approach the desired spacing ψ = 2π/3 = 2.09 rad.

As summarized in Table II, at steady state, that is, when
the robots move at the same speed, the relative phase be-
tween consecutive agents and using both sensors is about
2.11±0.22 rad. This outcome confirms the effectiveness
of the control law in achieving an ε-balanced formation,
since the required ε was set to 0.4 rad.

VI. CONCLUSION

In this work, we have implemented a non-cooperative
and fully decentralized state estimation and control
scheme that only relies on uncertain and intermittent
distance measurements to autonomously balance a group
of mobile robots on a circle. The number of agents in
the formation and the range of their sensors is such that,
when the control goal is achieved, they cannot perceive
each other. To the best of our knowledge, this is the only
estimation and control approach that is designed to work
in this challenging scenario. The effectiveness of the con-
trol was tested using two types of sensor, including a less
accurate ultrasound sensor and a more accurate vision
sensor. We observed that, as suggested by the theoretical
findings on which the implementation is grounded, the
control scheme is capable of autonomously balancing
the robots’ state along the circle even though the sensor
range is shorter than the desired spacing, thus implying
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Fig. 5: Spacing between pairs of consecutive robots in two
sample trials using (a) the ultrasound and (b) the vision sensors,
respectively: the relative phases between follower robot 2 and
leader robot 1, and between follower robots 3 and 2, are
identified by a solid and a dashed line, respectively. The dash-
dotted horizontal line identifies the desired spacing ψ.

an absence of measurements when the target balancing
is achieved. Interestingly, an appropriate tuning of the
control parameters drives the balancing error below a
desired threshold, regardless of the selected sensor. The
control parameter can indeed be used to regulate the
trade-off between accuracy and convergence speed.

Although the accuracy of the formation is comparable
between sensors, in the experiments we observe that,
using the more accurate vision sensor, the robots tend to
balance faster compared to the less accurate ultrasound
sensor. Our findings support the applicability of the state
estimation and control scheme in real-world systems to
balance a formation along a circle, which is a typical
scenario e.g. in coverage control problems [52]. The
encouraging results illustrated in this manuscript point
at an inherent robustness of this scheme, which is
capable of coping with substantial uncertainties in the
measurement process.

Future works will be then devoted to extend its
theoretical grounding to other geometric shapes, and
to experiment its applicability in complex environments
with either unmanned aerial vehicles (UAVs) or un-
manned underwater vehicles (UUVs), where the medium
or the environment might further challenge the ability of
gathering reliable sensor measurements.
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VII. APPENDIX

Definitions and properties on intervals
Here, we recall some basic definitions and notation

on intervals [53]. Given an interval J ∈ R, we denote
its infimum and supremum by J and J̄ , respectively.
Furthermore, its width width(J) is defined as J−J̄ ∈ R.
When an interval reduces to a singleton, that is J =
{x}, it is called degenerate and J = x = J̄ . A generic
binary operation � between two interval Jx and Jy is
the set {x � y ∈ R/x ∈ Jx, y ∈ Jy}. Considering N
intervals J1, ..., JN , the infimum and supremum of the
interval hull H = hull{Jk} are denoted H = infk{Jk}
and H̄ = supk{Jk}, respectively. The hull is said to
be a closed interval if H and H̄ belongs to ∪kJk. The
algebraic sum of a closed interval J and a scalar z is
J + z = [J + z, J̄ + z].

For a given scalar x ∈ R, we define y := mod (a)
as the unique solution of y = a − 2qπ with 0 ≤ 2π
and q ∈ Z; and rem(x) := mod (x − π) − π. From
these definitions, it follows that mod (−x) = 2π −
mod (x) for x 6= 2kπ, k ∈ Z and rem(−x) = −rem(x).

Below, we report two relevant properties of selected
operations on intervals that are leveraged in the imple-
mentation of the estimator.
Lemma VII.1. [41] If J1, J2 and J3 are three intervals
such that J2 > J̄1, J3∩J1 6= ∅, and J3∩J2 6= ∅, where
J3 is closed, J1 is right closed and J2 is left closed, then
either,

1) width(J3) > J2 − J̄1,
2) width(J3) = J2 − J̄1.

Lemma VII.2. [41] If J1, J2 and J3 are three intervals
such that J2 > J̄1, J3 ≥ J1, and J3 ≤ J̄2, and J3
has a non-empty intersection with both J1 and J2, then
J∩(J1∪J2) is the union of two intervals A1 and A2 such
that width(A1) + width(A2) = width(J3)− (J2− J̄1).
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