
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2020 1

A Flexible Robotic Depalletizing System for
Supermarket Logistics

Riccardo Caccavale1, Pierluigi Arpenti1, Gianmarco Paduano1, Andrea Fontanellli1, Vincenzo Lippiello1, Luigi
Villani1, and Bruno Siciliano1

Abstract—Depalletizing robotic systems are commonly de-
ployed to automatize and speed-up parts of logistic processes. De-
spite this, the necessity to adapt the preexisting logistic processes
to the automatic systems often impairs the application of such
robotic solutions to small business realities like supermarkets.
In this work we propose a robotic depalletizing system designed
to be easily integrated into supermarket logistic processes. The
system has to schedule, monitor and adapt the depalletizing
process considering both on-line perceptual information given
by non-invasive sensors and constraints provided by the high-
level management system or by a supervising user. We describe
the overall system discussing two case studies in the context of a
supermarket logistic process. We show how the proposed system
can manage multiple depalletizing strategies and multiple logistic
requests.

Index Terms—Control Architectures and Programming, Logis-
tics, Intelligent and Flexible Manufacturing, AI-Based Methods,
Behavior-Based Systems.

I. INTRODUCTION

DEPALLETIZING is the warehouse process where prod-
ucts are removed from the original shipping pallet and

organized for storage. This activity is common in logistics,
since goods of different types, dimensions and weight, are
stocked on pallets in order to be suitably transported and
delivered for distribution. The operation is typically performed
manually by clerks or workers that have to remove a huge
number of weighty products usually one by one. To optimize
such fatiguing task, robotic depalletizing systems are usually
deployed in medium or big companies [1], [2], [3] where
the environment is structured and products to be manipulated
are often homogeneous or standardized. On the other hand,
in small realities like supermarkets, those robotic solutions
are more challenging because products are typically stocked
into non-standardized cases and structural changes in the
logistic process are less convenient [4]. For instance, in [2],
[3] the authors proposed an autonomous robot endowed with
an innovative suction system that is able to pick from above
boxes that are stacked in various poses and to place them
on a conveyor belt. This method is effective in industrial
scenarios but is harder to be integrated into less structured

Manuscript received: February 24, 2020; Revised April 9, 2020; Accepted
May 24, 2020.

This paper was recommended for publication by Editor Jingang Yi upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by EU H2020 REFILLS project under grant agreement 731590.

1 Department of Electrical Engineering and Information Technologies,
Universitá di Napoli Federico II, Italy name.surname@unina.it

Digital Object Identifier (DOI): see top of this page.

environments like supermarkets. Additional AI-enabled depal-
letizing systems have been proposed to address problems of
motion planning [5] and safety [6]. Complementary, in this
work, we are mainly focused on the issues of flexibility and
adaptability. Analogously, other approaches have been pro-
posed for palletizing tasks instead. In [7] a mobile manipulator
has been proposed for autonomous picking, transporting and
palletizing objects. This approach ensures more flexibility but
only a specific type of objects is considered. Similarly, also
in [8] authors proposed a flexible and easy-to-program robotic
palletizer which is mainly designed for structured industrial
environments. In this work our aim is to design a robotic
system that is fully adaptable to different environmental
conditions and depalletizing strategies in order to be easily
integrated into preexisting logistic processes, minimizing cost
and effort. In particular, our main contribution in this work
can be summarized as follows:
• we design a sensorized robotic cell capable of picking

and placing cases in different ways;
• we endow our framework with an executive system that is

able to easily define hierarchically structured depalletiz-
ing tasks depending on the logistic context;

• we propose a depalletizing strategy for on-line scheduling
of picking/placing sequences considering the configura-
tion of the products on the pallet and multiple logistic
requests.

II. SYSTEM DESIGN

In this section, we illustrate the overall architecture of the
depalletizing system (see Fig. 1) describing its main compo-
nents and functionalities. The system includes a sensorized
robotic cell where a robot manipulator operates and different
cases have to be moved or stored from the pallet to several
target locations depending on logistic requests. The entire pro-
cess is monitored and scheduled by the executive system that
deploys a hierarchical representation of tasks to orchestrate
both the robotic actions and the communications between
the cell and the logistic management. This architecture is
designed to be decoupled form the logistic flow to make the
executive system able to suitably adapt the task execution and
the depalletizing strategy to different logistic scenarios.

A. Design of the Robotic Cell

In order to facilitate the integration in the logistic flow
of supermarkets, the proposed robotic cell is designed to be
flexible and adaptable to different logistic contexts. In the

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2020

Fig. 1. Overview of the proposed architecture. The executive system super-
vises robotic task execution and connects the cell with the in-house logistic
flow.

Fig. 2. CAD representation of depalletizing cell. The configuration includes
6 trolleys (green color) used to store the boxes taken from the pallet (blue
color) by an industrial manipulator (red color).

considered application typical of supermarkets’ backroom, the
products are collected into cases that have to be stored from
the original pallet to a set of generic target locations (like
trolleys or shelves). The cell includes a robot manipulator
endowed with a suction-based gripping end-effector and an
RGB-D camera allowing detection/recognition of the cases and
the estimation of their pose. Similar perception systems can be
found in [9], [10]. The robotic cell can be split in two areas:
an inner area (the inner part of the robot workspace) where
the robot operates and an outer area (the outer part of the
robot workspace) where products are stored to be eventually
taken from external agents and carried to the next steps of the
logistic flow. A representation of the proposed cell is depicted
in Fig. 2. In our setting, the robot manipulator is placed in the
center of the inner area and multiple storing locations can be
placed all around it, in the outer area. The pallet is positioned
in front of the robot, allowing the manipulator to reach the
cases and to move them toward the target locations, or to move
cases from one location to another, while the RGB-D camera
is placed between the robot and the pallet, front-facing the
latter. Notice that the cell configuration allows the cases to be
grasped in different ways: either vertically (from the above)

or horizontally (from the sides). This feature is particularly
relevant in supermarket logistics because several types of cases
must be taken from the sides, and storing repositories like
shelves or trolleys are usually filled horizontally.

B. Executive System

To control the robotic cell and to on-line adapt pick-
ing/placing strategies depending on the observations and the
logistic context, we deploy an executive system similar to
the one proposed in [11]. Our executive system exploits an
HTN-like representation of robotic tasks and operators includ-
ing symbolic constraints and effects [12]. More specifically,
each task is hierarchically defined by a set of predicates
schema(m, l, p), where m is the name of the task, l is a list
of subtasks associated with preconditions, while p represents
a postcondition used to check the accomplishment of the task.
An example of predicate is given below:

schema(task(x1, x2 . . . , xn), 〈
(subtask1(x11, x12, . . .), precond1),
. . . ,
(subtaskk(xk1, xk2, . . .), precondk),
〉, postcond).

A schema stands for a parametric task and can be either
abstract or concrete, where abstract schemata are tasks that
need to be further decomposed into sub-tasks, while concrete
schemata are atomic primitives to be executed. Notice that,
in our task representation, both robotic actions and the com-
munications (like sending/receiving messages to/from external
systems or users) are associated with primitives that can be
scheduled and executed by the executive system. Schemata are
also endowed with context-specific preconditions and postcon-
ditions that are continuously evaluated during execution. An
example of a storing task is proposed below:

schema(store(Box), 〈
(take(Box), true),
(check(Box), Box.taken ∧ ¬Box.known),
(query(Box), Box.known ∧ ¬Box.target),
(leave(Box), Box.taken ∧Box.target)
〉, Box.stored).

The task store(Box) represents the process of picking and
placing a box from the pallet to a target location. The task is
decomposed into 4 sub-tasks: the box is firstly grasped from
the pallet (take(Box), always enabled) and moved to a bar-
code reader (check(Box)) if not recognized by the vision sys-
tem (Box.taken∧¬Box.known). When the box is correctly
recognized (Box.known), if the storing position is unknown
(¬Box.target) the system asks for it (query(Box)) and the
box is finally placed in the storing position (leave(Box)). The
whole task is considered accomplished when the box is stored
into the target place (Box.stored). In order to be monitored
and executed, tasks are allocated on-line from the repository
to the executive system. This process generates for each task
an annotated tree whose nodes are grounded schemata (i.e.
the parameter Box of the previous example is now replaced
with a box id) and edges are parental relation between them.

CACCAVALE et al.: A FLEXIBLE ROBOTIC DEPALLETIZING SYSTEM FOR SUPERMARKET LOGISTICS 3

Fig. 3. Running example of a store task. Preconditions are attached to the edges while dashed and continuous ovals are for abstract and concrete tasks
respectively. In this representation green nodes/preconditions are enabled/satisfied, blue nodes are accomplished and red nodes are disabled.

During the execution, we associate to each node of the tree
a state that can be: enabled if all precondition along the
branch are satisfied, disabled if at least one precondition
is not satisfied and accomplished if the postcondition is
satisfied. In particular, enabled nodes of the tree that are
associated to motion or communication patterns (concrete
nodes) are directly executed by means of robot movements
or sending/receiving messages. An example of allocated store
task is proposed in Fig. 3. The task includes 4 abstract subtasks
(dashed ovals), which are further decomposed into 7 concrete
actions (continuous ovals). Nodes that are identified by kr60
functors are associated with robotic actions, while the others
are communication actions. Notice that this structured and
hierarchical representation of tasks can be easily adapted to
different logistic contexts: robotic primitives can be exploited
as building blocks [13] to compose more complex tasks or to
adjust task execution.

C. Selection and Grasping

When a new pallet is transported into the cell, the system
is provided with a set of boxes/products Bpall that are placed
on the pallet, while each element b ∈ Bpall is associated with
box-specific information like barcode, weight and dimensions.
Since the configuration and the pose of each element is not
known in advance, the sequence in which boxes are taken have
to be decided on-line depending on perceptual information. An
effective heuristic for depalletizing is to take boxes from the
upper part to the base (top-to-down) and from the sides to
the center of the pallet (sides-to-center). This way, the base of
the pallet is always larger then the summit and the stability of
the structure is not compromised. Moreover, since the pallet is
positioned in front of the robot, we slightly prioritize frontal
boxes to support manipulability. Following the above criteria,
we define a suitable function h(b) that associates a priority to
boxes considering their positions on the pallet, defined as:

h(b) =
1

7
|yb|+

2

7
(xmax − xb) +

4

7
zb. (1)

In Eq. (1), the components of the center-of-mass of the box
[xb, yb, zb] are weighted to prioritize boxes that are higher
positioned (47zb), closer to the robot (27 (xmax − xb)) and
closer to the edges (17 |yb|). Here we strongly prioritize higher
positioned boxes to reduce the size of the higher layers of the
pallet, then we consider boxes from the sides to the center

0.2
0.4

0.6
0.8

1

−0.4−0.2
00.2

0.4

0.2

0.4

0.6

0.8

1

xbyb

z b

Position-based Priority

0.2

0.4

0.6

0.8

h(b)

Fig. 4. Color-based representation of the priority given the 3D position of
the boxes. Assuming the robot in the origin, colors from red to blue represent
decreasing priority.

giving more emphasis to the most accessible ones (frontal
boxes).

A graphical representation of the function h(b) is illustrated
in Fig. 4. Here, boxes that are placed in red areas are
prioritized by the robotic system, while the others (yellow/blue
areas) are taken at a later time. Besides their position, the
priority of the boxes is also affected by the requests that
can be asynchronously provided to the system in response to
specific logistic necessities. In this case, if a requested box is
recognized by the perceptual system, the score of all perceived
boxes is adjusted to facilitate the selection of the requested
one. We can define the output of the perceptual system as a
subset of boxes Brec ∪Bdet ⊆ Bpall that is partitioned into a
set of recognized boxes (Brec) with their associated barcodes
and a set of detected boxes (Bdet) that have been perceived
by the system but not recognized (e.g. boxes with no textures
and occluded barcode). Moreover, we assume to have in input
a set of requested boxes R ⊆ Bpall were each box b ∈ R is
associated to a priority p(b) ∈ [0, 1] denoting the importance
of such request. If a requested box is reachable and graspable
by the robot (namely, in the frontal-upper part of the pallet) it
can be taken directly, otherwise, if the box is in the middle of
the pallet or partially occluded by other boxes, the system has
to adapt the way boxes are taken in order to free the requested

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2020

z

y

b1
b1

b2
b2

b3
b3

b4
b4

b5

b5

b6

b7

b7

b8
b8

v1 v2 v3 v4

v5
v6

v7 v8

0

0.2

0.4

−0.3 0 0.3

Request

Fig. 5. Example of the graph G (arrows and circles) overlapping a group
of boxes (brown rectangles). Each box bi is associated to the corresponding
vertex vi of the graph (inner circles) while arrows are relation between them.
When the box b4 is requested the score of the associated sub-graph T (b4)
(green arrows/nodes) is updated.

one. We define an additional priority function l(b) that drives
the system to unstack and store the requested boxes. To this
end, given the pallet configuration, we create a graph structure
where each vertex is a box while edges are the dependencies
between boxes. More formally, we define G = (E, V) along
with a mapping function v : Brec ∪ Bdet → V associating
boxes and vertices, where for each couple of boxes b1, b2
such that b2 is placed on or occluding b1 there exists an edge
(v(b1), v(b2)) ∈ E. In G we can define the subset of vertices
T (b) ⊆ V for a perceived box b which contains all the vertices
that are reachable from v(b). This way, given a requested box
br and the subset T (br) the priority of the request p(br) can
be propagated to all the boxes b that are blocking br (i.e.
v(b) ∈ T (br)). An example of propagation is shown in Fig. 5,
while the function l(b) for a generic perceived box is defined
in the following equation:

l(b) = max
x:v(b)∈T (x)

(p(x)). (2)

In this way, if a box b is blocking one or more requested boxes,
it inherits the priority of the most important one. Finally, the
score of a box s(b) can be defined as a weighted sum of both
priority functions, namely:

s(b) = wl(b) + (1− w)h(b), (3)

where the weight w can be suitably regulated to empha-
size logistic-based or position-based depalletizing strategies.
Notice that learning approaches, similar to [13], [14], can
be easily deployed to balance the two functions following
human demonstrations. The whole process of box selection
is described in Algorithm 1. In every row the system collects
the lists of requested (line 1) and perceived (line 2) boxes and
initialize a queue that will be used to store the boxes sorted by
score (line 3). The list of perceived boxes is also exploited to
generate the graph of dependencies G (line 4). Each perceived
box b is then associated to its position-based priority h(b)
(lines 6-8) and to its request-based priority l(b) (lines 9-10).
Finally, both priorities are fused into the score s(b) (line 11)
and the box is inserted into the queue Q sorted by s (line 12).
In the second part of the algorithm, until a graspable box is
found (lines 14-15), boxes are taken form the queue (line 16)

Algorithm 1 The selection process is invoked when no storing
tasks are allocated.

1: procedure BOXSELECTION
2: get requested R = {r1, r2, . . . , rm}
3: get boxes B = {b1, b2, . . . bn}
4: init queue Q← ∅
5: create graph G from boxes B
6: for b ∈ B do
7: get b pose [xb, yb, zb]
8: h(b) = 1

7 |yb|+
2
7 (xmax − xb) +

4
7zb

9: get vertex v(b) from G
10: l(b) = maxx:v(b)∈T (x)(p(r))
11: s(b) = wl(b) + (1− w)h(b)
12: insert b into Q ordered by s(b)
13: end for
14: found← false
15: while ¬found do
16: pop box b with max s(b) from queue Q
17: compute grasping poses Gp from b
18: if exists a reachable pose p ∈ Gp then
19: set target t← b
20: set found← true
21: end if
22: end while
23: allocate store(t) task
24: end procedure

and if a valid grasping point exists for it (lines 17-18) the box
is selected to be depalletized (lines 19-20) and the associated
storing-task is allocated to be monitored and executed by the
executive system (line 23).

III. CASE STUDY

In this section, we propose two case studies in a supermar-
ket scenario. In the first case study, we perform a realistic
simulation where multiple pallet configurations and logistic
requests are randomly generated and the proposed framework
has to suitably adapt the depalletizing sequence to them. In
the second case, we show the system at work in a realistic
supermarket depalletizing task, where cases are stored from
the pallet to compartments of trolleys taking into account of
the unknown pallet configuration and of the on-line request for
a prioritized case. In both experiments, we assume that storing
positions of all cases on the pallet are already available into the
supermarket database, while asynchronous requests randomly
arises during the execution.

A. Experimental Set-up
The testing environment is depicted in Fig. 6. The depal-

letizing cell covers a 5× 5 meters area and includes:
• 7 locations for box storing: 6 movable trolleys on the

sides and 1 fixed shelf on the rear part of the cell;
• a 6-DOF Kuka kr60 robotic arm with 60kg of payload

and a 2 meters radius workspace;
• a reconfigurable suction-based gripping system endowed

with 2 independent modules, allowing vertical and hori-
zontal grasping of boxes of variable size (see Fig. 7);

CACCAVALE et al.: A FLEXIBLE ROBOTIC DEPALLETIZING SYSTEM FOR SUPERMARKET LOGISTICS 5

Fig. 6. Depalletizing cell.

Fig. 7. Snapshots of the gripper including a frontal view (up), and horizontal
(down-left) and vertical (down-right) grasping procedures.

• a vision system for boxes recognition/detection and their
pose estimation exploiting an Intel Realsense RGBD
camera.

The software architecture is integrated in ROS-kinetic, while
robot motion-planning is performed by means of the OMPL
library [15].

B. Case study 1: Simulation

The aim of this case study is to evaluate the effectiveness of
the selection method proposed Section II-C. In particular, we
set-up a RViz simulation where both the pallet configuration
and the sequence of requests are randomly generated. The
system has to depalletize cases following their scores, while
avoiding collisions due to occlusions. The total volume of each
random configuration is fixed to 1.6×0.8×1 meters, while the
number, position and dimensions of cases are randomly gen-
erated. For each configuration, the system is deployed in two
modalities: the first one is a baseline, where s(x) = h(x), then
the selection process only depends on the position of boxes on
the pallet; instead, in the second modality, both components
are considered as in Eq. (3). Here, we are interested in studying

0 0.1 0.3 0.5 0.7 0.9
0

1

2

3

4

5

6

w

ac
tio

ns
re

du
ct

io
n

Fig. 8. Average improvement on request accomplishment. The increment of
w reduces the average number of actions needed to fulfill a request.

(a) Random (b) h(x)-only (c) h(x)+l(x)

Fig. 9. Random configuration of cases (a) along with the state of the execution
using h(x) only (b) and the full version of s(x) (c) after 20 steps.

how the average number of actions needed to fulfill a request
changes, considering different settings of w.

TABLE I
NUMBER OF ACTIONS NEEDED TO SATISFY THE REQUESTS FOR BOTH

MODALITIES (250 RUNS FOR EACH MODALITY).

weight h(x)-only h(x)+l(x)

w = 0.1
avg 12.74 11.14
std 9.91 9.89

w = 0.3
avg 13.10 9.18
std 10.02 8.92

w = 0.5
avg 12.81 7.81
std 9.19 7.34

w = 0.7
avg 13.03 7.69
std 9.73 7.45

w = 0.9
avg 12.84 7.34
std 9.47 7.13

To this end, we selected 5 values for the weights
[0.1, 0.3, 0.5, 0.7, 0.9] and, for each setting, we generated 50
random configurations of cases/requests. Considering both
modalities, we performed a total of 500 simulated executions.
Table I illustrates the average and the deviation of the number
of cases stored before the requested one is selected. Here, it is
possible to notice that, as expected, in the second modality
(where both h(x) and l(x) are deployed) the number of
actions needed to accomplish a request is always below the
baseline modality (where only h(x) is considered). Moreover,
as depicted in Fig. 8, the average action-reduction grows
with the increment of the weight, becoming stable around 5.5
actions for w ≥ 0.5. On the other hand, the request-oriented
behavior of the system may lead to unstable configurations
of the cases. In Fig. 9, we show an example of a random
configuration (a) that is partially depalletized following the two
modalities. After 20 steps (b-c) the h(x)-only modality lead

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2020

s(b6) = 0.437
s(b6) = 0.477

s(b2) = 0.385
s(b2) = 0.385

s(b8) = 0.286
s(b8) = 0.286

s(b7) = 0.195
s(b7) = 0.195

s(b1) = 0.157
s(b1) = 0.197

s(b4) = 0.184
s(b4) = 0.184

s(b5) = 0.264
s(b5) = 0.264

s(b0) = 0.325
s(b0) = 0.365

s(b9) = 0.354
s(b9) = 0.354

p(b1) = 0.2

Score
s(x) = 0.8 h(x) + 0.2 l(x)

Storing order
- no requests: b6, b2, b9, b0, b8, b5, b3, b7, b4, b1
- b1 requested: b6, b2, b0, b9, b8, b3, b5, b1, b7, b4

b6

b2
b0 b9

b8
b5b3

b7

b4

b1

s(b3) = 0.241
s(b3) = 0.281

Fig. 10. Pallet configuration during real-world experiment: The labels on
each box are the values of the scores before (gray equations) and after (black
equations) that box b1 is requested; in the left upper part of the figure, the
differences in the storing sequence are highlighted in red.

to a compact configuration, while in the h(x)+l(x) modality
there are some unstable pillars of boxes that are more likely
to collapse.

C. Case study 2: Real scenario

In this case study, the system is tested at work in a real
supermarket scenario. A simplified configuration of the pallet
is considered, with 10 cases placed in a single frontal line
(see Fig. 6). The task is to store all the cases on a trolley
(first on the right in figure) by using the full version of our
scoring function in Eq. (3). For this experiment we set w =
0.2 to induce a conservative strategy (unstable configurations
are rare with this setting) but still considering requests. In
particular, b1 is designed as the requested box with a low
priority (p(b1) = 0.2). This is intended to show how even less
prioritized requests affect the behavior of the system. Fig. 10
shows the pallet configuration seen from the RGB-D frontal
camera along with the priorities before and after the request.
As shown in the figure (up), by following the position-based
priority only (no requests), the box b1 would be the last one
to be stored, while this box is stored two actions before with
the request-based priority enabled. In this set-up, for safety
reasons, we have limited the robot velocity to the 4% of the
maximum allowed velocity. The system takes 19′56′′ to store
the requested box, and each storing task takes an average of
2′28′′ per box.

IV. CONCLUSIONS

In this work, we proposed a robotic framework for flexi-
ble depalletizing in supermarkets, designed to be adapted to
different logistic necessities. In particular, our system allows
to pick cases or boxes of different dimensions enabling either
vertical and horizontal grasping procedures. To facilitate the
integration of the system into preexisting logistic processes,
we also deployed an executive system for structured task
execution that permits a modular definition of hierarchical
depalletizing tasks that can be used as building blocks to
define complex or novel activities. Finally we defined a heuris-
tic to schedule depalletizing processes that can be suitably
regulated to mediate between pallet stability and possible

requests provided by external supervisory agents. We tested
the proposed framework in a simulated scenario, analyzing
its performance with multiple simulated pallets; finally we
discussed the system at work in a real robotic depalletizing
cell designed for a supermarket environment. The focus of
this work was to define a flexible and adaptive architecture
suitable for depalletizing tasks in supermarkets; extending
the framework to palletizing or to industrial scenarios will
be the topic of our future research. Moreover, we plan to
investigate more complex environmental conditions along with
more sophisticated task structures including safety constraints
and fault detection/correction.

REFERENCES

[1] D. Katsoulas and D. I. Kosmopoulos, “An efficient depalletizing system
based on 2d range imagery,” in Proceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 01CH37164),
vol. 1. IEEE, 2001, pp. 305–312.

[2] H. Nakamoto, H. Eto, T. Sonoura, J. Tanaka, and A. Ogawa, “High-
speed and compact depalletizing robot capable of handling packages
stacked complicatedly,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 344–349.

[3] J. Tanaka, A. Ogawa, H. Nakamoto, T. Sonoura, and H. Eto, “Suction
pad unit using a bellows pneumatic actuator as a support mechanism for
an end effector of depalletizing robots,” ROBOMECH Journal, vol. 7,
no. 1, p. 2, 2020.

[4] W. Echelmeyer, A. Kirchheim, and E. Wellbrock, “Robotics-logistics:
Challenges for automation of logistic processes,” in 2008 IEEE Inter-
national Conference on Automation and Logistics. IEEE, 2008, pp.
2099–2103.

[5] T. Sakamoto, K. Harada, and W. Wan, “Real-time planning robotic pal-
letizing tasks using reusable roadmaps,” Journal of Robotics, Networking
and Artificial Life, vol. 6, no. 4, pp. 240–245, 2020.

[6] M. Jocas, P. Kurrek, F. Zoghlami, M. Gianni, and V. Salehi, “Ai-based
learning approach with consideration of safety criteria on example of
a depalletization robot,” in Proceedings of the Design Society: Interna-
tional Conference on Engineering Design, vol. 1, no. 1. Cambridge
University Press, 2019, pp. 2041–2050.

[7] R. Krug, T. Stoyanov, V. Tincani, H. Andreasson, R. Mosberger,
G. Fantoni, and A. J. Lilienthal, “The next step in robot commissioning:
Autonomous picking and palletizing,” IEEE Robotics and Automation
Letters, vol. 1, no. 1, pp. 546–553, 2016.

[8] F. M. Moura and M. F. Silva, “Application for automatic programming
of palletizing robots,” in 2018 IEEE International Conference on Au-
tonomous Robot Systems and Competitions (ICARSC). IEEE, 2018, pp.
48–53.

[9] D. Holz, A. Topalidou-Kyniazopoulou, J. Stückler, and S. Behnke,
“Real-time object detection, localization and verification for fast robotic
depalletizing,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 1459–1466.

[10] M. Schwarz, A. Milan, A. S. Periyasamy, and S. Behnke, “Rgb-d object
detection and semantic segmentation for autonomous manipulation in
clutter,” The International Journal of Robotics Research, vol. 37, no.
4-5, pp. 437–451, 2018.

[11] R. Caccavale and A. Finzi, “Flexible task execution and attentional
regulations in human-robot interaction,” IEEE Transactions on Cognitive
and Developmental Systems, vol. 9, no. 1, pp. 68–79, 2016.

[12] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman, “Shop2: An htn planning system,” J. Artif. Intell. Res.,
vol. 20, pp. 379–404, 2003.

[13] R. Caccavale, M. Saveriano, A. Finzi, and D. Lee, “Kinesthetic teaching
and attentional supervision of structured tasks in human–robot interac-
tion,” Autonomous Robots, vol. 43, no. 6, pp. 1291–1307, 2019.

[14] R. Caccavale and A. Finzi, “Learning attentional regulations for struc-
tured tasks execution in robotic cognitive control,” Autonomous Robots,
vol. 43, no. 8, pp. 2229–2243, 2019.

[15] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

