
water

Article

Impact Force of a Geomorphic Dam-Break Wave against an
Obstacle: Effects of Sediment Inertia

Cristiana Di Cristo 1,* , Massimo Greco 1, Michele Iervolino 2 and Andrea Vacca 1

����������
�������

Citation: Cristo, C.D.; Greco, M.;

Iervolino, M.; Vacca, A. Impact Force

of a Geomorphic Dam-Break Wave

against an Obstacle: Effects of

Sediment Inertia. Water 2021, 13, 232.

https://doi.org/10.3390/w13020232

Received: 3 December 2020

Accepted: 15 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil, Environmental and Architectural Engineering, Università degli Studi di Napoli
Federico II, Via Claudio 21, 80125 Naples, Italy; grecom@unina.it (M.G.); vacca@unina.it (A.V.)

2 Department of Engineering, Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29,
81031 Aversa, Italy; michele.iervolino@unicampania.it

* Correspondence: cristiana.dicristo@unina.it

Abstract: The evaluation of the impact force on structures due to a flood wave is of utmost im-
portance for estimating physical damage and designing adequate countermeasures. The present
study investigates, using 2D shallow-water approximation, the morphodynamics and forces caused
by a dam-break wave against a rigid obstacle in the presence of an erodible bed. A widely used
coupled equilibrium model, based on the two-dimensional Saint–Venant hydrodynamic equations
combined with the sediment continuity Exner equation (SVEM), is compared with a more complex
two-phase model (TPM). Considering an experimental set-up presented in the literature with a single
rigid obstacle in a channel, two series of tests were performed, assuming sand or light sediments
on the bottom. The former test is representative of a typical laboratory experiment, and the latter
may be scaled up to a field case. For each test, two different particle diameters were considered.
Independently from the particle size, it was found that in the sand tests, SVEM performs similarly
to TPM. In the case of light sediment, larger differences are observed, and the SVEM predicts a
higher force of about 26% for both considered diameters. The analysis of the flow fields and the
morphodynamics shows these differences can be essentially ascribed to the role of inertia of the
solid particles.

Keywords: dam-break; impact force; mobile bed; Exner equation; two-phase model

1. Introduction

In many mountainous regions of the world, human settlements have developed in
time, privileging torrential fans [1,2]. However, these areas may be exposed to important
environmental risks due to extreme floods, during which flows with non-negligible sedi-
ment transport, such as those triggered by heavy rainfall or snow melting, may develop
and cause intense erosion, deposition and remobilization processes [3–5]. The magnitude
of these flows is nowadays impressively increasing due to climate change [6,7]. Moreover,
the flood impact on a variety of obstacles, such as residential, commercial or industrial
buildings or infrastructures, is responsible for dramatic consequences [8]. Therefore, a cor-
rect evaluation of the impact force is very important for estimating structural damage and
designing protective countermeasures.

The presence of an erodible bed adds to the complexity of the phenomenon since
the sediment transport influences the wave propagation and the impact force. Moreover,
the morphological changes induced by the flow may expose the obstacle to unexpected
loading conditions, contributing to its structural damage. From a modeling point of view,
the study of the complex interaction between the sediment-laden flow and obstacles on
erodible beds, essential in evaluating hazard levels and supporting the design of structural
countermeasures, requires the prediction of both hydro and sediment dynamics [9].

Most of the attempts to assess torrential hazards rely on the use of empirical cor-
relations between the estimated impact forces and the expected degree of damage for
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individual buildings [10–14]. However, similar approaches suffer from being extremely
site-specific and difficult to generalize. For the sake of a more general and scalable ap-
proach, the simulation models represent a valid alternative [5]. Moreover, the presence of
structures, along with the topography complexity, imposes the use of 2D or 3D models.
Although in several cases the three-dimensional effects are not negligible, 2D shallow-
water models, i.e., depth-averaged models, are widely accepted for most engineering
applications. For instance, in the presence of non-erodible beds and rigid obstacles, Shige-
eda and Akiyama [15] experimentally and numerically investigated the behavior of two-
dimensional (2D) flood flows and the hydrodynamic force acting on structures. It has been
shown that hydrodynamics and the force on structures may be predicted with enough
accuracy through a shallow-water model. Bukreev [16] confirmed the applicability of the
shallow-water approach to evaluate the dynamic action of a dam-break wave exerted on a
vertical wall. Soares-Frazao and Zech [17], comparing the numerical results with experi-
mental data, showed the ability of a 2D numerical model in reproducing the propagation
of a dam-break wave in an idealized urban area. The potentialities of a depth-averaged
shallow-water model in predicting propagation in urban areas of both flash floods and
dam-break waves were investigated by El Kadi Abderrezzak et al. [18]. Numerical results
in terms of flow depths and velocities fairly agree with experimental results, except around
buildings, where three-dimensional effects are predominant. In predicting the dynamic
force generated by a dam-break wave on a rigid structure, Aureli et al. [19], showed that
a 2D model based on the shallow-water approach leads to an error comparable with the
reproducibility of experimental data that is of the order of 10%. Depth-integrated mod-
els have also been employed to simulate the impact against rigid obstacles of debris or
mud waves [20–22].

In the presence of an erodible bed, the influence of morphodynamics on the forces
caused by a dam-break wave against a rigid obstacle has been analyzed little. Only recently
did Di Cristo et al. [23] discuss the problem by adopting a two-phase morphodynamic
model proposed in [24] showing that, while the propagating wave is strongly distorted by
the presence of the erodible bed, the force exerted on the obstacle is slightly influenced.

The two-phase model used in [24] belongs to the more general class of nonequilibrium
models, which can be classified in two-phase (e.g., [25–27]), mixture single-layer (e.g., [28])
and multilayer (e.g., [29–32]) models. A common feature of nonequilibrium models is the
description of the sediment inertia, which leads to the solution of additional differential
equations. Along with the nonequilibrium models, another class of geomorphic models is
represented by equilibrium models. These models allow a less accurate description of the
morphodynamic processes than the nonequilibrium models; however, at the same time,
they are characterized by a much lower computational complexity, appearing very attrac-
tive for defining hazard-prone areas. Equilibrium models, assuming the hydrodynamics
to be faster than the sediment transport, are essentially composed by the Saint–Venant
hydrodynamic model combined with the sediment continuity equation, i.e., the Exner
equation, in which the solid discharge instantaneously adapts to the transport capacity [33].
As far as these models are concerned, two types of numerical strategies have been used,
i.e., uncoupled (or weakly coupled) and fully coupled [34]. In the former [35], the equa-
tions are solved using a two-step method. The hydrodynamic equations are firstly solved
without considering the sediment transport, and in a second step, the Exner equation is
solved without changing the hydrodynamic variables. Conversely, following the second
strategy, all equations (Saint–Venant and Exner) are solved simultaneously [36]. A detailed
comparison between the performance of uncoupled and fully coupled equilibrium models
for several test cases has been recently provided by Meurice and Soares-Frazão [37].

Although several studies (e.g., [38]) have compared the performance of equilibrium
and nonequilibrium models in terms of both hydrodynamic and morphodynamic variables,
a similar comparison is not available in the presence of rigid obstacles, especially in
evaluating the forces acting on them.
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The present paper aims to contribute in this direction by comparing the results of
a coupled equilibrium model with those deduced through the two-phase model of [24],
analyzing the interaction of a dam-break wave propagating over an erodible floodplain
with a rigid obstacle. Both models belong to the class of 2D shallow-water models. The com-
parison is carried out considering the geometric scheme of a laboratory test case reported
in the literature [19], involving a wave impacting a single obstacle. Two kinds of tests
were performed assuming sand or light sediments on the bottom; in both cases, two di-
ameters are considered. The light sediment (PVC) was selected in order to scale up the
results deduced from laboratory experiments with the Froude similarity for representing a
realistic case [39].

The paper is organized as follows. In Section 2, both the morphodynamical models
are described along with details concerning the numerical solution methods. Section 3
firstly presents the case study and the performed tests, then the results of the numerical
simulations are presented and discussed. Finally, the main conclusions are drawn in
Section 4.

2. Mathematical Models and Numerical Simulations
2.1. Two-Dimensional Saint–Venant–Exner Model

The two-dimensional Saint–Venant–Exner model (SVEM) is based on the shallow-
flow equations deduced by depth-averaging the three-dimensional conservation laws.
The pressure distribution is assumed hydrostatic, and the momentum correction coefficient
is considered unitary. The Saint–Venant–Exner equations are [33]:

∂h
∂t

+ ∇ · (ql) = 0 (1)

∂ql
∂t

+ ∇ ·
(qlql

h

)
+ ∇

(
gh2

2

)
+ gh∇(zB) = −

τB

ρl
(2)

(1− p)
∂zB

∂t
+ ∇ · (qs) = 0 (3)

where t is the time, h is the flow depth, zB is the bottom elevation, p is the bed porosity,
g is the gravity acceleration, ρl is the liquid density and ql (resp. qs) is the liquid (resp.
solid) flow rate (for the unit of width). The second-order tensor qlql denotes the dyadic
product of the liquid flow rate vector. The bed shear stress (τB) is evaluated through the
Chezy formula

τB = ρl
ql

C2
Ch h2 |ql| (4)

where CCh is the dimensionless Chezy coefficient.
Assuming the equilibrium hypothesis, the solid flow rate in Equation (3) is evaluated

through the two-dimensional extension of the Meyer-Peter and Müller formula [40], which,
for the one-dimensional case, reads:

qs

d
√

gdr
= KMPM

(
τB − τc

ρlgdr

)3/2
(5)

where r = (ρs − ρl)/ρl, ρs is the solid density, d the sediment particle diameter and τc the
threshold shear stress for particle motion. The Meyer-Peter and Müller coefficient (KMPM)
ranges from about 4 to 12.

With reference to the one-dimensional case, Cordier et al. [41] have demonstrated that
whenever a formula such as the Meyer-Peter and Müller equation (Equation (5)) is used for
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the bed-load discharge, the governing equations constitute a hyperbolic system. In such an
instance, the eigenvalues are the roots of the following equation [42]:(

λ

c

)3
− 2F

(
λ

c

)2
−
(

1− F2 +
1

1− p
∂qs
∂ql

)
λ

c
− 1

1− p
∂qs
∂h

1
c
= 0 (6)

where c =
√

gh and F =
ql

h
√

gh
is the Froude number.

The roots of Equation (6) may be easily determined using Cardano’s formula, and they
read:

λ1

c
=

2
3

F− 2
3

√
k′ cos

(ϕ
3
− π

3

)
(7)

λ2

c
=

2
3

F− 2
3

√
k′ cos

(ϕ
3
+
π

3

)
(8)

λ3

c
=

2
3

F +
2
3

√
k′ cos

(ϕ
3

)
(9)

where:

ϕ = arcos
(

k′′√
4k′

)
(10)

k′= 3 + F2 + 3
1

1− p
∂qs
∂ql

(11)

k′′ =− 2F3 + 18F
(

1+
1

1− p
∂qs
∂ql

)
+ 27

1
1− p

∂qs
∂ql

1
c

(12)

2.2. Two-Phase Model

A brief description of the two-phase model (TPM) presented in [24] is provided
below. The reader may refer to the original paper for further details about the underlying
assumptions and the subsequent limitations. Neglecting the suspended load, the governing
equations read:

∂δl
∂t

+ ∇ · (δlUl) − peB = 0 (13)

∂δs

∂t
+ ∇ · (δsUs) − (1− p)eB = 0 (14)

∂δlUl
∂t

+ ∇ · (δlUlUl) + ∇
(

gh2

2

)
+ gh∇(zB) = − Sl (15)

∂δsUs

∂t
+ ∇ · (δsUsUs) +

r
r + 1

∇
(

gδsKsd
2

)
+ gδs

r
r + 1

∇(zB) = −Ss (16)

∂zB

∂t
+ eB = 0 (17)

in which δl denotes the liquid-phase volume for the bottom surface of the unit, and δs is the
solid-phase volume transported as the bed-load for the bottom surface of the unit; hence,
h = δl + δs. U is the phase-averaged velocity vector, with the subscripts l and s used to
denote the water and solid phase, respectively. Ks is the thickness of the bed-load layer,
and eB is the bottom erosion/deposition rate.

The source terms of momentum equations Sl and Ss are given by:

Sl =
τB,l−D

ρl
= Ul

C2
Ch
|Ul| − (r + 1)µdgδs

r
r + 1

Us
|Us| − α(r + 1)Us|Us| − gδs∇(zB) +

D
ρl

(18)

Ss =
τB,s

ρs
= µdgδs

r
r + 1

Us

|Us|
+ αUs|Us| −

D
ρs

(19)
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in which τB,l and τB,s are the bottom shear stresses on the liquid and the solid phases,
respectively. In Equations (18) and (19) µd is the dynamic friction coefficient, α is the
coefficient of the collisional stresses and D is the drag force of the liquid on the solid
particle, evaluated as:

D = ρlCD
δs

d
(Ul −Us)|Ul −Us| (20)

where CD is a bulk drag coefficient.
The bottom entrainment/deposition is evaluated by means of the following formula [43]:

eB = ws
T3/2 −Cs

1− p
(21)

in which ws denotes the sediment settling velocity, corrected to account for its dependence
on the bed-load volume concentration Cs through the well-known semiempirical formula
by [44]. The dimensionless mobility parameter T, which expresses the excess of the
mobilizing stresses onto the bottom surface with respect to the resisting stresses [45],
is evaluated through the following formula:

T =
|τB,l + τB,s − τc − τ0|

|τc + τ0|
(22)

where τ0 is the magnitude of the Mohr–Coulomb stress at the bottom, evaluated with the
static friction coefficient µ0.

The coefficients α and CD are evaluated with the following relations, deduced to
match, under equilibrium conditions, two empirical formulas for transport at capacity [24]:

α =
(1− c1)− k1(µd − sB)

(r + 1)k2
2

(23)

CD =
1− c1

k1

ρgdr[
CChτ

1/2
B − k1(τB − τc)

1/2
] (24)

where c1 is a dimensionless model parameter, and k1 and k2 are the following two dimen-
sionless coefficients:

k1 =
1

2µ0

2 + (1− p)2/3

1 + (1− p)2/3 (25)

k2 =
KMPM

k1
. (26)

Compared with the Saint–Venant–Exner model, the application of the two-phase model
with the above closures, besides CCh and KMPM, requires only the additional value of the
parameter c1, for which, however, an admissible range has been theoretically deduced [24].

The bed-load layer thickness Ksd is calculated based on the following formula [24] as
a function of the sediment areal concentration:

Ksd =

(
k1

1− k1µ0

)3/2( τc

ρgdr
+ µ0

δs

d

)3/2( d
δs

)1/2
d (27)

Equation (27) may provide unrealistic results in the regions of the flow where small
values of the shear stress coexist with large values of δs, such as in the proximity of the
obstacle. Therefore, as in [23], whenever τB = τB,l + τB,s ≤ τc, the thickness of the bed-
load layer is estimated based on the bottom concentration, i.e., Ksd = δs/(1− p), and a
blending function avoids discontinuities in the Ksd = Ksd(δs) function.
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2.3. Numerical Method

Both equilibrium (1)–(3) and nonequilibrium (13)–(17) models have been numerically
solved with the algorithm described in [46] and adapted for solving Equations (1)–(3),
which use 2D unstructured quadrilateral meshes. The numerical method relies on a mixed
cell-centered (CCFV) and node-centered (NCFV) finite-volume discretization. The former
is adopted for the hydrodynamic and morphodynamic variables, defined at the grid cell
centers, and the latter for the bed elevation zB, with the control volumes constructed
around the mesh nodes by the median-dual partition [47,48]. The numerical fluxes in the
CCFV discretization are calculated through the first-order Harten–Lax–Van Leer (HLL)
scheme [49], with second-order reconstruction of the free-surface elevation for subcritical
flow [46]. The expression of the eigenvalues of the two-phase model, necessary for applying
the HLL scheme, may be found in [24]. Conversely, as far as the Saint–Venant–Exner model
is concerned, the eigenvalues of the problem are given by the extension of Equations
(7)–(12) to the two-dimensional case. Owing to the hyperbolic character of both models,
the numerical stability of the numerical models is ensured provided that the Courant–
Friedrichs–Lewy condition is satisfied for the largest eigenvalue. The application of the
treatment of the slope source term proposed by [50] ensures the C-property for both models.

2.4. The Test Case

Figure 1 reproduces the geometry of the experimental test case by Aureli et al. [19]
used for clear-water dam-break experiments on a fixed bottom. The initial water level
in the reservoir is h0 = 0.10 m and flow is triggered by the sudden removal of the gate,
which produces the propagation of a dam-break wave over the downstream floodable area.
The performance of both models for the clear-water case has been preliminarily verified
against the experimental data by Aureli et al. [19].

Figure 1. Sketch of the considered test case.

In the present numerical simulations, the floodplain is assumed constituted by loose
sediment, and two different kinds of solid particles are considered: a uniformly graded sand
(density ρs = 2650 kg/m3) and very light sediment (PVC) (density ρs = 1540 kg/m3).
For each material, two scenarios have been considered by changing the sediment diameter
from d = 5 × 10−4 m to d = 5 × 10−3 m.

The simulations with sand on the bottom aim to compare the performance of the two
models at the laboratory scale. Although this procedure is widely used in the literature to
benchmark numerical models, owing to the incomplete Froude similarity, the simulated
results cannot be straightforwardly extended to realistic cases in which the bed particles
are still sand. This limitation may be overcome considering sediment lighter than sand,
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such as PVC, which allows satisfying the equality between the model and the prototype of
both the hydrodynamic and the particle densimetric Froude numbers:

F =
Uref√
ghref

, Fd =
Uref√

grd
(28)

in which the reference length scale is assumed as href = h0 and the velocity scale
as Uref =

√
ghref. For example, accounting for the Froude similarity, the tests with

d = 5 × 10−3 m and d = 5 × 10−4 m in PVC can be upscaled to a realistic dam-break wave
with an initial height in the reservoir h0 = 3 m and involving gravel with d = 5 × 10−2 m
and sand with d = 5× 10−3 m, respectively. The good performance of the two-phase model
with the PVC particles adopted in this study has been already tested [51] in reproducing
the experimental dam-break phenomenon investigated by [52]. Similarly, for the sand
particles, the two-phase model was benchmarked under different test cases [24,46].

In the numerical simulations the following values of the parameters are assumed:
µd = 25◦, µ0 = 38◦, KMPM = 8 and c1 = 0.25, CCh= 12. A computational mesh with
∆x = ∆y = 5·10−3 m is used along with ∆t = 1/2048 s. The accuracy of the numerical
solutions has been tested halving the mesh spacing and the time step: the sensitivity of
the predicted maximum impact force resulted to be less than 0.1 N for all the investigated
conditions, with the only exception of SVEM simulation for the sand with d = 5 × 10−4 m,
where a difference of 0.3 N was found.

It is worthy of note that the different complexity of the two models implies a higher
computational cost for the TPM compared to the SVEM. In the present simulations, carried
out on a single core of an Intel(R) i7-7700 CPU at 3.60 GHz equipped with 16 GB RAM,
the CPU time per iteration resulted in 0.062 s for the SVEM and 0.094 s for the TPM,
meaning an increase in the computational effort of about 52%.

3. Results and Discussion
3.1. Force Evaluation

The comparison between the coupled equilibrium and the two-phase models mainly
aims to investigate their performance in evaluating the impact force on an obstacle. For a
more complete understanding, the simulated free-surface (zw) and bottom (zB) evolution
are also compared.

Based on the simulated flow fields, in processing the results of the TPM, the impact
force F is evaluated by numerically computing the following integral.

F = ρl
∫
σ

(
δlUlUl,n +

gh2

2 n̂
)

dσ + ρs
∫
σ

(
δsUsUs,n + r

r+1
gδsKsd

2 n̂
)

dσ +
∫
σ

[
ρlg
(

h+∆
2

)
∆ + (ρB − ρl)

g∆2

2

]
n̂ dσ (29)

where σ denotes the boundary of the obstacle and n̂ is the corresponding normal
unit vector. The last term accounts for the contribution of the height of the deposited
sediment, ∆, in contact with the upstream face of the obstacle, whose bulk density is
ρB = pρl + (1− p)ρs. The values of the flow variables in the cells adjacent to the obstacle
are used in Equation (29). As far as the Saint–Venant–Exner model is concerned, the impact
force has been evaluated neglecting the contribution of the solid phase, i.e., through
Equation (29), setting δs = Us = 0, δl = h and Ul = ql/h.

3.2. Simulations with Sand

For the tests with sand, Figure 2 compares the impact forces evaluated through the
two models for both the considered diameters. In all the considered simulations, the wave
impacts the obstacle at t ∼ 0.5 s , and the maximum force occurs for t ∼ 1.5 s. For both
diameter values, the results indicate higher force values predicted by the SVEM, with more
evident differences for the fine particles. In fact, the two-phase model predicts a maximum
value of the impact force, which is about 4–13% smaller than the maximum value predicted
by the SVEM for the coarse and fine particles, respectively.
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The two models similarly reproduce the free-surface and bottom evolution for the
coarse sand, and some differences are observed for the fine particles. For example, Figures
3 and 4 illustrate the free-surface and bottom elevation predicted by the SVEM and the
TPM, for the coarse and fine sediments, respectively, at t = 1.5 s, when the largest differ-
ences between the two models are observed. For the same instant, Figure 5 reports the
longitudinal profile of the free-surface and bottom elevation at y = B/2, where symmetry
imposes Ul,y = Us,y= 0.

Figure 2. Temporal evolution of the impact forces for the two considered sand diameters. The Saint–
Venant–Exner model (SVEM) vs. the two-phase model (TPM).

After the impact, the flow depth increases, and the shear stress drops below the critical
value for sediment transport producing a deposit close to the obstacle. For the coarse
sand (Figure 3c,d and Figure 5a), the results of the two models are very close to each other,
and both predict a comparable deposition upstream of the obstacle and close to the flume
walls. For the fine particles (Figure 4c,d and Figure 5b), the highest water depth is predicted
by the equilibrium model, and some differences are observed in terms of bed evolution.
Figure 5b indicates that the SVEM predicts a higher deposit upstream of the obstacle than
the TPM.

Moreover, it is observed that the flow remains supercritical while running up onto the
bump, and then the subcritical flow depth increases with the bump height, as predicted
under the hypothesis of negligible momentum loss of the approaching flow. The increase of
impact force observed in the results of SVEM (Figure 2) is therefore explainable as a direct
consequence of the presence of a higher deposit in contact with the obstacle, combined
with a higher flow depth.

Taken collectively, the above results show that in the case of sand the simplest SVEM
performs similarly to the more complex, and computationally expensive, TPM, in particular
in reproducing the impact force. This is consistent with what was observed by other authors
in analyzing different laboratory experiments involving dam-break waves over erodible
sand bottoms [36,53,54].
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Figure 3. Results for sand particle d = 5 × 10−3 m at t = 1.5 s: (a) free-surface elevation predicted by the SVEM; (b) free-surface
elevation predicted by the TPM; (c) bottom elevation predicted by the SVEM; (d) bottom elevation predicted by the TPM.
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Figure 4. Results for sand particle d = 5 × 10−4 m at t = 1.5 s: (a) free-surface elevation predicted by the SVEM; (b) free-surface
elevation predicted by the TPM; (c) bottom elevation predicted by the SVEM; (d) bottom elevation predicted by the TPM.
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Figure 5. Spatial free surface (zw) and bottom (zB ) evolution for the test with sand particles at t = 1.5 s and y = 0.6 m SVEM
vs. TPM: (a) d = 5 × 10−3 m; (b) d = 5 × 10−4 m.

3.3. Simulations with PVC

For the PVC sediment, Figure 6 reports the temporal evolution of the impact force
against the obstacle predicted by the two models for the two considered sediment diameters.
In both models, the effect of the particle diameter in the force evolution is very marginal,
without significant differences in the estimated maximum value. Differently from the
sand, larger differences are observed between the two models, with SVEM that predicts a
maximum force in excess of about 26%, with respect to the TPM.

Figure 6. Temporal evolution of the impact forces for the two considered PVC diameters. SVEM vs. TPM.

The differences in the impact force motivate a deep comparison of the results of
hydrodynamic and morphodynamic simulations, performed through the analysis of the
temporal evolution of the free-surface and bottom elevation. Considering the case with
the fine particles, where the differences are more pronounced, Figures 7–9 and Figure 11
illustrate the free-surface and bottom elevation contour maps for t = 0.5 s, t = 1.0 s, t = 1.5 s
and t = 3.0 s, respectively. The detailed analysis of the plots at different instants indicates
that the development of the wave originating by the dam-break can be divided into three
phases: approaching, reflecting and reservoir emptying phases. The last phase (t > 3.0 s) is
out of the scope of the present investigation and will not be discussed.
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Figure 7. Results for PVC particles d = 5× 10−4 m at t = 0.5 s: (a) free-surface elevation predicted by the SVEM; (b) free-surface
elevation predicted by the TPM; (c) bottom elevation predicted by the SVEM; (d) bottom elevation predicted by the TPM.
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Figure 8. Results for PVC particles d = 5× 10−4 m at t = 1.0 s: (a) free-surface elevation predicted by the SVEM; (b) free-surface
elevation predicted by the TPM; (c) bottom elevation predicted by the SVEM; (d) bottom elevation predicted by the TPM.
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Figure 9. Results for PVC particles d = 5× 10−4 m at t = 1.5 s: (a) free-surface elevation predicted by the SVEM; (b) free-surface
elevation predicted by the TPM; (c) bottom elevation predicted by the SVEM; (d) bottom elevation predicted by the TPM.

In the approaching phase (t ≤ 0.5 s), the dam-break wave spreads over the erodible
floodplain up to the impact with the obstacle, which occurs at t ∼ 0.5 s. At the impact
(Figure 7), in terms of free-surface evolution, small differences are observed between the
two models. However, during this phase, the fluid decelerates in the downstream tail of
the wave due to the lateral expansion. This behavior produces different consequences
according to the sediment transport description of the morphodynamic model. In the
equilibrium model, the Exner equation dictates that the flow entrains sediment in the
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accelerating region of the wave, whereas it deposits while decelerating. This produces
an excavation close to the gate and a deposit upstream of the obstacle, as illustrated in
Figure 7c. For the dynamic model, the bed evolution is modeled based on the erosion and
deposition terms in Equation (17) and the bed-load dynamics. In fact, Figure 7d shows that
the erosion prevails, and no deposition is observed until t = 0.5 s.

In the second phase (0.5 < t ≤ 3.0 s), a reflected wave forms against the upstream face
of the obstacle (Figure 8, Figure 9 and Figure 11). The wave develops as a receding bore
between t = 0.5 s and t = 1.0 s and turns into a kind of stationary jump for t ∼ 1.0s. At t = 1.0 s
(Figure 8a,b), the wave surrounds the obstacle and further expands laterally, reaching the
lateral walls. Then, at t = 1.5 s (Figure 9), the wave impacts the sidewalls with a lateral
deflection, and two wave fronts are generated. Successively, the wave reaches the flume outlet
and leaves a large dry region behind the obstacle (Figure 11). For 1.0 < t ≤ 2.0 s, while the
wave front position is similarly reproduced by the two models, some differences are observed
in terms of free-surface elevation upstream of the obstacle, with higher levels predicted by
the equilibrium model. The differences are more evident at t = 1.5 s (Figure 9a,b). Moreover,
while both models predict a deposition in front of the obstacle and close to the sidewalls,
this effect is more pronounced for the equilibrium model (Figure 9c,d).

To gain some insights on this behavior, Figure 10 reports the longitudinal profile at
y = B/2 of the free-surface and bed elevation at t = 1.5 s. The two models furnish similar
qualitative predictions in terms of both the free-surface and bottom elevation but with a
quantitative difference. As shown in Figure 10, the deposit simulated by the SVEM is about
five times that of the two-phase model, with a consequent higher flow depth of about 17%.

Figure 10. Spatial free surface (zw) and bottom (zB ) evolution at t = 1.5 s and y = 0.6 m for PVC
particles d = 5 × 10−4 m. SVEM Vs. TPM.

For t = 3.0 s, the two wave fronts merge downstream of the obstacle, leaving a small
dry region (Figure 11). Some differences are noted in the hydrodynamics, with the two-
phase model predicting a wider dry zone and no deposition downstream of the obstacle.
A higher deposit is simulated by the equilibrium model downstream of the obstacle and at
the channel walls.
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Figure 11. Results for PVC particles d = 5 × 10−4 m at t = 3.0 s: (a) free-surface elevation predicted by the SVEM; (b) free-surface
elevation predicted by the TPM; (c) bottom elevation predicted by the SVEM; (d) bottom elevation predicted by the TPM.

To complete the discussion about the two-phase modeling performance, Figure 12
reports the fluid and solid streamlines at t = 1.5 s and t = 3.0 s. At both times, a misalignment
of the streamlines of the two phases is detected both upstream and downstream of the
obstacle. It is more evident downstream when the flow splits into two parts, while at
t = 3.0 s, only in the water flow field is recirculation observed in the region close to the dam.
These results indicate some resistance, for the considered application, of the PVC sediment
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to adapt to the change in the flow direction imposed by the carrying fluid, a feature that
cannot be represented by the SVE model.

Figure 12. Fluid (black) and solid (red) streamlines predicted by the two-phase model for PVC particles with d = 5 × 10−4 m:
(a) at t = 1.5 s; (b) at t = 3.0 s.

As a final remark, it is noted the set of TPM closures guarantees that it collapses on
the SVEM as transport reaches equilibrium. The similar behavior of the two models for the
tests with sand therefore is consistent with a minor role of sediment inertia. Conversely,
with the PVC, the sensible difference in evaluating the impact force and the misalignment
of the streamlines reveal that the sediment dynamics are not negligible.

Furthermore, the shown dependence of the performance of the SVEM on the sediment
density may be theoretically justified based on the governing ratio of the geomorphic
timescale (tg) to the hydrodynamic (th) timescale. Indeed, considering the ratio of the
geomorphic to the hydrodynamic timescale to be of the order of 1/r [55], it follows that
tg/th increases from 0.6 (sand) up to 2 (PVC) in the two tests. The smaller geomorphic
time scale in the sand tests suggests a more rapid adaptation of the sediment to the
hydrodynamics, complying better with the equilibrium assumption.

4. Conclusions

The definition of effective tools for the prediction of the impact force on structures
due to floods is very important for the implementation of appropriate risk mitigation
strategies and the design of protection countermeasures. The present study compares
the outcomes of two morphodynamic models, analyzing the interaction of a dam-break
wave against a rigid obstacle in the presence of an erodible bed. The first morphodynamic
model is the widespread, two-dimensional Saint–Venant–Exner model, which assumes
local equilibrium conditions of the solid transport. The second model belongs to the class
of nonequilibrium models and is based on a two-phase schematization. Although the latter
model allows a more accurate description of the morphodynamic processes than the former,
it is characterized by a much larger computational cost. The comparison was carried out
varying both the diameter and density of the erodible bed particles. The tests performed
with heavy particles, i.e., sand, directly referred to a common laboratory condition, and the
tests with reduced particle density, i.e., PVC, can be considered representative of a field-
scale based on the Froude similarity. As far as the sand particles tests are concerned,
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the present results indicate that, independently of the particle diameters, the predictions
of the two models only slightly differ in terms of impact forces. Moreover, only marginal
differences are visible in terms of hydrodynamics and morphodynamics. This is consistent
with previous studies, which have shown that the performance of the Saint–Venant–Exner
model is comparable with those of nonequilibrium models in the reproduction of laboratory
experiments with sand. Different conclusions have been drawn considering the tests with
light particles. Indeed, the differences between the impact forces increase up to about 30%,
with the largest value pertaining to the Saint–Venant–Exner model. A deep analysis of the
flow field and morphodynamics allowed relating these changes to the different deposition
mechanism of the solid particles in front of the obstacle.

Future research will be devoted to further extend and generalize the above results,
addressing the application of uncoupled solution strategies for the two-dimensional Saint–
Venant–Exner model and the investigation of coupled and uncoupled approaches, with ref-
erence also to other test cases characterized by different geometries and/or arrangements
of the obstacles. Furthermore, future research will be devoted to the study of the impact of
debris and mudflows on obstacles accounting for both fixed and mobile bed conditions.
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