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Abstract: Thirteen nitrogen-containing molecules (1a/1b and 2–12) were isolated from the Indonesian
sponge Acanthostrongylophora ingens, highlighting the richness of this organism as a source of
alkaloids. Their structures were elucidated using one- and two-dimensional NMR spectroscopy
and HR-ESI-MS, while the stereochemistry of the diketopiperazines was established using Marfey’s
method. All compounds were screened in our standard bioactivity assays, including antibacterial,
antikinases, and amyloid β-42 assays. The most interesting bioactivity result was obtained with the
known acanthocyclamine A (3), which revealed for the first time a specific Escherichia coli antimicrobial
activity and an inhibitory effect on amyloid β-42 production induced by aftin-5 and no cytotoxicity at
the dose of 26 µM. These results highlight the potentiality of a bipiperidine scaffold as a promising
skeleton for preventing or reducing the production of amyloid β-42, a key player in the initiation of
Alzheimer’s disease.

Keywords: Acanthostrongylophora ingens; marine sponge; halicyclamine derivative; diketopiperazine;
alkaloid; bipiperidine scaffold; kinase inhibitor; antimicrobial activity; inhibitor of amyloid β-42

1. Introduction

Over the last thirty years, research programs focusing on the chemical study of the metagenomic
content of marine sponges have led to a plethora of novel molecules, often showing innovative
skeletons, and being used as lead compounds in the search for novel therapeutic approaches [1–4].

In the framework of our research program, named BlueGenics (https://cordis.europa.eu/result/rcn/

193365_en.html), devoting to the sustainable exploitation of bioactive marine compounds, the chemical
composition of the dichloromethane extract of the marine sponge Acanthostrongylophora ingens,
collected off the coast of South Sulawesi, Indonesia, was analyzed, and chloromethylhalicyclamine B
(5), a novel selective CK1δ/ε kinase inhibitor with an IC50 value of 6 µM, was described [5]. An in-depth
re-examination of the organic extracts of A. ingens revealed, in addition to halicyclamine B (4) and
chloromethylhalicyclamine B (5), small amounts of tetradehydrohalicyclamine B (1b) and its epimer,
a new dehydrohalicyclamine derivative named epi-tetradehydrohalicyclamine B (1a) as well as its
chloromethyl derivative (2), acanthocyclamine A (3), and seven diketopiperazines (DKPs) (6–12).
Tetradehydrohalicyclamine B (1b) was recently reported from the same Indonesian A. ingens by a
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Japanese group [6]. They investigated the proteasome inhibitor activity of tetradehydrohalicyclamine
B (1b) and halicyclamine B (4), showing that both have proteasome inhibitor activity at micromolar
concentration, 4 being more potent than 1b, suggesting their possible role as anticancer lead
compounds [7].

Our screening program includes antibacterial, antikinases, and amyloid β-42 assays.
The obtained data are reported here, together with structural elucidation of the new alkaloid
epi-tetradehydrohalicyclamine B (1a) found in the sponge extract.

2. Results

A sample of A. ingens, collected off South Sulawesi, Indonesia was extracted using our standard
procedure as reported in the previous paper [5]. The CH2Cl2 and BuOH extracts were subsequently flash
chromatographed on silica gel, yielding fractions (A1–A6) and (C1–C18), respectively, that were further
purified as described in the experimental part and gave a mixture of epi-tetradehydrohalicyclamine B
(1a) and tetradehydrohalicyclamine B (1b), the chloromethylderivative of 1b (2), acanthocyclamine
A (3), halicyclamine B (4), chloromethylhalicyclamine B (5) (Figure 1), and seven diketopiperazines
(6–12). The known compounds 3, 4, and 5 were easily identified by comparison of their NMR and
mass-spectrometry data with those reported in the literature [5,8].
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Figure 1. Structures of compounds 1–5.

2.1. Epi-Tetradehydrohalicyclamine B (1a) and Tetradehydrohalicyclamine B (1b)

Compounds 1a and 1b could not be obtained in pure form, but only as mixtures enriched in either
1a or 1b. These mixtures, allowing a clear distinction of the 1H and 13C signals of either stereoisomer,
could be successfully used for structure elucidation. Compound 1a showed the same molecular
formula C26H39N2

+ as the recently reported [6] tetradehydrohalicyclamine B (1b), accounting for
9 degrees of unsaturation, as deduced by the [M]+ peak at m/z 379.3132 and the doubly charged
[M + H]2+ peak at m/z 190.1596 in the HR-ESIMS. Analysis of the one- and two-dimensional (COSY,
TOCSY, ROESY, HSQC, and HMBC) NMR spectra of 1a allowed the full assignment of all the 1H
and 13C signals of both compounds 1a and 1b, and showed for 1a the same planar structure as 1b
(Figure 2). Comparison of 1H NMR chemical shifts and coupling constants of compound 1a (Table 1)
with those of compound 1b (Table S1) highlighted some remarkable differences, clearly implying a
stereochemical difference between 1a and 1b. This could be linked not only to a different configuration
at C-14 or at C-15, but also to atropisomerism (conformers separated by a high-energy barrier) of the
same configurational stereoisomer, which is reasonable in the strained tetracyclic structure of 1a/1b,
and has been observed in other natural products [9]. The most notable feature of the 1H NMR spectrum
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of 1a was the presence of two very shielded signals at δH 0.20 (H-8a) and δH 0.02 (H-13a) (in contrast,
the same protons resonate at δH 1.01 and 1.16 respectively, in compound 1b). The abnormally shielded
chemical shift of H-8a and H-13a can be explained if these protons lie in the shielding zone of the
pyridine ring and/or of the double bonds in the predominant conformation(s) of 1a.
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Table 1. NMR data of epi-tetradehydrohalicyclamine B (1a) (700 MHz, CD3OD).

Pos. δH [mult., J (Hz)] δC (mult.) COSY HMBC NOESY

1 146.2 (C)
2 9.44 s 149.4 (CH) 2, 4, 26a 4, 15, 26, 27 16a, 21a, 21b, 25a, 25b, 26a, 28
3 145.7 (C)
4 8.73 s 141.5 (CH) 2, 6b, 26a, 27 2, 3, 6, 26, 27 6b, 7b, 26a, 26b
5
6 a 4.64 ddd (13.4, 13.4, 4.1) 60.0 (CH2) 6b, 7a, 7b, 27 4, 7, 27 7a, 9b, 27

b 4.84 ddd (13.4, 5.6, 1.5) 6a, 7a, 7b 4, 7, 8, 27 4, 7a, 7b
7 a 2.02 br. dd (14.6, 13.3) 30.2 (CH2) 6a, 6b, 8a, 8b 6a, 6b, 7b

b 2.23 m 6a, 6b, 7a, 8a, 8b 4, 6b, 7a, 8a, 8b
8 a 0.20 ddddd (14.6, 13.3, 13.1, 4.0, 2.9) 26.4 (CH2) 7a, 7b, 8b, 9a, 9b 7b, 8b, 9b, 12a

b 1.54 ddddd (14.6, 14.0, 4.1, 4.0, 4.0) 7a, 7b, 8a, 9b 8a, 10
9 a 1.62 dddd (13.2, 13.2, 5.5, 4.0) 25.5 (CH2) 8a, 9b, 10 8, 10, 11 8a, 9b, 10

b 2.58 dddd (14.0, 13.0, 9.0, 4.1) 8a, 9a, 10 10, 11 8a, 13a
10 5.48 m 130.1(CH) 9 8b, 9b
11 5.45 m 130.9 (CH) 12 12 12, 13a, 13b
12 a 1.68 tt (13.0, 4.3) 25.0 (CH2) 11, 13a, 13b 13 13a

b 2.58 dddd (14.0, 14.0, 8.5, 4.0)
13 a 0.02 dddd (14.3, 14.3, 11.4, 4.0) 35.0 (CH2) 12, 13b, 14 12, 14 8a, 9b, 13b, 28

b 1.31 dddd (14.3, 14.3, 4.0, 3.0) 12, 13a, 14 15, 28 11, 12, 13a, 14
14 2.30 m 37.1 (CH) 13a, 13b, 15, 16a 28 12, 13b, 15, 16a, 17b, 19a
15 3.56 ddd (9.8, 5.2, 1.4) 36.4 (CH) 14, 16a 1, 2, 14, 16, 17, 27, 28 16a, 16b, 17a, 27
16 a 2.09 dddd (14.4, 10.3, 7.6, 1.4) 30.5 (CH2) 1, 13, 14, 15, 17 2, 15, 17b

b 2.32 m 15, 16a, 17a, 17b 1, 15 15, 16a, 17a
17 a 2.55 ddd (11.6, 10.3, 5.2) 46.8 (CH2) 16a, 16b, 17b 13

b 2.86 ddd (11.6, 7.6, 2.8) 16a, 16b, 17a 13, 15, 16, 19, 28
18
19 a 2.55 m 57.5 (CH2) 20b, 21a 17, 21, 28

b 2.62 m 20a, 21b 16, 17, 28
20 a 1.58 m 26.6 (CH2) 19b, 21b 20 19b, 21b

b 1.68 m 19a, 21a, 21b, 22b 19
21 a 1.55 m 28.3 (CH2) 21b 19, 20, 22 2, 22a

b 1.74 m 19b, 21a, 22a, 22b 19, 20, 22 2, 21a, 22b
22 a 2.04 dddd (13.5, 10.2, 7.8, 5.5) 27.7 (CH2) 21a, 21b, 22b, 23 21 2

b 2.20 m 21a, 21b, 22a, 23, 25b 21 21a, 21b, 22a, 23, 25b
23 5.75 ddd (10.1, 8.2, 8.2) 132.2 (CH) 22a, 22b, 24 22, 25 21a, 22a, 22b, 24
24 5.48 m 130.4 (CH) 23, 25a, 25b 22, 25 23, 25b, 26a, 26b
25 a 2.49 dddd (15.2, 10.0, 8.2, 4.8) 28.8 (CH2) 24, 26a, 26b 3, 23, 24, 26

b 2.56 dddd (15.2, 8.8, 8.2, 7.0) 24, 26a, 26b 3, 23, 24, 26
26 a 2.85 ddd (14.6, 8.8, 4.8) 33.6 (CH2) 25a, 25b 2, 3, 4, 24, 25

b 3.08 ddd (14.6, 8.2, 8.2) 25a, 25b, 26a 2, 3, 4, 24, 25 4, 25b, 26a
27 9.04 s 144.2 (CH) 1, 2, 4, 6a 2, 4, 6, 15 6a, 8a, 9b, 12a, 15
28 2.35 m 54.8 (CH2) 13, 14, 17, 19 2, 13a, 13b, 16a, 17a, 20a

To discriminate between configurational stereoisomerism and atropisomerism, the conformational
behavior of 1b was studied. A conformational search was performed by molecular dynamics (MD),
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because MD-based methods are more suitable than Monte Carlo methods for flexible polycyclic
molecules [10]. A series of 10-ns MD simulations was performed using the CFF91 force field,
and geometries were extracted every 50 ps, resulting in 200 conformations from each MD simulations.
Because we were looking for conformational changes much slower than the ns timescale at room
temperature, simulation was performed at increasing temperatures, from 600 K to 3000 K. Overall,
108 conformers were obtained for tetradehydrohalicyclamine B (1b), considering only low-energy
conformers in a range of 5 kcal/mol, and the sets of conformers obtained from the different simulations
were very similar. These results suggested that no slow conformational equilibrium occurs for 1b,
thus excluding the hypothesis of atropisomerism.

Therefore, it was assumed that 1a is a diastereomer of 1b, i.e., the stereoisomer with cis substituents
at C-14 and C-15. Unfortunately, the relative configuration of C-14 and C-15 could not be confirmed
on the basis of the coupling constants of H-14 and H-15. In fact, even though C-14 and C-15 are
part of a six-membered piperidine ring, the ring is in equilibrium between a chair and a twist-boat
conformation (see below); in addition, the almost coincident chemical shifts of H-14 and H-16b, and of
H-28a and H-28b produced a non-first-order spin system. Therefore, structure 1a was validated
using quantum-mechanical prediction of 1H and 13C chemical shift and 1H-1H coupling constants
(see Table S2). The conformational space of compound 1a was explored using again an MD-based
conformational search, performed at 300 K. The search generated 42 conformers within 4 kcal/mol from
the lowest-energy conformer. The geometry of each conformer was optimized quantum mechanically
at the B3LYP/6-31G(d) level of theory and the continuum-solvent (PCM) model for MeOH, and 1H-1H
coupling constants were calculated for each conformer at the B3LYP/6-31G(d,p) level of theory,
according to the suggestion by Bally and Rablen [11]. Boltzmann-averaged coupling constants were
then calculated, and compared with the respective experimental values. An excellent agreement was
found between calculated and experimental coupling constants (Table 2), which strongly supported
both the relative stereochemistry of structure 1a and the quality of the conformational search.

Examination of the conformers produced by the conformational search revealed an unexpected
conformational rigidity of the C-6/C-13 carbon chain (containing the shielded protons H-8a and H-13a),
which showed the same conformation in all the 16 lowest-energy conformers, accounting for over
96% of population. In this conformation, H-8a and H-13a (marked in yellow in Figure 3) are located
in the shielding cone of the pyridine ring and in the shielding cone of the double bond at position
10, thus accounting for their unusually shielded chemical shift. In contrast, the C-19/C-26 carbon
chain showed a much higher degree of flexibility. Finally, the piperidine ring showed an equilibrium
between chair and twist-boat conformations, with the twist-boat largely dominating and accounting
for over 78% of population (Figure 3). This conformational change involves pyramidal inversion at
the nitrogen atom, and the minor chair conformation, with the lone pair towards the outside of the
molecule, is important in the reaction with dichloromethane leading to compound 2 (see below).Mar. Drugs 2019, 17, x FOR PEER REVIEW 5 
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Table 2. Experimental and calculated 1H-1H coupling constants of epi-tetradehydrohalicyclamine
B (1a).

Coupled Protons Calculated 3JH-H (Hz) Experimental 3JH-H (Hz)

H-6a/H-7a 13.6 13.4
H-6a/H-7b 3.9 4.1
H-6b/H-7a 5.8 5.6
H-6b/H-7b 1.6 1.6
H-7a/H-8a 2.7 2.9
H-7a/H-8b 4.0 4.1
H-7b/H-8a 13.2 13.1
H-7b/H-8b 3.0 4.0
H-8a/H-9a 13.1 13.3
H-8a/H-9b 3.3 4.0
H-8b/H-9a 4.3 4.0
H-8b/H-9b 14.2 14.0
H-9a/H-10 6.0 5.5
H-9b/H-10 10.3 9.0
H-11/H-12b 10.6 8.5
H-12a/H-13a 13.0 14.3
H-12a/H-13b 4.1 4.0
H-12b/H-13a 3.4 4.0
H-12b/H-13b 13.9 14.0
H-13a/H-14 11.6 11.4
H-13b/H-14 2.6 3.0
H-14/H-15 5.0 5.2

H-15/H-16a 1.3 1.4
H-15/H-16b 9.3 9.8
H-16a/H-17a 9.5 10.3
H-16a/H-17b 7.2 7.6
H-16b/H-17a 5.6 5.2
H-16b/H-17b 3.0 2.8

Because compound 1a could not be obtained in pure form, it was not possible to measure its optical
rotation nor its electronic circular dichroism (ECD) spectrum. Therefore, its absolute configuration
could not be established experimentally, but was assumed to be (14R,15R) by analogy with absolute
configuration of acanthocyclamine A (3) [8].

2.2. Chloromethyltetradehydrohalicyclamine B (2)

Compound 2 was isolated as a colorless solid. Analysis of the HR-ESIMS showed a doubly
charged [M]2+ ion peak at m/z 214.1473, with an M+2 isotope peak whose intensity (35% compared to
M) suggested the presence of a chlorine atom in the molecule. The molecular formula was deduced
as C27H41ClN2

2+, indicating nine degrees of unsaturation in the molecule no single-charge ion was
observed in the MS spectrum, suggesting the presence of two quaternary ammonium nitrogen atoms
in the molecule. Detailed examination of NMR spectra revealed that compound 2 had the same
atom connectivity as in compounds 1a and 1b (Figure 1), except for an additional methylene signal
(δH 5.38, δC 69.9). This was indicative of a chloromethyl group linked to N-18, as observed in
chloromethylhalicyclamine B (5) [5]. Consequently, this product resulted is an artifact produced during
the extraction process, but its structure was not studied in depth because it did not reveal any activity
in our panel of assays.

2.3. Diketopiperazines 6–12

In addition, seven diketopiperazines were isolated (Figure 4). Their planar structures were easily
identified by their spectroscopic data in comparison with those found in the literature, while the absolute
configurations of their stereogenic carbons were determined using Marfey’s analyses. Therefore,
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after hydrolysis and derivatization with the L-enantiomer of Marfey’s reagent, the obtained derivatives
were analysed by HR-ESIMS-HPLC. On the basis of the retention times of their respective Marfey’s
derivatives, the absolute configuration of the stereogenic carbons of the seven diketopiperazines
were deduced as depicted in Figure 4. As for the cyclo (Pro-Ser) (10), only the proline residue was
determined as L-Pro.

Mar. Drugs 2019, 17, x FOR PEER REVIEW 6 

 

during the extraction process, but its structure was not studied in depth because it did not reveal any 

activity in our panel of assays. 

2.3. Diketopiperazines 6–12 

In addition, seven diketopiperazines were isolated (Figure 4). Their planar structures were eas-

ily identified by their spectroscopic data in comparison with those found in the literature, while the 

absolute configurations of their stereogenic carbons were determined using Marfey’s analyses. 

Therefore, after hydrolysis and derivatization with the L-enantiomer of Marfey’s reagent, the ob-

tained derivatives were analysed by HR-ESIMS-HPLC. On the basis of the retention times of their 

respective Marfey’s derivatives, the absolute configuration of the stereogenic carbons of the seven 

diketopiperazines were deduced as depicted in Figure 4. As for the cyclo (Pro-Ser) (10), only the 

proline residue was determined as L-Pro. 

 

Figure 4. Structures of diketopiperazines 6–12 isolated from Acanthostrongylophora ingens. 

2.4. Evaluation of Biological Activities in the Antibacterial, Antikinases, and Amyloid β-42 Assays 

All the isolated compounds were tested against the bacteria Staphylococcus aureus and Esche-

richia coli as well as against eight different protein kinases relevant to cell proliferation, cancer, dia-

betes, and neurodegenerative disorders (CDK1, CDK2, CDK5, CDK9, CK1, CLK1, DYRK1A, and 

GSK3) and in both amyloid β-42 assays (amyloid β-42 induction assay and inhibition of amyloid 

β-42 production induced by aftin-5 assay). The main significant results are presented in Table 3. 

Only acanthocyclamine A (3) and halicyclamine B (4) showed a selective antimicrobial activity 

against E. coli and S. aureus, respectively (diameter inhibition of 12 and 10 mm at 100 µg/disk, re-

spectively). Furthermore, while chloromethylhalicyclamine B (5) showed a selective inhibitory ac-

tivity against the protein kinase CK1δ/ε with an IC50 value of 6 µM [5], the diketopiperazine cy-

clo(D-Pro-L-Phe) (6) displayed a selective kinase inhibitory activity against CDK2/cyclin A with an 

IC50 value of 1 µM. The amyloid β-42 assays were performed preliminary on both CH2Cl2 and BuOH 

extracts, showing an inhibition of the amyloid β-42 production induced by aftin-5, without reducing 

survival of the N2a-APP695 cell line. Their activity was confirmed in dose-response (0.1, 1.0 and 10 

µg/mL). Therefore, 1–12 were tested in both amyloid β-42 assays at the dose of 10 µg/mL. Among 

the compounds tested, acanthocyclamine A (3), showed an inhibition of amyloid β-42 production 

induced by aftin-5 at 26 µM, without cytotoxicity at this dose. 

  

Figure 4. Structures of diketopiperazines 6–12 isolated from Acanthostrongylophora ingens.

2.4. Evaluation of Biological Activities in the Antibacterial, Antikinases, and Amyloid β-42 Assays

All the isolated compounds were tested against the bacteria Staphylococcus aureus and Escherichia
coli as well as against eight different protein kinases relevant to cell proliferation, cancer, diabetes,
and neurodegenerative disorders (CDK1, CDK2, CDK5, CDK9, CK1, CLK1, DYRK1A, and GSK3) and
in both amyloid β-42 assays (amyloid β-42 induction assay and inhibition of amyloid β-42 production
induced by aftin-5 assay). The main significant results are presented in Table 3. Only acanthocyclamine
A (3) and halicyclamine B (4) showed a selective antimicrobial activity against E. coli and S. aureus,
respectively (diameter inhibition of 12 and 10 mm at 100 µg/disk, respectively). Furthermore, while
chloromethylhalicyclamine B (5) showed a selective inhibitory activity against the protein kinase
CK1δ/εwith an IC50 value of 6 µM [5], the diketopiperazine cyclo(d-Pro-l-Phe) (6) displayed a selective
kinase inhibitory activity against CDK2/cyclin A with an IC50 value of 1 µM. The amyloid β-42
assays were performed preliminary on both CH2Cl2 and BuOH extracts, showing an inhibition of the
amyloid β-42 production induced by aftin-5, without reducing survival of the N2a-APP695 cell line.
Their activity was confirmed in dose-response (0.1, 1.0 and 10 µg/mL). Therefore, 1–12 were tested in
both amyloid β-42 assays at the dose of 10 µg/mL. Among the compounds tested, acanthocyclamine A
(3), showed an inhibition of amyloid β-42 production induced by aftin-5 at 26 µM, without cytotoxicity
at this dose.

Table 3. Significant results of the biological activity evaluation of 1–6.

Compound Antimicrobial
Assays a

Protein kinase
Assays b

Amyloid β-42
Assays c

Cytotoxic
Assay d

S. aureus E. coli CK1 δ/ε CDK2/cyclin A Induction Inhibition N2a-APP695

1a/1b ND ND NA NA NA NA NA

2 ND ND NA NA NA NA NA

3 ND 12 mm NA NA NA 26 µM NA

4 10 mm ND NA NA NA NA NA

5 ND ND 6 µM NA NA NA NA

6 ND ND NA 1 µM NA NA NA
a Expressed as inhibition diameter (mm) at 100 µg/disk; b Expressed as inhibitory activity (IC50 in µM); c Effect on
amyloid β-42 level; ND: No activity detected at 100 µg/disk; NA: Not active at the dose tested (10 µg/mL).
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3. Discussion and Conclusions

Alkaloids are pharmacologically well characterized and are used in therapy, ranging from
chemotherapeutics to analgesics.

This chemical study of the marine sponge A. ingens allowed the isolation of 13 alkaloids, of which,
one, 1a is the epimer of the tetradehydrohalicyclamine B (1b), just recently published. Compounds 1–12
were analyzed for their biological activity using our standard panel assays that include antibacterial,
antikinases, and amyloidβ-42 assays. Acanthocyclamine A (3) showed a selective antimicrobial activity
against E. coli and an inhibition of the amyloid β-42 production induced by aftin-5 at 26 µM, without
cytotoxicity at this dose. These results highlight the potentiality of a bipiperidine scaffold as a promising
skeleton to develop products able to prevent or reduce the production of amyloid β-42, a key player in
the initiation of Alzheimer’s disease. A previous study revealed that chloromethylhalicyclamine B (5)
appeared to be a selective CK1δ/ε inhibitor at low micromolar concentrations, while halicyclamine B
(4) was inactive. Docking studies showed that chloromethylhalicyclamine B (5) can efficiently interact
with the ATP-binding site of CK1δ in spite of its globular structure, very different from the planar
structure of known inhibitors of CK1δ [5]. Because no CK1δ inhibitory activity was observed for the
chloromethyltetradehydrohalicyclamine B (2), the presence of a tetrahydropyridine appears to be
essential for the inhibitory activity towards CK1δ.

Moreover, the diketopiperazine cyclo (d-Pro-l-Phe) (6) revealed a selective antikinase activity
against CDK2/cyclin A with an IC50 value of 1 µM. In comparison with the inactive diketopiperazine
cyclo (L-Pro-L-Tyr) (12), we can hypothesize that hydroxylation of the phenyl group leads to a loss of
CDK2/cyclin A kinase inhibitory activity.

The marine sponge A. ingens is showed to be a rich source of a number of bioactive alkaloids,
some of them having an unusual skeleton, and sometimes being halogenated.

This study completes the previous works on A. ingens and points out the growing interest in
studying this sponge family with unique and diverse chemical structures. These data highlight the
potentiality of these molecules as lead compounds.

4. Materials and Methods

4.1. General Experimental Procedures

Mass spectra were recorded on an API Q-STAR PULSAR I (Applied Biosystem, Concord, ON,
Canada). NMR spectra were obtained on either a Bruker Avance 400 or 600 spectrometer (Bruker,
Wissenbourg, France) using standard pulse sequences. The acquisition of HMBC spectra were optimized
for either 7 or 8.3 Hz. Other NMR spectra were recorded on Varian Unity Inova spectrometers at
700 MHz (Agilent Technology, Cernusco sul Naviglio, Italy); chemical shifts were referenced to
the residual solvent signal (CD3OD: δH 3.31, δC 49.00). Flash chromatography was carried out on
Buchi C-615 pump system (Rungis, France). Analytical and semi-preparative reversed-phase (Gemini
C6-phenyl, Phenomenex, Le Pecq, France) columns were performed with an Alliance HPLC apparatus
(model 2695, Waters, Saint-Quentin-en-Yvelines, France), equipped with a photodiode array detector
(model 2998, Waters), an evaporative light-scattering detector (model Sedex 80, Sedere, Alfortville,
France), and the software Empower (Waters). Chromatography columns (CC) were performed using
silica gel (200~400 mesh; Merck, Darmstadt, Germany) and Sephadex LH-20 (Amersham Pharmacia,
Uppsala, Sweden).

The Marfey’s experiments were performed using a Thermo LTQ Orbitrap XL mass spectrometer
coupled to a Thermo Ultimate 3000 RS system (Thermo Fisher Scientific Spa, Rodano, Italy), which
included solvent reservoir, in-line degasser, ternary pump, column thermostat, and refrigerated
autosampler. LC–MS data were recorded and analyzed using the software Thermo Xcalibur 2.07
(Thermo Fisher Scientific Spa). The samples (5 µL) were applied on to an analytical reversed-phase
column (Phenomenex Kinetex C18, 100 × 2.1 mm, particle size 5 µm), which was eluted at 200 µL/min.
The elution procedure consisted of an isocratic profile of acetonitrile–water (5:95, v/v) for 3 min,
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followed by a linear gradient from 5% to 60% ACN/H2O over 20 min, a linear gradient from 60% to
90% ACN/H2O over 1 min, and an isocratic profile over 5 min.

4.2. Sponge Material

Specimens of Acanthostrongylophora ingens (Thiele, 1900) (class Demospongiae, order Haplosclerida,
family Petrosiidae) were collected off the South Sulawesi, Indonesia and Makassar (Ujong Pandang),
Spermonde Archipelago, north-west Lankai Island, reef slope at 14 m depth, 5.019◦ S 119.063◦ E,
29 April 1998, coll. B.W. Hoeksema, and were identified by one of the authors (R.V.S.) at the University
of Amsterdam, The Netherlands, where a voucher specimen was deposited under the registration code
ZMA Por. 14471.

4.3. Isolation and Purification

Sponge specimens (500 g) were immediately immersed in MeOH after collection. The MeOH
solution was evaporated and the aqueous residue was extracted and partitioned successively with
CH2Cl2 (1L), EtOAc (1L), and BuOH (1L) to obtain the corresponding extracts: Extract A (CH2Cl2,
2.5 g), extract B (EtOAc, 1.6 g), and extract C (BuOH, 8.5 g).

The CH2Cl2 extract was subsequently flash chromatographed on silica gel using a gradient elution
system from 100% CH2Cl2 to 100% MeOH, obtaining six fractions (A1–A6).

Fraction A3 (313 mg) was further fractionated into 14 sub-fractions on silica gel column
chromatography eluted with the CH2Cl2–acetone gradient system. Sub-fraction A3-7 (22 mg)
was subjected to C6-phenyl semi-preparative reversed-phase HPLC using, as eluent, the gradient
ACN/H2O/HCOOH from 5/95/0.1 to 50/50/0.1 for 35 min (flow rate: 3 mL/min, wavelength: 201 nm) and
yielded the diketopiperazine cyclo-(D-Pro-L-Ile) (11, 4 mg). From the sub-fraction A3-8 (17 mg), the three
diketopiperazines cyclo-(D-Pro-L-Val) (9, 5 mg), cyclo-(L-Pro-L-Tyr) (12, 3 mg) and cyclo(D-Pro-L-Phe)
(6, 4 mg) were purified after C6-phenyl semi-preparative reversed-phase HPLC using the gradient
ACN/H2O/HCOOH from 5/95/0.1 to 28/72/0.1 for 27 min (flow rate: 3 mL/min, wavelength: 201 nm).

Fraction A5 (250 mg) was applied on a Sephadex LH-20 column using MeOH as eluent and
gave eleven sub-fractions. Sub-fraction A5-3 (8 mg) was subjected to C6-phenyl semi-preparative
reversed-phase HPLC using the gradient ACN/H2O/HCOOH from 5/95/0.1 to 40/60/0.1 for 11 min
(flow rate: 3 mL/min, wavelength: 201 nm) to yield 3 mg of a mixture of 1a and 1b with a ratio of 65:35
by 1H NMR integration.

Fraction A6 (150 mg) was applied on a Sephadex LH-20 column and eluting with MeOH to
give nine sub-fractions. Sub-fraction A6-2 was purified by C6-phenyl analytical reversed-phase
HPLC using the gradient ACN/H2O/HCOOH from 5/95/0.1 to 13/87/0.1 for 25 min (flow rate:
1 mL/min, wavelength: 201 nm) to yield chloromethyltetradehydrohalicyclamine B (2, 1.2 mg).
Using a gradient system ACN/H2O/HCOOH (5/95/0.1 to 20/80/0.1 for 25 min, flow rate 1 mL/min,
wavelength 254 nm), sub-fraction A6-9 was purified by C6-phenyl analytical reversed-phase HPLC
yielding chloromethylhalicyclamine B (5, 2.5 mg) and halicyclamine B (4, 1.8 mg).

An aliquot of the BuOH extract (2 g) was subsequently flash chromatographed on a silica gel
column using the elution gradient system from 100% CH2Cl2 to 100% MeOH, to yield eighteen fractions
(C1-C18). Fraction C6 was subjected to C6-phenyl semi-preparative reversed-phase HPLC using
ACN/H2O/HCOOH from 5/95/0.1 to 35/65/0.1 as elution gradient for 25 min (flow rate: 3 mL/min,
wavelength: 201 nm) and yielded cyclo-(L-Pro-Gly) (7, 2 mg), cyclo-(L-Pro-L-Ala) (8, 2.5 mg),
and cyclo-(L-Pro-Ser) (10, 2.7 mg).

Fraction C13 was applied on a Sephadex LH-20 column using MeOH as eluent and yielded three
sub-fractions. Sub-fraction C13-2 was subjected to C6-phenyl semi-preparative reversed-phase HPLC
using the gradient ACN/H2O/HCOOH from 5/95/0.1 to 25/75/0.1 for 28 min (flow rate: 3 mL/min,
wavelength: 201 nm) to yield acanthocyclamine A (3, 5 mg).

Epi-tetradehydrohalicyclamine B (1a): 1H and 13C NMR data, see Table 1, (+)- HR-ESIMS m/z
379.3132 [M]+ (calcd for C26H39N2

+, 379.3107).
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4.4. Marfey’s Analysis

Marfey’s analysis was used to determine the configuration of the amino acids of
DKPs cyclo(Pro-Phe), cyclo(Pro-Gly), cyclo(Pro-Ala), cyclo(Pro-Val), cyclo(Pro-Ser), cyclo(Pro-Ile),
and cyclo(Pro-Tyr). The compounds were subjected to hydrolysis and derivatization with the
L-enantiomer of Marfey’s reagent (FDAA, or 1-fluoro-2,4-dinitrophenyl-5-alanine amide) [12].
Only 10 µg of compounds were degraded, and the obtained derivatives were analyzed
by HR-ESIMS-HPLC.

The samples were treated with 6 N HCl and heated in a flame-sealed glass tube at 180 ◦C for
2 h. The residual HCl fumes were removed in vacuo. The hydrolysate of the diketopiperazines
were dissolved in triethylamine/ACN (2:3) (100 µL), and these solutions were then treated with
1-fluoro-2,4-dinitrophenyl-5-l-alaninamide (L-FDAA) in ACN/acetone (1:2) (100 µL). The vials were
heated at 50 ◦C for 1 h. The mixture was dried and re-suspended in ACN/H2O (5:95) (500 µL) for
subsequent LC-MS analysis. Authentic L-Phe, L-Pro, L-Tyr, L-Val, L-Ile, L-Ala standards were treated
with L-FDAA and D-FDAA.

In spite of the low amounts used, the extracted-ion chromatograms of the diketopiperazines at
m/z 418.1357 (FDAA-Phe), 368.1201 (FDAA-Pro), 434.1306 (FDAA-Tyr), 370.1357 (FDAA-Val), 384.1514
(FDAA-Ile), and 342.1044 (FDAA-Ala) were almost devoid of noise.

In DKP cyclo(Pro-Phe) (6), the phenylalanine residue was found to have L configuration while the
proline residue was found to have D configuration on the basis of the retention times of their respective
Marfey’s derivatives (Figure 5).
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Figure 5. HR-ESIMS-HPLC analysis of Marfey’s derivatives from DKP cyclo(Pro-Phe) (6): Extracted-ion
chromatograms at m/z 368.1201 of L-1-fluoro-2,4-dinitrophenyl-5-alanine amide (FDAA)-Pro from DKP
(a); of authentic L-FDAA-L-Pro (b); and of authentic D-FDAA-L-Pro (c); extracted-ion chromatograms
at m/z 418.1357 of L-FDAA-Phe from DKP (d); of authentic L-FDAA-L-Phe (e); and of authentic
D-FDAA-L-Phe (f).

In DKP cyclo(Pro-Gly) (7), L configuration was found for proline residue (Figure S1).
In DKP cyclo(Pro-Ala) (8), both alanine and proline residues were found to have L configuration

(Figure S2).
In DKP cyclo(Pro-Val) (9), the valine residue was found to have L configuration while the proline

residue was found to have D configuration (Figure S3).
In DKP cyclo(Pro-Ser) (10), L configuration was found for proline residue while it was not

possible to establish the configuration for the serine residue, probably because of the low amount of
diketopiperazine (Figure S4).
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In DKP cyclo(Pro-Ile) (11), the isoleucine residue was found to have L configuration while the
proline residue was found to have the D configuration (Figure S5).

In DKP cyclo(Pro-Tyr) (12), the tyrosine and the proline residues were found to have the L
configuration (Figure S6).

4.5. Quantum Mechanical Prediction of 1H-1H Coupling Constants of epi-Tetradehydrohalicyclamine B (1a)

Initial conformational search was performed using molecular dynamics simulations at different
temperatures, performed in vacuo in the CFF91 force field using the Insight II/Discover package
(BIOVIA: San Diego, CA, USA). The resulting conformers (42 conformers within 4 kcal/mol from the
lowest-energy conformer) were used as starting structure for quantum mechanical calculations with the
Gaussian 09 program [13]. Geometries were optimized at the B3LYP/6-31G(d) level of theory and the
continuum-solvent (PCM) model for MeOH, and 1H-1H coupling constants were calculated for each
conformer at the B3LYP/6-31G(d,p) level of theory according to the suggestion by Bally and Rablen [11],
i.e., considering only the Fermi contact contribution to J and scaling the calculated value by 0.9117.
The averaged coupling constants shown in Table 2 were obtained using populations calculated from the
CFF91 energies, and including in the calculations only the conformers populated by more than 1%. It is
interesting to note that using quantum mechanical calculations to evaluate energies and populations of
conformers produced a remarkably worse fit with the experimental values. The inaccuracy of relative
energies of conformers is a known problem of DFT calculations [10], which in this particular study
could not be avoided even when a higher level of theory (e.g., B3LYP-D3/TZVP) was used.

4.6. Antimicrobial Assays

Assays were performed using the disk diffusion assay method. Pure compounds (100 µg) were
solubilized in DMSO and deposited on a 6 mm paper disk and put on agar plated seeded with reference
strains Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 8739). Antimicrobial activity
was determined by measuring the diameter of the inhibition zone after 24 h of incubation at 37 ◦C.
Cefotaxime (30 µg) and amoxicillin (25 µg) were used as positive controls against S. aureus and E. coli,
giving 30 and 21 mm of inhibition zones, respectively.

4.7. Antikinases Assays

Evaluation of the protein kinase activity was performed in vitro as previously described [14].
Briefly, the buffers used in the experiments were prepared as follows: Homogenization buffer: 60 mM
β-glycerophosphate, 15 mM p-nitrophenylphosphate, 25 mM Mops (pH 7.2), 15 mM EGTA, 15 mM
MgCl2, 1 mM dithiothreitol, 1 mM sodium vanadate, 1mM NaF, 1 mM phenylphosphate, 10 µg
leupeptin/mL, 10 µg aprotinin/mL, 10 µg soybean trypsin inhibitor/mL, and 100 µg benzamidine; buffer
A: 10 mM MgCl2, 1mM EGTA, 1 mM dithiothreitol, 25 mM Tris-HCl pH 7.5, 50 µg heparin.mL−1;
buffer C: Homogenization buffer but 5 mM EGTA, no NaF and no protease inhibitors. Kinase activities
were assayed in duplicates in buffer A or C at 30 ◦C, at a final ATP concentration of 15 µM. The order
of mixing the reagents was: Buffers, substrate, enzyme, and inhibitor. Isolated compounds were
tested against a panel of eight kinases; namely, dual-specificity tyrosine-(Y)-phosphorylation regulated
kinase 1A (DYRK1A), cyclin-dependent kinase 5 (CDK5/p25), glycogen synthase kinase-3 (GSK-3
α/β), CDC-like kinase 1 (CLK-1), casein kinase 1 (CK1δ/ε), cyclin-dependent kinase 1 (CDK1/cyclin B),
cyclin-dependent kinase 2 (CDK2/cyclin A), and cyclin-dependent kinase 9 (CDK9/cyclin T).

4.8. Amyloid β42 Induction Assay

This assay, described in detail in reference [15] allows the detection of molecules able to induce
the production of extracellular amyloid β-42 peptide.

N2a cells stably transfected with human APP695 were maintained in Dulbecco’s modified Eagle’s
media (DMEM/optiMEM, Gibco, InVitrogen, St. Aubin, France), supplemented with 5% fetal bovine
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serum (Gibco, InVitrogen, St. Aubin, France), 1% penicillin-streptomycin solution (Sigma Aldrich,
Saint- Quentin Fallavier, France), and G418 (0.1 mg/mL) in a humidified atmosphere at 37 ◦C with
5% CO2. N2a-APP695 cells were plated at a density of approximately 10,000 cells per well in 96-well
plates in modified media (DMEM/optiMEM) with 0.5% FBS. After 18 h incubation, the conditioned
media were replaced by new media containing compounds at the final concentrations of 0.1, 1.0,
10 µg/mL. After 18 h incubation, the cultured media were harvested for amyloid β-42 determination
by ELISA assay.

Amyloid β-42 levels were measured in a double antibody sandwich ELISA using a combination of
monoclonal antibody (mAb) 6E10 (SIG-39320, Covance, Eurogentec, Seraing, Belgium) and biotinylated
polyclonal amyloid β-42 antibody (provided by Dr. P.D. Mehta, Institute for Basic Research in
Developmental Disabilities, Staten Island, NY, USA). Briefly, wells of microtiter plates (Maxisorp, Nunc,
ThermoFisher Scientific, Illkirch, France) were coated 100µL mAb 6E10 diluted in carbonate-bicarbonate
buffer (buffer (0.015 M Na2CO3 + 0.035 M NaHCO3) pH 9.6) at a 1.5µg/mL final concentration, and plates
were incubated overnight at 4 ◦C. The plates were then washed with PBST (PBS containing 0.05%
Tween-20) and blocked for 1 h with 1% BSA in PBST to avoid non-specific binding. Following a
washing step, 100 µL of cell supernatant was added and incubated for 2 h at room temperature (RT) on
a shaking device. Plates were then washed with PBST and 100 µL of biotinylated antibodies (diluted
to 1 µL/mL in PBST containing 0.5% BSA) were added and incubation was carried out for 75 min at
RT under constant shaking. After a washing step, streptavidin-Poly-HRP (horseradish peroxidase)
conjugate (Pierce, ThermoFisher Scientific, Illkirch, France), diluted in PBS + 1% BSA, was added and
incubation was carried out for 45 min at RT under continuous shaking. After washing, 100 µL of
OPD (o-Phenylenediamine dihydrochloride, Pierce, ThermoFisher Scientific, Illkirch, France) in pH
5.0 citrate buffer (0.049M citric acid monohydrate + 0.1M Na2HPO4·2H2O + 1 mL H2O2 30%/L) were
added as a substrate and after 15 min incubation at room temperature, the reaction was stopped by
addition of 100 µL 1 N sulfuric acid. Optical density (OD) was measured at 490 nm using a plate reader
(BioTek Instruments, El 800, Gen 5 software, Winooski, VT, USA).

Amyloidβ–42 quantification was calculated using standard curves, which were prepared with
synthetic Aβ-42 HFIP treated (JPT Peptide Technologies, Berlin, Germany) and Aβ-42 specific polyclonal
antibody. Curve fitting was performed using a 4 parameters sigmoid equation (SigmaPlot, Systat,
Sigma). Results are expressed as fold change ± s.d. All experiments were performed in triplicate.

4.9. Inhibition of Amyloid β-42 Production Induced by Aftin-5 Assay

This assay allows the detection of molecules able to inhibit the production of extracellular Amyloid
β peptides induced by a pre-treatment with 100 µM of aftin-5. Aftin-5 is available from Adipogen
International, San Diego, CA, USA.

N2a cells stably transfected with human APP695 were maintained in Dulbecco’s modified Eagle’s
media (DMEM/optiMEM), supplemented with 5% fetal bovine serum, 1% penicillin-streptomycin
solution (Sigma), and G418 (0.1 mg/mL) in a humidified atmosphere at 37 ◦C with 5% CO2. N2a-APP695
cells were plated at a density of approximately 10,000 cells per well in 96-well plates in modified media
(DMEM/optiMEM) with 0.5% FBS. After 18 h incubation, the conditioned media were replaced by new
media containing compounds at the final concentrations of 0.1, 1.0, 10 µg/mL. After 1 h incubation,
aftin-5 was added (100 µM 1% DMSO final). After 18 h incubation, the cultured media were harvested
for amyloid β-42 determination by ELISA assay.

4.10. Cytotoxic Assay: Effects on N2a-APP695 Viability (MTS Survival Assay)

This assay allows evaluating the survival rate of cultured mammalian cells exposed to extracts or
pure compounds. It allows the detection of cell death-inducing molecules.

N2a cells stably transfected with human APP695 were maintained in Dulbecco’s modified Eagle’s
medium (DMEM/optiMEM), supplemented with 5% fetal bovine serum, 1% penicillin-streptomycin
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solution, and G418 (Sigma, St. Louis, MO, USA) (0.1 mg/mL) in a humidified atmosphere at 37 ◦C with
5% CO2.

N2a-APP695 cells were plated at a density of approximately 10,000 cells per well on 96-well
plates in Dulbecco’s modified Eagle’s medium (DMEM/optiMEM), supplemented with 0.5% fetal
bovine serum. After 24 h incubation, the conditioned media were replaced by new media containing
compounds at the final concentrations of 0.1, 1.0, 10 µg/mL. Viability of cells was measured by
MTS-formazan reduction using CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega,
Madison, WI, USA) at 18 h post treatment. Incubation was pursued for 1.5 h (37 ◦C, 5% CO2, and 95%
humidity). Optical density (OD) was measured at 490 and 630 nm using a microELISA reader (BioTek
Instruments, Winooski, VT, USA.).

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/8/472/s1,
Table S1. NMR data of tetradehydrohalicyclamine B (1b) (700 MHz, CD3OD), Table S2. Cartesian coordinates,
relative energies, and populations of the nine lowest-energy conformers of epi-tetradehydrohalicyclamine B
(1a). Figure S1. HR-ESI-MS-HPLC analysis of Marfey’s derivatives from DKP cyclo(Pro-Gly) (7), Figure S2.
HR-ESI-MS-HPLC analysis of Marfey’s derivatives from DKP cyclo(Pro-Ala) (8), Figure S3. HR-ESI-MS-HPLC
analysis of Marfey’s derivatives from DKP cyclo(Pro-Val) (9), Figure S4. HR-ESIMS-HPLC analysis of Marfey’s
derivatives from DKP cyclo(Pro-Ser) (10), Figure S5. HR-ESI-MS-HPLC analysis of Marfey’s derivatives from DKP
cyclo(Pro-Ile) (11), Figure S6. HR-ESI-MS-HPLC analysis of Marfey’s derivatives from DKP cyclo(Pro-Tyr) (12).
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