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Abstract: Nowadays, increased flood risk is recognized as one of the most significant threats in most 

parts of the world, with recurring severe flooding events causing significant property and human 

life losses. This has entailed public debates on both the apparent increased frequency of extreme 

events and the perceived increases in rainfall intensities within climate changing scenarios. In this 

work, a stationary vs. Non-Stationary Analysis of annual extreme rainfall was performed with 

reference to the case studies of the African cities of Dar Es Salaam (TZ) and Addis Ababa (ET). For 

Dar Es Salaam (TZ) a dataset of 53 years (1958–2010) of maximum daily rainfall records (24 h) was 

analysed, whereas a 47-year time series (1964–2010) was taken into account for Addis Ababa (ET). 

Both gauge stations rainfall data were suitably fitted by Extreme Value Distribution (EVD) models. 

Inference models using the Maximum Likelihood Estimation (MLE) and the Bayesian approach 

were applied on EVD considering their impact on the shape parameter and the confidence interval 

width. A comparison between a Non-Stationary regression and a Stationary model was also 

performed. On this matter, the two time series did not show any Non-Stationary effect. The results 

achieved under the CLUVA (Climatic Change and Urban Vulnerability in Africa) EU project by the 

Euro-Mediterranean Centre for Climate Change (CMCC) (with 1 km downscaling) for the IPCC 

RCP8.5 climatological scenario were also applied to forecast the analysis until 2050 (93 years for Dar 

Es Salaam TZ and 86 years for Addis Ababa ET). Over the long term, the process seemed to be Non-

Stationary for both series. Moreover, with reference to a 100-year return period, the IDF (Intensity-

Duration-Frequency) curves of the two case-studies were estimated by applying the Maximum 

Likelihood Estimation (MLE) approach, as a function of confidence intervals of 2.5% and 97.5% 

quantiles. The results showed the dependence of Non-Stationary effects of climate change to be 

conveniently accounted for engineering design and management. 

Keywords: climate change; IDF curves; Bayesian analysis; Non-Stationary process 

 

1. Introduction 

Nowadays, the increased flood risk is recognized as one of the most important threats, from both 

the actual and, more importantly, the climate change scenario, with frequent severe flooding at the 

global scale causing significant loss of property and life. In 2009 (Messina, Sicily Region), 2010 (Atrani, 

Campania Region) and 2011 (Genova, Liguria Region), the Italian territory was forced to face 

widespread flooding events, highlighting the significant vulnerability of the territory and the 

inadequacy of early warning and flood protection systems. According to the official report of the 
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Italian Environmental Ministry, over 1000 buildings and businesses were flooded, causing 40 deaths. 

Nevertheless, worldwide flooding events caused by extreme rainfall events are causing the 

degradation of water quality, damages and potential loss of life [1,2]. 

These events prompted public debates on the apparent causes of the increased frequency of 

extreme events. Indeed, scientists are querying the changing statistics of rainfall intensity, especially 

considering the climate model predictions of increasing frequency and intensity of heavy rainfall in 

the high latitudes under enhanced greenhouse conditions. In 2007, the United Nations 

Intergovernmental Panel on Climate Change (IPCC) issued a report [3] stating that “It is very likely 

that hot extremes, heat waves, and heavy precipitation events will continue to become more 

frequent”, with the “very likely” assertion indicating an occurrence probability greater than 90%. 

Thus, the actual and recent observations and future predictions are pointing out the importance of 

suitable assessments of the probability occurrence of extreme events related to long return periods T. 

A comprehensive review of trend analysis and climate change projections of extreme 

precipitations in Europe is given by [4]. Many studies demonstrate changes in seasonal extreme 

precipitations in some parts of Europe [5–8]. 

To estimate extreme value statistics for frequency analysis of extreme precipitation, the 

assumption of stationarity is valid if we do not consider changes in climate that affect the hydrological 

regime. In this matter, during the last decade, several studies adopted Non-Stationary frequency 

analysis for extreme precipitation in different parts of the world [9–11]. On the other hand, simplified 

indexes [12,13] or Innovative Trend Analysis [14] have also been applied and tested for identifying 

potential trends in extreme precipitations. 

Extreme Value Distributions (EVDs) are usually able to accurately represent the frequency of 

hydrologic over-threshold physical processes. Parameter estimation through Likelihood-based 

methods allows extreme quantiles to be calculated, providing the appraisal of the parameter and the 

associated dynamic for given return period T (e.g., 100 years). However, EVD parameters are 

typically estimated from the extremes of a dataset (e.g., annual maxima), which may result in 

characterizing unrealistic values. A possible solution to improve the reliability of statistical analysis 

concerns the application of a Bayesian framework, which allows us to constrain the estimates as a 

function of predefined information, which could realistically reproduce the hydrologic processes 

governing the available data. Further essential points regard the potential Non-Stationarity that could 

involve meaningful variation of the mean value of the distribution, with corresponding variation of 

the return levels related to a return period T. 

This work first investigated the behaviour of the GEV distribution to estimate the annual 

maxima of rainfall depths adopting both MLE and Bayesian methods, evaluating their relative 

impacts on the confidence interval widths. Moreover, stationary and Non-Stationary analyses of 

extreme rainfall were applied to historical time series (with a relative limited extension), and the 

extended ones used climate models, thus evaluating potential Non-Stationary effects induced by the 

climate models. 

Maximum daily (24 h) rainfall data series for the cities of Dar Es Salaam (TZ) with a 53-year 

dataset (1958–2010), and Addis Ababa (ET) with a 47-year dataset (1964–2010) were analysed to 

evaluate the Goodness of Fit (GoF) of EVD models. Specifically, a comparison was realized between 

Maximum Likelihood Estimation (MLE) and Bayesian models. Moreover, results gathered from the 

CLUVA (Climatic Change and Urban Vulnerability in Africa) EU project by the Euro-Mediterranean 

Centre for Climate Change (CMCC) (with 1 km downscaled resolution) for the IPCC RCP8.5 

climatological scenario were also considered, extending the rainfall dataset to 2050 (93 years for Dar 

Es Salaam TZ and 87 years for Addis Ababa ET).  

The impact of the actual versus changing hydrologic forcing scenarios was evaluated, with 

reference to a 100-year return period, estimating the Intensity-Duration-Frequency (IDF) curves 

through the Maximum Likelihood Estimation (MLE) as a function of confidence intervals of 16% and 

84% quantiles, respectively.  

  



Hydrology 2018, 5, 28 3 of 22 

 

2. Methodology 

2.1. Extreme Value Theory 

The Generalized Extreme Value (GEV) distribution was proposed by [15] following the original 

formulation of [16]. The GEV approach is widely applied to model extremes of hydrologic processes 

such as floods [17], rainfall [18] and sea waves [19]. Further applications also include different 

subjects such as financial market risk modelling [20]. 

By supposing X1, X2, …, Xn as a sequence of independent random variables from a common 

distribution function F, the statistic order of interest is Mn = max{X1, X2, …, Xn}, namely, the maximal 

value of the independent identically distributed (i.i.d.) random variables. Here, Xi represents the 

daily rainfall amount (mm) and n the number of observations in one year (365 or 366), so that Mn is 

the annual maximum. When the parent distribution function F is known, the distribution of Mn can 

be derived from statistical theory such that P(Mn ≤ z) = [F(z)]n. 

With F unknown, a limit distribution for Fn as n → ∞ is searched for, in a way similar to how 

the application of the Central Limit Theorem (CLT) allows approximation of the distribution of 

samples by means of the Normal distribution. Considering the linearly renormalized variable M*n: 
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for sequences an > 0 and bn, Mn should be normalized because Fn(z) → 0 as n → ∞ for fixed z lower 

than the upper end-point of F. This causes the degeneration of the distribution to a point mass on the 

upper end-point of F (i.e., the smallest z such that F(z) = 1). 

The whole range of limit distributions for M*n is given by the Extremal Types Theorem [21]. If a 

series of constants {an > 0} and {bn} exists, such that P(M*n ≤ z) → G(z) as n → ∞ (with G a non-

degenerate distribution function), then G must be included into one of the following three families: 

(I) Gumbel; (II) Fréchet and (III) Weibull distributions. 

Families I, II and III can be combined into a single family named the Generalized Extreme Value 

(GEV) distribution [4], given by the following Equation (2): 
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defined as {z: 1 + ξ(z − μ)/σ > 0}, where μ, σ, ξ are the location, scale and shape parameters, respectively. 

The shape parameter ξ governs the tail behaviour of the distribution at its upper end. The 

Weibull class has a finite upper endpoint, whereas the Gumbel and Fréchet classes provide relatively 

different rates of decay in the tail. The Fréchet is a more heavy tailed distribution because it decays 

polynomially with respect to the Gumbel class, which decays exponentially instead. The tail 

behaviour is strongly significant, as it corresponds to quite different characteristics of extreme value 

behaviour. To perform the unification to a single GEV distribution, making a choice about the best 

model before parameter estimation is required. The key advantage of the GEV distribution over the 

three EV types derives from the assertion that the estimation of the ξ parameter via inference methods 

allows the data to select which family (and tail behaviour) to adopt without any prior decision. 

Moreover, the uncertainty in the estimated value of ξ measures the uncertainty correlated with the 

effectiveness of the three types for the available data set. 

By inverting Equation (2), an estimation of extreme quantiles can be obtained, being the pth-

upper quantile of the z distribution given by G(zp) = 1 − p. A zp estimation is achieved by substituting 

the estimates of μ, σ and ξ (for 0 < p < 1): 
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where zp is the return level correlated to the return period T = 1/p. Return levels represent usual 

estimation parameters for extreme events, resulting in the “100-year flood” widely applied in 

hydrological applications for civil engineering. Loosely speaking, zp is the level expected to be meanly 

exceeded once every 1/p years (assuming G as the annual maximum). More formally, for extreme 

rainfall, zp is the daily rainfall amount exceeded by the annual maximum for any year with a 

probability equal to p. 

The plot of zp against 1/p is known as the return level plot, resulting in an effective tool to 

graphically observe the return levels. The sign of the shape parameter takes on an important role 

when extrapolating to long return periods. Indeed, a small error in estimating the ξ parameter can 

lead to a much larger error in the return level estimation. Thus, accurate evaluation of the GEV shape 

parameter is essential to plan and develop flood protection models [22]. 

2.2. Bayesian Approach 

The Bayesian approach allows us to make inferences from the Likelihood function, overcoming 

the limitation of the usually small size of the time series characterized by the annual maxima. 

According to this approach, as opposed to the MLE, a parameter 𝜃 of a distribution is not an 

unknown constant but it is treated as a random variable related to a prior normal pdf 𝑓(𝜃) with zero 

mean and a certain variance 𝑣𝜃 . 

If we consider 𝑥 = (𝑥1, … , 𝑥𝑛)  as independent realizations of a random variable so that 

{𝑓(𝑥; 𝜃) ∶  𝜃𝜖Θ}, according to the Bayes Theorem: 
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( ) ( )
( ) ( )
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where 𝑓(𝜃|𝑥)  is the posterior distribution, 𝑓(𝜃)  is the abovementioned prior distribution and 

𝑓(𝑥|𝜃) = ∏ 𝑓(𝑥𝑖|𝜃)𝑛
𝑖=1  is the Likelihood. In case of many parameters such as the GEV distribution, 

the denominator of Equation (4) can be computationally complex. To overcome this issue, Markov 

Chain Monte Carlo (MCMC) techniques, based on multiple simulations, are usually adopted [21].  

The sequences of simulated values of the parameters can be generated with the Metropolis-

Hastings algorithm, e.g., applying the evdbayes package within R software [23]. The algorithm 

generates a sequence of parameters adopting a random-walk characterized by a normal distribution 

with a mean equal to the previous value of the parameter in the chain and a given variance. After a 

burn-in period, the sequence of the parameters is approximately stationary and the estimate of the 

parameter is computed as the mean of the sequence excluding the values within the burn-in period. 

2.3. Non-Stationary Frequency Model 

Under the climate change context, the intensity and/or the frequency of extreme rainfall events 

can change with time, so that the hypothesis of stationarity of the series of annual maxima is not 

satisfied [24]. 

The Non-Stationary behavior of an extreme value distribution can be expressed in different 

ways, such as changing its average values, the variability of its variables or both of them 

simultaneously [25]. More complex cases of Non-Stationarity could involve changes in distribution 

asymmetry or even in the parametric form [24].  

Most studies look at trends induced by average variables [26] or extreme values indicators [27] 

without considering the variation of the shape of the distribution or of its variability. Following this 

simplest hypothesis, in this work, the GEV distribution for a Non-Stationary frequency model is 
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expressed as GEV(μi, σ, ξ), where μi = μ0 + μtrend ti, with ti the counter of the year from the analysed 

time series (see Section 3.1.1). 

3. Case Studies 

The extreme value statistics for frequency analysis of extreme precipitation were performed for 

Dar Es Salaam (TZ) and Addis Ababa (ET) case studies for both cases of historical data and extended 

time series using the COSMO CLM model by Euro-Mediterranean Centre for Climate Change 

(CMCC). Table 1 shows the basic statistics of the mentioned time series. Kolmogorov-Smirnov, 

Anderson-Darling and Chi-Square GoF tests have been performed on the GEV distribution 

application for both case studies related to the historical and extended time series. Results of the GoF 

were positive for each test, considering the rejection of the null hypothesis at the level a = 0.01. 

Table 1. Basic statistics of the times series for both cases studies of Dar Es Salaam and Ababa. 

Basic Statistics 
Dar Es Salaam Addis Ababa 

Historical Data Hist. + CMCC Data Historical Data Hist. + CMCC Data 

Mean [mm] 78.8 71.3 52.1 54.2 

Standard deviation [mm] 23.6 26.8 18.4 20.2 

Skewness 1.20 0.97 1.20 1.19 

Kurtosis 0.98 0.59 0.94 0.96 

3.1. Dar Es Salaam (TZ) Rainfall Data 

3.1.1. Historical Data 

The first analysis was based on the data series of daily rainfall observations recorded at Dar Es 

Salaam (TZ) Airport, Tanzania (Latitude: −6.87 N; Longitude: 39.20 E; Elevation: 53 m a.s.l.) with 

reference to the time span 1 January 1958–31 December 2010. Annual maxima are plotted in the following 

Figure 1. 

 

Figure 1. Annual maximum 24 h rainfalls recorded at Dar Es Salaam TZ (1958–2010). 

The assumption of data as independent observations from the GEV distribution was applied. 

Based on the Maximum Likelihood Estimation (MLE) method (by using the eXtremes [28] and evd [29] 

packages in R software [30]), the following estimation of μ, σ and ξ parameters was obtained  

( ̂ , ̂ , ̂ ) = (68.25, 16.93, 0.039), with standard errors equal to 2.55, 1.83 and 0.083, respectively. 

Approximate 95% confidence intervals for each parameter were [63.25, 73.25], [13.35, 20.52] and 

[−0.124, 0.202] for μ, σ and ξ, respectively. This showed that the 95% confidence interval is well 

extended for values lower than zero, although the estimation of the shape parameter was positive, 

pointing out the uncertainty of the performed evaluation. 
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The survey for the 100-year return level was 01.0ẑ  = 153.6 mm, with a 95% confidence interval 

of [129, 208] mm, and the return level plot in Figure 2 shows the linear trend of the function as a 

consequence of the estimation of the ξ parameter tending towards 0. Diagnostic plots (not shown for 

the sake of brevity), such as probability plot and quantile plots, showed that each set of plotted points 

are roughly linear, validating the use of the GEV model. 

 

Figure 2. Return Level (in mm) plot using maximum likelihood surveys. 

A more reliable survey using a Bayesian approach was implemented by applying the evdbayes 

package in R software [23]. The algorithm provides functions for the Bayesian analysis of extreme 

value models, using the Markov Chain Monte Carlo (MCMC) method. The solely genuine prior 

information available referred to the GEV shape parameter; thus, prior information about μ and σ 

parameters were not-informative normal distributions with variance 104. In the Bayesian analysis, 

more specific empirical evidence provided by Koutsoyiannis [31,32] was applied, as a function of ξ ≈ 

0.15 for Europe.  

A normal distribution around 0.15 with variance 0.2 was formed, restricting the ξ variation to a 

physically reasonable range [22]. By applying the MLEs as the initial vector θ0 = ( ̂ , ̂ , ̂ ) = (68.25, 

16.93, 0.039) and the proposal standard deviations psd = (6.191, 0.230, 0.216) (identified with some 

pilot runs), a Markov Chain Monte Carlo (MCMC method) was generated with a length of 100,000, 

satisfying mixing properties (Figure 3). By graphically examining the chain (Figure 3) and using the 

Geweke diagnostic [33], a burn-in period of 10 iterations was found. 

The sample means and standard deviations of each marginal component of the chain were: 

̂  = 68.22 (2.65); ̂  = 17.74 (1.98); ̂  = 0.04716 (0.0834) (5) 

whereas the 95% reasonable intervals were [63.10, 73.52], [14.32, 22.12] and [−0.11, 0.22] for μ, σ, and 

ξ, respectively. 

The sequence of simulated (μi, σi, ξi) values was transformed, leading to a sample from the 

corresponding posterior distribution of the 100-year return level (Figure 4). This gave a 01.0ẑ  

estimation equal to 161.8 mm with 95% reasonable interval of [131.6, 219.1] mm. The plot of the 

posterior return level given in Figure 5 shows the upper 95% interval to be more remote than the 

lower interval from the median level.  

This was due to the heavier upper tail of the posterior distribution (Figure 4), achieved for the 

non-negative prior on ξ. The summary of Dar Es Salaam (TZ) data is given in Table 2. 

Moreover, μ was estimated to be 68 mm; nevertheless, MLE returned a lower estimation of the 

scale parameter σ, with respect to that derived from the Bayesian method. In terms of credibility 

intervals, the estimation of the shape parameter was more precise using the Bayesian method.  
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Figure 3. MCMC realizations of the GEV parameters with a Bayesian analysis of the Dar Es Salaam 

(TZ) rainfall data. 

 

Figure 4. Estimated posterior density of the 100-year return level. 
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Figure 5. Posterior return level plot in Bayesian analysis of Dar Es Salaam (TZ) rainfall data: the 

median (solid line) and the 95% intervals of the posterior probability (dashed lines). 

The Bayesian estimates were relatively insensitive to the prior distributions, as shown by the 

similar parameter and quantile estimates. The computational efforts of the Bayesian approach by 

using the R software (evdbayes package) were significantly short, requiring very short extra processing 

time with respect to the MLE. The sole prejudices, in terms of required computational time, regarded 

both the prior setting up and ensuring that the Markov Chain Monte Carlo had desirable properties. 

The inclusion of genuine prior information was a compelling factor in favour of the Bayesian 

inference. This, together with the limited amount of historical data available for the Dar Es Salaam 

(TZ) analysis, provided significant evidence to prefer the Bayesian analysis instead of the MLE one. 

In Figure 6, the autocorrelations for all three parameters after a 5 lag period decreased rapidly. 

Therefore, it is shown that the result has good mixing. 

 

Figure 6. Behaviour of autocorrelations for all three parameters of the GEV distribution with lag 

effects. 

Table 3 shows the results of the 3 diagnostics according to the Gelman–Rubin, Geweke and 

Raftery–Lewis methods, as reported in [34] for checking the convergence of the algorithm. The 

Gelman–Rubin diagnostic is equal to 1.000 for both μ, σ, and ξ. Therefore, it is known that the chains 

could be accepted, and this indicates the estimates come from a state space of the parameter, as 

depicted in Figure 7. In Table 3, Geweke’s test statistics are 0.4307, 0.6353 and 0.9895 for μ, σ and ξ, 

respectively. Therefore, also in this case, the chain is acceptable, as shown in Figure 8. The last 

quantitative diagnostic is the Raftery–Lewis method. In Table 3, the dependence factors I are 4.320, 

3.860 and 3.85 for μ, σ and ξ, respectively. According to this method, high dependence factors (>5) 

show significant correlations between estimates, indicating poor mixing. Therefore, the estimated 

values have good mixing. 
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Table 2. Summary of results obtained from different methods of estimation (Dar Es Salaam TZ data). 

Method MLE Bayesian ξ ~ N(0.15, 0.20) 

Estimates 

μ (mm) 68.25 68.22 

σ (mm) 16.93 17.74 

ξ 0.039 0.047 

95% intervals 

μ (mm) [63.25, 73.25] [63.10, 73.52] 

σ (mm) [13.35, 20.52] [14.32, 22.12] 

ξ [−0.124, 0.202] [−0.110, 0.220] 

100-year return level   

Estimates (mm) 153.6 161.8 

95% intervals (mm) [129, 208] [132, 219] 

Table 3. Diagnostics by Gelman–Rubin method, Geweke method, and Raftery–Lewis method. 

Parameter Gelman–Rubin (R) Geweke (Z0.025 = ±1.96) Raftery–Lewis (I) 

μ 1 0.4307 4.320 

σ 1 0.6353 3.860 

ξ 1 0.9895 3.850 

Parameter Gelman–Rubin (R) Geweke (Z0.025 = ±1.96) Raftery–Lewis (I) 

μ 1 0.4307 4.320 

σ 1 0.6353 3.860 

ξ 1 0.9895 3.850 

 

Figure 7. Gelman plot diagnostic for the three parameters μ, σ, and ξ of Dar Es Salaam (TZ) historical data. 

 

Figure 8. Geweke plot diagnostic for the three parameters μ, σ, and ξ of Dar Es Salaam (TZ) historical data. 

After analyzing the historical data with a stationary approach, the analysis was performed to 

verify the feasibility of Non-Stationarity data by applying both the GEV and assuming a linear trend 

for the location parameter.  

The GEV log-Likelihood is based on the assumption that the data to be fitted are the observed 

values of independent random variables X1, …, Xn, where Xi ~ GEV(μ, σ, ξ) for each i = 1, … , n. This 

assumption can be extended to Xi ~ GEV(μi, σ, ξ), where μi = μ0 + μtrend ti. The parameters (μ, μtrend) are 

estimated, and the vectors of covariates t = (t1, …, tn) are specified by the user.  
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In this case study, the MLE fit for the location parameter was ̂  = 61.34 + 0.25·ti (where ti = 0, 1, 

2, …, 52 years) and associated standard errors were 4.92 and 0.15 for μ0 and μtrend (Figure 9), 

respectively. The ̂  and ̂  estimates were 16.22 and 0.071 with standard errors of 1.81 and 0.091, 

respectively. As shown in Figure 9, this resulted once again in a satisfactory fit. The observed trend 

of the fitted data with the GEV distribution can be considered a relevant result and suggests further 

analysis be performed on extended time series with climatic models. An analytic approach to 

determine the better fit between stationary and Non-Stationary approaches is the Likelihood-Ratio 

test (eXtremes package [28]). In this test case, the Likelihood-Ratio was equal to about 2.4897, i.e., 

lower than the 95% quantile of the X12 distribution of 3.8415, suggesting that the covariate ti model 

did not provide a significant improvement to the model without a covariate. This assumption was 

also supported by the estimation of the p-value, equal to 0.114. 

 

Figure 9. Observed data fitted with the GEV distribution with a trend. 

3.1.2. Historical Data with CMCC Simulation Data 

In this section, the analysis is extended by integrating the rainfall observations recorded at Dar 

Es Salaam (TZ) Airport with the simulated data until year 2050, derived from the climatic forecasting 

simulations performed by the Euro-Mediterranean Centre for Climate Change (CMCC) for the IPCC 

scenario RCP8.5, using the COSMO CLM model. Data were downscaled to 1 km spatial precision. 

Thus, the total dataset was composed of 93 annual maximum rainfall events, 53 observed and 40 

simulated data points (Figure 10). 

A similar analysis was performed for the historical data, and the results are summarized in Table 

4. For the Bayesian analysis, the MLE was applied as the initial vector θ0 = ( ̂ , ̂ , ̂ ) = (59.62, 20.96, 

−0.00645) by using proposal standard deviations psd = (5.931, 0.193, 0.194). A Markov Chain Monte 

Carlo (MCMC method) was generated, with a length of 100,000 and good mixing properties. By 

examining the chain graphically and using the Geweke diagnostic, a burn-in period of very few 

iterations (about 50) was found to be satisfactory. As in the previous analysis, once a stationary 

approach was applied, the verification of possible Non-Stationarity of the data was done by using 

the GEV, as a function of a linear trend for the location parameter. In this case, the MLE fit for the 

location parameter was ̂  = 72.46 − 0.273·ti (where ti = 0, 1, 2, …, 92 years), and associated standard 

deviations were 3.88 and 0.0683 for μ0 and μtrend, respectively. The ̂  and ̂  estimations were 18.83 

and 0.0542 with associated standard deviations of 1.60 and 0.074, respectively. The Likelihood-ratio 

was about 13.3543, resulting in a greater 95% quantile of the X12 distribution of 3.8415. The latter 
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suggested that the covariate ti model was a significant improvement over the model without a 

covariate, obtaining a small p-value of 0.000258. 

 

Figure 10. Annual maximum 24 h rainfall recorded at Dar Es Salaam TZ (1958–2010, blue circles) and 

simulated by CMCC (2011–2050, red circles). 

Table 4. Summary of results for the different methods of estimation (Dar Es Salaam, TZ). 

Method MLE Bayesian ξ ~ N(0.15, 0.20) 

Estimates 

μ (mm) 59.62 59.46 

σ (mm) 20.96 21.41 

ξ −0.00645 0.00756 

95% intervals 

μ (mm) [54.82, 64.42] [54.61, 64.41] 

σ (mm) [17.49, 24.43] [18.12, 25.39] 

ξ [−0.158, 0.145] [−0.136, 0.171] 

100-year return level   

Estimates (mm) 154.6 161.6 

95% intervals (mm) [133, 202] [135, 211] 

The posterior return level plot represented in Figure 11 shows once again how the upper 95% 

interval was farther from the median than the lower one. 

A naive Bayesian analysis was thus performed, taking near-flat priors that reflected the absence 

of external information. Indeed, prior on μtrend was a non-informative normal distribution, in a way 

similar to μ and σ parameters, with a standard deviation of 100. Using MLEs as the initial vector θ0 = 

( 0̂ , ̂ , ̂ , trend̂ ) = (72.46, 18.83, 0.0542, −0.27), and using proposal standard deviations psd = 

(5.679, 0.202, 0.187, 0.095), a Markov Chain Monte Carlo (MCMC method) was generated with a 

length of 100,000 and good mixing properties. As usual, the proposal standard deviation was 

determined by pilot runs. By examining the chain graphically (Figure 12) and using the Geweke 

diagnostic plot through the coda package in R [35] (Figure 13), a burn-in period of only 100 iterations 

was estimated. 

The sample means and standard deviations of each marginal component of the chain were: 

0̂  = 71.81 (3.93); ̂  = 19.46 (1.72); ̂  = 0.0592 (0.0743); trend̂  = −0.266 (0.0701) (6) 

whereas the 95% reasonable intervals were [64.14, 79.58], [16.42, 23.15], [−0.0792, 0.211] and [−0.405, 

−0.129] for μ0, σ, ξ and μtrend, respectively. 
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Figure 11. Posterior return level plot in Bayesian analysis of the Dar Es Salaam (TZ) rainfall data: the 

median (solid line) and the 95% intervals of the posterior probability (dashed lines). 

 

Figure 12. MCMC realizations of the GEV parameters in a Bayesian Non-Stationary Analysis of Dar 

Es Salaam (TZ) rainfall data. 
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Figure 13. Geweke plot showing the good properties of the performed chain. 

In this case, the estimate for the 100-year return level 01.0ẑ  was not feasible because of the linear 

trend of the location parameter. In Figure 14, the 1.0ẑ , 01.0ẑ  and 001.0ẑ  return levels are plotted 

against time from year 1958 to year 2050, as a function of the applied Bayesian analysis. Moreover, 

the 95% credible intervals are plotted with dashed and dotted lines. 

In Figure 14, the linear variation over time (although improving the distribution pattern) of the 

mean parameter was observed, leading towards return level estimations being insignificant over 

time. As an example, for the 100-year return level, in 1958, 175 mm was achieved with 95% reasonable 

intervals of [127, 259] mm, becoming 150 mm in 2050 with 95% reasonable intervals of [90, 248] mm. 

A reduction of only 25 mm was thus observed. In Table 5, the whole set of results for the Non-

Stationary Analysis is summarized. 

Table 5. Summary of results for the different methods of estimation (Non-Stationary Analysis, Dar 

Es Salaam, TZ). 

Method MLE Bayesian ξ ~ N(0.15, 0.20) 

Estimates 

μ0 (mm) 72.46 71.81 

σ (mm) 18.83 19.46 

ξ 0.0542 0.0592 

μtrend −0.273 −0.266 

95% intervals 

μ0 (mm) [64.71, 79.69] [64.14, 79.58] 

σ (mm) [15.70, 21.97] [16.42, 23.15] 

ξ [−0.0911, 0.199] [−0.0792, 0.211] 

μtrend [−0.407, −0.139] [−0.405, −0.129] 
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Considering the two methods, the μ0 parameter was estimated to be approximately 72 mm. 

Nevertheless, as shown in the Maximum Likelihood simulations, it returned a lower estimate of the 

σ scale parameter than that from the Bayesian method. The estimation of the shape parameter was 

more precise for the Bayesian method, whereas the estimation of the μtrend parameter was equally 

precise with both approaches. 

 

Figure 14. , 01.0ẑ  and 001.0ẑ  return levels plotted with 95% credible intervals. 

3.2. Addis Ababa (ET) Rainfall Data 

3.2.1. Historical Data 

The second case study regarded the data series of daily rainfall observations recorded at Addis 

Ababa (ET) Bole, Ethiopia (Latitude: 9.03 N; Longitude: 38.75 E; Elevation: 2354 m a.s.l.), referring to 

the time span from 1 January 1964 to 31 October 2010. The annual maxima rainfalls are plotted in 

Figure 15. 

 

Figure 15. Annual maximum 24 h rainfalls recorded at Addis Ababa ET (1964–2010). 

The same assumptions of the Dar Es Salaam (TZ) case study were applied. Table 6 summarizes 

the results of the stationary analysis for Addis Ababa (ET). 

Similarly to the Bayesian analysis, the same hypotheses were assumed. By using MLEs as initial 

vector θ0 = ( 0̂ , ̂ , ̂ ) = (42.76, 11.11, 0.234) and the proposal standard deviations psd = (3.373, 

0.323, 0.365), an MCMC method was generated with a length of 100,000, showing satisfactory mixing 

1.0ẑ
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properties. By examining the chain graphically and using the Geweke diagnostic, a burn-in period of 

insignificant iterations was found. 

The sequence of simulated values (μi, σi, ξi) was transformed, leading towards a sample from the 

corresponding posterior distribution of the 100-year return level. This gave an estimate 01.0ẑ  = 147.3 

mm with 95% credible interval [97, 268] mm. The posterior return level plot represented in Figure 16 

shows how the upper 95% interval was farther than the lower interval with respect to the median 

trend. 

Table 6. Summary of results for the different methods of estimation (Addis Ababa, ET). 

Method MLE Bayesian ξ ~ N(0.15, 0.20) 

Estimates 

μ (mm) 42.76 42.92 

σ (mm) 11.11 11.79 

ξ 0.234 0.229 

95% intervals 

μ (mm) [39.08, 46.44] [39.27, 47.05] 

σ (mm) [8.09, 14.12] [8.92, 15.57] 

ξ [−0.039, 0.506] [−0.014, 0.501] 

100-year return level   

Estimates (mm) 134.43 147.30 

95% intervals (mm) [95, 237] [97, 268] 

Considering the two methods, μ was estimated to be approximately equal to 43 mm; 

nevertheless, as confirmed by the Maximum Likelihood simulations, it returned a lower estimate of 

the scale parameter σ than that from the Bayesian method. The estimation of the shape parameter 

was more precise for the Bayesian method in terms of the credibility intervals, whilst the opposite 

was true for the quantile intervals, as a consequence of the greater estimation of ξ parameter. 

 

Figure 16. Posterior return level plot in Bayesian analysis of the Addis Ababa (ET) rainfall data: the 

median (solid line) and the intervals containing 95% of the posterior probability (dashed lines). 

Once the historical data were analysed with a stationary approach, analysis was also performed 

to verify a feasible Non-Stationarity of the data, by applying both the GEV and assuming a linear 

trend for the location parameter. The parameters (μ, μtrend) were estimated, and the vector of 

covariates t = (t1, …, tn) was specified by the user. In this case, the MLE fit for the location parameter 

was ̂  = 43.67 − 0.047·ti (where ti = 0, 1, 2, …, 52 years) and associated standard errors were 2.58 and 

0.088 for μ0 and μtrend, respectively. The ̂  and ̂  estimate parameters were 10.93 and 0.258, 

corresponding to associated standard errors of 1.56 and 0.151, respectively. Here again, the 

Likelihood-ratio was about 0.2575, lower than the 95% quantile of the X12 distribution of 3.8415. This 
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suggested the covariate ti model is not a significant improvement with respect to the model without 

a covariate. The p-value of 0.612 was in fact estimated. 

3.2.2. Historical Data with CMCC Simulation Data 

As for the Dar Er Salaam (TZ) case study, the analysis was improved by considering the rainfall 

observations recorded at Addis Ababa (ET) Bole joined with the simulated data until 2050 performed 

by Euro-Mediterranean Centre for Climate Change (CMCC) for the IPCC scenario RCP8.5, by using 

the COSMO CLM model. Data were downscaled to 1 km spatial precision again. Thus, the total 

dataset contained 87 annual maximum rainfall events: 47 observed and 40 simulated data points 

(Figure 17). 

 

Figure 17. Annual maximum 24 h rainfalls recorded at Addis Ababa ET (1964–2010, blue circles) and 

simulated by CMCC (2011–2049, red circles). 

The same analysis, already performed for the historical data, was developed, reaching  

results summarized in Table 7. For the Bayesian analysis, again using MLEs as the initial vector  

θ0 = ( 0̂ , ̂ , ̂ ) = (43.93, 12.58, 0.214), and the proposal standard deviations psd = (3.11, 0.206, 0.234), 

the MCMC method with length 100,000 provided good mixing properties.  

The posterior return level plot given in Figure 18 shows that, also in this case, the upper 95% 

interval was more remote than the lower interval from the median. 

Once the data were analysed with a stationary approach, the analysis was devoted to verify a 

feasible Non-Stationarity of the data, using the GEV as a function of the linear trend for the location 

parameter. Here, the MLE fit for the location parameter was ̂  = 44.02 − 0.00236·ti (where ti = 0, 1, 2, 

…, 85 years) and associated standard errors were 2.46 and 0.496 for μ0 and μtrend, respectively. The 

estimates of parameters ̂ , and ̂  were 12.57 and 0.216 with associated standard errors of 1.31 and 

0.112, respectively. The Likelihood-ratio was about 0.002, i.e., lower than the 95% quantile of the X12 

distribution of 3.8415. Thus, the covariate ti model was not able to significantly improve the model 

without a covariate. The p-value of 0.965 was in fact estimated. 

Table 7. A summary of results for the different methods of estimation (Addis Ababa, ET). 

Method MLE Bayesian ξ ~ N(0.15, 0.20) 

Estimates 

μ (mm) 43.94 43.97 

σ (mm) 12.58 12.97 

ξ 0.214 0.218 

95% intervals 

μ (mm) [40.82, 47.05] [40.91, 47.22] 

σ (mm) [10.06, 15.10] [10.54, 15.85] 

ξ [0.0050, 0.423] [0.0287, 0.435] 

100-year return level   

Estimates (mm) 142.5 151.6 

95% intervals (mm) [108, 224] [109, 238] 
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Figure 18. Posterior return level plot in Bayesian analysis of the Addis Ababa rainfall data: the median 

(solid line) and the intervals containing 95% of the posterior probability (dashed lines). 

4. Evaluation of Intensity-Duration-Frequency (IDF) Curves 

The Intensity-Duration-Frequency (IDF) curves were introduced in hydrology to synthetically 

define, for a fixed return period T, a generic duration d of a rainfall event and for a given location, 

information about the maximum rainfall height h and the maximum rainfall intensity i. Through 

knowledge of these characteristics, synthetic rainfall graphs can be represented, which are useful to 

reconstruct flood hydrographs. 

The analysis was carried out considering the rainfall observations recorded at Dar Es Salaam 

(TZ) and Addis Ababa (ET), joined with the data until 2050 provided by CMCC for the IPCC Scenario 

RCP8.5, referring to a downscaling of 1 km spatial precision. The total dataset defined in the previous 

paragraphs was taken into account. 

Generally, IDF curves can be characterized by two or three parameters expressions: 

ndTaTdh )(),( =  (7) 

where a(T) and n are the parameters to be estimated through a probabilistic approach.  

To define the extreme values in a smaller time steps (10′, 30′, 1 h, 3 h, 6 h, 12 h), the generation 

of a synthetic sequence of rainfall was required, with statistical properties equal to those for the 

observed rainfall data. To calculate the extreme values in a smaller time window, the daily rainfall 

was successively disaggregated by using two models: 

• cascade-based disaggregation model 

• short-time intensity disaggregation method 

These methods have already been validated in Africa [36]. 

Assuming that daily rainfalls derive from a marked Poisson process, rainfall lag and depths are 

drawn from exponential Probability Distribution Functions (PDFs) (whose parameters are calculated 

from the observed rainfall series), using a simple stochastic model, able to describe the occurrence of 

rainfall as a compound Poisson process with frequency of events λ. The distribution of times τ 

between precipitation events is an exponential function with mean 1/λ, and exponentially distributed 

rainfall amounts h with mean γ. This model satisfactory fitted the observed daily rainfall data for 

individual seasons. Specifically: 

• in a cascade-based disaggregation model [37], precipitation data of daily resolution are converted 

into either 12-hourly, 6-hourly, or 3-hourly values, based on the principles of multiplicative 

cascade processes. For each year, known γ, λ, it is possible to generate some years of 

disaggregated values and from these is taken the maximum value for each time window (3 h, 6 

h, 12 h); 

ms-its:C:/DOCUME~1/utente/IMPOST~1/Temp/Rar$DI00.047/CRA.Clima.Rain_help.chm::/Time-varying_generation.html#Cascade-based#Cascade-based
ms-its:C:/DOCUME~1/utente/IMPOST~1/Temp/Rar$DI00.047/CRA.Clima.Rain_help.chm::/Time-varying_generation.html#Short-time#Short-time


Hydrology 2018, 5, 28 18 of 22 

 

• in a short-time intensity disaggregation model [38], three fine-resolution time intervals of 1-h, 1/2-h 

and 10-min are considered.  

The ̂ , ̂  and ̂  parameters for the different time steps (10′, 30′, 1 h, 3 h, 6 h, 12 h and 24 h) 

were evaluated, also considering the 2.5% and 97.5% percentiles, applying a GEV-Bayesian analysis 

and the zp related to the 100-year return period, calculated through Equation (3). 

The IDF curves for T = 100 years for historical data for Dar Es Salaam (TZ) and Addis Ababa 

(ET) are shown in Figure 19a,b, respectively. In Figure 20a,b IDF curves by combining the historical 

data and the projected ones are plotted instead. The a and n are summarized in Table 8, with reference 

to 5, 50, 100 and 500-year return periods.  

From a comparison between Tables 8 and 9, it was observed that, for the Dar Es Salaam (TZ) 

case study, similar uncertainties were evaluated from both historical and historical plus projected 

data. Nevertheless, the IDF derived from the projected data provides greater rainfall intensities 

values than the historical ones for the whole set of considered durations.  

 
 

(a) (b) 

Figure 19. IDF curves for historical data of: (a) Dar Es Salaam (TZ) and (b) Addis Ababa (ET) cities, 

with reference to the estimated data (continuous lines), the 2.5% (dotted lines) and 97.5% quantiles 

(dashed lines). 

  

(a) (b) 

Figure 20. IDF curves for historical data combined with projected ones of: (a) Dar Es Salaam (TZ) and 

(b) Addis Ababa (ET) cities, with reference to the estimated data (continuous lines), the 2.5% (dotted 

lines) and 97.5% quantiles (dashed lines). 
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Table 8. IDF parameters from the historical data of Dar Es Salaam (TZ) and Addis Ababa (ET). 

 Dar Es Salaam (TZ) Addis Ababa (ET) 

T (Years) 
2.5° Quant. Estimates 97.5° Quant. 2.5° Quant. Estimates 97.5° Quant. 

a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) 

5 42.41 0.24 46.81 0.24 52.17 0.24 28.14 0.22 32.77 0.22 38.68 0.21 

50 59.81 0.23 69.71 0.24 87.48 0.25 45.65 0.22 62.92 0.22 103.41 0.21 

100 63.73 0.24 76.12 0.24 100.04 0.25 49.83 0.22 73.79 0.21 139.89 0.22 

500 71.00 0.24 90.89 0.26 133.47 0.28 58.23 0.24 114.01 0.24 283.32 0.23 

Table 9. IDF parameters from the historical data combined with projected ones of Dar Es Salaam (TZ) and Addis Ababa (ET). 

 Dar Es Salaam (TZ) Addis Ababa (ET) 

T (Years) 
2.5° Quant. Estimates 97.5° Quant. 2.5° Quant. Estimates 97.5° Quant. 

a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) a (mm/hn) n (-) 

5 41.53 0.24 45.99 0.23 51.06 0.23 26.91 0.26 29.73 0.26 33.04 0.26 

50 63.87 0.23 73.82 0.24 91.08 0.25 42.33 0.25 51.13 0.26 66.68 0.26 

100 68.41 0.23 80.81 0.24 103.89 0.25 46.30 0.25 61.63 0.28 81.25 0.27 

500 76.30 0.24 96.72 0.26 138.65 0.29 54.59 0.25 81.32 0.29 126.48 0.29 
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For Addis Ababa (ET), Tables 6 and 7 show that the uncertainties estimated from historical data 

are significantly greater than those derived from historical plus projected ones. This implied less 

uncertainty in the simulated data. In this case, the IDF derived from the projected data provided 

greater rainfall intensities than the historical only for durations longer than 16 h.  

The Non-Stationary effect, considered in the evaluation with a linear trend of the GEV location 

parameter, in all the considered situations, i.e., both historical and historical plus projected, did not 

show significant improvement with respect to the model without a covariate (stationary case). 

5. Conclusions 

In this paper the effectiveness of the GEV distribution to estimate the annual maxima of rainfall 

depths is assessed. The shape parameter ξ of such a distribution resulted in the essential parameter 

to evaluate the properties of extreme value behaviour, namely, the tail of the distribution at its upper 

end-point. 

Estimation of GEV parameters by using methods, such as the Maximum Likelihood, can be 

unreliable, due to the small length of rainfall records, typically not longer than 30–50 years.  

In this study, rainfall data from both Dar Es Salaam (TZ) and Addis Ababa (ET) were analysed, 

by performing statistical analysis as a function of the 100-year return level.  

With regard to Dar Es Salaam (TZ), the confidence intervals for such long return periods were 

significantly large due to the uncertainty of the extrapolation procedure. With reference to the Addis 

Ababa (ET) case study, the results were quite different, with a higher shape parameter. In this case, 

the use of a Bayesian framework to incorporate prior knowledge could improve the estimation 

reliability by restricting the ξ variation to a physically reasonable range. The Bayesian method 

showed similar values for the 100-year return level, in spite of wider reasonable intervals at the 95% 

observed level.  

The analysis of the historical data joined with those yielded by the climate model of the CMCC 

allowed us to estimate the shape parameter with the related standard errors for both test cases.  

By applying the Likelihood-ratio test, the Non-Stationary effect was observed for Dar Es Salaam 

(TZ).  

Considering the MLE and Bayesian methods, the μ0 parameter estimated by using the Bayesian 

method was more precise, whereas the estimation of the μtrend parameter for Dar Es Salaam (TZ) was 

comparable with both methods.  

Results achieved for the two test cases showed that the time series, even though not very 

numerous, were well represented by stationary GEV. Taking into account additional data from 

climate models, as a consequence of the sample size increase, the distribution model was forced to be 

represented by a Non-Stationary GEV.  

From these results, it was shown that the Non-Stationary effects are frequently induced by 

climate models. Indeed, using this trend to analyse the return levels zp, the influence of linear trends 

in location parameters was observed.  

Finally, aiming to answer possible questions about the climate models capability to induce any 

possible Non-Stationarity in the rainfall series, in future work, further case-studies will be analysed 

to assess the effectiveness of observed results for different forcing rainfall conditions.  
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