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Abstract: Clear cell renal cell carcinoma (ccRCC) is fundamentally a metabolic disease. Given the
importance of lipids in many cellular processes, in this study we delineated a lipidomic profile of
human ccRCC and integrated it with transcriptomic data to connect the variations in cancer lipid
metabolism with gene expression changes. Untargeted lipidomic analysis was performed on 20 ccRCC
and 20 paired normal tissues, using LC-MS and GC-MS. Different lipid classes were altered in cancer
compared to normal tissue. Among the long chain fatty acids (LCFAs), significant accumulations of
polyunsaturated fatty acids (PUFAs) were found. Integrated lipidomic and transcriptomic analysis
showed that fatty acid desaturation and elongation pathways were enriched in neoplastic tissue.
Consistent with these findings, we observed increased expression of stearoyl-CoA desaturase (SCD1)
and FA elongase 2 and 5 in ccRCC. Primary renal cancer cells treated with a small molecule SCD1
inhibitor (A939572) proliferated at a slower rate than untreated cancer cells. In addition, after cisplatin
treatment, the death rate of tumor cells treated with A939572 was significantly greater than that of
untreated cancer cells. In conclusion, our findings delineate a ccRCC lipidomic signature and showed
that SCD1 inhibition significantly reduced cancer cell proliferation and increased cisplatin sensitivity,
suggesting that this pathway can be involved in ccRCC chemotherapy resistance.
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1. Introduction

Renal cell carcinoma (RCC) accounts for about 2–3% of all malignant diseases in adults.
GLOBOCAN 2018 estimates of worldwide cancer incidence and mortality were 403,262 new cases and
175,098 deaths for kidney cancer [1]. Recent estimates have calculated that, in 2020, in the United States,
73,750 new cases will be diagnosed and 14,830 patients will die of this tumor [2]. The rediscovery of
cancer as a metabolic disorder has led to the identification of specific oncometabolites with an important
role in tumor growth and progression [3–6]. The introduction of high-throughput omics technologies
has led not only to a detailed molecular characterization of RCC, but also to the identification of
biomarkers that allow a more accurate prognostic stratification [7]. The discovery of novel markers
will play an important role in the clinical management of this disease considering that up to 30% of
cases have a metastatic disease at diagnosis and that, to date, we have no specific molecular factor for
diagnosis and prognostic stratification [8–11]. Recent studies have shown that RCC is fundamentally a
metabolic disease, since many genes that are altered in this tumor play a fundamental role in controlling
cell metabolic activities [12–14]. Indeed, we showed that, in clear cell renal cell carcinoma (ccRCC),
a metabolic reprogramming occurs, involving the glucose metabolism and the pentose phosphate
pathway, and that patients with high levels of glycolytic enzymes had reduced survival rates [15–17].
In accordance with these findings, the role of NADH dehydrogenase 1 alpha subcomplex 4-like 2
(NDUFA4L2) in controlling ccRCC bioenergetics and other cancer cell activities such as proliferation,
migration, mitophagy, angiogenesis, and chemotherapy resistance, was demonstrated [18]. Moreover,
additional data indicate that glucose and lipid metabolism reprogramming is grade-dependent,
suggesting the need for a ccRCC reclassification on the basis of these particular metabolic alterations [19].
Given the importance of metabolic reprogramming in cancer cells, and the involvement of lipids in
many cellular processes such as membrane remodeling and cell signaling, we delineated a lipidomic
profile of human ccRCC, and integrated it with transcriptomic data to connect the variations in cancer
lipid metabolism with gene expression changes.

2. Results

2.1. Lipidomic Profile Distinguishes ccRCC from Normal Renal Tissue

Untargeted lipidomic analysis was performed on 40 kidney-derived tissues, including 20 ccRCC
and 20 paired normal tissues, using LC-MS and GC-MS platforms. In total, 158 lipids were identified,
and 93 were found to be differentially expressed in tumor tissues compared to normal samples
(57 higher and 36 lower) (Figure 1a). The application of principal component analysis (PCA) to
distinguish normal and pathological samples as a function of the global tissue lipidome demonstrated
that the two groups were clearly different (Figure 1b). In accordance with PCA, hierarchical clustering
analysis and heatmap visualization showed a clear distinction between ccRCC and non-neoplastic
tissue (Figure 1c).

To obtain a global overview of altered biochemical processes, we performed a metabolite set
enrichment analysis (MSEA) using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) [20], and an
alternative enrichment analysis based on chemical similarity (ChemRICH) (https://chemrich.fiehnlab.
ucdavis.edu) [21]. These functional approaches showed that alterations in glycerophospholipid
metabolism, in arachidonic acid and prostaglandin production, in biosynthesis of unsaturated fatty
acid and fatty acid elongation, had the highest impact on the ccRCC lipidome (Figure 1d,e).

https://www.metaboanalyst.ca
https://chemrich.fiehnlab.ucdavis.edu
https://chemrich.fiehnlab.ucdavis.edu
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Figure 1. Volcano plot of the 158 lipids profiled (a). Principal component analysis (PCA) of the global 
tissue lipidome demonstrated that the two groups (clear cell renal cell carcinoma (ccRCC) vs. normal 
renal tissue) were clearly distinguishable (b). Hierarchical clustering heatmap analysis of lipids in 
normal and cancer tissues (c). Metabolic set enrichment analysis (MSEA) showing the most altered 
biochemical metabolic pathways in ccRCC (d). ChemRICH set enrichment statistical plot. Each node 
reflects a significantly altered cluster of lipids. Node sizes represent the total number of lipids in each 
cluster set. The node color scale shows the proportion of increased (red) or decreased (blue) 
compounds in tumor compared to normal tissue. Purple nodes have both increased and decreased 
lipids (e). 

2.2. Global Lipidomic Profile of ccRCC 

Different lipid classes were identified. These included essential fatty acids (EFAs), 
glycerophospholipids (including lyso species), glycerolipids, sphingolipids, neutral lipids (including 
sterols/steroids), medium chain fatty acids (MCFAs), long chain fatty acids (LCFAs), eicosanoids, and 
carnitine metabolism-related intermediates. In particular, in cancer tissue we found significantly 
higher levels of EFAs (p = 0.005), glycerolipids (p = 0.0008), LCFAs (p = 0.001), and carnitine-related 
metabolites (p = 0.01). The other lipid classes were higher in normal tissue compared to ccRCC (Figure 
2). 

Among the LCFAs, significant accumulations of saturated fatty acids (SFAs), monounsaturated 
fatty acid (MUFAs), and polyunsaturated fatty acids (PUFAs) were found (all p = 0.001, Figure 3a–c).  

Interestingly, the tissue levels of eicosanoids were reduced in pathological samples. In 
particular, we found reduced amounts of arachidonate (p < 0.0001), 5-hydroxyeicosatetraenoic acid 
(5-HETE) (p < 0.0001), 5-oxo-eicosatetraenoic acid (5-oxo-ETE) (p = 0.004), and prostaglandin E2 (p = 
0.01) (Figure 4). 

Cholesterol biosynthesis pathways were also analyzed. Clear cell RCC was characterized by a 
reduced accumulation of the main metabolic intermediates in both the Kandutsch–Russell and Bloch 
pathways (Figure 5). In addition, we found reduced levels of two oxysterols, namely 7-alpha-
hydroxy- and 7-beta-hydroxy-cholesterol (p = 0.001 and p = 0.0001, respectively), and increased 
concentrations of 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) (p = 0.0002), a cholesterol-derived 

Figure 1. Volcano plot of the 158 lipids profiled (a). Principal component analysis (PCA) of the global
tissue lipidome demonstrated that the two groups (clear cell renal cell carcinoma (ccRCC) vs. normal
renal tissue) were clearly distinguishable (b). Hierarchical clustering heatmap analysis of lipids in
normal and cancer tissues (c). Metabolic set enrichment analysis (MSEA) showing the most altered
biochemical metabolic pathways in ccRCC (d). ChemRICH set enrichment statistical plot. Each node
reflects a significantly altered cluster of lipids. Node sizes represent the total number of lipids in each
cluster set. The node color scale shows the proportion of increased (red) or decreased (blue) compounds
in tumor compared to normal tissue. Purple nodes have both increased and decreased lipids (e).

2.2. Global Lipidomic Profile of ccRCC

Different lipid classes were identified. These included essential fatty acids (EFAs), glycerophospholipids
(including lyso species), glycerolipids, sphingolipids, neutral lipids (including sterols/steroids), medium
chain fatty acids (MCFAs), long chain fatty acids (LCFAs), eicosanoids, and carnitine metabolism-related
intermediates. In particular, in cancer tissue we found significantly higher levels of EFAs (p = 0.005),
glycerolipids (p = 0.0008), LCFAs (p = 0.001), and carnitine-related metabolites (p = 0.01). The other
lipid classes were higher in normal tissue compared to ccRCC (Figure 2).
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Figure 2. Lipid classes differentially accumulated between neoplastic (ccRCC) and normal tissue.
Y-axis: metabolite relative amount. Small squares indicate outlier in box-and-whisker plots. Solid
square indicates extreme outlier.
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Among the LCFAs, significant accumulations of saturated fatty acids (SFAs), monounsaturated
fatty acid (MUFAs), and polyunsaturated fatty acids (PUFAs) were found (all p = 0.001, Figure 3a–c).
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Figure 3. Among the long chain fatty acids (LCFAs), saturated fatty acids (SFAs), monounsaturated
fatty acid (MUFAs), and polyunsaturated fatty acids (PUFAs) were significantly accumulated in cancer
(ccRCC) compared to normal tissue (a). Schematic model summarizing the differences in free fatty acids
between normal and tumor tissue (b). Exploration of the “Metabologram” Data Portal. The changes
in the “Biosynthesis of unsaturated fatty acids” and “Fatty acid elongation” pathways are shown in
both transcripts and metabolites when comparing tumors to adjacent normal kidney tissues (c). Y-axis:
metabolite relative amount. Small squares indicate outlier in box-and-whisker plots.

Cholesterol biosynthesis pathways were also analyzed. Clear cell RCC was characterized by a
reduced accumulation of the main metabolic intermediates in both the Kandutsch–Russell and Bloch
pathways (Figure 5). In addition, we found reduced levels of two oxysterols, namely 7-alpha-hydroxy-
and 7-beta-hydroxy-cholesterol (p = 0.001 and p = 0.0001, respectively), and increased concentrations
of 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) (p = 0.0002), a cholesterol-derived metabolite that
is also increased in prostate cancer (Figure 5). Moreover, we found a positive correlation between
serum and tissue levels of total cholesterol in the neoplastic samples (Rs = 0.98, p < 0.0001).

Interestingly, the tissue levels of eicosanoids were reduced in pathological samples. In particular,
we found reduced amounts of arachidonate (p < 0.0001), 5-hydroxyeicosatetraenoic acid (5-HETE)
(p < 0.0001), 5-oxo-eicosatetraenoic acid (5-oxo-ETE) (p = 0.004), and prostaglandin E2 (p = 0.01) (Figure 4).
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Figure 5. Cholesterol biosynthesis pathways. A reduced accumulation of main metabolic 
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Figure 4. The tissue levels of eicosanoids were reduced in tumor samples (ccRCC) compared to normal
kidney (a). Exploration of the “Metabologram” Data Portal. The changes in the “Arachidonic acid
metabolism” pathway are shown in both transcripts and metabolites when comparing tumors to
adjacent normal kidney tissues (b). Y-axis: metabolite relative amount. Small squares indicate outlier
in box-and-whisker plots. Solid square indicates extreme outlier.
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2.3. Integrated Lipidomic and Transcriptomic Analysis

To compare the relative changes in gene expression and lipid abundance in ccRCC, we integrated
the lipidomic data with gene expression data from 10 ccRCC tumor samples and matched non-tumor
kidney tissue samples obtained from patients who underwent nephrectomy in our department
(GSE47032). The combined analysis identified significantly enriched biochemical pathways (p < 0.05),
including those of unsaturated fatty acid biosynthesis, glycerolipid, glycerophospholipid and
arachidonic acid metabolism (Figure 6a,b).
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as circles. The color and size of each circle are based on the p-value and pathway impact value,
respectively (a). Results of pathway analysis according to p-value and false discovery rate (FDR) (b).

2.4. Clear Cell RCC Displays an Altered Expression Profile of Lipid Metabolism-Related Genes

Gene set enrichment analysis (GSEA) [22] of the GSE47032 dataset showed that ccRCC featured
multiple enriched gene sets depicting adipogenesis, cellular response to lipids, plasma membrane rafts,
regulation of lipid localization, plasma membrane organization, and reduced catabolism of carboxylic
acid (Figure 7a). To confirm the specific contribution of altered gene expression to the global lipidomic
profile of ccRCC, we also performed GSEA in Jones cohort (GSE15641) including 23 normal kidney
samples and 32 ccRCC (Figure 7b).

Next, we evaluated the mRNA expression of four enzymes involved in fatty acid biosynthesis,
desaturation and elongation, namely, ACLY, SREBF1, SCD1, and ELOVLs (Figure 8a). ATP citrate
lyase (ACLY) generates acetyl-CoA from citrate, and it connects carbohydrate metabolism with
fatty acid biosynthesis. We found an increased expression of ACLY in association with elevated
levels of citrate and increased acetyl-CoA-to-citrate ratio in ccRCC compared to normal tissue
(Figure 8b). Sterol regulatory element-binding transcription factor 1 (SREBF1), which encodes for a
key transcriptional regulator of lipid metabolism, was also upregulated in tumor tissue (Figure 8a).
Multi-omics analysis showed that fatty acid desaturation and elongation pathways were enriched in
neoplastic tissue. Consistent with these findings, we observed an increased expression of stearoyl-CoA
desaturase-1 (∆-9-desaturase; SCD1) and fatty acid elongase 2 and 5 (ELOVL2 and ELOVL5) in ccRCC
(Figure 8a). Next, we evaluated the palmitoleate-to-palmitate ratio and the stearate-to-palmitate
ratio as readouts of SCD-dependent desaturation and ELOVL-dependent FA elongation pathways,
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respectively. We found that in cancer tissue, both ratios were significantly higher as a result of increased
enzymatic activity (Figure 8c).

Metabolites 2020, 10, x FOR PEER REVIEW 7 of 19 

 

palmitate ratio as readouts of SCD-dependent desaturation and ELOVL-dependent FA elongation 
pathways, respectively. We found that in cancer tissue, both ratios were significantly higher as a 
result of increased enzymatic activity (Figure 8c). 

 
Figure 7. Gene set enrichment analysis (GSEA) of the GSE47032 (a) and GSE15641 dataset (b). 

 
Figure 8. Analysis of gene expression by Real time PCR of ATP citrate lyase (ACLY), sterol regulatory 
element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1) and fatty acid 
elongase 2 and 5 (ELOVL2 and ELOVL5) (a). Levels of citrate and acetyl-CoA-to-citrate ratio are 
increased in ccRCC compared to normal tissue (b). Palmitoleate-to-palmitate ratio and stearate-to-
palmitate ratio are increased in ccRCC (c). Small squares indicate extreme values in box-and-whisker 
plots. 

GSEA of the GSE41485 dataset showed that SCD1 inhibition in ccRCC cells induced the 
activation of the unfolded protein response (UPR) and depurination/depyrimidination processes 
(Figure 9a). Therefore, we explored the role of SCD1 in sustaining cancer cell proliferation and in 
reducing cisplatin-induced cytotoxicity. Primary renal cancer cells treated with a small molecule 
SCD1 inhibitor, A939572, proliferated at a slower rate than non-treated cancer cells. In addition, after 
cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than 

Figure 7. Gene set enrichment analysis (GSEA) of the GSE47032 (a) and GSE15641 dataset (b).

Metabolites 2020, 10, x FOR PEER REVIEW 7 of 19 

 

palmitate ratio as readouts of SCD-dependent desaturation and ELOVL-dependent FA elongation 
pathways, respectively. We found that in cancer tissue, both ratios were significantly higher as a 
result of increased enzymatic activity (Figure 8c). 

 
Figure 7. Gene set enrichment analysis (GSEA) of the GSE47032 (a) and GSE15641 dataset (b). 

 
Figure 8. Analysis of gene expression by Real time PCR of ATP citrate lyase (ACLY), sterol regulatory 
element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1) and fatty acid 
elongase 2 and 5 (ELOVL2 and ELOVL5) (a). Levels of citrate and acetyl-CoA-to-citrate ratio are 
increased in ccRCC compared to normal tissue (b). Palmitoleate-to-palmitate ratio and stearate-to-
palmitate ratio are increased in ccRCC (c). Small squares indicate extreme values in box-and-whisker 
plots. 

GSEA of the GSE41485 dataset showed that SCD1 inhibition in ccRCC cells induced the 
activation of the unfolded protein response (UPR) and depurination/depyrimidination processes 
(Figure 9a). Therefore, we explored the role of SCD1 in sustaining cancer cell proliferation and in 
reducing cisplatin-induced cytotoxicity. Primary renal cancer cells treated with a small molecule 
SCD1 inhibitor, A939572, proliferated at a slower rate than non-treated cancer cells. In addition, after 
cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than 

Figure 8. Analysis of gene expression by Real time PCR of ATP citrate lyase (ACLY), sterol regulatory
element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1) and fatty
acid elongase 2 and 5 (ELOVL2 and ELOVL5) (a). Levels of citrate and acetyl-CoA-to-citrate
ratio are increased in ccRCC compared to normal tissue (b). Palmitoleate-to-palmitate ratio
and stearate-to-palmitate ratio are increased in ccRCC (c). Small squares indicate outlier in
box-and-whisker plots. Solid square indicates extreme outlier.

GSEA of the GSE41485 dataset showed that SCD1 inhibition in ccRCC cells induced the activation
of the unfolded protein response (UPR) and depurination/depyrimidination processes (Figure 9a).
Therefore, we explored the role of SCD1 in sustaining cancer cell proliferation and in reducing
cisplatin-induced cytotoxicity. Primary renal cancer cells treated with a small molecule SCD1 inhibitor,
A939572, proliferated at a slower rate than non-treated cancer cells. In addition, after cisplatin treatment,
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the death rate of tumor cells treated with A939572 was significantly greater than that of untreated
cancer cells (p < 0.001, Figure 9b). The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide
(MTT) assay confirmed these findings, demonstrating a decreased cell viability when tumor cells were
treated with A939572 before cisplatin incubation (Figure 9c).

Metabolites 2020, 10, x FOR PEER REVIEW 8 of 19 

 

that of untreated cancer cells (p < 0.001, Figure 9b). The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl 
tetrazolium bromide (MTT) assay confirmed these findings, demonstrating a decreased cell viability 
when tumor cells were treated with A939572 before cisplatin incubation (Figure 9c).  

 
Figure 9. Gene set enrichment analysis (GSEA) of the GSE41485 dataset (a). SCD1 has a role in RCC 
resistance to cisplatin (CDDP)-induced cytotoxicity (C). The death rate of treated tumor cells (tumor 
+ A939572 + CDDP) is significantly higher than that of untreated cells (tumor + CDDP) (p < 0.001). No 
difference is observed in normal cells (p > 0.05) (b). MTT assay reveals significantly decreased cell 
viability when RCC cells are treated with A939572 before cisplatin incubation (c). 

Functional analysis showed that alterations in arachidonic acid metabolism and prostaglandins 
production had a great impact on the ccRCC lipidomic profile. Therefore, the expression of 
cyclooxygenase 2/prostaglandin-endoperoxide synthase 2 (COX2/PTGS2) and prostaglandin E 
synthase (PTGES) was investigated. Both the transcripts of these genes were reduced in cancer tissue 
(p < 0.01), in accordance with the reduced levels of arachidonic acid derivatives (Figure 10a). 
Moreover, since cholesterol metabolism-related intermediates were altered in ccRCC, we evaluated 
the expression of four genes involved in its biosynthesis, namely, 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase (HMGCR), mevalonate kinase (MVK), squalene epoxidase (SQLE), and sterol 
regulatory element-binding transcription factor 2 (SREBF2). Interestingly, all these genes were 
downregulated in ccRCC, in accordance with the reduced levels of tissue cholesterol content (Figure 
10b). These findings were confirmed by data mining of the cancer genome atlas (TCGA), clear cell 
renal cell carcinoma patient cohort (KIRC), using GEPIA2 (Figure 10c) [23]. 

Next, we evaluated the lipid and cholesterol receptors, and found increases in CD36 and 
caveolin 1 (CAV1) and a decrease in low density lipoprotein receptor (LDLR) transcript levels in 
ccRCC compared to normal tissue (Figure 11a). Finally, analysis of lipid storage markers showed an 
increased expression of perilipin 2 (PLIN2) and hypoxia inducible lipid droplet-associated 
(HILPDA), and reduced levels of carnitine palmitoyltransferase 1A (CPT1A) mRNA in tumor 
specimens compared to normal kidney (Figure 11b). Consistent with these findings, tumor tissue and 
primary renal cancer cells showed an increased level of lipid storage, as assessed by Oil red O (ORO) 
staining (Figure 11c).  

The results of transcriptomic and lipidomic analyses were confirmed by data mining of the 
Oncomine microarray gene expression datasets (Figure S1) and the Gene Expression Profiling 
Interactive Analysis 2 (GEPIA2) database, and by using the Metabologram data portal [23–25]. 

Finally, large-scale genomic studies performed in sporadic ccRCC, identified significantly 
mutated genes including VHL, PBRM1, SETD2, and BAP1. Spearman correlation analysis between 
these genes and ACLY, SREBF1, SCD1, and ELOVLs in the The Cancer Genome Atlas - clear cell renal 
cell carcinoma (TGCA-KIRC) patient cohort was shown in Table S1. 

Figure 9. Gene set enrichment analysis (GSEA) of the GSE41485 dataset (a). SCD1 has a role in RCC
resistance to cisplatin (CDDP)-induced cytotoxicity (C). The death rate of treated tumor cells (tumor
+ A939572 + CDDP) is significantly higher than that of untreated cells (tumor + CDDP) (p < 0.001).
No difference is observed in normal cells (p > 0.05) (b). MTT assay reveals significantly decreased cell
viability when RCC cells are treated with A939572 before cisplatin incubation (c).

Functional analysis showed that alterations in arachidonic acid metabolism and prostaglandins
production had a great impact on the ccRCC lipidomic profile. Therefore, the expression of cyclooxygenase
2/prostaglandin-endoperoxide synthase 2 (COX2/PTGS2) and prostaglandin E synthase (PTGES) was
investigated. Both the transcripts of these genes were reduced in cancer tissue (p < 0.01), in accordance
with the reduced levels of arachidonic acid derivatives (Figure 10a). Moreover, since cholesterol
metabolism-related intermediates were altered in ccRCC, we evaluated the expression of four genes
involved in its biosynthesis, namely, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR),
mevalonate kinase (MVK), squalene epoxidase (SQLE), and sterol regulatory element-binding
transcription factor 2 (SREBF2). Interestingly, all these genes were downregulated in ccRCC,
in accordance with the reduced levels of tissue cholesterol content (Figure 10b). These findings
were confirmed by data mining of the cancer genome atlas (TCGA), clear cell renal cell carcinoma
patient cohort (KIRC), using GEPIA2 (Figure 10c) [23].

Next, we evaluated the lipid and cholesterol receptors, and found increases in CD36 and caveolin 1
(CAV1) and a decrease in low density lipoprotein receptor (LDLR) transcript levels in ccRCC compared
to normal tissue (Figure 11a). Finally, analysis of lipid storage markers showed an increased expression
of perilipin 2 (PLIN2) and hypoxia inducible lipid droplet-associated (HILPDA), and reduced levels of
carnitine palmitoyltransferase 1A (CPT1A) mRNA in tumor specimens compared to normal kidney
(Figure 11b). Consistent with these findings, tumor tissue and primary renal cancer cells showed an
increased level of lipid storage, as assessed by Oil red O (ORO) staining (Figure 11c).
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Figure 11. Analysis of gene expression by real time PCR of CD36, caveolin 1 (CAV1) and low-density
lipoprotein receptor (LDLR) (a), and perilipin 2 (PLIN2), hypoxia inducible lipid droplet-associated
(HILPDA), and carnitine palmitoyltransferase 1A (CPT1A) (b). Representative images of normal and
neoplastic kidney tissue (ccRCC) and normal cortical and ccRCC primary cell cultures captured after
Oil Red O (ORO) staining at original magnification of 200×. Scale bars = 100 µm (c).



Metabolites 2020, 10, 509 10 of 18

The results of transcriptomic and lipidomic analyses were confirmed by data mining of the
Oncomine microarray gene expression datasets (Figure S1) and the Gene Expression Profiling Interactive
Analysis 2 (GEPIA2) database, and by using the Metabologram data portal [23–25].

Finally, large-scale genomic studies performed in sporadic ccRCC, identified significantly mutated
genes including VHL, PBRM1, SETD2, and BAP1. Spearman correlation analysis between these genes
and ACLY, SREBF1, SCD1, and ELOVLs in the The Cancer Genome Atlas - clear cell renal cell carcinoma
(TGCA-KIRC) patient cohort was shown in Table S1.

2.5. Preoperative Serum Total Cholesterol Is an Independent Prognostic Factor for Patients with ccRCC

Statistically significant differences resulted between serum cholesterol values and clinical stage
(p = 0.0004), Fuhrman grade (p = 0.003), lymph node involvement (p = 0.008), and visceral metastases
(p = 0.0002) (Figure 12a).

Metabolites 2020, 10, x FOR PEER REVIEW 10 of 19 

 

neoplastic kidney tissue (ccRCC) and normal cortical and ccRCC primary cell cultures captured after 
Oil Red O (ORO) staining at original magnification of 200×. Scale bars = 100 µm (c).  

2.5. Preoperative Serum Total Cholesterol Is an Independent Prognostic Factor for Patients with ccRCC 

Statistically significant differences resulted between serum cholesterol values and clinical stage 
(p = 0.0004), Fuhrman grade (p = 0.003), lymph node involvement (p = 0.008), and visceral metastases 
(p = 0.0002) (Figure 12a). 

To evaluate the association between patients’ survival and the preoperative serum cholesterol, 
we classified the entire population according to the cut-off provided by receiver operating 
characteristic (ROC) curve analysis. Detailed clinical and pathological characteristics of the patients 
are summarized in Table S2. 

Kaplan–Meier survival curves for cancer-specific survival (CSS), stratified by preoperative 
serum cholesterol levels, in the overall population and in a subset of patients with localized disease 
(pT1-2, N0, M0), are shown in Figure 12b.  

 
Figure 12. Median levels of serum cholesterol in ccRCC patients stratified according to pathological 
stage, Fuhrman grade, lymph node involvement, and visceral metastases (a). Kaplan-Meier cancer-
specific survival (CSS) curves, stratified by serum cholesterol levels in the overall population and in 
a subset of patients with localized disease (b). Small squares indicate extreme values in box-and-
whisker plots. 

CSS was significantly decreased in patients with low serum levels of total cholesterol. Univariate 
analysis for the predefined variables showed that the pathological stage, presence of nodal and 
visceral metastases, Fuhrman grade, presence of necrosis, tumor size, increased body mass index 
(BMI), and low levels of cholesterol, were significantly associated with the risk of death (Table 1). At 
multivariate analysis by Cox regression modeling, the pathological stage, presence of nodal and 
visceral metastases, Fuhrman grade, and reduced circulating levels of total cholesterol were 
independent adverse prognostic factors for CSS (Table 1). 

Table 1. Univariate and multivariate analyses for cancer-specific survival. 

Variable Category 
Univariate Multivariate 

HR (95% CI) p-Value HR (95% CI) p-Value 
T stage T3/4 vs. T1/2 4.44 (2.38–8.27) 0.0001 1.91 (1.18–3.09) 0.002 
N stage N+ vs. N0 5.49 (2.53–11.91) 0.0001 2.48 (1.41–3.96) 0.001 
M stage M+ vs. M0 7.62 (4.07–14.25) 0.0001 3.81 (1.89–7.68) 0.0002 
Grade G3/4 vs. G1/2 5.37 (2.86–10.09) 0.0001 3.35 (1.67–6.72) 0.001 
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Fuhrman grade, lymph node involvement, and visceral metastases (a). Kaplan-Meier cancer-specific
survival (CSS) curves, stratified by serum cholesterol levels in the overall population and in a subset of
patients with localized disease (b). Small squares indicate outlier in box-and-whisker plots.

To evaluate the association between patients’ survival and the preoperative serum cholesterol,
we classified the entire population according to the cut-off provided by receiver operating characteristic
(ROC) curve analysis. Detailed clinical and pathological characteristics of the patients are summarized
in Table S2.

Kaplan–Meier survival curves for cancer-specific survival (CSS), stratified by preoperative serum
cholesterol levels, in the overall population and in a subset of patients with localized disease (pT1-2,
N0, M0), are shown in Figure 12b.

CSS was significantly decreased in patients with low serum levels of total cholesterol. Univariate
analysis for the predefined variables showed that the pathological stage, presence of nodal and visceral
metastases, Fuhrman grade, presence of necrosis, tumor size, increased body mass index (BMI), and low
levels of cholesterol, were significantly associated with the risk of death (Table 1). At multivariate
analysis by Cox regression modeling, the pathological stage, presence of nodal and visceral metastases,
Fuhrman grade, and reduced circulating levels of total cholesterol were independent adverse prognostic
factors for CSS (Table 1).
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Table 1. Univariate and multivariate analyses for cancer-specific survival.

Variable Category
Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value

T stage T3/4 vs. T1/2 4.44 (2.38–8.27) 0.0001 1.91 (1.18–3.09) 0.002

N stage N+ vs. N0 5.49 (2.53–11.91) 0.0001 2.48 (1.41–3.96) 0.001

M stage M+ vs. M0 7.62 (4.07–14.25) 0.0001 3.81 (1.89–7.68) 0.0002

Grade G3/4 vs. G1/2 5.37 (2.86–10.09) 0.0001 3.35 (1.67–6.72) 0.001

Necrosis Yes vs. No 3.47 (2.11–5.91) 0.0001 - -

Tumor size Continuous 1.13 (1.07–1.21) 0.0001 - -

BMI Continuous 0.86 (0.79–0.94) 0.01

Total serum
cholesterol ≤155 vs. >155 mg/dL 2.21 (1.96–3.81) <0.001 1.72 (1.43–2.51) 0.001

3. Discussion

The prevalence of RCC, as with many other urologic tumors including prostate and bladder cancers,
is increased in patients with metabolic disorders [26–31]. In particular, obesity is a well-established
risk factor for renal cancer, and a recent study has demonstrated that this association appears to be
already established during late adolescence [32]. An altered lipid metabolism represents a peculiar
hallmark of cancer cells, since lipids play important roles in many aspects of cancer biology such as
cell signaling, membrane formation, cellular proliferation and metastatization.

Our integrated lipidomics-transcriptomics approach revealed that ccRCC tissues exhibit a
reprogramming of fatty acid metabolism in association with an altered expression of lipid
metabolism-associated genes. In particular, we found a massive change in nearly all the free fatty
acid levels with accumulations of many EFAs and LCFAs. These changes, in association with an
increased expression of genes involved in fatty acid uptake and/or synthesis (ACLY, CD36 and CAV1),
were suggestive of an altered membrane remodeling in ccRCC. Palmitate (16:0) is the main product of
de novo lipogenesis and can be elongated and desaturated through the activity of SCD1, and ELOVLs to
generate additional SFAs, MUFAs and PUFAs including palmitoleate (16:1n7), stearate (18:0), and oleate
(18:1n9). These FAs, in turn, can be used for the synthesis of more complex lipids. The accumulation
of PUFAs, in association with reduced levels of lysolipids, sphingolipids and cholesterol, suggested
an alteration in cancer cell membrane permeability and fluidity and in phospholipids remodeling
(Lands’ cycle), as demonstrated by other studies [33–37].

SCD1 regulation is very complex and its activity and expression is controlled by a large
number of effectors including molecular, hormonal and dietary factors [38,39]. SCD1 gene promoter
contains binding sites for a variety of transcription factor including SREBF1c, liver X receptor (LXR),
peroxisome proliferator-activated receptor alpha (PPARα), nuclear transcription factor Y (NF-Y),
specificity protein 1 (SP1), CCAAT/enhancer-binding protein alpha (C/EBP-α), neurofibromin 1 (NF1),
and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α) [38]. In addition,
the activation of the hypoxia-inducible factor (HIF) pathway, which is essential for ccRCC progression,
is another important modulator of SCD1 expression in cancer cells. Zhang et al. showed that SCD1
was upregulated in ccRCC cell lines under hypoxia, and that HIF-2α and SCD1 had synergistic effects
in sustaining cancer cell survival and migration [40]. These effects were due to a positive feedback
loop between HIF-2α and SCD1, mediated by PI3K/Akt pathway activation [40].

A previous study showed that increased SCD1 expression supported ccRCC viability, and when
SCD1 was blocked using the small molecule inhibitor A939572, a significantly reduced cancer cell
proliferation and the induction of apoptosis were observed [41]. Gene expression profile analysis
showed that the loss of SCD1 activity in ccRCC cells induced an increased expression of endoplasmic
reticulum (ER) stress genes associated with the unfolded protein response (UPR) [41]. A growing
body of literature has demonstrated that UPR activation alters the chemosensitivity of cancer cells,
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and in particular it has been shown that the ER stress response sensitizes various solid tumor cells
to cisplatin-induced apoptotic death [42]. RCC is a typical chemo-resistant tumor, and despite the
introduction of novel targeted therapies, no evidence of complete responses has been reported [43,44].
On the basis of these data, we explored the role of SCD1 in sustaining chemotherapy resistance
in ccRCC. Interestingly, inhibition of SCD1 activity reduced cell viability and sensitized cancer cells to
cisplatin-induced apoptotic death.

On this basis, pharmacological targeting of SCD1 represents an attractive approach, especially in
combination with other target therapies approved for metastatic tumors [41,43,44]. For example,
the inhibition of SCD1 activity potentiates the inhibitory effects of gefitinib and temsirolimus on
cancer cell proliferation in non-small cell lung cancer and ccRCC, respectively [41,45]. Interestingly,
the treatment of cancer cells with SCD1 inhibitors can trigger the AMPK-dependent autophagic pathway,
providing a resistance mechanism against SCD1 inhibition [46]. In this scenario, therapeutic strategies
that target SCD1 may be potentiated by combination with molecules that target the autophagic
machinery [47].

Cholesterol metabolism is often reprogrammed in cancer cells [48]. Our findings demonstrated
that the reduced accumulation of cholesterol metabolism-related intermediates in renal cancer tissue
was associated with downregulation of the low-density lipoprotein receptor (LDLR) gene and correlated
with the serum total cholesterol levels. Moreover, we found that preoperative serum cholesterol was
an independent prognostic factor for CSS, in a cohort of 450 patients who underwent radical or partial
nephrectomy for ccRCC. As serum cholesterol is routinely assessed in ccRCC patients when they are
admitted to hospital or during follow-up after surgery, its use in clinical practice may provide a useful
tool for risk stratification.

Many studies have demonstrated that tumor-associated inflammation has an important role
in tumorigenesis, cancer progression, and metastatization [49]. In this scenario, it has been shown
that eicosanoids, including prostaglandins, play a critical role in these processes [50]. Clear cell
RCC is characterized by the activation of extrinsic and intrinsic inflammatory pathways and many
studies have reported a correlation between clinical outcomes and laboratory markers of systemic
inflammation [51,52]. Paradoxically, we found a reduced accumulation of arachidonic acid-derived
metabolites, including prostaglandin 2, as well as a reduced expression of COX2/PTGS2 and PTGES
transcripts in cancer tissue. These findings suggest that the regulation of cancer-related inflammation
in ccRCC is quite complex and may involve other mechanisms such as adaptive immune responses
and the complement system [53].

A feature of ccRCC is the presence of intracellular lipid droplets (LDs), which have the function of
releasing lipid species for membrane biosynthesis and sustaining endoplasmic reticulum homeostasis.
Recently, it has been shown that two LD-associated proteins (PLIN2 and HILPDA) are overexpressed
in ccRCC, regulate lipid storage and enrich lipids that contain polyunsaturated fatty acyl side
chains [54]. Moreover, PLIN2 is required for ER homeostasis and cell viability in ccRCC cell
lines and xenograft tumors, and its depletion triggers the UPR, cell cycle withdrawal, and cell
death [54]. In addition, the mechanism of lipid deposition is favored by repression of carnitine
palmitoyltransferase 1A (CPT1A), an enzymatic component of mitochondrial FA transport. In ccRCC,
hypoxia inducible factors (HIFs) are responsible for inhibiting CPT1A expression, reducing FA transport
into mitochondria, and rerouting FA to LDs for storage [55]. In accordance with these findings, we found
an increased expression of PLIN2 and HILPDA, and reduced levels of CPT1A transcripts in cancer tissue.
Moreover, ORO staining confirmed the increased lipid storage in cancer cells.

4. Materials and Methods

4.1. Study Population and Tissue Collection

Primary renal tumor (n = 20) and paired non-neoplastic samples (n = 20) were retrieved from
patients with ccRCC. Patients with eGFR < 60 mL/min/1.73 m2 and metabolic diseases (including
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diabetes mellitus) were excluded from the study. Informed consent was obtained from all individual
participants included in the study. All procedures were in accordance with the ethical standards of the
institutional and/or national research committee and with the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards. The research project was approved by the local Ethics
Committee (n. 143/CE/2015).

4.2. Metabolite Analysis

4.2.1. Sample Preparation

Metabolic analyses were performed at Metabolon Inc. All tissue samples were stored at −80 ◦C.
The automated MicroLab STAR® system (Hamilton, Reno, NV, USA) was used for sample preparation.
Recovery standards were used in the extraction process for quality control (QC). A proprietary series
of organic and aqueous extractions were used for sample preparation. The resulting extract was split
into two aliquots: one for liquid chromatography (LC) and one for gas chromatography (GC) analysis.
Samples were placed on a TurboVap® (Zymark, Hopkinton, MA, USA) for the organic solvent removal
and then frozen and dried under vacuum. Tables S3 and S4 list the QC compounds.

4.2.2. Liquid Chromatography/Mass Spectrometry (LC/MS, LC/MS)

The LC/MS platform was composed by a Waters ACQUITY UPLC (Waters Corporation, Milford,
CT, USA) and a Thermo-Finnigan LTQ MS (Thermo Fisher, Waltham, MA, USA). The sample
extract was divided into two parts, dried, and rehydrated in acidic or basic LC-compatible solvents.
The analysis was performed using acidic positive ion and basic negative ion optimized conditions
using different dedicated columns. The extracts, rehydrated in acidic conditions, were eluted using
water/methanol with 0.1% Formic acid. For the basic extracts, the reconstitution was performed using
water and methanol, with 6.5mM Ammonium Bicarbonate.

4.2.3. Gas Chromatography/Mass Spectrometry (GC/MS)

GC/MS analysis was performed using sampled re-dried under vacuum desiccation for a minimum
of 24 h and then derivatized using bistrimethyl-silyl-trifluoroacetamide (BSTFA) (Sigma Aldritch,
Saint Louis, MO, USA). The GC column was 5% phenyl and the temperature conditions ranged
from 40 ◦C to 300 ◦C. Samples were analyzed using a Thermo-Finnigan Trace DSQ fast-scanning
single-quadrupole MS (Thermo Fisher, Waltham, MA, USA).

4.2.4. Accurate Mass Determination and MS/MS Fragmentation (LC/MS), (LC/MS/MS)

The LC/MS part of the platform consists of a Waters ACQUITY UPLC and a Thermo-Finnigan
LTQ-FT MS. Fragmentation spectra (MS/MS) were obtained in a data-dependent manner. If needed,
targeted MS/MS was used.

4.2.5. Compound Identification

Compounds identification was performed by comparison to library entries of purified standards
or recurrent unknown entities.

4.3. Bioinformatics and Statistical Analyses

MedCalc 9.2.0.1 (MedCalc software, Mariakerke, Belgium) and “R” (http://cran.r-project.org) [56]
were used for statistical analyses. Comparisons of median values between groups were performed
using Mann-Whitney U or Kruskal-Wallis test, as appropriate. Spearman’s test was used to study the
correlation between serum and tissue cholesterol levels.

Cancer-specific survival (CSS) was estimated by using the Kaplan–Meier method and compared
with the log-rank test. The Cox proportional hazards regression model was for univariable and
multivariable analyses. p-values below 0.05 were considered statistically significant.

http://cran.r-project.org
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4.4. Integration of Metabolomic and Transcriptomic Data

Exon array analysis of 20 total samples (10 ccRCC neoplastic tissues and paired non-neoplastic
samples) was performed (GEO accession number: GSE47032).

Metabolite set enrichment (MSEA) and transcriptomics–metabolomics data integration was
performed using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) [20]. Gene set enrichment
analysis (GSEA) [22], performed across renal cancer datasets, revealed which pathways were enriched
in ccRCC. The normalized enrichment score (NES) gave an estimate of the importance and direction of
pathway enrichment.

ChemRICH (https://chemrich.fiehnlab.ucdavis.edu) was used for biochemical pathway enrichment
analysis [21].

4.5. Real Time Polymerase Chain Reaction (PCR)

Total RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems Foster City, CA, USA), according to the manufacturer’s instructions. Quantitative
real-time PCR was performed using the iQTM SYBR Green Supermix buffer (6mMMgCl2, dNTPs,
iTaq DNA polymerase, SYBR Green I, fluorescein and stabilizers) (BIO-RAD Laboratories, Hercules,
CA, USA). The primers used in this study are reported in Table S5.

MiniOpticon Real-Time PCR detection system (BIO-RAD Laboratories, Hercules, CA, USA) was
used for mRNA levels quantification. The following conditions were used: polymerase activation at
95 ◦C for 3 min, followed by 45 cycles at 95 ◦C for 10 s, 60 ◦C for 30 s. Expression was determined
using the 2-∆∆Ct method used for quantification. β-Actin was used for normalization.

4.6. Data Mining Using the Oncomine Gene Expression Microarray Datasets, Gene Expression Profiling
Interactive Analysis 2 (GEPIA2) Database, and Metabologram Data Portal

The Oncomine database (https://www.oncomine.org/resource/login.html) [24] was explored for
publicly available transcriptomics data analysis.

The GEPIA2 database (http://http://gepia2.cancer-pku.cn) [23] was also used to validate the
expression of genes involved in ccRCC lipid metabolism. In this web-based resource, the data
from the Cancer Genome Atlas (TGCA) and Genotype-Tissue Expression (GTEx) are available for
validation analysis. The clear cell renal cell carcinoma (KIRC) cohort, includes 523 ccRCC and
100 normal kidney specimens.

In addition, the metabolic pathways were explored using the Metabologram data portal (http:
//sanderlab.org/kidneyMetabProject) [25], a web-based application that combines data derived from
TCGA database and MSKCC metabolomics dataset.

4.7. Primary Cell Cultures from Renal Tissues

Primary tumor and normal cell cultures were obtained from tumor (ccRCC) and normal kidney
tissue specimens as previously described [57]. Immunocytochemistry by using EpCAM and CA IX
was performed for cell characterization.

4.8. Cell Viability Assay

Cell viability after exposure to 75 nmol/L of A939572 or to A939572 and 10 µM cis-
Diamminedichloroplatinum (II) (cisplatin) was evaluated using MTT assay as previously described [38].
In the first part of the experiment, the cells were exposed to A939572 for 72h or incubated in medium
alone. In the second part of the experiment, after 24 h the cells were treated with cisplatin 10 µM for
1 h and 2 h. Each experiment was performed in triplicate.

https://www.metaboanalyst.ca
https://chemrich.fiehnlab.ucdavis.edu
https://www.oncomine.org/resource/login.html
http://http://gepia2.cancer-pku.cn
http://sanderlab.org/kidneyMetabProject
http://sanderlab.org/kidneyMetabProject
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4.9. Oil Red O Staining

Oil Red O (ORO) staining was performed on formalin-fixed primary cells and tissue samples,
as previously described [19,58].

4.10. Availability of Data and Material

The datasets generated and/or analyzed during the current study are available in the GEO repository:

1. Accession number GSE47032;
2. Accession number GSE15641;
3. Accession number GSE41485.

5. Conclusions

In conclusion, our study showed that ccRCC is characterized by lipid metabolism reprogramming
associated with a switch in adipogenic gene signatures. The accumulation of very long-chain FAs
and PUFAs is sustained by overexpression of SCD1 and ELOVLs, and the inhibition of SCD1 activity
decreases cell viability and improves cisplatin susceptibility, suggesting that this pathway can regulate
chemotherapy resistance in ccRCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/12/509/s1,
Figure S1: Oncomine analysis, Table S1: Spearman’s rank correlation coefficients between genes using TCGA clear
cell renal cell carcinoma patient cohort (KIRC), Table S2: Clinical and pathological characteristics of patients who
underwent radical or partial nephrectomy for ccRCC, Table S3: Description of Metabolon QC Samples, Table S4:
Metabolon QC Standards, Table S5: Primers used for real time PCR.
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