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Abstract
This study investigated for the first time the effects of ZnO nanoparticle (NP) chronic exposure (28 days) on Tigriopus fulvus.
Acute toxicity (48 h) of three Zn chemical forms was assessed as well including the following: (a) ZnO nanoparticles (NPs), (b)
Zn2+ from ZnO NP suspension after centrifugation (supernatant) and (c) ZnSO4 H2O. Physical-chemical and electronic micros-
copies were used to characterize spiked exposure media. Results showed that the dissolution of ZnO NPs was significant, with a
complete dissolution at lowest test concentrations, but nano- and micro-aggregates were always present. Acute test evidenced a
significant higher toxicity of Zn2+ and ZnSO4 compared to ZnO NPs. The chronic exposure to ZnO NPs caused negative effects
on the reproductive traits, i.e. brood duration, brood size and brood number at much lower concentrations (≥ 100 μg/L). The
appearance of ovigerous females was delayed at higher concentrations of ZnO NPs, while the time required for offspring release
and the percentage of non-viable eggs per female were significantly increased. ZnONP subchronic exposure evidenced its ability
to reduce T. fulvus individual reproductive fitness, suggesting that ZnO NPs use and release must be carefully monitored.
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Introduction

Nanoparticles (NPs) are currently used worldwide offering
new materials and applications. Obviously, in recent years,

many questions aroused on the environmental and human
health risk. The knowledge about NPs impact on the environ-
mental compartments represents a pivotal issue to promote
new and safe nanotechnology in order to obtain full benefit
from their applications (Espanani et al. 2015). There is still a
lack of regulation on NPs use mainly due to their properties
(i.e. size, shape, route of synthesis, elemental entities, surface
coatings) and the physico-chemical behaviour (Nel et al.
2006). These aspects may determine undesirable toxic effects
to living organisms (Papageorgiou et al. 2007; Poland et al.
2008; Oberdörster et al. 2005; Singh et al. 2007; Bernhardt
et al. 2010; Faggio et al. 2018; Vajargah et al. 2018). The
aquatic ecosystems are considered the major sink of NPs
due to their discharge through the wastewater cycle
(Nowack and Bucheli 2007; Oukarroum et al. 2012;
Piccinno et al. 2012).

Among metal NPs, zinc oxide (ZnO NPs) is extensively
used worldwide in several fields as electronics, medicine,
feed and pharmaceutical products, ceramics, glass, cement,
rubber (e.g. car tyres), lubricants, paints, ointments, plas-
tics, sealants, pigments and personal care products

Highlights
• Acute LC50s: ZnO NPs < Zn2+~ZnSO4.
• Sublethal ZnO NPs caused a delay appearance of ovigerous females.
• Chronic exposure reduced nauplii per brood
• Sublethal concentration of ZnO NPs could affect the population by
reducing individual reproductive fitness.
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including sunscreens, as additive in food and packaging
(Gerloff et al. 2009; Nawaz et al. 2011; Piccinno et al.
2012). ZnO NPs are among the most harmful NPs to aquatic
organisms (Kahru and Dubourguier 2010; Khosravi-Katuli
et al. 2018). In aquatic tests, the toxicity of ZnO NPs was
generally attributed to the dissolved metal form rather than
the NP itself nanoforms (Franklin et al. 2007; Heinlaan et al.
2008; Mortimer et al. 2010).

Most of the currently available ecotoxicological data on
ZnO NPs are focused to acute toxicity tests on freshwater
organisms, including bacteria (Choi and Hu 2009;
Sirelkhatim et al. 2015), algae (Franklin et al., 2007; Wong
et al. 2010) and crustaceans (Heinlaan et al. 2008; Wang et al.
2009), while few studies involved marine organisms (Wong
et al. 2010; Fairbairn et al. 2011; Ates et al. 2013; Manzo et al.
2013a, b; Schiavo et al. 2016). However, further studies are
particularly needed for a proper risk assessment in seawater,
where the high ionic strength and pH conditions are known to
alter the NP physico-chemical properties and toxicity (Wong
et al. 2010; Rotini et al. 2017, 2018).

It is important to highlight that there is a considerable lack
of information on ZnO NP chronic effects, although the as-
sessment of chronic toxicity is essential for environmental
ecotoxicological studies since they can be predictive of
population-level effects (Wong et al. 2010; Peng et al. 2011;
Ates et al. 2013; Hanna et al. 2013; Keller et al. 2013, 2014;
Ma et al. 2013; Manzo et al. 2013a, b). The chronic exposure,
if compared to the acute one, has a greater ecological rele-
vance, increased sensitivity, better prediction of toxicity and
effects on population dynamics (USEPA/USACE 2001;
Scarlett et al. 2007; Greenstein et al. 2008). Thus, chronic
toxicity assessments such as life cycle studies are needed to
improve our understanding of the long-term and low-dose
effect of these nanoparticles, particularly in the marine
environment.

Harpacticoid copepods play an important role as a link in
aquatic food chains, ranging from phytoplanktonic algae or
members of the microbial loop to secondary consumers (e.g.
fishes) (Raisuddin et al. 2007). Among them, Tigriopus fulvus
is an abundant marine species and is a well-established test
species in acute toxicity testing. It offers distinct advantages,
as it is easily cultured under laboratory conditions, has year-
round availability, good sensitivity to different toxicants and
good reproducibility of tests (Faraponova et al. 2005, 2016;
Mariani et al. 2006; Tornambè et al. 2012; Prato et al. 2011;
Prato et al. 2012, 2013, 2015). Further, it is suitable for use in
the chronic tests (short life cycle, high offspring production),
allowing assessment of endpoints related to larval develop-
ment and reproduction.

To the best of our knowledge, the acute and chronic
ecotoxicity of ZnO NPs on marine copepods is still unex-
plored, except for a preliminary study on the same species
(Parlapiano et al. 2017). The aim of this study is to investigate

the acute and chronic ecotoxicity of ZnO NPs evaluating crit-
ical life cycle traits of T. fulvus. Moult number, developmental
times of nauplius and copepodite phases, fecundity and hatch-
ing time were chosen as sublethal endpoints in chronic expo-
sure and survival in acute exposure tests.

Materials and methods

Test organism culturing

Tigriopus fulvus was obtained from a massive culture main-
tained in the CNR-Institute for Coastal Marine Environment
of Taranto. The cultures were kept in 0.5-L polystyrene flasks
with filter screw caps containing natural sea water (NSW,
0.22-μm cellulose membranes) and a salinity of 38‰ under
a light:dark cycle of 18:8 h in a temperature-controlled room
at 20 °C (UNICHIM 2396 2014). Copepods were fed weekly
ad libitumwith Tetramarin (fish food) and amix of microalgae
including Tetraselmis suecica and Isochrysis galbana. These
algae were cultured in a temperature-controlled room, using
500-mL flasks filled with autoclaved NSW, collected in an
unpolluted area and filtered through a GF/C Wathman
0.22-μm filter (Prato et al. 2015).

The experiments were performed in three replicates on ne-
onate (nauplii) originating from synchronized cultures (24 h).
Nauplii were released by ovigerous females selected 24 h pri-
or the test, transferred on 80 μm mesh plankton net fixed to a
Plexiglas tube and fed with a mix of T. suecica and I. galbana
algae cultures at 1.5 × 108 and 3.0 × 108 cells/L density,
respectively.

Ecotoxicity

Experimental design of this study included two steps: (i)
Comparison of acute toxicity of ZnO NP suspension with
the acute toxicity of Zn2+ and ZnSO4 on mortality of
T. fulvus and (ii) evaluation of chronic effects of ZnO NP on
T. fulvus life cycle.

During the entire duration of all toxicity tests, pH and sa-
linity of the test solutions remained almost stable; pH ranged
from 8.1 to 7.8 and did not vary by more than 0.2 units in any
given test, while salinity was 38 ± 1 ‰. Oxygen levels in all
toxicity tests were above 80% of saturation, meeting the va-
lidity criteria set by the OECD guidelines (2004).

Acute toxicity test (48 h)

The experiment consisted in exposing T. fulvus nauplii (≤
24 h-old) for 48 h at increasing concentrations of Zn in three
forms: (a) ZnO NP suspension; (b) Zn2+ from ZnO NP sus-
pension after centrifugation (supernatant); and (c) ZnSO4, in
static acute tests with mortality as endpoint. A negative
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control (without Zn, only NSW) was included in the experi-
mental design. The Zn concentrations ranged from 0.5, 1, 2, 4
and 8 mg/L.

Before the tests, about 40 nauplii were transferred to a Petri
dish containing one of the concentrations to test, avoiding
dilution in the final test concentrations. The tests were per-
formed in sterile 12-well multi-plates (5 mL per well). Ten
nauplii were randomly chosen from each Petri dish and trans-
ferred to a well containing 3 mL of the test suspension/
solution or NSW. The experiment was carried out in triplicate;
any food was administered to the animals for the entire dura-
tion of the test.

Mortality of copepods was checked under a stereomicro-
scope. Copepods were considered dead if any movement of
external appendages was registered for about 20′ in response
to mechanical stimulation.

Oxygen content and pH of the test media were measured at
the beginning and at the end of each test in one replicate of
both control and test concentrations.

Chronic toxicity test (28 days)

Semi-static renewal toxicity tests to evaluate the larval devel-
opment and reproductive traits were conducted with newly
hatched nauplii (≤ 24 h old) of T. fulvus exposed for 28 days
at increasing concentrations of ZnO NPs looking for lethality,
nauplii/copepodites ratio (after 5 days), ovigerous females ap-
pearance time, hatching time and mean brood per female,
aborted egg sacs and not developed eggs. Test concentrations
were selected based on values lower than the NOEC acute test
(0.05, 0.10, 0.15, 0.20 and 0.25 mg/L) including a negative
control with NSW. Three replicates were performed for each
concentration and control, and the assay was carried out for
three times consecutively. Salinity, light and temperature con-
ditions are those described for massive culture: salinity 38‰,
light:dark cycle of 18:8 h and temperature 20 °C.

Practically, females with egg sacs were selected and kept
one per Petri dish (Sterilin, UK), containing 25 mL NSW. The
selected females were fed with live algae (T. suecica and
I. galbana of 5 × 108 cells/mL). After 24 h, newly hatched
nauplii were collected in a new Petri dish, containing 25 mL
fresh NSW. Twenty-four healthy nauplii (i.e. actively swim-
ming) were randomly selected, and tested separately as repli-
cates, in 3-mLmultiwell plate containing 1 mL of test solution
and algal cells (T. suecica and I. galbana of 5 × 108 cells/mL)
as food supply. Test solutions with food supply were renewed
every second day; all the copepod batches were transferred
into a new multiwell plate.

Daily, the survival of each copepod was checked and re-
corded in all wells, under the stereomicroscope. Concurrently,
the development stage was determined and the number of
nauplii and copepodite moults was counted to calculate the
duration of the naupliar and copepodite stages and the time

taken to reach adulthood. The degree of larval development in
each replicate was expressed as the ratio of copepodites to the
total number of organisms (i.e. the sum of nauplii and
copepodites); the results were reported as percentage of
moults, at each concentration.

Nauplii survival rate was calculated as the percentage of
survived nauplii reaching the copepodite stage; adult survival
rate was calculated as the percentage of surviving copepods
(male and female) after 28 days.

In order to determine reproductive parameters, soon after
the juvenile’s phase, male and female copepodswere placed in
the same well to allow mating. The males were eliminated
from the experimental wells after the mating because
T. fulvus females require only one mating to fertilize all the
eggs produced during their entire life span. Twelve females,
with the egg sac, were transferred and monitored in isolation
(one per well), in each ZnO NP concentration, until the off-
spring release. Daily, each test well was checked for female
mortality and offspring presence and numerosity. Every 48 h,
females were transferred to a new culture plate with newly
prepared solutions and feed. Newborn nauplii were counted
and removed from the test chambers daily, since the appear-
ance of the first brood. Fecundity (offspring production) was
assessed as number of nauplii per female. The number of
broods and nauplii/brood was quantified for each female. To
determine the hatching success, aborted egg sacs and not de-
veloped eggs were also enumerated.

Preparation of testing solutions/suspensions

Zinc oxide NPs were purchased from US Research
Nanomaterials, Inc. as a water dispersion (20 wt%, purity of
99.95%) with a nominal particle size in the range of 30–
40 nm. ZnO NP stock suspension (200 mg/L) was prepared
in 0.22μm filteredMilli-Q water from the 20% dispersion and
sonicated for 15′ in a sonicator bath (305W, 50–60 Hz; Soltec
Ultrasonic Baths) and then stored in the dark at 4 °C.

The final testing suspensions were prepared from ZnO NP
stock after 15′ sonication, using natural seawater (NSW) col-
lected from the Mar Grande of Taranto (Ionian Sea, Italy;
pH 8.0 ± 0.1, salinity 38 ± 1 and 0.22 μm filtered). For the
acute test, the final nominal concentrations were 0.5–1.0–
2.0–4.0–8.0 mg/L. In addition, an aliquot (30 mL) of each
final suspension was first centrifuged (13,000×g for 20′) and
filtered (0.22-μm filter) to remove ZnO NPs and their aggre-
gates. The final nominal concentrations of ZnO NP suspen-
sions for the chronic test were 0, 0.05, 0.1, 0.15, 0.2 and
0.25 mg/L, chosen on the base of acute toxicity test results.

To discriminate the acute toxicity due to the Zn dissolved
fromNPs from that due to the NP suspensions, a dedicated test
with the supernatant of the centrifuged suspensions 16,000 g
for 30 min -Bekman Coulter™ Avanti J-301 centrifuge) was
also carried out. The concentrations of centrifuged
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suspensions were the same as reported above. The stock so-
lution of ZnSO4 (Sigma-Aldrich) was prepared in 0.22-μm
filtered Milli-Q water (mQW); stirring the solution until metal
was completely dissolved. The final nominal test concentra-
tions were prepared in NSWat 0.5, 1.0, 2.0, 4.0 and 8.0 mg/L
for the acute tests.

Particle size distribution, stability of Zn
solutions/suspensions and Zn determination

The size distribution of the Zn solution/suspension in filtered
NSW were obtained by using a dynamic light scattering
(DLS) composed by a Photocor compact goniometer, a
SMD 6000 Laser Quantum 50 mW light source operating at
5325 Å and a PMT-120-OP/B and correlator (Flex02-01D)
purchased from Correlator.com. From the diffusion
coefficient obtained from the fitting of the correlation
function and in the approximation of diluted solution, the
hydrodynamic radius was evaluated through the Stokes-
Einstein equation Mangiapia et al. 2013). Each measurement
was performed in triplicate. The samples (1 mg/L) were pre-
pared from a starting solution (1 g/L) produced with 0.22 μm
filtered ultra-pure water in 0.22-μm filtered NSWand sonicat-
ed at 100 W for three cycles of 5 min each leaving to rest the
sample for 5 min between two cycles. Finally, each sample
was left to equilibrate in the instrument for 15 min before the
measurement.

Only for ZnO NPs, size distribution was followed from
starting time (i.e. 15 min after sonication—same conditions
previously described) up to 48 h of ageing in filtered NSW.

The size of the ZnO NPs (from the purchaser) was evalu-
ated by mean of transmission electron microscopy (TEM) by
using a Philips EM 208S with an accelerating voltage of
100 kV.

The concentration of Zn from Zn2+, ZnSO4 and ZnO NP
solution/suspensions was quantified by Inductively Coupled
Plasma Mass Spectrometry (Aurora M90 Bruker, USA)
(Table 1). The detection limit (LOD) and limit of quantifica-
tion (LOQ) were calculated using the method of blank vari-
ability for each investigated metal (EPA 6020b 2014).

Statistical analysis

All data are presented as mean and the relative standard devi-
ation (SD). For acute toxicity tests, lethal concentrations that
resulted in 50% mortality were chosen as the endpoint. Data
were analysed for normality and variance homogeneity
through Kolmogorov–Smirnov and Bartlett’s tests, respec-
tively. The LC50 values of the 48 h exposure were calculated
according to nonlinear multiple regressions (Sigmoidal four
parameters) with Sigma Plot 11.0. One-way ANOVA analyses
were used to determine statistical significance of the differ-
ences among treatments and between all treatment levels and

the control for all the endpoints (p < 0.05). If significant dif-
ferences were found by the ANOVA, Tukey multiple compar-
ison test was used to discriminate between the means. Data are
presented as the means ± standard deviation (S.D.). All statis-
tical analyses were conducted using Past3 Version 1.0
software.

Results

Characterization of NPs

The analysis of 1 mg/L of ZnO suspension from the purchaser
in filtered NSW (15 min sonication and 15 min ageing) evi-
denced that nanoparticles ranged between 10 and 20 nm
(Fig. 1). The hydrodynamic radius distribution of NPs was
investigated in all solution/suspension (Zn2+, ZnSO4 and
ZnONPs) at 1 mg/L after 1 h from their preparation (including
15 min sonication). Most aggregates in Zn2+ and ZnSO4 so-
lutions ranged approximately around 770 ± 40 nm and 950 ±
50 nm, in that order. In ZnO NPs, aggregates presented a
bimodal trend showing two main distribution peaks (150 ±
20 nm and 640 ± 30 nm) (Figure S1). Zn2+ solution presented
aggregated probably due to resuspension during sampling
and/or colloids’ formation. After 48 h of ageing (Figure S2),
the ZnONP aggregates presented a unimodal distributionwith
a mean hydrodynamic radius of 140 ± 20 nm that was similar
to that at zero time (110 ± 20 nm), suggesting that during the
exposure period the hydrodynamic radius of aggregates stabi-
lized, and the peak at 640 ± 30 nm completely disappeared.
Thus, specific changes in the hydrodynamic radius can occur
in solution/suspension according to the type of Zn and contact
time both in nano- and no-nano spiked media.

Acute toxicity test

In all acute toxicity tests, the survival of the controls was >
98% as required by OECD guideline 202 (OECD 2004).

Table 1 Measured concentrations as total Zn; Zn2+ in the supernatant of
the centrifuged suspensions (Zn2+), ZnSO4 and ZnO NP in final testing
solutions/suspensions; mean ± standard deviation of measurements.
FNSW = filtered natural saltwater

Total Zn (mg/L)

FNSW 0.014 ± 0.003

Testing concentrations Zn2+ ZnSO4 ZnO NPs

1 0.014 ± 0.003 0.52 ± 0.10 0.48 ± 0.09

2 0.54 ± 0.11 0.85 ± 0.17 0.85 ± 0.17

3 0.86 ± 0.17 1.73 ± 0.35 1.26 ± 0.25

4 0.96 ± 0.19 3.89 ± 0.78 4.31 ± 0.86

5 7.95 ± 1.59 4.25 ± 0.85
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In all exposure scenarios (Zn2+, ZnSO4 and ZnO NPs),
mortality showed a concentration-response relationship
reaching 100% effect after 48 h at the highest exposure con-
centrations. Statistical analysis showed no significant differ-
ences between T. fulvus exposed to Zn2+ and ZnSO4 scenarios
(p < 0.05), while LC50 decreased approximately of 30% with
ZnO NP. As reported in Fig. 2, LC50 values were 0.93 (0.84–
1.02) mg/L, 0.85 (0.81–0.89) mg/L and 1.27 (1.15–1.40) mg/
L for Zn2+, ZnSO4 and ZnO NPs, respectively. Statistical
analysis highlighted the following significant differences:
ZnO NPs < ZnSO4~Zn

2+ (ANOVA, p < 0.05, post-hoc
Tukey’s test). The sensitivity of T. fulvus was higher than
T. japonicus of approximately five times (LC50 = 5.8 (5.05–
6.64) mg/L) (Yi et al. 2019).

Chronic toxicity test

No inhibitory or stimulatory effect on the larval development
of T. fulvus exposed to ZnO NPs was detected up to 0.25 mg/
L, the highest tested concentration. After 5-day exposure, the
percentage of nauplii developed to copepodites ranged from
82% (0.20 and 0.25 mg ZnO-NP/L) to 94% at 0.15 mg ZnO-
NP/L (Fig. 3).

After 28-day exposure, the survival of T. fulvus was very
high (from 95 to 100%), with no significant differences be-
tween control and all treatment groups (ANOVA, n.s.).

Females became ovigerous around day 11; 1-day delay was
observed at the highest concentrations (0.20 and 0.25 mg/L
ZnO-NP; ANOVA, p < 0.05) (Fig. 4a). The production of the
egg sacs occurred 24 h after the pairing, without differences
among treated and control animals (ANOVA, n.s.). A

significant delay in the time required for the offspring release
was found hatching took 2.58 ± 0.17 days in the control
batches and 2.93 ± 0.10 and 2.95 ± 0.26 days at 0.20 and
0.25 mg/L (ANOVA, p < 0.05) (Fig. 4b). A reduced number
of broods per female were also recorded at all ZnO NP con-
centrations, ranging from 6.7 ± 0.2 in control to 2.8 ± 0.3 at
0.25 mg/L (ANOVA, p < 0.05; Fig. 4c); significant differ-
ences were also found between the 0.25 mg/L ZnO NP batch
and those exposed to lower concentrations (ANOVA, p <
0.05).

The mean number of nauplii per brood was significantly
reduced under ZnONP exposure (ANOVA, p < 0.05; Fig. 5a),
ranging from 5325 ± 3 at 0.05 to 1010 ± 1 at 0.25 mg/L of
ZnO NPs. Consequently, fecundity (as mean total number of
nauplii per female at day 28; Fig. 5b) was significantly re-
duced if compared to control (ANOVA; p < 0.05), ranging
from 164 ± 11 in control to 727 ± 5 at 0.25 mg/L of ZnO NP.
Non-viable eggs per female increased with ZnO NP concen-
tration (Fig. 5c), from 25.4% at 0.15 mg/L to a maximum of
68% at 0.25 mg/L.

Discussion

The bioassays with T. fulvus successfully assess both acute
and chronic toxicity of ZnO NPs and their characterization
in the saline test medium, as requested by the OECD
guidelines (2004) to superimpose the two set of data for the
correct interpretation of the ecotoxicological results.

Characterization of NPs

The aggregation and stability of ZnO NP suspensions
were measured in NSW. NSW background particles con-
tent was substantially not detectable probably due to the
initial 0.22-μm NSW filtration. After 48 h, aggregates
slightly increased compared to zero time, passing from
110 ± 20 nm up to 140 ± 20 nm (Figure S2). In Zn2+ and
ZnSO4, aggregates of different sizes are present
(Figure S1), suggesting that solution/suspension contained
nano-(micro-)sized fractions potentially able to interact
with biota. This was in contrast with other studies where
ZnO NP dissolution was very rapid demonstrating that
dissolution of ZnO NPs happened in the first hours, soon
reaching 50–65% of the initial NP load, with no differ-
ences in the ionic Zn released into seawater by ZnO NPs
between 24 and 48 h (Schiavo et al. 2018; Oliviero et al.
2017). Overall, our results confirmed that free Zn2+ con-
centration in the exposure medium depends on the NP
concentration in the suspension and on their size and ex-
posure time as already suggested in previous studies (Ates
et al. 2013; Wang et al. 2009).

Fig. 1 TEM picture of ZnO NPs (1 mg/L suspension from the purchaser
in filtered NSW—15 min sonication and 15 min ageing)
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Acute toxicity test

The three different Zn scenarios induced significant differ-
ences among acute toxicity responses in T. fulvus: ZnO NPs
and ZnSO4 < Zn2+. This result mainly depends on NP disso-
lution, which play a crucial role in ZnO NP toxicity as already
demonstrated in other studies (Matranga and Corsi 2012;
Manzo et al. 2013a, b. Zn2+ dissolution from NPs is consid-
ered the major driver of toxicity (Franklin et al. 2007; Blinova
et al. 2010; Buerki-Thurnherr et al. 2013; Ma et al. 2013),
causing cytotoxicity (Xia et al. 2008), disruption of cellular
zinc homeostasis, lysosomal and mitochondrial damage, and
cell death (Franklin et al., 2007). Even though, other studies
suggest that Zn2+ cannot account entirely for the toxicity of
ZnO NPs (Wang et al. 2009; Poynton et al. 2011; Li et al.
2018) and it is still not clearly understood to which extent
the dissolved Zn2+ can contribute to ZnO NP toxicity and
what are the mechanisms involved (Ma et al. 2013). Baun
et al. (2008) proposed that the toxicity of ZnO NPs to could

be due to their adhesion to the crustaceans exoskeleton, caus-
ing a mobility reduction or even loss.

The results of our experiments, comparing the toxicity of
ZnO NP suspensions, before and after the removal of NPs by
centrifugation, clearly showed that supernatants without NPs
have a higher toxicity. This could be ascribed to the removal
of NPs, increasing the progressive amount of dissolved zinc in
the exposure media. These results strongly support the impor-
tance of comparing the suspension vs supernatant toxicity to
go into the deep of the specific toxic activity of nanosized
particles.

In this study, the acute toxicity results are comparable with
those found in the literature for both ZnO NPs and ZnSO4 and
Zn2+. Wong et al. (2010) reported for Tigriopus japonicus a
96-h LC50 of 0.85 mg/L for ZnO NPs and 1.14 mg/L for
ZnSO4 7H2O, and for Elasmopus rapax, a 96-h LC50 of
1.19 mg/L for ZnO NPs and 0.80 mg/L for ZnSO4 7H2O.
Park et al. (2014) for T. japonicus reported a value of 96 h
LC50 of 2.44 mg/L of ZnO NPs. All the data are within the
same order of magnitude and differences are expected among
NP ecotoxicological studies, due both to differences in the
experimental procedures, especially concerning preparation
and/or suspending of NPs (presence/absence of solubilization
vehicles, filtering, centrifugation, sonication), and to the na-
ture of nanomaterials, making comparisons quite hard
(Schrurs and Lison 2012).

Chronic toxicity test

The present study, for the first time, thoroughly investigated
the chronic toxicity of ZnO NPs in T. fulvus by evaluating the
sensitivity of sublethal endpoints in this copepod species, as
no information can be found in the literature, except for

Fig. 2 Acute static test (48 h)
results as median lethal
concentration (LC50) of T. fulvus
exposed to the ZnO NP, ZnSO4

and Zn2+ suspension/solutions
expressed as total Zn (mg/L). LL
lower limit, UP upper limit;
asterisk = not significantly
different (p < 0.05, Tuckey’s test)
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Parlapiano et al. (2017) already performed within part of the
current research group. The organism exposure from hatching
to reproductive maturity allows observing several aspects of
embryonic/larval development along with reproductive pa-
rameters. To this end, the distinct developmental stages of
Tigriopus genus provide a well-defined set of endpoints to
be used in ecotoxicity tests, which allow an easy tracking of
development (Kwok et al. 2015; Biandolino et al. 2018). The
chronic exposure to ZnO NPs did not significantly affect the
developmental time taken by nauplii to reach the copepodite
or adult stage, while it caused clear negative effects on the
reproductive traits, such as brood duration, brood size and

brood number. Even the timing of phenological events (e.g.
the appearance of ovigerous females and the time required for
the offspring to be released) showed significant delay at the
highest concentrations of ZnO NP, showing to be sensitive
endpoints easy detectable in short times. The most affected
reproductive endpoint was fecundity with a significant reduc-
tion of nauplii number produced per female during the 28-day
exposure, even at low concentrations.

Sublethal tests (and endpoints) are widely used to im-
prove the prediction of chronic effects, difficult to achieve
with acute lethality tests (Barata et al. 2002), being accepted
that lethal endpoint cannot accurately assess the effect of
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toxicants (Cairns 1992). Chronic toxicity tests are recom-
mended in risk assessment, especially when the mode of
action of the toxicant is yet not well established (Ingersoll
et al. 1999), as in the case of NPs. For NPs, it is still neces-
sary to identify and select the most useful endpoints to de-
fine their toxicity. In this study, the chronic exposure to ZnO
NPs did not impair the time taken by nauplii to develop into
copepodites or adults; thus, this endpoint can be considered
as not useful to detect ZnONPs chronic effects of and can be
excluded by the testing investigations. Probably, ZnO NPs
is not involved in the processes of moulting and metamor-
phosis, controlled by ecdysteroids or other hormones
(Laufer and Borst 1988). The chronic exposure to ZnO
NPs impaired more the reproductive traits (brood duration,
size and number) and the timing of phenological events.
Hence, both endpoints are sensitive and worth to be includ-
ed in ZnO NPs investigation panel. In this case, ZnO NPs
can delay nauplii hatching delay by affecting some en-
zymes, such as the proteolytic ones (i.e. zinc-proteases),

involved in many physiological processes (cell migration,
tissue repair, etc.), as happens in fish larvae (Inohaya et al.
1997). In addition, ZnO NP aggregates, increasing in size at
increasing NP concentration, might occlude the chorion
channel pores reducing oxygenation, essential for nauplii
development, as reported for fish (Cheng et al. 2007). The
most promising reproductive endpoint is fecundity, as evi-
denced by the significant results, even at low concentra-
tions. ZnO NPs affect number of broods/females in inverse
relation with exposure and this effect may be due to the
dissolved Zn2+, a potential disruptor of calcium homeosta-
sis during the first developmental phases (Warnau et al.
1996). Finally, the egg viability is also an interesting and
sensitive endpoint; ZnO NPs reduced egg viability up to
about the 70%, suggesting that Zn can have a direct lethal
effect on the developing embryos. Comparable data were
obtained by Huang et al. (2017) testing ZnO NP chronic
exposure of the nematode Caenorhabditis elegans showing
a significant inhibition of growth and reproductive
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capability. Lagido et al. (2009) ascribed ZnO NP toxicity to
the reduction of ATP production consequent to the heavy
metal detoxification mechanisms and to the increased ROS
levels, being an extra energetic cost affecting mitochondria
function. The ability to generate ROS, leading to oxidative
stress and damages to lipids, carbohydrates, proteins and
DNA leading to cell death is a relevant adverse effect of
NPs (Kohen and Nyska 2002; Fulda et al. 2010). Hence,
the exposure to sublethal Zn concentrations could potential-
ly affect the population dynamics by reducing individual
reproductive fitness and overall reproductive output.
These results are consistent with Fabrega et al. (2011) that
reported that Zn exposure both as ZnO NP, Zn2+ and bulk
ZnO (in the range of 0.2–1.0 mg/L) delayed growth affect-
ing the reproductive outcome of the amphipod Corophium
volutator. Garbutt and Little (2014) reported that ZnO NPs
affect both the number of offspring and the feeding rate of
the cladoceran Daphnia magna.

Moreover, the discussion remained open about the influ-
ence of microalgae as feed supplement added to testing
solutions/suspensions during the exposure scenarios.
T. fulvus, as already reported by Jarvis et al. (2013), could be
overexposed to NPs that can adhere to or enter the algal cells
constituting a supplemental indirect dietary source.

Conclusions

This study demonstrated the toxic effects of ZnONPs to T. fulvus
in both acute (48 h) and chronic assays (28 days). To the best of
our knowledge, this is the first study that extensively explored the
chronic effects of ZnO NP exposure on the reproductive traits of
T. fulvus. The results of this study highlighted (i) the potential
environmental risk due to the presence of ZnO NPs in marine
environments, even at low concentrations, and (ii) the suitability
of the chronic bioassay for the evaluation of both conventional
contaminant (Zn2+ and ZnSO4) and ZnO NPs. Toxic effects of
ZnO NPs were evidenced from 100 μg/L onwards. These con-
centrations are similar to the detected environmental ones, and
forecasts suggested a further increase in ZnO NPs use and sub-
sequent release in the near future.

Given the high abundance of copepods in the marine envi-
ronment and their important role in the carbon cycle and food
webs, the comprehension of the impact of emerging pollutants
on these organisms is essential. In the marine systems, the
reduction of an important prey population (i.e. T. fulvus) could
trigger a bottom-up cascade impact on both the food web and
the energy flow, leading to a possible change in the marine
benthic community composition and structure in the long run.

Finally, the balance between the usefulness of ZnO NPs
and the risks for living organisms deserves a constant moni-
toring to avoid repercussions on wildlife and, ultimately, to
human health.
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