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Abstract. We propose a novel algorithm for the solution of mean-payoff
games that merges together two seemingly unrelated concepts introduced
in the context of parity games, small progress measures and quasi do-
minions. We show that the integration of the two notions can be highly
beneficial and significantly speeds up convergence to the problem solution.
Experiments show that the resulting algorithm performs orders of mag-
nitude better than the asymptotically-best solution algorithm currently
known, without sacrificing on the worst-case complexity.

1 Introduction

In this article we consider the problem of solving mean-payoff games, namely
infinite-duration perfect-information two-player games played on weighted di-
rected graphs, each of whose vertexes is controlled by one of the two players. The
game starts at an arbitrary vertex and, during its evolution, each player can take
moves at the vertexes it controls, by choosing one of the outgoing edges. The
moves selected by the two players induce an infinite sequence of vertices, called
play. The payoff of any prefix of a play is the sum of the weights of its edges. A
play is winning if it satisfies the game objective, called mean-payoff objective,
which requires that the limit of the mean payoff, taken over the prefixes lengths,
never falls below a given threshold ν.

Mean-payoff games have been first introduced and studied by Ehrenfeucht
and Mycielski in [20], who showed that positional strategies suffice to obtain
the optimal value. A slightly generalized version was also considered by Gur-
vich et al. in [24]. Positional determinacy entails that the decision problem for
these games lies in NPTime∩CoNPTime [34], and it was later shown to belong
to UPTime ∩CoUPTime [25], being UPTime the class of unambiguous non-
deterministic polynomial time. This result gives the problem a rather peculiar
complexity status, shared by very few other problems, such as integer factoriza-
tion [22], [1] and parity games [25]. Despite various attempts [7, 19, 24, 30, 34], no
polynomial-time algorithm for the mean-payoff game problems is known so far.

A different formulation of the game objective allows to define another class of
quantitative games, known as energy games. The energy objective requires that,
given an initial value c, called credit, the sum of c and the payoff of every prefix
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of the play never falls below 0. These games, however, are tightly connected to
mean-payoff games, as the two type of games have been proved to be log-space
equivalent [11]. They are also related to other more complex forms of quantitative
games. In particular, unambiguous polynomial-time reductions [25] exist from
these games to discounted payoff [34] and simple stochastic games [18].

Recently, a fair amount of work in formal verification has been directed to con-
sider, besides correctness properties of computational systems, also quantitative
specifications, in order to express performance measures and resource require-
ments, such as quality of service, bandwidth and power consumption and, more
generally, bounded resources. Mean-payoff and energy games also have important
practical applications in system verification and synthesis. In [14] the authors
show how quantitative aspects, interpreted as penalties and rewards associated
to the system choices, allow for expressing optimality requirements encoded as
mean-payoff objectives for the automatic synthesis of systems that also satisfy
parity objectives. With similar application contexts in mind, [9] and [8] further
contribute to that effort, by providing complexity results and practical solutions
for the verification and automatic synthesis of reactive systems from quantitative
specifications expressed in linear time temporal logic extended with mean-payoff
and energy objectives. Further applications to temporal networks have been
studied in [16] and [15]. Consequently, efficient algorithms to solve mean-payoff
games become essential ingredients to tackle these problems in practice.

Several algorithms have been devised in the past for the solution of the decision
problem for mean-payoff games, which asks whether there exists a strategy for one
of the players that grants the mean-payoff objective. The very first deterministic
algorithm was proposed in [34], where it is shown that the problem can be solved
with O

(
n3 ·m ·W

)
arithmetic operations, with n and m the number of positions

and moves, respectively, and W the maximal absolute weight in the game. A
strategy improvement approach, based on iteratively adjusting a randomly chosen
initial strategy for one player until a winning strategy is obtained, is presented
in [31], which has an exponential upper bound. The algorithm by Lifshits and
Pavlov [29], which runs in time O(n ·m · 2n · log2W ), computes the “potential”
of each game position, which corresponds to the initial credit that the player
needs in order to win the game from that position. Algorithms based on the
solution of linear feasibility problems over the tropical semiring have been also
provided in [2–4]. The best known deterministic algorithm to date, which requires
O(n ·m ·W ) arithmetic operations, was proposed by Brim et al. [13]. They adapt
to energy and mean-payoff games the notion of progress measures [28], as applied
to parity games in [26]. The approach was further developed in [17] to obtain the
same complexity bound for the optimal strategy synthesis problem. A strategy-
improvement refinement of this technique has been introduced in [12]. Finally,
Bjork et al. [6] proposed a randomized strategy-improvement based algorithm

running in time min{O
(
n2 ·m ·W

)
, 2O(

√
n·logn)}.

Our contribution is a novel mean-payoff progress measure approach that
enriches such measures with the notion of quasi dominions, originally introduced
in [5] for parity games. These are sets of positions with the property that as
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long as the opponent chooses to play to remain in the set, it loses the game for
sure, hence its best choice is always to try to escape. A quasi dominion from
where escaping is not possible is a winning set for the other player. Progress
measure approaches, such as the one of [13], typically focus on finding the best
choices of the opponent and little information is gathered on the other player.
In this sense, they are intrinsically asymmetric. Enriching the approach with
quasi dominions can be viewed as a way to also encode the best choices of the
player, information that can be exploited to speed up convergence significantly.
The main difficulty here is that suitable lift operators in the new setting do
not enjoy monotonicity. Such a property makes proving completeness of classic
progress measure approaches almost straightforward, as monotonic operators do
admit a least fixpoint. Instead, the lift operator we propose is only inflationary
(specifically, non-decreasing) and, while still admitting fixpoints [10, 33], need
not have a least one. Hence, providing a complete solution algorithm proves
more challenging. The advantages, however, are significant. On the one hand,
the new algorithm still enjoys the same worst-case complexity of the best known
algorithm for the problem proposed in [13]. On the other hand, we show that
there exist families of games on which the classic approach requires a number of
operations that can be made arbitrarily larger than the one required by the new
approach. Experimental results also witness the fact that this phenomenon is by
no means isolated, as the new algorithm performs orders of magnitude better
than the algorithm developed in [13].

2 Mean-Payoff Games

A two-player turn-based arena is a tuple A =〈Ps⊕,Ps�,Mv〉, with Ps⊕∩Ps� = ∅
and Ps , Ps⊕ ∪ Ps�, such that 〈Ps,Mv〉 is a finite directed graph without sinks.
Ps⊕ (resp., Ps�) is the set of positions of player ⊕ (resp., �) and Mv ⊆ Ps× Ps
is a left-total relation describing all possible moves. A path in V ⊆ Ps is a finite
or infinite sequence π ∈ Pth(V) of positions in V compatible with the move
relation, i.e., (πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1). A positional strategy for
player α ∈ {⊕,�} on V ⊆ Ps is a function σα ∈ Strα(V) ⊆ (V ∩ Psα) → Ps,
mapping each α-position v in the domain of σα to position σα(v) compatible
with the move relation, i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set
of all α-strategies on V, while Strα denotes

⋃
V⊆Ps Strα(V). A play in V ⊆ Ps

from a position v ∈ V w.r.t. a pair of strategies (σ⊕, σ�) ∈ Str⊕(V)× Str�(V),
called ((σ⊕, σ�), v)-play, is a path π ∈ Pth(V) such that π = v and, for all
i ∈ [0, |π| − 1), if πi ∈ Ps⊕ then πi+1 = σ⊕(πi) else πi+1 = σ�(πi). The play
function play : (Str⊕(V)×Str�(V))×V→ Pth(V) returns, for each position v ∈ V
and pair of strategies (σ⊕, σ�) ∈ Str⊕(V)× Str�(V), the maximal ((σ⊕, σ�), v)-
play play((σ⊕, σ�), v). If a pair (σ⊕, σ�) ∈ Str⊕(V) × Str�(V) induces a finite
play starting from position v ∈ V, then play((σ⊕, σ�), v) identifies the maximal
prefix of that play that is contained in V.

A mean-payoff game (MPG for short) is a tuple a =〈A,Wg,wg〉, where A
is an arena, Wg ⊂ Z is a finite set of integer weights, and wg : Ps → Wg is a
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weight function assigning a weight to each position. Ps+ (resp., Ps−) denotes
the set of positive-weight positions (resp., non-positive-weight positions). For
convenience, we shall refer to non-positive weights as negative weights. Notice
that this definition of MPG is equivalent to the classic formulation in which the
weights label the moves, instead. The weight function naturally extends to paths,

by setting wg(π) ,
∑|π|−1
i=0 wg(πi). The goal of player ⊕ (resp., �) is to maximize

(resp., minimize) v(π) , lim infi→∞
1
i · wg(π≤i), where π≤i is the prefix up to

index i. Given a threshold ν, a set of positions V ⊆ Ps is a ⊕-dominion, if there
exists a ⊕-strategy σ⊕ ∈ Str⊕(V) such that, for all �-strategies σ� ∈ Str�(V)
and positions v ∈ V, the induced play π = play((σ⊕, σ�), v) satisfies v(π) > ν.
The pair of winning regions (Wn⊕,Wn�) forms a ν-mean partition. Assuming
ν integer, the ν-mean partition problem is equivalent to the 0-mean partition
one, as we can subtract ν to the weights of all the positions. As a consequence,
the MPG decision problem can be equivalently restated as deciding whether
player ⊕ (resp., �) has a strategy to enforce lim infi→∞

1
i · wg(π≤i) > 0 (resp.,

lim infi→∞
1
i · wg(π≤i) ≤ 0), for all the resulting plays π.

3 Solving Mean-Payoff Games via Progress Measures

The abstract notion of progress measure [28] has been introduced as a way to
encode global properties on paths of a graph by means of simpler local properties
of adjacent vertexes. In the context of MPGs, the graph property of interest,
called mean-payoff property, requires that the mean payoff of every infinite path in
the graph be non-positive. More precisely, in game theoretic terms, a mean-payoff
progress measure witnesses the existence of strategy σ� for player � such that
each path in the graph induced by fixing that strategy on the arena satisfies the
desired property. A mean-payoff progress measure associates with each vertex
of the underlying graph a value, called measure, taken from the set of extended
natural numbers N∞ , N ∪ {∞}, endowed with an ordering relation ≤ and an
addition operation +, which extend the standard ordering and addition over the
naturals in the usual way. Measures are associated with positions in the game
and the measure of a position v can intuitively be interpreted as an estimate
of the payoff that player ⊕ can enforce on the plays starting in v. In this sense,
they measure “how far” v is from satisfying the mean-payoff property, with the
maximal measure ∞ denoting failure of the property for v. More precisely, the
�-strategy induced by a progress measure ensures that measures do not increase
along the paths of the induced graph. This ensures that every path eventually
gets trapped in a non-positive-weight cycle, witnessing a win for player �.

To obtain a progress measure, one starts from some suitable association of
position of the game with measures. The local information encoded by these
measures is then propagated back along the edges of the underlying graph so
as to associate with each position the information gathered along plays of some
finite length starting from that position. The propagation process is performed
according to the following intuition. The measures of positions adjacent to v
are propagated back to v only if those measures push v further away from the
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property. This propagation is achieved by means of a measure stretch operation
+, which adds, when appropriate, the measure of an adjacent position to the
weight of a given position. This is established by comparing the measure of v
with those of its adjacent positions, since, for each position v, the mean-payoff
property is defined in terms of the sum of the weights encountered along the plays
from that position. The process ends when no position can be pushed further
away from the property and each position is not dominated by any, respectively
one, of its adjacents, depending on whether that position belongs to player ⊕
or to player �, respectively. The positions that did not reach measure ∞ are
those from which player � can win the game and the set of measures currently
associated with such positions forms a mean-payoff progress measure.

To make the above intuitions precise, we introduce the notion of measure
function, progress measure, and an algorithm for computing progress measures
correctly. It is worth noticing that the progress-measure based approach as
described in [13], called SEPM from now on, can be easily recast equivalently
in the form below. A measure function µ : Ps→ N∞ maps each position v in
the game to a suitable measure µ(v). The order ≤ of the measures naturally
induces a pointwise partial order v on the measure functions defined in the
usual way, namely, for any two measure functions µ and µ, we write η v η if
µ(v) ≤ µ(v), for all positions v. The set of measure functions over a measure
space, together with the induced ordering v, forms a measure-function space.

Definition 1 (Measure-Function Space). The measure-function space is the
partial order F ,〈MF,v〉 whose components are defined as follows:

1. MF , Ps→ N∞ is the set of all functions µ ∈ MF, called measure functions,
mapping each position v ∈ Ps to a measure µ(v) ∈ N∞;

2. for all µ, µ ∈ MF, it holds that µ v µ if µ(v) ≤ µ(v), for all v ∈ Ps.

The ⊕-denotation (resp., �-denotation) of a measure function µ ∈ MF is the set
‖µ‖⊕ , µ−(∞) (resp., ‖µ‖� , µ−(∞)) of all positions having maximal (resp.,
non-maximal) measure associated within µ.

Consider a position v with an adjacent u with measure η. A measure update
of η w.r.t. v is obtained by the stretch operator +: N∞ × Ps→ N∞, defined as
η + v , max{0, η + wg(v)}, which corresponds to the payoff estimate that the
given position will obtain by choosing to follow the move leading to the u.

A mean-payoff progress measure is such that the measure associated with
each game position v need not be increased further in order to beat the actual
payoff of the plays starting from v. In particular, it can be defined by taking into
account the opposite attitude of the two players in the game. While the player ⊕
tries to push toward higher measures, the player � will try to keep the measures
as low as possible. A measure function in which the payoff of each ⊕-position
(resp., �-position) v is not dominated by the payoff of all (resp., some of) its
adjacents augmented with the weight of v itself meets the requirements.

Definition 2 (Progress Measure). A measure function µ ∈ MF is a progress
measure if the following two conditions hold true, for all positions v ∈ Ps:
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1. µ(u) + v ≤ µ(v), for all adjacents u ∈ Mv(v) of v, if v ∈ Ps⊕;
2. µ(u) + v ≤ µ(v), for some adjacent u ∈ Mv(v) of v, if v ∈ Ps�.

The following theorem states the fundamental property of progress measures,
namely, that every position with a non-maximal measures is won by player �.

Theorem 1 (Progress Measure). ‖µ‖� ⊆Wn�, for all progress measures µ.

In order to obtain a progress measure from a given measure function, one can
iteratively adjust the current measure values in such a way to force the progress
condition above among adjacent positions. To this end, we define the lift operator
lift : MF→ MF as follows:

lift(µ)(v) ,

{
max{µ(w) + v : w ∈ Mv(v)}, if v ∈ Ps⊕;

min{µ(w) + v : w ∈ Mv(v)}, otherwise.

Note that the lift operator is clearly monotone and, therefore, admits a least
fixpoint. A mean-payoff progress measure can be obtained by repeatedly applying
this operator until a fixpoint is reached, starting from the minimal measure
function µ , {v ∈ Ps 7→ 0} that assigns measure 0 to all the positions in
the game. The following solver operator applied to µ computes the desired
solution: sol , lfpµ . lift(µ) : MF→ MF. Observe that the measures generated by
the procedure outlined above have a fairly natural interpretation. Each positive
measure, indeed, under-approximates the weight that player ⊕ can enforce along
finite prefixes of the plays from the corresponding positions. This follows from the
fact that, while player ⊕ maximizes its measures along the outgoing moves, player
� minimizes them. In this sense, each positive measure witnesses the existence
of a positively-weighted finite prefix of a play that player ⊕ can enforce. Let
S ,

∑
{wg(v) ∈ N : v ∈ Ps ∧ wg(v) > 0} be the sum of all the positive weights

in the game. Clearly, the maximal payoff of a simple play in the underlying
graph cannot exceed S. Therefore, a measure greater than S witnesses the
existence of a cycle whose payoff diverges to infinity and is won, thus, by player
⊕. Hence, any measure strictly greater than S can be substituted with the
value ∞. This observation establishes the termination of the algorithm and is
instrumental to its completeness proof. Indeed, at the fixpoint, the measures
actually coincide with the highest payoff player ⊕ is able to guarantee. Soundness
and completeness of the above procedure have been established in [13], where the
authors also show that, despite the algorithm requiring O(n · S) = O

(
n2 ·W

)
lift operations in the worst-case, with n the number of positions and W the
maximal positive weight in the game, the overall cost of these lift operations is
O(S ·m · logS) = O(n ·m ·W · log(n ·W )), with m the number of moves and
O(logS) the cost of arithmetic operations to compute the stretch of the measures.

4 Solving Mean-Payoff Games via Quasi Dominions

Let us consider the simple example game depicted in Figure 1, where the shape
of each position indicates the owner, circles for player ⊕ and square for its



Solving Mean-Payoff Games via Quasi Dominions 7

opponent �, and, in each label of the form `/w, the letter w corresponds to the
associated weight, where we assume k > 1. Starting from the smallest measure
function µ = {a, b, c, d 7→ 0}, the first application of the lift operator returns
µ = {a 7→ k; b, c 7→ 0; d 7→ 1} = lift(µ). After that step, the following iterations
of the fixpoint alternatively updates positions c and d, since the other ones already
satisfy the progress condition. Being c ∈ Ps�, the lift operator chooses for it the
measure computed along the move (c, d), thus obtaining µ(c) = lift(µ)(c) =
µ(d) = 1. Subsequently, d is updated to µ(d) = lift(µ)(d) = µ(c) + 1 = 2. A
progress measure is obtained after exactly 2k+1 iterations, when the measure of c
reaches value k and d value k+1. Note, however, that the choice of the move (c, d)
is clearly a losing strategy for player �, as remaining in the highlighted region
would make the payoff from position c diverge. Therefore, the only reasonable
choice for player � is to exit from that region by taking the move leading
to position a. An operator able to diagnose this phenomenon early on could
immediately discard the move (c, d) and jump directly to the correct payoff
obtained by choosing the move to position a. As we shall see, such an operator
might lose the monotonicity property and recovering the completeness of the
resulting approach will prove more involved.

In the rest of this article we devise a progress operator that does precisely
that. We start by providing a notion of quasi dominion, originally introduced for
parity games in [5], which can be exploited in the context of MPGs.

Definition 3 (Quasi Dominion). An set of positions Q ⊆ Ps is a quasi ⊕-
dominion if there exists a ⊕-strategy σ⊕ ∈ Str⊕(Q), called ⊕-witness for Q,
such that, for all �-strategies σ� ∈ Str�(Q) and positions v ∈ Q, the play π =
play((σ⊕, σ�), v), called (σ⊕, v)-play in Q, satisfies wg(π) > 0. If the condition
wg(π) > 0 holds only for infinite plays π, then Q is called weak quasi ⊕-dominion.

a/k b/0

c/0 d/1

Fig. 1: An MPG.

Essentially, a quasi ⊕-dominion consists in a set Q of po-
sitions starting from which player ⊕ can force plays in Q of
positive weight. Analogously, any infinite play that player⊕ can
force in a weak quasi ⊕-dominion has positive weight. Clearly,
any quasi ⊕-dominion is also a weak quasi ⊕-dominion. More-
over, the latter are closed under subsets, while the former are
not. It is an immediate consequence of the definition above that

all infinite plays induced by the ⊕-witness, if any, necessarily have infinite weight
and, thus, are winning for player ⊕. Indeed, every such a play π is regular, i.e. it
can be decomposed into a prefix π′ and a simple cycle (π′′)ω, i.e. π = π′(π′′)ω,
since the strategies we are considering are memoryless. Now, wg((π′′)ω) > 0, so,
wg(π′′) > 0, which implies wg((π′′)ω) =∞. Hence, wg(π) =∞.

Proposition 1. Let Q be a weak quasi ⊕-dominion with σ⊕ ∈ Str⊕(Q) one of its
⊕-witnesses and Q? ⊆ Q. Then, for all �-strategies σ� ∈ Str�(Q?) and positions
v ∈ Q? the following holds: if the (σ⊕�Q? , v)-play π = play((σ⊕�Q? , σ�), v) is
infinite, then wg(π) =∞.
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From Proposition 1, it directly follows that, if a weak quasi ⊕-dominion Q is
closed w.r.t. its ⊕-witness, namely all the induced plays are infinite, then it is a
⊕-dominion, hence is contained in Wn⊕.

Consider again the example of Figure 1. The set of position Q , {a, c, d} forms
a quasi ⊕-dominion whose ⊕-witness is the only possible ⊕-strategy mapping
position d to c. Indeed, any infinite play remaining in Q forever and compatible
with that strategy (e.g., the play from position c when player � chooses the move
from c leading to d or the one from a to itself or the one from a to d) grants an
infinite payoff. Any finite compatible play, instead, ends in position a (e.g., the
play from c when player � chooses the move from c to a and then one from a

to b) giving a payoff of at least k > 0. On the other hand, Q? , {c, d} is only a
weak quasi ⊕-dominion, as player � can force a play of weight 0 from position
c, by choosing the exiting move (c, a). However, the internal move (c, d) would
lead to an infinite play in Q? of infinite weight.

The crucial observation here is that the best choice for player � in any
position of a (weak) quasi ⊕-dominion is to exit from it as soon as it can, while
the best choice for player ⊕ is to remain inside it as long as possible. The idea of
the algorithm we propose in this section is to precisely exploit the information
provided by the quasi dominions in the following way. Consider the example
above. In position a player � must choose to exit from Q = {a, c, d}, by taking
the move (a, b), without changing its measure, which would corresponds to its
weight k. On the other hand, the best choice for player � in position c is to
exit from the weak quasi-dominion Q? = {c, d}, by choosing the move (c, a)
and lifting its measure from 0 to k. Note that this contrasts with the minimal
measure-increase policy for player � employed in [13], which would keep choosing
to leave c in the quasi-dominion by following the move to d, which gives the
minimal increase in measure of value 1. Once c is out of the quasi-dominion,
though, the only possible move for player ⊕ is to follow c, taking measure k + 1.
The resulting measure function is the desired progress measure.

In order to make this intuitive idea precise, we need to be able to identify
quasi dominions first. Interestingly enough, the measure functions µ defined in the
previous section do allow to identify a quasi dominion, namely the set of positions
µ−(0) having positive measure. Indeed, as observed at the end of that section, a
positive measure witnesses the existence of a positively-weighted finite play that
player ⊕ can enforce from that position onward, which is precisely the requirement

of Definition 3. In the example of Figure 1, µ− (0) = ∅ and µ− (0) = {a, c, d} are
both quasi dominions, the first one w.r.t. the empty ⊕-witness and the second
one w.r.t. the ⊕-witness σ⊕(d) = c.

We shall keep the quasi-dominion information in pairs (µ, σ), called quasi-
dominion representations (qdr, for short), composed of a measure function µ and
a ⊕-strategy σ, which corresponds to one of the ⊕-witnesses of the set of positions
with positive measure in µ. The connection between these two components is
formalized in the definition below that also provides the partial order over which
the new algorithm operates.
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Definition 4 (QDR Space). The quasi-dominion-representation space is the
partial order Q ,〈QDR,v〉, whose components are defined as follows:

1. QDR ⊆ MF× Str⊕ is the set of all pairs % , (µ%, σ%) ∈ QDR, called quasi-
dominion-representations, composed of a measure function µ% ∈ MF and a

⊕-strategy σ% ∈ Str⊕(Q(%)), where Q(%) , µ−% (0), for which:
(a) Q(%) is a quasi ⊕-dominion enjoying σ% as a ⊕-witness;
(b) ‖µ%‖⊕ is a ⊕-dominion;
(c) µ%(v) ≤ µ%(σ%(v)) + v, for all ⊕-positions v ∈ Q(%) ∩ Ps⊕;
(d) µ%(v) ≤ µ%(u) + v, for all �-positions v ∈ Q(%) ∩ Ps� and u ∈ Mv(v);

2. for all %, % ∈ QDR, it holds that % v % if µ% v µ% and σ%(v) = σ%(v),
for all ⊕-positions v ∈ Q(%) ∩ Ps⊕ with µ%(v) = µ%(v).

The α-denotation ‖%‖α of a qdr %, with α ∈ {⊕,�}, is the α-denotation ‖µ%‖α
of its measure function.

Condition 1a is obvious. Condition 1b, instead, requires that every position
with infinite measure is indeed won by player ⊕ and is crucial to guarantee
the completeness of the algorithm. Finally, Conditions 1c and 1d ensure that
every positive measure under approximates the actual weight of some finite play
within the induced quasi dominion. This is formally captured by the following
proposition, which can be easily proved by induction on the length of the play.

Proposition 2. Let % be a qdr and vπu a finite path starting at position v ∈ Ps
and terminating in position u ∈ Ps compatible with the ⊕-strategy σ%. Then,
µ%(v) ≤ wg(vπ) + µ%(u).

It is immediate to see that every MPG admits a non-trivial QDR space,
since the pair (µ, σ), with µ the smallest measure function and σ the empty
strategy, trivially satisfies all the required conditions.

Proposition 3. Every MPG has a non-empty QDR space associated with it.

The solution procedure we propose, called QDPM from now on, can intuitively
be broken down as an alternation of two phases. The first one tries to lift the
measures of positions outside the quasi dominion Q(%) in order to extend it,
while the second one lifts the positions inside Q(%) that can be forced to exit
from it by player �. The algorithm terminates when no new position can be
absorbed within the quasi dominion and no measure needs to be lifted to allow
the �-winning positions to exit from it, when possible. To this end, we define
a controlled lift operator lift : QDR×2Ps×2Ps ⇀ QDR that works on qdrs and
takes two additional parameters, a source and a target set of positions. The
intended meaning is that we want to restrict the application of the lift operation
to the positions in the source set S, while using only the moves leading to the
target set T. The different nature of the two types of lifting operations is reflected
in the actual values of the source and target parameters.

lift(%, S,T) , %?, where
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µ%?(v) ,


max{µ%(u) + v : u ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps⊕;

min{µ%(u) + v : u ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps�;

µ%(v), otherwise;

and, for all ⊕-positions v ∈ Q(%?) ∩ Ps⊕, we choose σ%?(v) ∈ argmaxu∈Mv(v)∩T

µ%(u) + v, if µ%?(v) 6= µ%(v), and σ%?(v) = σ%(v), otherwise. Except for the
restriction on the outgoing moves considered, which are those leading to the
targets in T, the lift operator acts on the measure component of a qdr very
much like the original lift operator does. In order to ensure that the result is still
a qdr, however, the lift operator must also update the ⊕-witness of the quasi
dominion. This is required to guarantee that Conditions 1a and 1c of Definition 4
are preserved. If the measure of a ⊕-position v is not affected by the lift, the
⊕-witness must not change for that position. However, if the application of the
lift operation increases the measure, then the ⊕-witness on v needs to be updated
to any move (v, u) that grants measure µ%?(v) to v. In principle, more than one
such move may exist and any one of them can serve as witness.

The solution corresponds to the inflationary fixpoint [10, 33] of the two
phases mentioned above, sol , ifp % . prg+(prg(%)) : QDR ⇀ QDR, defined by
the progress operators prg and prg+. The first phase is computed by the operator

prg : QDR ⇀ QDR as follows: prg(%) , sup{%, lift(%,Q(%),Ps)}. This operator
is responsible of enforcing the progress condition on the positions outside the
quasi dominion Q(%) that do not satisfy the inequalities between the measures
along a move leading to Q(%) itself. It does that by applying the lift operator with
Q(%) as source and no restrictions on the moves. Those position that acquire a
positive measure in this phase contribute to enlarging the current quasi dominion.
Observe that the strategy component of the qdr is updated so that it is a
⊕-witness of the new quasi dominion. To guarantee that measures never decrease,
the supremum w.r.t. the QDR-space ordering is taken as result.

Lemma 1. µ% is a progress measure over Q(%), for all fixpoints % of prg.

The second phase, instead, implements the mechanism intuitively described
above, while analyzing the simple example of Figure 1. This is achieved by the
operator prg+ reported in Algorithm 1. The procedure iteratively examines the
current quasi dominion and lifts the measures of the positions that must exit
from it. Specifically, it processes Q(%) layer by layer, starting from the outer layer
of positions that must escape. The process ends when a, possibly empty, closed
weak quasi dominion is obtained. Recall that all the positions in a closed weak
quasi dominion are necessarily winning for player ⊕, due to Proposition 1. We
distinguish two sets of positions in Q(%). Those that already satisfy the progress
condition and those that do not. The measures of first ones already witness an
escape route from Q(%). The other ones, instead, are those whose current choice
is to remain inside it. For instance, when considering the measure function µ in
the example of Figure 1, position a belongs to the first set, while positions c and
d to the second one, since the choice of c is to follow the internal move (c, d).

Since the only positions that change measure are those in the second set, only
such positions need to be examined. To identify them, which form a weak quasi
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dominion ∆(%) strictly contained in Q(%), we proceed as follows. First, we collect
the set npp(%) of positions in Q(%) that do not satisfy the progress condition,
called the non-progress positions. Then, we compute the set of positions that
will have no choice other than reaching npp(%), by computing the inflationary
fixpoint of a suitable pre operator.

npp(%) , {v ∈ Q(%) ∩ Ps⊕ : ∃u ∈ Mv(v) . µ%(v) < µ%(u) + v}
∪ {v ∈ Q(%) ∩ Ps� : ∀u ∈ Mv(v) . µ%(v) < µ%(u) + v}.

pre(%,Q) , Q ∪ {v ∈ Q(%) ∩ Ps⊕ : σ%(v) ∈ Q}
∪ {v ∈ Q(%) ∩ Ps� : ∀u ∈ Mv(v) \Q . µ%(v) < µ%(u) + v}.

The final result is ∆(%) , (ifp Q . pre(%,Q))(npp(%)). Intuitively, ∆(%) contains all
the ⊕-positions that are forced to reach npp(%) via the quasi-dominion ⊕-witness
and all the �-positions that can only avoid reaching npp(%) by strictly increasing
their measure, which player � wants obviously to prevent.

It is important to observe that, from a functional view-point, the progress
operator prg+ would work just as well if applied to the entire quasi dominion Q(%),
since it would simply leave unchanged the measure of those positions that already
satisfy the progress condition. However, it is crucial that only the positions in
∆(%) are processed in order to achieve the best asymptotic complexity bound
known to date. We shall reiterate on this point later on.

Alg. 1: Progress Operator

signature prg+ : QDR ⇀ QDR
function prg+(%)

1 Q← ∆(%)
2 while esc(%,Q) 6= ∅ do
3 E← bep(%,Q)

4 %← lift(%,E,Q)
5 Q← Q \ E

6 %← win(%,Q)
7 return %

At each iteration of the while-loop
of Algorithm 1, let Q denote the current
(weak) quasi dominion, initially set to
∆(%) (Line 1). It first identifies the posi-
tions in Q that can immediately escape
from it (Line 2). Those are (i) all the
�-position with a move leading outside
of Q and (ii) the ⊕-positions v whose
⊕-witness σ% forces v to exit from Q,
namely σ%(v) 6∈ Q, and that cannot
strictly increase their measure by choos-
ing to remain in Q. While the condition
for �-position is obvious, the one for ⊕-positions require some explanation. The
crucial observation here is that, while player ⊕ does indeed prefer to remain in
the quasi dominion, it can only do so while ensuring that by changing strategy it
does not enable infinite plays within Q that are winning for the adversary. In
other words, the new ⊕-strategy must still be a ⊕-witness for Q and this can
only be ensured if the new choice strictly increases its measure. The operator
esc : QDR×2Ps → 2Ps formalizes the idea:

esc(%,Q) , {v ∈ Q ∩ Ps� : Mv(v) \Q 6= ∅}
∪ {v ∈ Q ∩ Ps⊕ : σ%(v) 6∈ Q ∧ ∀u ∈ Mv(v) ∩Q . µ%(u) + v ≤ µ%(v))}.

Consider, for instance, the example in Figure 2 and a qdr % such that
µ% = {a 7→ 3; b 7→ 2; c, d, f 7→ 1; e 7→ 0} and σ% = {b 7→ a; f 7→ d}. In this case,
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we have Q% = {a, b, c, d, f} and ∆(%) = {c, d, f}, since c is the only non-progress
positions, d is forced to follow c in order to avoid the measure increase required to
reach b, and f is forced by the ⊕-witness to reach d. Now, consider the situation
where the current weak quasi dominion is Q = {c, f}, i.e. after d has escaped
from ∆(%). The escape set of Q is {c, f}. To see why the ⊕-position f is escaping,
observe that µ%(f) + f = 1 = µ%(f) and that, indeed, should player ⊕ choose to
change its strategy and take the move (f, f) to remain in Q, it would obtain an
infinite play with payoff 0, thus violating the definition of weak quasi dominion.

a/3 b/−1

c/1 d/0

e/−3 f/0

Fig. 2: Another MPG.

Before proceeding, we want to stress an easy conse-
quence of the definition of the notion of escape set and
Conditions 1c and 1d of Definition 4, i.e., that every escape
position of the quasi dominion Q(%) can only assume its
weight as possible measure inside a qdr %, as reported
is the following proposition. This observation, together
with Proposition 2, ensures that the measure of a position
v ∈ Q(%) is an under approximation of the weight of all
finite plays leaving Q(%).

Proposition 4. Let % be a qdr. Then, µ%(v) = wg(v) > 0, for all v ∈ esc(%,Q(%)).

Now, going back to the analysis of the algorithm, if the escape set is non-empty,
we need to select the escape positions that need to be lifted in order to satisfy the
progress condition. The main difficulty is to do so in such a way that the resulting
measure function still satisfies Condition 1d of Definition 4, for all the �-positions
with positive measure. The problem occurs when a �-position can exit either
immediately or passing through a path leading to another position in the escape
set. Consider again the example above, where Q = ∆(%) = {c, d, f}. If position d

immediately escapes from Q using the move (d, b), it would change its measure
to µ′(d) = µ(b) + d = 2 > µ(d) = 1. Now, position c has two ways to escape,
either directly with move (c, a) or by reaching the other escape position d passing
through f. The first choice would set its measure to µ(a) + c = 4. The resulting
measure function, however, would not satisfy Condition 1d of Definition 4, as the
new measure of c would be greater than µ′(d)+c = 2, preventing to obtain a qdr.
Similarly, if position d escapes from Q passing through c via the move (c, a), we
would have µ′′(d) = µ′′(c) + d = (µ(a) + c) + d = 4 > 2 = µ(b) + d, still violating
Condition 1d. Therefore, in this specific case, the only possible way to escape is to
reach b. The solution to this problem is simply to lift in the current iteration only
those positions that obtain the lowest possible measure increase, hence position d

in the example, leaving the lift of c to some subsequent iteration of the algorithm
that would choose the correct escape route via d. To do so, we first compute the
minimal measure increase, called the best-escape forfeit, that each position in the
escape set would obtain by exiting the quasi dominion immediately. The positions
with the lowest possible forfeit, called best-escape positions, can all be lifted at
the same time. The intuition is that the measure of all the positions that escape
from a (weak) quasi dominion will necessarily be increased of at least the minimal
best-escape forfeit. This observation is at the core of the proof of Theorem 2
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(see the appendix) ensuring that the desired properties of qdrs are preserved by
the operator prg+. The set of best-escape positions is computed by the operator

bep : QDR×2Ps → 2Ps as follows: bep(%,Q) , argminv∈esc(%,Q) bef(µ%,Q, v), where

the operator bef : MF×2Ps×Ps→ N∞ computes, for each position v in a quasi
dominion Q, its best-escape forfeit:

bef(µ,Q, v) ,

{
max{µ(u) + v − µ(v) : u ∈ Mv(v) \Q}, if v ∈ Ps⊕;

min{µ(u) + v − µ(v) : u ∈ Mv(v) \Q}, otherwise.

In our example, bef(µ,Q, c) = µ(a) + c− µ(c) = 4− 1 = 3, while bef(µ,Q, d) =
µ(b) + d− µ(d) = 2− 1 = 1. Therefore, bep(%,Q) = {d}.

Once the set E of best-escape positions is identified (Line 3), the procedure
lifts them restricting the possible moves to those leading outside the current quasi
dominion (Line 4). Those positions are, then, removed from the set (Line 5), thus
obtaining a smaller weak quasi dominion ready for the next iteration.

The algorithm terminates when the (possibly empty) current quasi dominion
Q is closed. By virtue of Proposition 1, all those positions belong to Wn⊕ and
their measure is set to ∞ by means of the operator win : QDR×2Ps ⇀ QDR
(Line 6), which also computes the winning⊕-strategy on those positions, as follows:
win(%,Q) , %?, where µ%? , µ%[Q 7→ ∞] and, for all ⊕-positions v ∈ Q(%?)∩Ps⊕,
we choose σ%?(v) ∈ argmaxu∈Mv(v)∩Q µ%(u)+v, if σ%(v) 6∈ Q, and σ%?(v) = σ%(v),
otherwise. Observe that, since we know that every ⊕-position v ∈ Q∩Ps⊕, whose
current ⊕-witness leads outside Q, is not an escape position, any move (v, u)
within Q that grants the maximal stretch µ%(u) + v strictly increases its measure
and, therefore, is a possible choice for a ⊕-witness of the ⊕-dominion Q.

At this point, it should be quite evident that the progress operator prg+ is
responsible of enforcing the progress condition on the positions inside the quasi
dominion Q(%), thus, the following necessarily holds.

Lemma 2. µ% is a progress measure over Q(%), for all fixpoints % of prg+.

In order to prove the correctness of the proposed algorithm, we first need to
ensure that any quasi-dominion space Q is indeed closed under the operators
prg and prg+. This is established by the following theorem, which states that
the operators are total functions on that space.

Theorem 2. The operators prg and prg+ are total inflationary functions.

Since both operators are inflationary, so is their composition, which admits
fixpoint. Therefore, the operator sol is well defined. Moreover, following the same
considerations discussed at the end of Section 3, it can be proved the fixpoint is
obtained after at most n · (S + 1) iterations. Let ifpkX .F(X) denote the k-th
iteration of an inflationary operator F. Then, we have the following theorem.

Theorem 3 (Termination). The solver operator sol , ifp % . prg+(prg(%)) is
a well-defined total function. Moreover, for every % ∈ QDR it holds that sol(%) =
(ifpk %

? . prg+(prg(%
?)))(%), for some index k ≤ n · (S+1), where n is the number

of positions in the MPG and S ,
∑
{wg(v) ∈ N : v ∈ Ps ∧ wg(v) > 0} the total

sum of its positive weights.
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As already observed before, Figure 1 exemplifies an infinite family of games
with a fixed number of positions and increasing maximal weight k over which the
SEPM algorithm requires 2k + 1 iterations of the lift operator. On the contrary,
QDPM needs exactly two iterations of the solver operator sol to find the progress
measure, starting from the smallest measure function µ. Indeed, the first iteration
returns a measure function µ = sol(µ), with µ(a) = k, µ(b) = µ(c) = 0,
and µ(d) = 1, while the second one µ = sol(µ) identifies the smallest progress
measure, with µ(a) = µ(c) = k, µ(b) = 0, and µ(d) = k + 1. From this
observations, the next result immediately follows.

Theorem 4. An infinite family of MPGs {ak}k exists on which QDPM requires
a constant number of measure updates, while SEPM requires O(k) such updates.

From Theorem 1 and Lemmas 1 and 2 it follows that the solution provided
by the algorithm is indeed a progress measure, hence establishing soundness.
Completeness follows from Theorem 3 and from Condition 1b of Definition 4
that ensures that all the positions with infinite measure are winning for player ⊕.

Theorem 5 (Correctness). ‖sol(%)‖� = Wn�, for every % ∈ QDR.

The following lemma ensures that each execution of the operator prg+ strictly
increases the measure of all the positions in ∆(%).

Lemma 3. Let %? , prg+(%). Then, µ%?(v) > µ%(v), for all positions v ∈ ∆(%).

Recall that each position can at most be lifted S + 1 = O(n ·W ) times and,
by the previous lemma, the complexity of sol only depends on the cumulative
cost of such lift operations. We can express, then, the total cost as the sum, over
the set of positions in the game, of the cost of all the lift operations performed
on that positions. Each such operation can be computed in time linear in the
number of incoming and outgoing moves of the corresponding lifted position v,
namely O

(
(|Mv(v)|+ |Mv−(v)|) · logS

)
, with O(logS) the cost of each arith-

metic operation involved. Summing all up, the actual asymptotic complexity of
the procedure can, therefore, be expressed as O(n ·m ·W · log(n ·W )).

Theorem 6 (Complexity). QDPM requires time O(n ·m ·W · log(n ·W )) to
solve an MPG with n positions, m moves, and maximal positive weight W .

5 Experimental Evaluation

In order to assess the effectiveness of the proposed approach, we implemented
both QDPM and SEPM [13], the most efficient known solution to the problem
and the more closely related one to QDPM, in C++ within Oink [32]. Oink
has been developed as a framework to compare parity game solvers. However,
extending the framework to deal with MPGs is not difficult. The form of the
arenas of the two types of games essentially coincide, the only relevant difference
being that MPGs allow negative numbers to label game positions. We ran the
two solvers against randomly generated MPGs of various sizes. 1

1 The experiments were carried out on a 64-bit 3.9GHz quad-core machine, with Intel
i5-6600K processor and 8GB of RAM, running Ubuntu 18.04.
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Fig. 3: Random games with 104 positions.

Figure 3 compares the solution time,
expressed in seconds, of the two algo-
rithms on 4000 games, each with 104 po-
sitions and randomly assigned weights
in the range [−15× 103, 15× 103]. The
scale of both axes is logarithmic. The ex-
periments are divided in 4 clusters, each
containing 1000 games. The benchmarks
in different clusters differ in the maximal
number m of outgoing moves per posi-
tion, with m ∈ {10, 20, 40, 80}. These
experiments clearly show that QDPM
substantially outperforms SEPM. Most
often, the gap between the two algo-
rithms is between two and three orders
of magnitude, as indicated by the dashed diagonal lines. It also shows that SEPM
is particularly sensitive to the density of the underlying graph, as its performance
degrades significantly as the number of moves increases. The maximal solution
time was 21000 sec. for SEPM and 0.017 sec. for QDPM. Figure 4, instead,
compares the two algorithms fixing the maximal out-degree of the underlying
graphs to 2, in the left-hand picture, and to 40, in the right-hand one, while
increasing the number of positions from 103 to 105 along the x-axis. Each picture
displays the performance results on 2800 games. Each point shows the total time
to solve 100 randomly generated games with that given number of positions,
which increases by 1000 up to size 2·103 and by 10000, thereafter. In both pictures
the scale is logarithmic. For the experiments in the right-hand picture we had to
set a timeout for SEPM to 45 minutes per game, which was hit most of the times
on the bigger ones. Once again, the QDPM significantly outperforms SEPM on
both kinds of benchmarks, with a gap of more than an order of magnitude on
the first ones, and a gap of more than three orders of magnitude on the second
ones. The results also confirm that the performance gap grows considerably as
the number of moves per position increases.
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Fig. 4: Total solution times in seconds of SEPM and QDPM on 5600 random games.
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We are not aware of actual concrete benchmarks for MPGs. However, exploit-
ing the standard encoding of parity games into mean-payoff games [25], we can
compare the behavior of SEPM and QDPM on concrete verification problems
encoded as parity games. For completeness, Table 1 reports some experiments
on such problems. The table reports the execution times, expressed in seconds,
required by the two algorithms to solve instances of two classic verification
problems: the Elevator Verification and the Language Inclusion problems. These
two benchmarks are included in the PGSolver [23] toolkit and are often used
as benchmarks for parity games solvers. The first benchmark is a verification
under fairness constraints of a simple model of an elevator, while the second
one encodes the language inclusion problem between a non-deterministic Büchi
automaton and a deterministic one. The results on various instances of those
problems confirm that QDPM significantly outperforms the classic progress
measure approach. Note also that the translation into MPGs, which encodes
priorities as weights whose absolute value is exponential in the values of the
priorities, leads to games with weights of high magnitude. Hence, the results
in Table 1 provide further evidence that QDPM is far less dependent on the
absolute value of the weights. They also show that QDPM can be very effective
for the solution of real-world qualitative verification problems.

Benchmark Positions Moves SEPM QDPM

Elevator 1 144 234 0.0661 0.0001
Elevator 2 564 950 8.80 0.0003
Elevator 3 2688 4544 4675.71 0.0017

Lang. Incl. 1 170 1094 3.18 0.0021
Lang. Incl. 2 304 1222 16.76 0.0019
Lang. Incl. 3 428 878 20.25 0.0033
Lang. Incl. 4 628 1538 135.51 0.0029
Lang. Incl. 5 509 2126 148.37 0.0034
Lang. Incl. 6 835 2914 834.90 0.0051
Lang. Incl. 7 1658 4544 2277.87 0.0100

Table 1: Concrete verification problems.

It is worth noting, though, that the
translation from parity to MPGs gives
rise to weights that are exponentially
distant from each other [25]. As a con-
sequence, the resulting benchmarks
are not necessarily representative of
MPGs, being a very restricted sub-
class. Nonetheless, they provide evi-
dence of the applicability of the ap-
proach in practical scenarios.

6 Concluding Remarks

We proposed a novel solution algorithm for the decision problem of MPGs that
integrates progress measures and quasi dominions. We argue that the integration
of these two concepts may offer significant speed up in convergence to the solution,
at no additional computational cost. This is evidenced by the existence of a
family of games on which the combined approach can perform arbitrarily better
than a classic progress measure based solution. Experimental results also show
that the introduction of quasi dominions can often reduce solution times up to
three order of magnitude, suggesting that the approach may be very effective
in practical applications as well. We believe that the integration approach we
devised is general enough to be applied to other types of games. In particular,
the application of quasi dominions in conjunction with progress measure based
approaches, such as those of [27] and [21], may lead to practically efficient quasi
polynomial algorithms for parity games and their quantitative extensions.
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