
Container NATs and
Session-Oriented
Standards: Friends
or Foe?

Alessandro Amirante
Meetecho S.r.l.

Simon Pietro Romano
University of Napoli Federico II

Abstract—This article highlights issues that arise when deploying network address

translation middle-boxes through containers. We focus on Docker as the container

technology of choice and present a thorough analysis of its networking model, with

special attention to the default bridge network driver that is used to implement network

address translation functionality. We discuss some unexpected shortcomings we

identified and elaborate on the suitability of containers for deploying services based on

the Interactive Connectivity Establishment standard protocol. To support our findings, we

present experiments we conducted in a real-world operational environment, namely a

WebRTC service based on the Janusmedia server.

CONTEXT AND MOTIVATION
& INTERNET-BASED DISTRIBUTED APPLICATIONS rely

more and more on the microservices paradigm

for what concerns their design. Microservices

indeed allow us to embrace well-known design

patterns like the separation of concerns, thanks

to the presence of a number of independently

operating components, whose scalability can eas-

ily be guaranteed through dynamic deployment

and orchestration techniques. When it comes to

the implementation, containers currently repre-

sent the most natural choice, since they allow for

an easy mapping between the designed microser-

vices and their respective real-world operational

counterparts.

In this article, we tackle a specific issue that

one has to face when adopting the aforemen-

tioned approach. Namely, we take distributed

Digital Object Identifier 10.1109/MIC.2019.2952064

Date of publication 8 November 2019; date of current version

17 January 2020.

Theme Article: Microservices and ContainersTheme Article: Microservices and Containers

28
1089-7801 � 2019 IEEE Published by the IEEE Computer Society IEEE Internet Computing

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

WebRTC1 applications as an outstanding example

of systems taking advantage of the (container-

based) microservices paradigm. For such applica-

tions, we make the consideration that real-world

deployments (which typically happen in the

cloud) necessarily call for the adoption of the

Interactive Connectivity Establishment2 (ICE) pro-

tocol, which has been specifically devised in order

to solve network node reachability issues in the

presence of network address translators (NATs).

In the depicted scenario, based on our experi-

ence with deploying scalable real-time multi-

media services in the wild through Docker

containers, we identify a specific issue that arises

when relying on server-side Docker-based com-

ponents, which get deployed behind NATs and

are hence not configured with publicly reachable

IP addresses. Such an issue indeed caused us lots

of troubles in the past and forced us to deeply

investigate the way Docker implements the NAT

concept. The article hence presents the lessons

we learnt and provides some suggestions as to

how best deploy one’s own containers for real-

world operational environments.

The article is organized as follows. “Interactive

Connectivity Establishment” introduces the basic

concepts behind the Interactive Connectivity

Establishment protocol and its utilization to

optimize the NAT traversal in the Internet. “Docker

Networking Model” presents Docker’s networking

architecture, by delving into the details of the so-

called container networking Model. This paves

the way for the discussion in “Docker NAT

Functionality,” where we specifically focus on how

Docker implements the previously discussed

NAT traversal techniques. “Real-World Example:

Janus WebRTC Services” analyzes a real-world

example associatedwith container-basedWebRTC

applications, with special reference to the deploy-

ment of one ormore JanusWebRTCmedia servers

behindNATs. “Final Considerations” discusses les-

sons learnt and proposes a few deployment guide-

lines for services like the one analyzed in

the article. Finally, “Conclusion” concludes the

paper by summarizing itsmain contributions.

INTERACTIVE CONNECTIVITY
ESTABLISHMENT

NATs have been considered enemies of real-

time applications since the session initiation

protocol (SIP)3 has become widely adopted in

the early 2000s as the signaling protocol to initi-

ate Voice over IP or multimedia teleconferencing

calls. This was the main reason which drove to

the definition of the ICE technique as a means to

provide network address translation (NAT) tra-

versal functionality to any session-oriented pro-

tocol. It leverages both STUN4 and TURN,5 the

former being a protocol for address discovery

and connectivity check, the latter being a proto-

col for involving media relays in the communica-

tion. ICE proves effective in the presence of all

types of NAT, as it will be explained in more

detail in “Docker NAT Functionality.” It starts

from the assumption that for a single host multi-

ple IP addresses might be associated

� host addresses: these are the IP addresses

that have been assigned to the interfaces the

host in question is equipped with, plus the

ports that have been picked up for the net-

work communication to happen;

� server-reflexive address: this is a specific NAT

binding (i.e., an <IPaddress, port> pair) that

is allocated on a NAT when the host sends a

packet through the NAT to a STUN server

deployed in the Internet;

� relayed address: this is a specific <IPaddress,

port> pair that is reserved on a publicly avail-

able TURN server when the host sends a

TURN Allocate request to the TURN server

itself;

� peer-reflexive address: similar to a server-

reflexive address, but discovered by the peer

itself from a direct response received, as

briefly explained later in this section.

All of the above (transport) addresses are

called ICE candidates and can indeed exist both

in their UDP and TCP versions.

An ICE transaction takes place in six steps:

gathering, prioritizing, encoding, offering/answer-

ing, checking, completing. During the gathering

phase, all potential ICE candidate addresses

are collected through inspection of the local

interfaces configuration, as well as through

transactions with the configured (if any) STUN

and TURN servers. A priority is then assigned to

each and every collected candidate (prioritizing

phase). Typically, host candidates have a higher

priority than peer-reflexive candidates, which in

November/December 2019 29
Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

turn come before server-reflexive candidates.

Relayed addresses have the lowest priority and

are usually left as a last resort. During the encod-

ing phase, candidates, together with their

assigned priorities, are then properly encoded

as session description protocol (SDP)6 attributes

and sent (either individually, as so-called trickle

candidates,7 or as a bundle, within the payload

of a signaling protocol) to the remote party,

which will answer back with its own collected

candidates. This is the offering/answering phase.

Once all of the ICE candidates are available to

both parties, they can get properly paired (in

descending order of combined priority). For

each such candidate pair, reachability checks

are conducted by issuing STUN requests toward

the remote party. If the checking phase success-

fully completes, the completing phase begins, as

we have found a “working” pair of addresses,

which can then be used for the communication.

It is worth noticing that during the checking

phase, the received “binding response” message

might contain an address which does not match

any of the already collected candidates. Such an

address, also known as peer-reflexive candidate,

indeed contains the same IP address as the

checked candidate, but a different port number.

Peer-reflexive addresses form new candidate

pairs to be tested through the default STUN-

based checking approach.

From the above description, it is clear that

ICE has been conceived at the outset as a solu-

tion to effectively cope with the presence of

NATs in the network. In this article, we will

focus on few important shortcomings that

we identified while deploying session-oriented

real-time multimedia services in operational

environments involving container-oriented,

Docker-based, NAT middle boxes. In order to

do that, we will have to dig a bit deeper into

the details of how the networking stack is real-

ized in Docker. This is the main subject of the

following section.

DOCKER NETWORKING MODEL
The Linux kernel features an extremely

mature and performant implementation of the

network stack. Docker networking uses such ker-

nel’s networking stack as low-level primitives to

create higher level network drivers. To some

extent, Docker networking “is” Linux network-

ing. Networking features in Docker are imple-

mented in the libnetwork library.8

The Docker networking architecture is built

on top of a set of interfaces called the Con-

tainer Networking Model (CNM), whose compo-

nents are depicted in Figure 1 and described

below.

Network Sandbox

A Network Sandbox contains the configura-

tion of a network stack that is used by a con-

tainer. It includes the routing table, names

resolution service, virtual interface card, etc. In

Linux, Docker’s Network Sandboxes are imple-

mented through Network Namespaces, which

allows us to have different and separate instan-

ces of network interfaces and routing tables that

operate independent of each other. By default,

in fact, the set of network interfaces and routing

entries is shared across the entire operating sys-

tem. Namespaces provide resource isolation by

wrapping a global system resource into an

abstraction, which is only bound to processes

within the same namespace.

Endpoint

An Endpoint is the means by which a con-

tainer joins a network. Containers joining multi-

ple networks have multiple endpoints within the

same sandbox.

Network

The CNM defines a Network as a simple col-

lection of endpoints that have connectivity

between them. A network can be implemented

through a Linux bridge, a VLAN, etc.

Network Driver

A Docker Network Driver provides the means

through which Docker networks can actually

work. Network drivers are pluggable modules

that can be used simultaneously and concur-

rently by sandboxes. Each Docker network is

instantiated through a single network driver.

The Docker engine provides an out-of-the-box

set of native network drivers, namely host,

bridge, overlay, and macvlan, which are briefly

introduced in the following sections. New

Microservices and Containers

30 IEEE Internet Computing

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

network drivers can also be implemented and

loaded into the Docker engine, e.g., to provide

integration with new hardware products.

1) Host driver: With the host driver, a container

uses the networking stack of the host. There

is no namespace separation, and all interfa-

ces on the host can be used directly by the

container.

2) Bridge driver: The bridge driver creates a

Linux bridge on the host that is managed by

Docker. By default, containers on the same

bridge can communicate with each other.

External access to containers can also be

configured through the bridge driver. This

driver is used to implement NAT functional-

ity in Docker, i.e., networks realized via the

bridge driver are NATted networks. We will

further analyze the behavior of this module

in “Docker NAT Functionality.”

3) Overlay driver: The overlay driver creates an

overlay network that supports multihost

networks.

4) Macvlan driver: The macvlan driver is an

underlay driver that exposes host network

interfaces directly to containers running on

the host itself. Macvlan allows a single physi-

cal interface to have multiple MAC and IP

addresses; as such, it can be used to provide

IP addresses to containers that are exposed

directly in the underlay network and are

routable on it.

During the network and endpoints lifecycle,

the CNM model controls the IP address assign-

ment for network and endpoint interfaces via

the IPAM driver(s). Libnetwork has a default,

built-in IPAM driver and allows third party IPAM

drivers to be dynamically plugged. On network

creation, the user can specify which IPAM driver

libnetwork needs to use for the network’s IP

address management.

DOCKER NAT FUNCTIONALITY
We conducted a thorough analysis of the

built-in NAT functionality provided by Docker,

namely by its bridge network driver, and elabo-

rate on its suitability for ICE-based applications.

The bridge driver is used by default when a con-

tainer is created if no other network mode is

specified. As already anticipated in “Docker Net-

working Model,” every time a container uses the

bridge driver to join a network, it ends up

being behind a NAT. Such NAT is implemented

by Docker by leveraging Netfilter,9 a framework

provided by the Linux kernel that enables

various networking-related operations. The

observations we make in this section, then, are

Figure 1. Docker’s Container Networking Model.

November/December 2019 31
Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

not Docker-specific but can be applied to any

NAT implementation based on Netfilter. Our first

goal was to classify the NAT provided by Docker

among the four different types defined in

RFC3489,3 namely Full Cone, Restricted Cone, Port

Restricted Cone, Symmetric. Even though this is

not the most fine-grained classification of NAT

variations, as it has been extended in RFC4787,10

it is accurate enough for the sake of this article.

Figure 2 sketches the behavior of these four types

of NATs. A full cone NAT forwards any packet

addressed to its public-facing transport address,

as depicted in Figure 2(a). A restricted cone only

allows forwarding of packets coming from the IP

address of the host that has been previously con-

tacted [see Figure 2(b)]. A port restricted cone

only forwards packets coming from the transport

address of the host that has been previously con-

tacted [see Figure 3(c)]. For these first three

cases, outgoing packets sent from the same NAT-

ted transport address are mapped onto the same

public-facing transport address regardless of the

destination. A symmetric NAT behaves like a port

restricted cone with the only exception that out-

going packets addressed to different hosts are

mapped onto different transport addresses [see

Figure 2(d)].

To determine the type of NAT, we made use

of the Netcat tool11 to send and receive UDP

packets from/to a container, and the Netfilter’s

conntrack command to display the NAT table of

the host machine on which the container is run-

ning. An example of NAT table is depicted in

Figure 3. A new entry is created as soon as the

kernel sees an incoming/outgoing packet that

belongs to a new “connection.” The left-hand

side of the table reports the source and destina-

tion transport addresses of such packet, plus a

Validity field that sets the expiration time of that

entry. The validity is refreshed for each packet

of the same connection that is detected. The

right-hand side of the table, instead, is related to

packets expected on the backward path (i.e., the

so-called “expectations table”). Finally, the State

column reports the state of the entry. For UDP

flows, as soon as the entry is created (i.e., when

the first packet is sent/received), the state is set

to UNREPLIED and the validity to 15 s; the state

Figure 2. Types of NATs. (a) Full cone. (b) Restricted cone. (c) Port restricted cone. (d) Symmetric.

Figure 3. Docker host NAT table.

Microservices and Containers

32 IEEE Internet Computing

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

changes to ASSURED when a packet is detected

in the backward direction, and the validity is

set to 180 s. The experiments we made showed

that at a first glance the Docker bridge network

driver seems to behave like a port restri-

cted cone NAT, given that packets with the

same source port and addressed to different

hosts are mapped onto the same public-facing

transport address (see Figure 3 rows 1 and 2).

A more accurate analysis, though, revealed that

there are cases where it acts as a Symmetric

NAT instead, i.e., packets with the same source

address and port addressed to different destina-

tions are mapped to different external transport

addresses. This is the case when an incoming

packet addressed to a given port is received by

the Docker host prior to detecting any outgoing

connection having the same source port. Rows

3–5 in Figure 3 show how packets sent by the

container from the same port number 20 000

have been mapped to different public ports

because of the incoming packet previously

detected and listed at row 4. This behavior is

also depicted in Figure 3(d). As it will be clarified

in “Real-World Example: Janus WebRTC Serv-

ices,” such behavior is very unfortunate and

may easily cause problems when deploying con-

tainerized ICE-based services, as symmetric

NATs are difficult to deal with.

REAL-WORLD EXAMPLE: JANUS
WEBRTC SERVICES

Deploying services behind a NAT is not

uncommon. For example, all cloud providers,

like Amazon AWS or Microsoft Azure, allow peo-

ple to easily create virtual machine (VM) instan-

ces that live in their datacenters. Such VMs are

behind a NAT that can be configured to enable

port forwarding.

As we saw in “Docker Networking Model”, all

microservices deployed within Docker contain-

ers by default also use the bridge network driver

and, as such, end up being behind a NAT.

Deploying session-based services behind a

NAT is usually not recommended. In fact, even

though ICE has been conceived to cope with

NAT traversal in the first place, set-up times usu-

ally take longer when there are NATs involved,

and relay servers (i.e., TURN servers) may be

needed to ensure connectivity in all network

environments. However, as long as the NAT

types involved are not very restrictive at both

sides of the communication, ICE can still con-

verge quickly.

As anticipated in “Docker NAT Functionality,”

the NAT functionality provided by the Docker

bridge network can be assimilated to either a

port restricted cone or symmetric behavior.

Having a variable behavior which cannot be pre-

dicted beforehand is far from ideal. To provide a

real-world example, we designed a few experi-

ments to deploy a Janus.12 WebRTC server

instance in a Docker container. Before delving

into the details of our experiments, we briefly

introduce the WebRTC architecture.

WebRTC Architecture

WebRTC extends the classic web architec-

ture semantics by introducing a peer-to-peer

communication paradigm between browsers.

The WebRTC architectural model draws its

inspiration from the SIP architecture. Signaling

messages are used to set up and terminate com-

munications. They are transported by the HTTP

or WebSocket protocol via the web server,

which can modify, translate, or manage them as

needed. It is worth noting that the signaling

between browser and server is not standardized

in WebRTC, as it is considered to be part of the

application. As to the data path, WebRTC defines

the PeerConnection abstraction which allows

media to flow directly between browsers without

any intervening servers.

A WebRTC web application is typically writ-

ten as a mix of HTML and JavaScript. It interacts

with web browsers through the standardized

WebRTC API, as well as other standard APIs,

allowing to properly exploit and control the

real-time browser function, both proactively

(e.g., to query browser capabilities) and reac-

tively (e.g., to receive browser-generated notifi-

cations). The WebRTC API must hence provide

a wide set of functions, like connection manage-

ment (in a peer-to-peer fashion), encoding/

decoding capabilities negotiation, selection and

control, media control, firewall, and NAT ele-

ment traversal. Session description represents

an important piece of information that needs to

be exchanged. It specifies the transport informa-

tion, as well as the media type, format, and all

November/December 2019 33
Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

associated media configuration parameters

needed to establish the media path. The Inter-

net Engineering Task Force is now standardizing

the JavaScript Session Establishment Protocol

(JSEP).13 JSEP provides the interface needed by

an application to deal with the negotiated local

and remote session descriptions (with the nego-

tiation carried out through whatever signaling

mechanism might be desired), together with a

standardized way of interacting with the ICE

state machine.

The JSEP approach delegates entirely to the

application the responsibility for driving the sig-

naling state machine: the application must call

the right APIs at the right times and convert the

session descriptions and related ICE information

into the defined messages of its chosen signaling

protocol.

It is worth mentioning that, even though

WebRTC allows for direct browser-to-browser

communication, more complex application

scenarios like, e.g., conferencing and real-

time group-based multimedia communication,

definitely call for the introduction of functional-

ity (e.g., mixing, transcoding, forwarding of the

media involved in a group-shared session) that

cannot be implemented at the end-systems in an

effective way. In these cases, in-network (i.e.,

server-side) components (media servers, selec-

tive forwarding units, multipoint control units,

etc.) come to the fore. Such components obvi-

ously need to adhere to the WebRTC standards

in order to be capable of seamlessly interacting

with WebRTC-enabled browsers on the end-

user’s side.

Testing Docker’s NAT Functionality

WebRTC strongly depends on ICE for its oper-

ations and WebRTC applications represent an

important use case.

On the server side of our testbed, we used

the Docker bridge network and the Google pub-

lic STUN service (stun.l.google.com:19302) for

address discovery. We did not involve a TURN

server in these experiments.

Figure 4. ICE failure.

Microservices and Containers

34 IEEE Internet Computing

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

We leveraged the Janus Streaming plugin to

set up a WebRTC PeerConnection between the

browser and Janus in order to receive a media

stream. The browser client was behind a sym-

metric NAT. This last hypothesis is not unrealis-

tic. As an example, the Firefox browser, since

version 57, has a built-in packet filter, which

makes it behave like it were behind a Symmetric

NAT. Google Chrome will likely provide the same

feature in the near future.

In this scenario, Janus first gathers its ICE

candidates and sends them over to the browser

within a JSEP offer containing the SDP local ses-

sion description. The browser then gathers its

own ICE candidates and sends them to Janus

within a JSEP answer. Right after that, the

browser starts sending STUN check messages

toward the candidates announced by Janus,

which in turn also starts the connectivity check

phase as soon as it receives the ICE candidates

from the browser. This flow is depicted in

Figure 4. The communication set up eventually

fails because the STUN request sent by the

browser through the Symmetric NAT (message

#4) arrives at the Docker host before message

#6. In this case, as explained in “Docker NAT

Functionality,” the Docker NAT uses a different

public port than the one advertised by Janus in

its SDP. If instead Janus had sent its connectivity

check first, the communication would have been

successful. This is more likely to happen when

the browser sends the JSEP offer and Janus

answers (e.g., with the Janus EchoTest plugin),

as illustrated in Figure 5.

FINAL CONSIDERATIONS
In “Docker NAT Functionality,” we analyzed

the operation of the Docker bridge network

Figure 5. ICE success.

November/December 2019 35
Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

driver, which implements NAT functionality, and

demonstrated how it behaves either as a port

restricted cone or a symmetric NAT, depending

on the arrival timing of packets. This makes its

usage for ICE-based applications not recom-

mended, as it can easily make the connection set

up fail as we saw in “A Real-World Example: Janus

WebRTC Services.” In order to effectively deploy

ICE-based services within Docker containers, two

solutions come to our mind. The former is to

leverage the Docker Host network driver. Special

attention should be paid in this case when

deploying multiple containers on the same host,

as port conflicts can easily occur. The latter is to

assign a dedicated IP address to containers. This

can be done by using theMacvlan network driver,

as introduced in Section Network Driver, or by

leveraging a tool called Pipework,14 that we have

been using for a long time and which proved to

be very effective.

CONCLUSION
This article has analyzed in some detail how

Docker currently implements NAT functionality.

We have highlighted how containers get usually

deployed on the host as independent networking

nodes lying behind a host-provided NAT. Such a

NAT typically shows either a portrestricted or a

symmetric behavior. In the latter case, it severely

hinders the correct functioning of the hosted

containers, especially in those situations where

such containers are actually providing some

server-side functionality to remote third parties.

We took WebRTC-enabled distributed multi-

media applications as an interesting use case

and demonstrated how such applications are

best supported by working around the need for

address translation, namely through assigning

publicly reachable independent IP addresses to

the containers deployed on the host and offering

server-side services.

When such an approach is not practicable

(e.g., because of the lack of publicly assignable IP

addresses), one alternative is to rely upon the

Docker-provided host network driver, with the

caveat that port conflicts should be avoided in

case of the co-existence of multiple container

instances on the same host. The only remaining

alternative would be to let the server-side con-

tainers stay behind the Docker NAT and configure

them in such a way as to leverage TURN servers

deployed in the public Internet. This is obviously

a solution that is far from optimal, since it highly

depends on the presence of a relay node that

actually acts “on behalf” of the container and

then forwards to it (back and forth) the traffic

that it ismanaging.

& REFERENCES

1. S. Loreto and S. P. Romano, “How far are we from

WebRTC-1.0? An update on standards and a look at

what’s next,” IEEE Commun. Mag., vol. 23, no. 60,

pp. 200–207, Jul. 2017.

2. A. Keranen, C. Holmberg, and J. Rosenberg,

“Interactive connectivity establishment (ICE): A

protocol for network address translator (NAT)

traversal,” RFC8445, Jul. 2018.

3. J. Rosenberg et al., “SIP: Session initiation protocol,”

RFC3261, Jun. 2002.

4. J. Rosenberg, J. Weinberger, C. Huitema, and R.

Mahy, “STUN—simple traversal of user datagram

protocol (UDP) through network address translators

(NATs),” RFC3489, Mar. 2003.

5. R. Mahy, P. Matthews, and J. Rosenberg, “Traversal

using relays around NAT (TURN): Relay extensions to

session traversal utilities for NAT (STUN),” RFC 5766,

Apr. 2010.

6. M. Handley, V. Jacobson, and C. Perkins, SDP:

Session Description Protocol RFC4566, Jul. 2006.

7. E. Ivov, E. Rescorla, J. Uberti, and P. Saint-Andre,

“Trickle ICE: incremental provisioning of candidates

for the interactive connectivity establishment (ICE)

protocol ddraft-ietf-ice-trickle-21.txt,” Apr. 2018.

8. 2015. [Online]. Available: https://github.com/docker/

libnetwork

9. 1999. [Online]. Available: https://netfilter.org/

10. F. Audet and C. Jennings, “Network address

translation (NAT) behavioral requirements for unicast

UDP,” RFC4787, Jan. 2007.

11. 1995. [Online]. Available: https://sectools.org/tool/netcat/

12. A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano,

“Janus, a general purpose WebRTC gateway,” in

Proc. Conf. Principles, Syst. Appl. IP Telecommun.,

2014, Art. no. 7.

13. J. Uberti and C. Jennings, E. Rescorla JavaScript

Session Establishment Protocol draft-ietf-rtcweb-jsep-

25, Oct. 2018.

14. [Online]. Available: https://github.com/jpetazzo/

pipework/

Microservices and Containers

36 IEEE Internet Computing

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://netfilter.org/
https://sectools.org/tool/netcat/
https://github.com/jpetazzo/pipework/
https://github.com/jpetazzo/pipework/

Alessandro Amirante is currently CTO at Meete-

cho s.r.l. His research interests include the field of net-

working and systems, with special focus on next

generation network architectures, multimedia services

over the Internet, virtualization techniques, and software

containers. He actively participates in Internet Engineer-

ing Task Force standardization activities, mainly in the

Applications and Real Time area. He received the M.

Sc. degree in telecommunications engineering in 2007

and the Ph.D. degree in computer engineering and sys-

tems from the University of Napoli “Federico II,” Italy, in

2010. He is also a member of the IETF Network Opera-

tions Center team. With the rest of the Meetecho team,

he provides remote participation services for all of the

IETFmeetings. Contact him at alex@meetecho.com.

Simon Pietro Romano is an associate professor

with the Department of Electrical Engineering and

Information Technology, University of Napoli Federico

II. He teaches computer networks, computer architec-

tures, network security, and telematics applications.

He is also the co-founder of Meetecho, a startup and

university spin-off dealing with scalable video stream-

ing and WebRTC-based unified collaboration, as well

as of SECurity Solutions for Innovation (SECSI), that

focuses on network security. He actively participates

in Internet Engineering Task Force (IETF) standardiza-

tion activities, mainly in the Applications and Real Time

area. He has conducted research activities in the field

of networking since 1998. He has been working on the

definition of advanced networking architectures capa-

ble to provide end-users with optimized quality of

experience, thanks to a closed-loop approach going

from SLA-based management down to policy-based

configuration of the devices and autonomic monitor-

ing. He has contributed to the field of real-time multi-

media applications, with special regard to the design,

implementation, and standardization of scalable, dis-

tributed architectures for conferencing, media control,

and telepresence. He has carried out research in the

field of network security, mainly focusing ondistributed

intrusion detection and critical infrastructure protec-

tion. Finally, he has started investigating issues associ-

ated with distribution of control in 5G-compliant,

container-based, virtualized architectures. He has a

long track of participations in R&D projects, both at the

national and at the international level. He is currently

leading the SecureHybrid inNetwork caching Environ-

ment project funded by the European Space Agency.

Contact him at spromano@unina.it.

November/December 2019 37
Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on October 11,2020 at 09:49:05 UTC from IEEE Xplore. Restrictions apply.

mailto:alex@meetecho.com
mailto:spromano@unina.it

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

