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Abstract. Nonlinear time history analysis represents the most appro-
priate structural analysis procedure to accurately analyze seismically
base-isolated structures since their dynamic response is typically gov-
erned by a system of coupled nonlinear ordinary differential equations
of the second order in time. The selection of a suitable phenomenologi-
cal model, required to accurately describe the hysteretic behavior of each
seismic isolation bearing, as well as of a time integration method, required
to numerically integrate the nonlinear equilibrium equations, plays a cru-
cial role in performing such analyses. Indeed, both the phenomenological
model and time integration method directly affect the accuracy of the
results and the computational burden of the analyses. This paper pro-
poses an efficient computational strategy obtained by combining a novel
phenomenological model and an explicit structure-dependent time inte-
gration method. Numerical accuracy and computational efficiency of the
proposed solution strategy are assessed by performing several nonlinear
dynamic analyses on a seismically base-isolated structure and comparing
the results with those obtained by employing a widely used conventional
procedure.

Keywords: Phenomenological model - Time integration method -
Base-isolated structure

1 Introduction

Nonlinear time history analyses are typically performed to achieve a more realis-
tic prediction of the dynamic response of seismically base-isolated structures. The
accuracy and computational efficiency of such sophisticated analyses strongly
depend upon a suitable combination of the phenomenological models, adopted
to describe the hysteretic behavior of the seismic isolators, and the time integra-
tion method, required to solve the nonlinear equilibrium equations [1].

A large number of uniaxial phenomenological models are available in the
literature to simulate the behavior of the seismic isolation bearings. They are
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typically divided into three main categories according to the type of equation
to be solved for the evaluation of the device restoring force: (i) algebraic models
[2,3], (ii) transcendental models [4,5], and (iii) differential models [6,7].

Differential models are generally adopted since they are accurate and need a
relatively small number of parameters. Unfortunately, such models suffer from a
limited computational efficiency due to the need of numerically solving a differen-
tial equation at each time step of the analysis; in addition, they may also require
the use of sophisticated parameter identification procedures [8-11] mainly due
to a somehow unclear mechanical significance of the adopted parameters.

As far as the numerical solution of the nonlinear equilibrium equations is
concerned, several time integration methods are available in the literature. Such
methods are usually classified into two categories according to the kind of coeffi-
cients appearing in the expressions used to compute the unknown displacement
and velocity vectors at the generic time step of the analysis: (i) conventional
time integration methods [12,13] and (ii) structure-dependent time integration
methods [14,15].

Implicit unconditionally stable conventional time integration methods, such
as the Newmark’s constant average acceleration method, are currently the most
widely used methods to perform nonlinear time history analyses of seismically
base-isolated structures since they allow for the use of a relatively large time step,
the accuracy being the only requirement to fulfill [16]; unfortunately, such meth-
ods have a limited computational efficiency and may suffer from convergence
issues since they need to be used in conjunction with an iterative procedure,
such as the pseudo-force method [7,17].

In this paper, we propose an accurate and computationally efficient proce-
dure for carrying out nonlinear time history analyses of seismically base-isolated
structures adopting seismic isolation devices having a kinematic hardening non-
stiffening hysteretic behavior. In particular, the proposed computational strategy
combines a novel phenomenological model and an explicit structure-dependent
time integration method.

Compared to differential models, the proposed one does not need the numer-
ical solution of a differential equation at each time step of the analysis for the
evaluation of the device restoring force; furthermore, it is based on a set of only
three parameters having a clear mechanical significance, and it can be easily
implemented in a computer program.

Compared to implicit unconditionally stable conventional time integration
methods, the proposed one does not require iterative procedures and, conse-
quently, does not suffer from convergence issues. Furthermore, it is uncondi-
tionally stable for all base-isolated structures with seismic isolators having a
non-stiffening hysteretic behavior, has a second-order accuracy, does not suffer
from numerical damping, and displays a small relative period error for small
time step.
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2 Nonlinear Equilibrium Equations

The nonlinear equilibrium equations of a Multi-Degree-Of-Freedom (MDOF)
system are:

Mii(t) + Cu(t) + Ku(t) + £,(¢) = p(t). (1)

where u(t), u(t), and u(¢) represent the generalized displacement, velocity, and
acceleration vectors, respectively, whereas M, C, and K are the generalized con-
stant mass, damping, and elastic stiffness matrices, respectively; furthermore,
f, () represents the generalized nonlinear force vector, whereas p(t) is the gen-
eralized external force vector depending on time t.

Such a system of coupled nonlincar Ordinary Differential Equation (ODE)
can be specialized to the structural model of a typical seismically base-isolated
structure.

To this end, we introduce a three-dimensional (3D) structural model made up
of two substructures, namely the n-story superstructure and the base-isolation
system, as shown in Fig.1. Its geometry is defined in a global, right-handed
Cartesian coordinate system, denoted with X, Y, and Z, that is attached to the
mass center of the base isolation system.

For simplicity, we assume that: (a) the superstructure deforms within its lin-
ear elastic range during the earthquake excitation; (b) each floor diaphragm is
infinitely rigid in its own plane; (¢) the columns are axially inextensible; (d) the
beams are axially inextensible and flexurally rigid; (e) the seismic isolators are
axially inextensible. Note that these assumptions, generally adopted in the liter-
ature [18], can be removed without any influence on the computational strategy
proposed in this work.

superstructure

Fig. 1. 3D structural model of a typical base-isolated structure.
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According to the adopted structural idealization, the displacement, velocity,
and acceleration vectors of the 3D structural model, relative to the ground, may

be written as: ' )
a={u ) u= i = {n) 2
U, U, U,

where up, Wy, W (ug, Ug, Ug) represent, respectively, the displacement, velocity,
and acceleration vectors of the base isolation system (superstructure), having
size 3 x 1 (3n x 1).

Consequently, the constant mass, damping, and elastic stiffness matrices
become:

~[M, 07 _[c,+c, C” Ky + K, K"

where My, Cyp, K, (M, Cq, Ky) are, respectively, the constant mass, damping,
and elastic stiffness matrices of the base isolation system (superstructure), having
size 3 X 3 (3n x 3n), whereas matrices C and K are given by:

C=[-Cc,0", K=[-K, 0], (4)

in which C; and K, are, respectively, the constant damping and elastic stiffness
matrices of the first superstructure diaphragm, having dimension 3 x 3.
Finally, the nonlinear force vector and the external force vector are given by:

o I

where f,; represents the nonlinear force vector of the base isolation system,
having dimension 3 x 1, Ry (Ry) is the base isolation system (superstructure)
influence matrix, having dimension 3 x 3 (3n x 3), whereas 1, is the ground
acceleration vector, having dimension 3 x 1.

3 Conventional Solution Strategy

In this section, a typical solution strategy, generally employed to perform Non-
linear Time History Analyses (NLTHAS) of seismically base-isolated structures,
is briefly presented and the key issues affecting its efficiency are emphasized.
Such a strategy combines some of the most adopted phenomenological models
with a widely used time integration method, that is referred to as conventional
to distinguish it from the proposed one.

3.1 Phenomenological Models

Seismic isolators can be divided into two main categories, namely elastomeric
and sliding bearings. The former are made up of alternating layers of rubber and
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thin reinforcing elements, whereas the latter are composed of rigid plates that
can slide with respect to each other [19,20].

A large number of uniaxial phenomenological models have been proposed in
the literature for simulating the complex hysteretic behavior occurring in such
devices when they deform along one of their transverse directions under the effect
of an axial compressive load. Depending on the kind of equation that needs to
be solved for the evaluation of the device restoring force, these models can be
classified into three main categories: (i) algebraic models, (ii) transcendental
models, and (iii) differential models.

For the case of elastomeric bearings, the expression of the restoring force
f J@ (t) of the i-th isolator of a base isolation system, along its transverse direction
7, is typically defined by employing the differential model proposed by Nagara-
jaiah et al. [7]:

£ = akul? (1) + (1 - a) kd=\"(2), (6)

where a € (0,1) is a dimensionless parameter, £ > 0 and d > 0 are parameters

having dimension of stiffness and displacement, respectively, and z]m(t) is a
dimensionless variable obtained by solving the following first-order nonlinear

ODE:

e—1

S0

J J

0@ =q! [Aug.i)(t) —b ‘u(.i)(t)‘ AD()

— cugi)(t) ‘zy)(t)‘e] , (7)

where e is a positive number, A, b, ¢ are scalars, whereas ugl)(t) and u;l)(t) are
the displacement and velocity of the i-th device along its transverse direction j,
respectively.

Similarly, for the case of sliding bearings, the expression of the restoring
force f]@(t) is generally defined by employing the differential model proposed

where N is the axial compressive force acting on the bearing, R is the radius of
curvature of the sliding surface, pgi) (t) is the kinetic coefficient of friction, zﬁi) (t)
is a dimensionless hysteretic variable evaluated by solving Eq. (7).
Unfortunately, the numerical solution of Eq. (7), that characterizes the cele-
brated Bouc-Wen model [21,22], at each time step of a NLTHA may significantly

increase the overall computational effort.

3.2 Conventional Time Integration Method

The nonlinear equilibrium equations can be conveniently expressed at the generic
time t + At:

Mu(t + At) + Cu(t + At) + Ku(t + At) + £, (¢ + At) = p(¢ + At),  (9)

where At is the time step of a NLTHA.
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Equation (9) may be numerically solved by adopting a time integration
method, whose formulation is generally obtained by supplementing the equa-
tions of motion with two difference equations for the evaluation of the unknown
displacement and velocity vectors. Specifically, the general formulation of a fam-
ily of time integration methods can be expressed as:

May 1 + Cvipr + Kdist + (£n)iv1 = Pigy, (10a)
di+1 = dz + AlAtVZ‘ + Ag(At)Qai + Ag(At)QaH_l + qi+1’ (10b)
Vit1 = V; + B, Ata; + BgAtaH_l +rit1, (10(‘,)

where d;11, viy1, and a;yq are approximate estimates of the displacement
u(t+ At), velocity u(t + At), and acceleration (¢ + At) vectors at the (i+1)-th
time step, respectively; (f,);41 = £,,(di4+1, viy1) and p;,, are approximate esti-
mates of the nonlinear force vector f, (¢t + At) and of the external force vector
p(t + At) at the (i 4+ 1)-th time step, respectively. The matrices A, Ao, Ag,
as well as By, By are coefficient matrices that define a specific family of time
integration methods, whereas q, ,; and r;y; are load-dependent vectors, namely
vectors that are functions of the external force vector.

In conventional time integration methods, such as the Newmark’s family of
methods [12], all the coefficient matrices become scalar quantities, that is, Ay,
Ao, A3z, By, and By, and both the load-dependent vectors become zero vectors,
that is, q;, 1 = ri;1 = 0.

One of the widely used conventional methods typically employed to perform
NLTHAS of base-isolated structures is the Newmark’s constant Average Accel-
eration Method (AAM), whose formulation can be obtained by setting 4; = 1,
A2 = Ag = 1/4, Bl = BQ = 1/2, and qi+1 =Tj41 = 0in Eq (10)

Such an implicit unconditionally stable conventional time integration method
allows for the use of a relatively large time step, the accuracy being the only
requirement to fulfill [16]; unfortunately, it is not computationally efficient and
may suffer from convergence issues since it needs to be employed in conjunction
with an iterative procedure, such as the pseudo-force method [7,17].

4 Proposed Solution Strategy

In this section, we present an alternative solution strategy that combines a novel
phenomenological model with an explicit unconditionally stable time integra-
tion method. The proposed model, able to simulate the hysteretic behavior of
elastomeric bearings, allows one to avoid the numerical solution of the first-
order nonlinear ODE associated with the Nagarajaiah et al. Model (NM) [7].
A novel efficient model able to simulate the hysteretic behavior of sliding bear-
ings has been already formulated by the same authors in [23]. The proposed
method allows one to avoid the use of iterative procedures, such as the pseudo-
force method, required when the nonlinear equilibrium equations are solved by
employing the Newmark’s constant average acceleration method.
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4.1 Proposed Phenomenological Model

The Proposed Phenomenological Model (PPM) represents a specific instance
of the more general class of uniaxial phenomenological models formulated by
Vaiana et al. [24].

Figure 2 shows a restoring force-displacement hysteresis loop bounded by two
parallel straight lines, typically exhibited by seismic isolators with kinematic
hardening non-stiffening hysteretic behavior, obtained by imposing a sinusoidal
displacement and simulated by means of the PPM.

Such a hysteresis loop can be divided into four different branches, each one
(4)
, J
ugz) of the i-th device along its transverse direction j. The different branches are
described as follows:

corresponding to a different interval of displacement u;’ and sign of the velocity

e branch 1: f](Z) =c¢; when x; < ugi) < xy and ugz) > 0,

e branch 2: fj@ = c9 when ugl) > x9 and ag’) > 0,

e branch 3: f}z) =c3 when x4 < uy) <x3 and ug.” <0,

e branch 4: f;z) =c4 when ugz) < x4 and u}” < 0,

where x5 (z4), representing the model history variable, is the displacement where

e generic loading (unloading) curve ¢y (c3) intersects the upper (lower) limitin

the g ic loading (unloading) (c3) int ts the upper (1 ) limiting
curve ¢y (c4), whereas ©1 = x9 — 27 (3 = x4+ 2Z). In particular, the expressions

of such branches are:

(i) _(1+“§i)—f2+25)(1_7) (1+25:)<1—'Y>_ _
Cc1 = k’b'u] + (ka — kb) T— — T~ + z,
Cy) = k‘bugz) + 5, ) )
@ i (1_u§i>+m4+%)(1_w (1+25:)<1—7>- ) (11)
Cc3 = k’b'u] + (ka — ]{Ib) - P — poy | -z,
Cy — k‘b’ugz) - 2, ) ]

where k,, kp, and v are the model parameters influencing the hysteresis loop
size, whereas T and Z are the internal model parameters evaluated as a function
of ky, ky, and ~. In particular, k, > kp, kg > 0, v >0, v# 1,z >0, Z > 0;
furthermore, the internal model parameters are computed as:

_ 1 ka - kb %
xr = 5 [( 10_20 ) — ]_] y (12)
(1+2%)377 — 1]

I —7

whereas the model history variables are evaluated as:

ko — ky

5 (13)

z =

L—n
ko — kp

(+ 2:5)(1‘”] }%)

[fP — kyup — 2+ (kg — kp)
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Fig. 2. Branches c1, ¢, ¢3, and ¢4 for a hysteresis loop bounded by two parallel straight
lines.

11 (5)
-1 142 (1= !
x4y = —14up—2T+ i fp—kbUP‘i‘f'f‘(ka—kb)( %) ;
k’a—k‘b 7_1

(15)
where (up,fp) are the coordinates of the initial point P of the generic loading
or unloading curve.

4.2 Proposed Explicit Time Integration Method

The Proposed Explicit Method (PEM) represents a specific algorithm of the more
general family of explicit structure-dependent time integration methods devel-
oped by Chang [15], whose formulation is obtained from Eq. (10) by assuming:

A1 — 1, A3 — 0, B1 == AQ, Bg = O7 (16&)
Ay = [M + BAIC) + a(AL)*Ko] ' M = S5 M, (16b)
Qiy1 =So "' (A (Piyy —P;)]. Tiv1 =0, (16¢)

where Cy and Kj are the initial tangent damping and stiffness matrices of the
base-isolated structure, respectively, and a and [ are scalar parameters deter-
mining the numerical properties (i.e., accuracy and stability) of the algorithm
under consideration.

The PEM, obtained by setting « = 1/4 and 8 = 1/2, exhibits excellent
accuracy and stability properties. Indeed, it is unconditionally stable for all
non-stiffening systems, as the ones considered in this work, has a second-order
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accuracy, does not suffer from numerical damping, and displays a small relative
period error for small value of At.

As far as the PEM formulation is concerned, let us consider a generic time
interval ¢; < ¢ < t;41 and let the external force vector p; (p;;;) be assigned at
the beginning (end) of the interval. We assume that the displacement, velocity,
and acceleration vectors at time step i, that is, d;, v;, and a;, are known. Our
aim is to evaluate such vectors at time step ¢ + 1, that is, d;41, vi41, and a; 41,
by means of the proposed algorithm. To this end, we first observe that Eq.
(10b) provides, on account of Eq. (16), the following expression for the unknown
displacement vector d;1:

dip1 =d; + Atv; + S5t [M(A)a; + a(AY? (pay — pi)] - (17)

The unknown velocity vector v;;1 can be computed by using Eq. (10¢) that, on
account of Eq. (16), can be also written as:

Vig1 = Vi + Sy ' MAta,. (18)
Once the nonlinear forces vector (?n)i+1 = f,,(d; 11, vi11) has been evaluated by
employing suitable phenomenological models, the unknown acceleration vector
a;11 can be computed by using the following expression derived from Eq. (10a):

a1 = M_l |:p7:+1 — CV7;+1 — Kd7j+1 — (fn)i+1:| . (19)

5 Numerical Experiments

This section presents the results of several analyses carried out on a seismically
base-isolated structure, subjected to bidirectional earthquake excitation, in order
to investigate the accuracy and the computational efficiency of the proposed
procedure.

To perform the analyses, the proposed phenomenological model, described
in 4.1, is used to reproduce the dynamic behavior of each elastomeric bearing
adopted in the base isolation system of the analyzed structure. Furthermore,
the proposed explicit time integration method, described in 4.2, is employed to
numerically integrate the nonlinear equilibrium equations.

In order to demonstrate the accuracy properties of the proposed procedure
and its capability to significantly decrease the computational burden of the anal-
yses, the numerical results and the computational times are compared with those
obtained by employing the conventional solution strategy described in Sect. 3;
such a strategy combines the differential model proposed by Nagarajaiah et al.
[7] with the well-known Newmark’s constant average acceleration method [12].

Note that, in this paper, the first-order nonlinear ODE, characterizing the
above-mentioned differential model and given by Eq. (7), is numerically solved
by using the unconditionally stable semi-implicit Runge-Kutta method [25] and
considering 50 steps. Furthermore, the Newmark’s constant average acceleration
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method is adopted in conjunction with the pseudo-force iterative procedure in
which a convergence tolerance value of 10~ has been assumed.

The hysteretic models and the solution algorithms have been programmed in
MATLAB and run on a computer having an Intel®CoreT™i7-4700MQ processor
and a CPU at 2.40 GHz with 16 GB of RAM.

5.1 Base-Isolated Structure Properties

Fig. 1 shows the 3D structural model of the seismically base-isolated structure
selected to carry out the numerical experiments. In particular, the superstructure
is a two-story reinforced concrete structure with vertical geometric irregularity,
plan dimension along the X-axis (Y-axis) equal to 10 m (8 m), and story height
of 3.5 m. The weight of the superstructure is 1802.9 kN and the first three natural
periods are Tg1 = 0.15s, Ty = 0.14 s, and Ts3 = 0.10 s, respectively. As a result
of the assumptions made in Sect. 2, the total number of the superstructure DOF's
is equal to 6.

The base isolation system, having a total weight of 914.9 kN, consists of 9 elas-
tomeric bearings, namely lead rubber bearings, that are placed under the super-
structure columns, and a full diaphragm above the isolation devices. Because of
the assumptions detailed in Sect. 2, the total number of the base isolation sys-
tem DOFs is equal to 3. Note that the base isolation system has been designed
in order to provide an effective isolation period T.;; = 2.25 s and an effective
viscous damping (ery = 0.15 at the design displacement Dy = 0.50 m.

5.2 Applied Earthquake Excitation

The analyses are performed by imposing, along the X-axis (Y-axis), the compo-
nent SN (SP) of the 1994 Northridge motion, and by adopting a ground accel-
eration record time step of 0.0025 s.

5.3 Hysteretic Models Parameters

The dynamic behavior of the elastomeric bearings is simulated adopting the
novel phenomenological model, presented in 4.1, when the analysis is carried out
by employing the proposed procedure; on the contrary, it is modeled by means of
the Nagarajaiah et al. model, described in 3.1, when the analysis is performed by
using the conventional procedure. Specifically, the parameters adopted in each
hysteretic model are listed in Table 1.

5.4 Numerical Results

The results of the analyses carried out on the analyzed base-isolated structure
are shown in Table2. The accuracy of the Proposed Procedure (PP) is very
satisfactory since the maximum and minimum values of the displacement of the

base isolation system mass center along the X (Y') direction, that is, uSUMCb)
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Table 1. Hysteretic models parameters.

NM [ k[Nm™'] |a b c/dim] |e |A
1.834 x 10° | 0.10 1 ]0[0.0171 | 1.1|1
PPM | ko [Nm™'] | ky [Nm™'] |~
3.669 x 10° | 1.834 x 10° | 62.5

Table 2. Nonlinear time history analyses results.

g ] Jug O m) s [g] iy [g]
tet[s] |tetp |Max| Min |Max| Min |Max|Min |Max | Min
CP | 2051.80 | — 0.25 | —-0.24]0.26 | —0.20|0.45 | —0.38 | 1.22 | —1.10
PP |3.13 0.15% 0.25 | —0.24 | 0.26 | —0.20 | 0.46 | —0.38 | 1.24 | —1.11

(uéMCb )), as well as the ones of the acceleration of the second story mass center
along the X (Y) direction, that is, M) (iiQE,MCZ)), are numerically quite close
to those predicted by using the Conventional Procedure (CP).

Figure3a (b) shows the restoring force-displacement hysteresis loops dis-
played along the X (Y') direction by the isolator having coordinates X = —5
m and Y = 4 m, referred to as Isolator 1. Generally speaking, the comparison
between the responses of the analyzed structure obtained with the PP and the
CP shows a very good agreement.

In order to show the computational efficiency of the proposed strategy,
Table 2 presents the average total computational time tct required to analyze
the structure by employing the PP and the CP. It is evident that the com-
putational burden of the proposed procedure, expressed by tct, is significantly
reduced with respect to that characterizing the conventional one.

We also report a second parameter, denominated tctp, since the parameter
tct is not a fully objective measure of the PP efficiency due to its dependency on
the amount of the back-ground process running on the computer, the relevant
memory, as well as the CPU speed. In particular, the parameter tctp has been
obtained by normalizing the tct parameter of the proposed approach with respect
to that characterizing the conventional one. Hence, by defining:

PP tct

PPtdeQ::CPtd

-100 , (20)

one obtains a more meaningful measure of the computational benefits related to
the use of the proposed strategy.
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Fig. 3. Hysteresis loops of the Isolator 1 obtained along the (a) X and (b) Y directions.

6 Conclusions

We have presented a solution procedure to analyze seismically base-isolated
structures with seismic isolators having a non-stiffening hysteretic behavior. Such
a procedure combines a novel phenomenological model, obtained by specializing
a more general class of models recently formulated by Vaiana et al. [24], and an
explicit structure-dependent time integration method, obtained by specializing
a family of explicit methods developed by Chang [15].

To show the accuracy and the computational efficiency of the proposed app-
roach, nonlinear time history analyses have been performed on a base-isolated
structure with elastomeric bearings. Specifically, the numerical results and the
computational times obtained by the proposed strategy have been compared to
those obtained by employing a conventional solution approach that combines
the differential model proposed by Nagarajaiah et al. [7] with the widely used
Newmark’s constant average acceleration method adopted in conjunction with
the pseudo-force iterative procedure.

The dynamic response of the analyzed structure, subjected to a bidirectional
earthquake excitation, reveals that the accuracy of the presented strategy is very
satisfactory since the numerical results closely match those predicted by the
conventional one. In addition, the analyses results reveal that the computational
burden required by the proposed strategy is reduced of three orders of magnitude
with respect to that characterizing the conventional one; in particular, the total
computational time percentage, tctp, of proposed approach is less than 0.50%.

In forthcoming papers, the proposed model will be extended to the two-
dimensional case to better simulate the actual response of base-isolated struc-
tures subjected to bidirectional earthquake excitation [26]. Furthermore, the
proposed model will be also adopted to analyze buildings with seismic devices
[27] by using the concept of seismic response envelopes [28].
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