CW-complex Nagata idealizations **

Armando Capasso ${ }^{\text {a }}$, Pietro De Poi ${ }^{\text {b }}$, Giovanna Ilardi ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Scuola Politecnica e delle Scienze di Base, Università degli Studi di Napoli
"Federico II", corso Protopisani Nicolangelo 70, Napoli, C.A.P. 80146, Italy
${ }^{\text {b }}$ Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli
Studi di Udine, via delle Scienze 206, Udine, C.A.P. 33100, Italy
c Dipartimento di Matematica ed Applicazioni " R. Caccioppoli", Università degli
Studi di Napoli "Federico II", via Cintia 21, Napoli, C.A.P. 80126, Italy

A R T I C L E I N F O

Article history:

Received 23 June 2020
Received in revised form 25 June 2020
Accepted 25 June 2020
Available online xxxx

$M S C$:

primary $13 \mathrm{~A} 30,05 \mathrm{E} 40$
secondary $57 \mathrm{Q} 05,13 \mathrm{D} 40,13 \mathrm{~A} 02$,
13 E 10

Keywords:
Lefschetz properties
Artinian Gorenstein algebra
Nagata idealization
CW-complex

A B S T R A C T

We introduce a construction which allows us to identify the elements of the skeletons of a CW-complex $P(m)$ and the monomials in m variables. From this, we infer that there is a bijection between finite CW-subcomplexes of $P(m)$, which are quotients of finite simplicial complexes, and certain bigraded standard Artinian Gorenstein algebras, generalizing previous constructions of Faridi and ourselves.
We apply this to a generalization of Nagata idealization for level algebras. These algebras are standard graded Artinian algebras whose Macaulay dual generator is given explicitly as a bigraded polynomial of bidegree $(1, d)$. We consider the algebra associated to polynomials of the same bidegree $\left(d_{1}, d_{2}\right)$.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[^0]
0. Introduction

Let $X=V(f) \subset \mathbb{P}_{\mathbb{K}}^{N}$ be a hypersurface, where the underlying field \mathbb{K} has characteristic 0 ; the Hessian determinant of f (which we call the Hessian of f or the Hessian of X) is the determinant of the Hessian matrix of f.

Hypersurface with vanishing Hessian were studied for the first time in 1851 by O. Hesse; he wrote two papers ([10,11]) according to which these hypersurfaces should be necessarily cones. In 1876 Gordan and Noether ([7]) proved that Hesse's claim is true for $N \leq 3$, and it is false for $N \geq 4$. They and Franchetta classified all the counterexamples to Hesse's claim in \mathbb{P}^{4} (see $[7,3,4,6]$). In 1900, Perazzo classified cubic hypersurfaces with vanishing Hessian for $N \leq 6$ ([14]). This work was studied and generalized in [5], and the problem is still open in spaces of higher dimension.

Hessians of higher degree were introduced in [13] and used to control the so called Strong Lefschetz Properties (for short, SLP). The Lefschetz properties have attracted a great attention in the last years. The basic papers of the algebraic theory of Lefschetz properties were the original ones of Stanley [15-17] and the book of Watanabe and others [8].

An algebraic tool that occurs frequently in these papers is the Nagata Idealization: it is a tool to convert any module M over a (commutative) ring (with unit) R to an ideal of another ring $R \ltimes M$. The starting point is the isomorphism between the idealization of an ideal $I=\left(g_{0}, \ldots, g_{n}\right)$ of $\mathbb{K}\left[u_{1}, \ldots, u_{m}\right]$ and its level algebra see [8, Definition 2.72]. In this way, the new ring is a Standard Graded Artinian Gorenstein Algebra (SGAG algebra, for short). An explicit formula for the Macaulay generator f is:

$$
f=x_{0} g_{0}+\cdots+x_{n} g_{n} \in \mathbb{K}\left[x_{0}, \ldots, x_{n}, u_{1}, \ldots, u_{m}\right]_{(1, d)}
$$

A generalization of this construction is to consider polynomials of the form:

$$
f=x_{0}^{d} g_{0}+\cdots+x_{n}^{d} g_{n} \in \mathbb{K}\left[x_{0}, \ldots, x_{n}, u_{1}, \ldots, u_{m}\right]_{(d, d+1)}
$$

these are called Nagata polynomials of degree d. The Lefschetz properties for the relevant associated algebras A, the geometry of Nagata hypersurfaces of degree d, the interaction between the combinatorics of f and the structure of A were studied in [1], where the g_{i} 's are square free monomials, using a simplicial complex associated to f.

In this paper we use the $C W$-complexes, to study Nagata polynomials of bidegree $\left(d_{1}, d_{2}\right)$. We study the Hilbert vector and we give a complete description of the ideal I for every case, also if the g_{i} 's are not square free monomials.

The geometry of the Nagata hypersurface is very similar to the geometry of the hypersurfaces with vanishing Hessian.

More precisely, we introduce a new Construction 3.10 which allows us to identify each (monic) monomial of degree d in m variables with an element of the ($d-1$)-skeleton of a CW-complex that we call $P(m)$. This CW-complex is constructed by generalizing
the construction introduced in [2] which associates to a (monic) square-free monomial in m variables of degree d a unique $(d-1)$-cell of the simplex of dimension $m-1$, and vice versa. We consider an h-power u_{i}^{h} as a product of h linear forms: $\tilde{u}_{1} \cdots \tilde{u}_{h}$; this corresponds to a $(h-1)$-simplex, and we identify all the δ-faces, with $\delta<h-1$, of this simplex to just one δ-face, recursively, starting from $\delta=0$ to $\delta=h-2$: for $\delta=0$ we identify all the points to one, then if $\delta=1$ we obtain a bouquet of h-circles, and we identify all these circles, and so on. Generalizing this construction to a general monic monomial and attaching the corresponding CW-complexes along the common skeletons, we obtain $P(m)$.

The paper is organized as follows: in Section 1 we recall some generalities about graded Artinian Gorenstein Algebras and Lefschetz Properties, with their connections with the vanishings of higher order Hessians. In Section 2 we recall what the Nagata idealization is, what we intend for a higher Nagata idealization and we show its connection with the Lefschetz Properties for bihomogeneous polynomials. Section 3 is the core of this article. After recalling generalities about bigraded algebras and the topological definitions that we need, we give the construction of the CW-complex $P(m)$; then, we apply it to the Nagata polynomials (Definition 2.5) in Theorems 3.16 and 3.18, which give Theorem 3.16 a precise description of the Artinian Gorenstein Algebra associated to a Nagata polynomial and Theorem 3.18 the generators of the annihilator of the polynomial. We show that from these theorems a generalization of the principal results of [1] follows: Corollaries 3.17 and 3.19.

We think that the study of the Nagata hypersurfaces can be - among other things-a useful tool for the classification of the hypersurfaces with vanishing Hessian in \mathbb{P}^{n}.

Notations. In this the paper we fix the following notations and assumptions:

- \mathbb{K} is a field of characteristic 0 .
- $R:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ will always be the ring of polynomials in $n+1$ variables x_{0}, \ldots, x_{n}.
- $Q:=\mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$ will be the ring of differential operators of R, where $X_{i}=\frac{\partial}{\partial x_{i}}$.
- The subscript of a graded \mathbb{K}-algebra will indicate the part of that degree; R_{d} is the \mathbb{K}-vector space of the homogeneous polynomials of degree d, and Q_{δ} the \mathbb{K}-vector space of the homogeneous differential operators of order δ.

1. Graded Artinian Gorenstein algebras and Lefschetz properties

1.1. Graded Artinian Gorenstein algebras are Poincaré algebras

Definition 1.1. Let I be a homogeneous ideal of R such that $A=R / I=\bigoplus_{i=0}^{d} A_{i}$ is a graded Artinian \mathbb{K}-algebra, where $A_{d} \neq 0$. The integer d is the socle degree of A. The algebra A is said standard if it is generated in degree 1 . Setting $h_{i}=\operatorname{dim}_{\mathbb{K}} A_{i}$, the vector
$\operatorname{Hilb}(A)=\left(1, h_{1}, \ldots, h_{d}\right)$ is called Hilbert vector of A. Since $I_{1}=0$, then $h_{1}=n+1$ is called codimension of A.

We also recall the following definitions.
Definition 1.2. A graded Artinian \mathbb{K}-algebra $A=\bigoplus_{i=0}^{d} A_{i}$ is a Poincaré algebra if $\cdot: A_{i} \times$ $A_{d-i} \rightarrow A_{d}$ is a perfect pairing for $i \in\{0, \ldots, d\}$.

Definition 1.3. A graded Artinian \mathbb{K}-algebra A is Gorenstein if (and only if) $\operatorname{dim}_{\mathbb{K}} A_{d}=1$ and it is a Poincaré algebra.

Remark 1.4. The Hilbert vector of a Poincaré algebra A is symmetric with respect to $h_{\left\lfloor\frac{d}{2}\right\rfloor}$, that is $\operatorname{Hilb}(A)=\left(1, h_{1}, h_{2}, \ldots, h_{2}, h_{1}, 1\right)$.

1.2. Graded Artinian Gorenstein quotient algebras of Q

For any $d \geq \delta \geq 0$ there exists a natural \mathbb{K}-bilinear map $B: R_{d} \times Q_{\delta} \rightarrow R_{d-\delta}$ defined by differentiation

$$
B(f, \alpha)=\alpha(f)
$$

Definition 1.5. Let $I=\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$-where f_{1}, \ldots, f_{ℓ} are forms in R-be a finite dimensional \mathbb{K}-vector subspace of R. The annihilator of I in Q is the following homogeneous ideal

$$
\operatorname{Ann}(I):=\{\alpha \in Q \mid \forall f \in I, \alpha(f)=0\}
$$

In particular, if I is generated by a homogeneous element f, we write $\operatorname{Ann}(I)=\operatorname{Ann}(f)$.
Let $A=Q / \operatorname{Ann}(f)$, where f is homogeneous. By construction A is a standard graded Artinian \mathbb{K}-algebra; moreover A is Gorenstein.

Theorem 1.6 ([12], §60ff, [13], theorem 2.1). Let I be a homogeneous ideal of Q such that $A=Q / I$ is a standard Artinian graded \mathbb{K}-algebra. Then A is Gorenstein if and only if there exist $d \geq 1$ and $f \in R_{d}$ such that $A \cong Q / \operatorname{Ann}(f)$.

Remark 1.7. Using the notation as above, A is called the $S G A G \mathbb{K}$-algebra associated to f. The socle degree d of A is the degree of f and the codimension is $n+1$, since $I_{1}=0$. \diamond

1.3. Lefschetz properties and the Hessian criterion

Let $A=\bigoplus_{i=0}^{d} A_{i}$ be a graded Artinian \mathbb{K}-algebra.

Definition 1.8. If there exists an $L \in A_{1}$ such that:
(1) The multiplication map $\cdot L: A_{i} \rightarrow A_{i+1}$ is of maximal rank for all i, then A has the Weak Lefschetz Property (WLP, for short);
(2) The multiplication map $\cdot L^{k}: A_{i} \rightarrow A_{i+k}$ is of maximal rank for all i and k, then A has the Strong Lefschetz Property (SLP, for short);

Definition 1.9. Let A be the SGAG \mathbb{K}-algebra associated to an element $f \in R_{d}$, and let $\mathcal{B}_{k}=\left\{\alpha_{j} \in A_{k} \mid j \in\left\{1, \ldots, \sigma_{k}\right\}\right\}$ be an ordered \mathbb{K}-basis of A_{k}. The k-th Hessian matrix of f with respect to \mathcal{B}_{k} is

$$
\operatorname{Hess}_{f}^{k}=\left(\alpha_{i} \alpha_{j}(f)\right)_{i, j=1}^{\sigma_{k}}
$$

The k-th Hessian of f with respect to \mathcal{B}_{k} is

$$
\operatorname{hess}_{f}^{k}=\operatorname{det}\left(\operatorname{Hess}_{f}^{k}\right)
$$

Theorem 1.10 ([18] Theorem 4). An element $L=a_{0} X_{0}+\cdots+a_{n} X_{n} \in A_{1}$ is a strong Lefschetz element of A if and only if $\operatorname{hess}_{f}^{k}\left(a_{0}, \ldots, a_{n}\right) \neq 0$ for all $k \in\left\{0, \ldots,\left\lfloor\frac{d}{2}\right\rfloor\right\}$. In particular, if for some k one has $\operatorname{hess}_{f}^{k}=0$, then A does not have SLP.

2. Higher order Nagata idealization

2.1. Nagata idealizations

Definition 2.1. Let A be a ring and let M be an A-module. The Nagata idealization $A \ltimes M$ of M is the ring with underlying set $A \times M$ and operations defined as follows:

$$
(r, m)+(s, n)=(r+s, m+n),(r, m) \cdot(s, n)=(r s, s m+r n) .
$$

2.1.1. Bigraded Artinian Gorenstein algebras

Let $A=\bigoplus_{i=0}^{d} A_{i}$ be a SGAG \mathbb{K}-algebra, it is bigraded if:

$$
A_{d}=A_{\left(d_{1}, d_{2}\right)} \cong \mathbb{K}, A_{i}=\bigoplus_{h=0}^{i} A_{(i, h-i)} \text { for } i \in\{0, \ldots, d-1\}
$$

since A is a Gorenstein ring, and the pair $\left(d_{1}, d_{2}\right)$ is said the socle bidegree of A. In this case we call A an $S B A G$ algebra.

Remark 2.2. By Definition 1.3, $A_{i} \cong A_{d-i}^{\vee}=\operatorname{Hom}_{\mathbb{K}}\left(A_{d-i}, \mathbb{K}\right)$ and since the duality commutes with direct sums, one has $A_{(i, j)} \cong A_{\left(d_{1}-i, d_{2}-j\right)}^{\vee}$ for any pair (i, j).

We fix notation as in Theorem 2.4:

- $S:=R \otimes_{\mathbb{K}} \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]=\mathbb{K}\left[x_{0}, \ldots, x_{n}, u_{1}, \ldots, u_{m}\right]$ is the bigraded ring of polynomials in $m+n+1$ variables $x_{0}, \ldots, x_{n}, u_{1}, \ldots, u_{m}$;
- We have chosen the natural bigrading of $S: x_{i}$ has bidegree $(1,0)$ and u_{j} has bidegree $(0,1)$;
- Define $S_{\left(d_{1}, d_{2}\right)}$ to be the \mathbb{K}-vector space of bihomogeneous polynomials f of bidegree $\left(d_{1}, d_{2}\right)$; that is, f can be written as $\sum_{i=0}^{p} a_{i} b_{i}$, where $a_{i} \in R_{d_{1}}=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{d_{1}}$ and $b_{i} \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]_{d_{2}}$.
- $T:=Q \otimes_{\mathbb{K}} \mathbb{K}\left[U_{1}, \ldots, U_{m}\right]=\mathbb{K}\left[X_{0}, \ldots, X_{n}, U_{1}, \ldots, U_{m}\right]$ is the (bigraded) ring of differential operators of S, where $X_{i}=\frac{\partial}{\partial x_{i}}$ and $U_{j}=\frac{\partial}{\partial u_{j}} ; X_{i}$ has bidegree $(1,0)$ and U_{j} has bidegree $(0,1)$.

A homogeneous ideal I of S is a bihomogeneous ideal if:

$$
I=\bigoplus_{i, j=0}^{\infty} I_{(i, j)} \text {, where } \forall i, j \in \mathbb{N}_{\geq 0}, I_{(i, j)}=I \cap S_{(i, j)}
$$

Let $f \in S_{\left(d_{1}, d_{2}\right)}$, then $I=\operatorname{Ann}(f)$ is a bihomogeneous ideal and using Theorem 1.6, $A=$ $T /(\operatorname{Ann}(f))$ is a SBAG \mathbb{K}-algebra of socle bidegree $\left(d_{1}, d_{2}\right)$ (and codimension $\left.m+n+1\right)$.

Remark 2.3. Using the above notations, one has:

$$
\forall i>d_{1}, j>d_{2}, I_{(i, j)}=T_{(i, j)}
$$

Indeed, for all $\alpha \in T_{(i, j)}$ with $i>d_{1}, j>d_{2}, \alpha(f)=0$; as a consequence:

$$
\forall k \in\left\{0, \ldots, d_{1}+d_{2}\right\}, A_{k}=\bigoplus_{\substack{0 \leq i \leq d_{1} \\ 0 \leq j \leq d_{2} \\ i+j=k}} A_{(i, j)}
$$

Moreover, the evaluation map $\alpha \in T_{(i, j)} \mapsto \alpha(f) \in A_{\left(d_{1}-i, d_{2}-j\right)}$ provides the following short exact sequence:

$$
\begin{equation*}
0 \longrightarrow I_{(i, j)} \longrightarrow T_{(i, j)} \longrightarrow A_{\left(d_{1}-i, d_{2}-j\right)} \longrightarrow 0 . \diamond \tag{1}
\end{equation*}
$$

The following theorem, which links Nagata idealizations with bihomogeneous polynomials, holds.

Theorem 2.4 ([8], Theorem 2.77). Let $S^{\prime}:=\mathbb{K}\left[u_{1}, \ldots, u_{m}\right]$ and $S:=R \otimes_{\mathbb{K}} S^{\prime}$ be rings of polynomials, let $T^{\prime}=\mathbb{K}\left[U_{1}, \ldots, U_{m}\right]$ and $T:=Q \otimes_{\mathbb{K}} T^{\prime}$ be the associated ring of
differential operators, where $X_{i}=\frac{\partial}{\partial x_{i}}$ and $U_{j}=\frac{\partial}{\partial u_{j}}$. Let g_{0}, \ldots, g_{n} be homogeneous elements of S^{\prime} of degree d, let I be the T^{\prime}-submodule of S^{\prime} generated by $\left\{\partial\left(g_{i}\right) \in R \mid \partial \in\right.$ $T, i \in\{0, \ldots, n\}\}$ and let $A^{\prime}:=T^{\prime} / \operatorname{Ann}(I)$. Define $f=x_{0} g_{0}+\cdots+x_{n} g_{n} \in R$, it is a bihomogeneous polynomial of bidegree (1, d), and let $A:=T / \operatorname{Ann}(f)$. Considering I as an A^{\prime}-module, $A^{\prime} \ltimes I \cong A$.

2.2. Lefschetz properties for higher Nagata idealizations

Definition 2.5. A bihomogeneous polynomial

$$
f=\sum_{i=0}^{n} x_{i}^{d_{1}} g_{i} \in S_{\left(d_{1}, d_{2}\right)}
$$

is called a $C W$-Nagata polynomial of degree $d_{1} \geq 1$ if $g_{i} \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right], i=0, \ldots, n$, are linearly independent monomials of degree $d_{2} \geq 2$.

Remark 2.6. One needs $n \leq\binom{ m+d_{2}-1}{d_{2}}$ otherwise the g_{i} cannot be linearly independent.

From now on, we assume that n satisfies this condition. \diamond
We will need the following propositions.
Proposition 2.7 ([4] Proposition 2.5). Let $n+1 \geq m \geq 2, d_{2}>d_{1} \geq 1$ and $s>$ $\binom{m+d_{1}-1}{d_{1}}$; for any $j \in\{1, \ldots, s\}$, let $f_{j} \in S_{\left(d_{1}, 0\right)}, g_{j} \in S_{\left(0, d_{2}\right)}$. Then the form $f=f_{1} g_{1}+\cdots+f_{s} g_{s}$ of degree $d_{1}+d_{2}$ satisfies

$$
\operatorname{hess}_{f}^{d_{1}}=0 ;
$$

that is, $A=T / \operatorname{Ann}(f)$ does not have the SLP condition.
Proposition 2.8 ([1] Proposition 2.7). Let $n+1 \geq m \geq 2, d_{1} \geq d_{2}$. Then $L=\sum_{i=0}^{n} X_{i}$ is a
Weak Lefschetz Element; that is, $A=T / \operatorname{Ann}(f)$ has the WLP condition.

3. CW-complex Nagata idealization of bidegree $\left(d_{1}, d_{2}\right)$

Let S and T be as in the previous subsection.
Definition 3.1. A bihomogeneous CW-Nagata polynomial

$$
f=\sum_{i=0}^{n} x_{i}^{d_{1}} g_{i} \in S_{\left(d_{1}, d_{2}\right)}
$$

is called a simplicial Nagata polynomial of degree d_{1} if the monomials g_{i} are square free.
Remark 3.2. One needs $n \leq\binom{ m}{d_{2}}$ otherwise the g_{i} cannot be square free. \diamond

3.1. CW-complexes and bihomogeneous polynomials

3.1.1. Abstract finite simplicial complexes

Definition 3.3. Let $V=\left\{u_{1}, \ldots, u_{m}\right\}$ be a finite set. An abstract simplicial complex Δ with vertex set V is a subset of 2^{V} such that
(1) $\forall u \in V \Rightarrow\{u\} \in \Delta$,
(2) $\forall \sigma \in \Delta, \tau \varsubsetneqq \sigma, \tau \neq \emptyset \Rightarrow \tau \in \Delta$.

The elements σ of Δ are called faces or simplices; a face with $q+1$ vertices is called q-face or face of dimension q and one writes $\operatorname{dim} \sigma=q$; the maximal faces (with respect to the inclusion) are called facets; if all facets have the same dimension $d \geq 1$ then one says that Δ is of pure dimension d. The set Δ^{k} of faces of dimension at most k is called k-skeleton of $\Delta .2^{V}$ is called simplex (of dimension $m-1$).

Remark 3.4.

(1) (cfr. [1, Remark 3.4]) There is a natural bijection, introduced in [2], between the square free monomials, of degree d, in the variables u_{1}, \ldots, u_{m} and the $(d-1)$-faces of the simplex 2^{V}, with vertex set $V=\left\{u_{1}, \ldots, u_{m}\right\}$. In fact, a square free monomial $g=u_{i_{1}} \cdots u_{i_{d}}$ corresponds to the subset $\left\{u_{i_{1}}, \ldots, u_{i_{d}}\right\}$ of 2^{V}. Vice versa, to any subset F of V with d elements one associates the free square monomial $m_{F}=\prod_{u_{i} \in F} u_{i}$ of degree d.
(2) Let $f=\sum_{i=0}^{n} x_{i}^{d_{1}} g_{i} \in S_{\left(d_{1}, d_{2}\right)}$ be a simplicial Nagata polynomial; by hypothesis there is bijection between the monomials g_{i} and the indeterminates x_{i}. From this, we can associate to f a simplicial complex Δ_{f} with vertices u_{1}, \ldots, u_{m} where the facet which corresponds to g_{i} is identified with $x_{i}^{d_{1}}$. \diamond

3.1.2. CW-complexes

For the topological background, we refer to [9]. We start by fixing some notations.
Definition 3.5. Let $k \in \mathbb{N}_{\geq 1}$. A topological space e^{k} homeomorphic to the open (unitary) ball $\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{1}^{2}+\cdots+x_{k}^{2}<1\right\}$ of dimension k (with the natural topology induced by \mathbb{R}^{k+1}) is called a k-cell. Its boundary, i.e. the $(k-1)$-dimensional sphere will be denoted by $\mathbb{S}^{k-1}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k} \mid x_{1}^{2}+\cdots+x_{k}^{2}=1\right\}$ and its closure, i.e.
the closed (unitary) k-dimensional disk will be denoted by $\mathbb{D}^{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k} \mid\right.$ $\left.x_{1}^{2}+\cdots+x_{k}^{2} \leq 1\right\}$.

We reall the following

Definition 3.6. A $C W$-complex is a topological space X constructed in the following way:
(1) There exists a fixed and discrete set of points $X^{0} \subset X$, whose elements are called 0 -cells;
(2) Inductively, the k-skeleton X^{k} of X is constructed from X^{k-1} by attaching k-cells e_{α}^{k} (with index set A_{k}) via continuous maps $\varphi_{\alpha}^{k}: \mathbb{S}_{\alpha}^{k-1} \rightarrow X^{k-1}$ (the attaching maps). This means that X^{k} is a quotient of $Y^{k}=X^{k-1} \bigcup_{\alpha \in A_{k}} \mathbb{D}_{\alpha}^{k}$ under the identification $x \sim \varphi_{\alpha}(x)$ for $x \in \partial \mathbb{D}_{\alpha}^{k}$; the elements of the k-skeleton are the (closure of the) attached k cells;
(3) $X=\bigcup_{k \in \mathbb{N}>0} X^{k}$ and a subset C of X is closed if and only if $C \cap X^{k}$ is closed for any k (closed weak topology).

Definition 3.7. A subset Z of a CW-complex X is a $C W$-subcomplex if it is the union of cells of X, such that the closure of each cell is in Z.

Definition 3.8. A CW-complex is finite if it consists of a finite number of cells.

We will be interested mainly in finite CW-complexes.

Example 3.9 (Geometric realization of an abstract simplicial complex). It is an obvious fact that to any simplicial complex Δ one can associate a finite CW-complex $\widetilde{\Delta}$ via the geometric realization of Δ as a simplicial complex (as a topological space) $\widetilde{\Delta} . \Delta$

In what follows we will always identify abstract simplicial complexes with their corresponding simplicial complexes.

Construction 3.10. In Remark 3.4, we saw that to any degree d square-free monomial $u_{i_{1}} \cdots u_{i_{d}} \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]_{d}$ one can associate the ($d-1$)-face $\left\{u_{i_{1}}, \ldots, u_{i_{d}}\right\}$ of the abstract $(m-1)$-dimensional simplex $\Delta(m):=2^{\left\{u_{1}, \ldots, u_{m}\right\}}$, and vice versa: if we call

$$
\begin{aligned}
\rho_{d} & :=\left\{f \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]_{d} \mid f \neq 0 \text { is a square-free monic monomial }\right\} \\
D(m)_{d} & :=\Delta(m)^{d} \backslash \Delta(m)^{d-1},
\end{aligned}
$$

we have a bijection

$$
\sigma_{d}: \rho_{d} \rightarrow D(m)_{d}
$$

$$
u_{i_{1}} \cdots u_{i_{d}} \mapsto\left\{u_{i_{1}}, \ldots, u_{i_{d}}\right\} .
$$

Alternatively, we can associate to $u_{i_{1}} \cdots u_{i_{d}}$ the element of the $(d-1)$-skeleton $\overline{\left\{u_{i_{1}}, \ldots, u_{i_{d}}\right\}} \in \widetilde{\Delta(m)}^{d-1}$, so we have a bijection

$$
\begin{aligned}
\sigma_{d}: \rho_{d} & \rightarrow \widetilde{\Delta(m)}^{d-1} \\
u_{i_{1}} \cdots u_{i_{d}} & \mapsto \overline{\left\{u_{i_{1}}, \ldots, u_{i_{d}}\right\}}
\end{aligned}
$$

between the square-free monomials and the $(d-1)$-faces of the (topological) simplex $\widetilde{\Delta(m)}$.

Using CW-complexes, we will extend this construction to the non-square-free monic monomials. We proceed as follows. Let $g:=u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}$ be a generic degree $d:=j_{1}+\cdots+$ j_{m} monomial. Consider the following finite set: $W:=\left\{u_{1}^{1}, \ldots, u_{1}^{j_{1}}, \ldots, u_{m}^{1}, \ldots, u_{m}^{j_{m}}\right\}$, and if $\Delta(d):=2^{W}$ is the abstract associated (finite) simplex, we consider the corresponding (topological) simplex (which is a CW-complex) $\widetilde{\Delta(d)}$.

If $j_{k} \leq 1$ we do nothing, while if $j_{k} \geq 2$, we recursively identify, for ℓ varying from 0 to $j_{k}-2$, the ℓ-faces of the subsimplex $2^{\left\{u_{k}^{1}, \ldots, u_{k}^{j_{k}}\right\}} \subset \widetilde{\Delta(d)}$: start with $\ell=0$, and we identify all the j_{k} points to one point-call it u_{k}. Then, for $\ell=1$, we obtain a bouquet of $\binom{j_{k}+1}{2}$ circles, and we identify them in just one circle \mathbb{S}^{1} passing through u_{k}, and so on, up to the facets of $2\left\{\begin{array}{l}\left\{\begin{array}{l}1 \\ 1\end{array}, \ldots, u_{k}^{j_{k}}\right\}\end{array}\right.$, i.e. its $j_{k}+1\left(j_{k}-1\right)$-faces, which, by the construction, have all their boundary in common, and we identify all of them.

Make all these identifications for all j_{1}, \ldots, j_{m}; in this way, we obtain a finite CWcomplex $X=X_{g}$ of dimension $d-1$, with 0-skeleton $X^{0}=\left\{u_{i} \mid j_{i} \neq 0\right\} \subset\left\{u_{1}, \ldots, u_{m}\right\}$, obtained from the $(d-1)$-dimensional simplex $\widetilde{\Delta(d)}$, with the above identification.

In this way, we obtain a finite CW-complex $X=X_{g}$ of dimension d-1, with 0-skeleton $X^{0}=\left\{u_{i} \mid j_{i} \neq 0\right\} \subset\left\{u_{1}, \ldots, u_{m}\right\}$, obtained from the $(d-1)$-dimensional simplex $\widetilde{\Delta(d)}$, with the above identification. Under this identification each closure of a $\left(j_{k}-1\right)$-cell $\overline{\left\{u_{k}^{1}, \ldots, u_{k}^{j_{k}}\right\}}$ becomes a point if $j_{k}=1$, a circle \mathbb{S}^{1} if $j_{k}=2$, a topological space with fundamental group \mathbb{Z}_{3} if $j_{k}=2$ (i.e. it is not a topological surface), etc. We will denote these spaces in what follows by $\epsilon_{k}^{j_{k}-1}$, i.e. $\epsilon_{k}^{j_{k}-1}$ corresponds to $u_{k}^{j_{k}}$, and vice versa:

Proposition 3.11. Every power in $u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}$ (up to a permutation of the variables) corresponds to a $\epsilon_{k}^{j_{k}-1}$, and vice versa.

We can see X_{g} as a $(d-1)$-dimensional join between these spaces $\epsilon_{k}^{j_{k}-1}$ and the span of the 0-skeleton X^{0} i.e. the simplex $S_{X} \subset \widetilde{\Delta(m)}$ associated to it; $S_{X} \cong \widetilde{\Delta(\ell)}$, where $\ell=\# X^{0} \leq m$.

Remark 3.12. This last observation suggests we consider an alternative construction: recall that the cellular decomposition of the real projective space is obtained attaching a single cell at each passage; indeed, $\mathbb{P}_{\mathbb{R}}^{n}$ is obtained from $\mathbb{P}_{\mathbb{R}}^{n-1}$ by attaching one n-cell with the quotient projection $\varphi^{n-1}: \mathbb{S}^{n-1} \rightarrow \mathbb{P}_{\mathbb{R}}^{n-1}$ as the attaching map.

Then, to each power $u_{k}^{j_{k}}$ we associate a real projective space of dimension $j_{k}-1 \mathbb{P}_{k}^{j_{k}-1}$ and immersions $i_{k-1}: \mathbb{P}_{k}^{j_{k}-1} \hookrightarrow \mathbb{P}_{k}^{j_{k}} ;$ so $\mathbb{P}_{k}^{0}=u_{k} \in \mathbb{P}_{k}^{j_{k}-1}$.

Finally, to $g=u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}$ we associate the join between the $\mathbb{P}_{k}^{j_{k}-1}$ and the S_{X} defined above; if we call this join by X_{g}, we can proceed in an equivalent way, by changing $\epsilon_{k}^{j_{k}-1}$ with $\mathbb{P}_{k}^{j_{k}-1}$.

It is clear how to glue two of these finite CW-complexes-say $X=X_{u_{1}^{j_{1}} \ldots u_{m}^{j_{m}}}$ and $Y=Y_{u_{1}^{k_{1}} \ldots u_{m}^{k_{m}}}$, of degree $d=j_{1}+\cdots+j_{m}$ and $d^{\prime}=k_{1}+\cdots+k_{m}$ along $\Delta(m)$: we simply attach X and Y via the inclusion maps $S_{X} \subset \widetilde{\Delta(m)}$ and $S_{Y} \subset \widetilde{\Delta(m)}$, where S_{X} and S_{Y} are the simplexes associated to, respectively, X and Y.

Finally, taking all these finite CW-complexes together, we obtain a CW-complex P in the following way:

$$
C:=\bigsqcup_{u_{1}^{j_{1} \ldots u_{m}^{j_{m}} \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]}} X_{u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}} \quad P(m):=C / \sim
$$

where \sim is the equivalence relation induced by the above gluing.
Proposition 3.13. There is bijection between the monomials of degree d in $\mathbb{K}\left[u_{1}, \ldots, u_{m}\right]$ and the elements of the $(d-1)$-skeleton of $P(m)$.

In other words, if we define

$$
\rho_{d}^{\prime}:=\left\{f \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]_{d} \mid f \neq 0 \text { is a monic monomial }\right\}
$$

we have a bijection, using the above notation

$$
\begin{aligned}
\sigma_{d}^{\prime}: \rho_{d}^{\prime} & \rightarrow P(m)_{d-1} \\
u_{1}^{j_{1}} \cdots u_{m}^{j_{m}} & \mapsto X_{u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}} .
\end{aligned}
$$

Proposition 3.14. $X_{u_{1}^{j_{1}} \ldots u_{m}^{j_{m}}} \subset X_{u_{1}^{k_{1}} \ldots u_{m}^{k_{m}}}$ if and only if $u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}$ divides $u_{1}^{k_{1}} \cdots u_{m}^{k_{m}}$.
Let $f=\sum_{i=0}^{n} x_{i}^{d_{1}} g_{i} \in S_{\left(d_{1}, d_{2}\right)}$ be a CW-Nagata polynomial; by hypothesis there is bijection between the monomials g_{i} and the indeterminates x_{i}. From this, we can associate to f a finite $\left(d_{2}-1\right)$-dimensional, CW-subcomplex of $P(m), \Delta_{f}$ where the $\left(d_{2}-1\right)$-skeleton is given by the $X_{g_{i}}$'s glued together with the above procedure. Each $X_{g_{i}}$ can be identified with $x_{i}^{d_{1}}$ as before.

The previous construction generalizes the analogous one given in [1].

3.2. The Hilbert function of SBAG algebras

The first main result of this paper is the following general theorem.
Remark 3.15. In order to state it, we observe that the canonical bases of

$$
S_{\left(d_{1}, d_{2}\right)}=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{d_{1}} \otimes \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]_{d_{2}}
$$

and

$$
T_{\left(d_{1}, d_{2}\right)}=\mathbb{K}\left[X_{0}, \ldots, X_{n}\right]_{d_{1}} \otimes \mathbb{K}\left[U_{1}, \ldots, U_{m}\right]_{d_{2}}
$$

given by monomials are dual bases each other, i.e.

$$
X_{0}^{k_{0}} \cdots X_{n}^{k_{n}} U_{1}^{\ell_{1}} \cdots U_{m}^{\ell_{m}}\left(x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}\right)=\delta_{k_{0}, \ldots, k_{n}, \ell_{1}, \ldots, \ell_{m}}^{i_{0}, \ldots, i_{n}, j_{1}, \ldots, j_{m}}
$$

where $i_{0}+\cdots+i_{n}=k_{0}+\cdots+k_{n}=d_{1}, j_{1}+\cdots+j_{m}=\ell_{1}+\cdots+\ell_{m}=d_{2}$ and $\delta_{k_{0}, \ldots, k_{n}, \ell_{1}, \ldots, \ell_{m}}^{i_{0}, \ldots, i_{m}, j_{1}, \ldots, j_{m}}$ is the Kronecker delta.

This simple observation allows us to identify-given a CW-Nagata polynomial $f=$ $\sum_{r=0}^{n} x_{r}^{d_{1}} g_{r} \in S_{\left(d_{1}, d_{2}\right)}$ - the dual differential operator G_{r} of the monomial g_{r}-i.e. the monomial $G_{r} \in \mathbb{K}\left[U_{1}, \ldots, U_{m}\right]_{d_{2}}$ such that $G_{r}\left(g_{r}\right)=1$ and $G_{r}(g)=0$ for any other monomial $g \in \mathbb{K}\left[u_{1}, \ldots, u_{m}\right]_{d_{2}}$-with the same element of the $\left(d_{2}-1\right)$-skeleton of Δ_{f} associated to g_{r}. In other words, we associate to $g_{r}=u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}$ and to $G_{r}=U_{1}^{j_{1}} \cdots U_{m}^{j_{m}}$ the CW-subcomplex of $\Delta_{f} \subset P(m), X_{u_{1}^{j_{1} \ldots u_{m}^{j_{m}}}}$.

Theorem 3.16. Let $f=\sum_{r=0}^{n} x_{r}^{d_{1}} g_{r} \in R_{\left(d_{1}, d_{2}\right)}$, with $g_{r}=u_{1}^{j_{1}} \cdots u_{m}^{j_{m}}$, be a CW-Nagata polynomial of (positive) degree d_{1}, where $n \leq\binom{ m}{d_{2}}$, let Δ_{f} be the $C W$-complex associated to f and let $A=Q / \operatorname{Ann}(f)$. Then

$$
A=\bigoplus_{h=0}^{d=d_{1}+d_{2}} A_{h}
$$

where

$$
A_{h}=A_{(h, 0)} \oplus \cdots \oplus A_{(p, q)} \oplus \cdots \oplus A_{(0, h)}, p \leq d_{1}, q \leq d_{2}, A_{d}=A_{\left(d_{1}, d_{2}\right)}
$$

and moreover, $\forall j \in\left\{0,1, \ldots, d_{2}\right\}$,

$$
\operatorname{dim} A_{(i, j)}=a_{i, j}= \begin{cases}f_{j} & i=0 \\ \sum_{r=0}^{n} f_{j, r} & i \in\left\{1, \ldots, d_{1}-1\right\} \\ f_{d_{2}-j} & i=d_{1}\end{cases}
$$

where:

- f_{j} is the number of the elements of the $(j-1)$-skeleton of the $C W$-complex Δ_{f} (with the convention that $f_{0}=1$);
- $f_{j, r}$ is the number of the elements of the $(j-1)$-skeleton of the $C W$ complex $X_{G_{r}}$ (with the convention that $f_{0, r}=1$, so that $\operatorname{dim} A_{(i, 0)}=n+1$).

More precisely, a basis for $A_{(i, j)}, \forall j \in\left\{0,1, \ldots, d_{2}\right\}$, is given by
(1) If $i=0,\left\{\Omega_{1}, \ldots, \Omega_{f_{j}}\right\}$, where any $\Omega_{s}:=U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$, with $s_{1}+\cdots+s_{m}=j$, is associated to the element $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ of the $(j-1)$-skeleton of Δ_{f};
(2) If $i=1, \ldots, d_{1}-1,\left\{\Omega_{s}^{i, s_{1}, \ldots, s_{m}}\right\} \substack{s \in\{0, \ldots, n\} \\ s_{k} \leq, r_{k}, k=1, \ldots, m \\ \sum_{k} s_{k}=j} \substack{ \\\text { s. }} \Omega_{s}^{i, s_{1}, \ldots, s_{m}}:=X_{s}^{i} \cdot U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ is associated to the element $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ of the $(j-1)$-skeleton of $X_{g_{s}}$;
(3) If $i=d_{1},\left\{X_{0}^{d_{1}} \Omega_{1}(f), \ldots X_{n}^{d_{1}} \Omega_{f_{d_{2}}-j}(f)\right\}$, where $\left\{\Omega_{1}, \ldots \Omega_{f_{d_{2}-j}}\right\}$ is the basis for $A_{\left(0, d_{2}-j\right)}$ of case (1).

In the cases (1) and (2) the basis are given by monomials, in the case (3), in general, not.

Proof. We divide the proof into computing the dimension of $A_{(i, j)}$ and find a basis for it, as i varies:

$$
i=0: \quad A_{(0,0)} \cong \mathbb{K}
$$

Then, by definition, if $j \in\left\{1, \ldots, d_{2}\right\}, A_{(0, j)}$ is generated by the (canonical images of the) monomials $\Omega_{s} \in Q_{j}=\mathbb{K}\left[U_{1}, \ldots, U_{m}\right]_{j} \cong Q_{(0, j)}$ that do not annihilate f. This means that, if we write

$$
\Omega_{s}=U_{1}^{s_{1}} \cdots U_{m}^{s_{m}} \quad s_{1}+\cdots+s_{m}=j
$$

there exists an $r_{s} \in\{0, \ldots, n\}$ such that $g_{r_{s}}=u_{1}^{s_{1}} \cdots u_{m}^{s_{m}} g_{r_{s}}^{\prime}$, where $g_{r_{s}}^{\prime} \in$ $R_{d_{2}-j}$ is a (nonzero) monomial; this means that $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ is an element of the $(j-1)$-skeleton of the CW-complex Δ_{f} by Proposition 3.14.
We need to prove that these monomials are linearly independent over \mathbb{K} : let $\left\{\Omega_{1}, \ldots, \Omega_{f_{j}}\right\}$ be a system of monomials of $Q_{(0, j)}$, where any $\Omega_{s}=$ $U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ with $s_{1}+\cdots+s_{m}=j$, is associated to an element of the $(j-1)$ -
skeleton of the CW-complex Δ_{f}; take a linear combination of them and apply it to f :

$$
0=\sum_{s=1}^{f_{j}} c_{s} \Omega_{s}(f)=\sum_{s=1}^{f_{j}} c_{s} \sum_{r=0}^{n} x_{r}^{d_{1}} \Omega_{s}\left(g_{r}\right)=\sum_{r=0}^{n} x_{r}^{d_{1}} \sum_{s=1}^{f_{j}} c_{s} \Omega_{s}\left(g_{r}\right)
$$

By the linear independence of the $x_{r}^{d_{1}}$,s

$$
\begin{equation*}
\sum_{s=1}^{f_{j}} c_{s} \Omega_{s}\left(g_{r}\right)=0, \quad \forall r \in\{0, \ldots, n\} \tag{2}
\end{equation*}
$$

By hypothesis, for any index s there exists an $r_{s} \in\{0, \ldots, n\}$ such that $\Omega_{s}\left(g_{r_{s}}\right)=g_{r_{s}}^{\prime} \in R_{d_{2}-j} \backslash\{0\}$, then for any index s one has $c_{s}=0$, since the linear combinations in (2) are formed by linearly independent monomials (g_{r} is fixed in each linear combination!). In other words, $\operatorname{dim} A_{(0, j)}=f_{j}$.
$0<i<d_{1}$: Observe that $X_{a} X_{b}(f)=0$ if $a \neq b$. Therefore $A_{(i, j)}$ is generated by the only (canonical images of) the monomials $\Omega_{s}^{i, s_{1}, \ldots, s_{m}}:=X_{s}^{i} U_{1}^{s_{1}} \cdots U_{m}^{s_{m}} \in Q_{(i, j)}$, with $s_{1}+\cdots+s_{m}=j$, that do not annihilate f. In particular, a basis for $A_{(i, 0)}$ is given by $X_{0}^{i}, \ldots, X_{n}^{i}$ and we can suppose from now on that $j>0$. Since

$$
\Omega_{s}^{i, s_{1}, \ldots, s_{m}}(f)=x_{s}^{d_{1}-i}\left(U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}\right)\left(g_{s}\right)
$$

in order to obtain that this is not zero, we must have that $g_{s}=u_{1}^{s_{1}} \cdots u_{m}^{s_{m}} g_{s}^{\prime}$, where $g_{s}^{\prime} \in R_{d_{2}-j}$ is a nonzero monomial. This means $X_{u_{1}^{s_{1} \ldots} u_{m}^{s_{m}}} \subset X_{g_{s}}$ by Proposition 3.14.
As above, we can prove that these monomials are linearly independent over \mathbb{K} : let

$$
\left\{\Omega_{s}^{i, s_{1}, \ldots, s_{m}}\right\} \underset{\substack{s \in\{0, \ldots, n\} \\ s_{k} \leq, r_{k}, k=1, \ldots, m \\ \sum_{k} s_{k}=j}}{\substack{s_{k}=,}}
$$

be a system of monomials of $Q_{(i, j)}$, where any $\Omega_{s}^{i, s_{1}, \ldots, s_{m}}=X_{s}^{i} \cdot U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ is associated to the element $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ of the $(j-1)$ skeleton of $X_{g_{s}} \subset \Delta_{f}$, i.e. $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}} \subset X_{g_{s}} \subset \Delta_{f}$ by Proposition 3.14.

Take a linear combination of them and apply it to f :

$$
\begin{align*}
0 & =\sum_{\substack{s \in\{0, \ldots, n\} \\
s_{k} \leq, r_{k}, \ldots=1, \ldots, m \\
\sum_{k} s_{k}=j}} c_{s}^{i, s_{1}, \ldots, s_{m}} \Omega_{s}^{i, s_{1}, \ldots, s_{m}}(f) \\
& =\sum_{s=0}^{n} x^{d_{1}-i} \sum_{\substack{s_{k} \leq, r_{k}, k=1, \ldots, m \\
\sum_{k} s_{k}=j}} c_{s}^{i, s_{1}, \ldots, s_{m}} g_{s}^{i, s_{1}, \ldots, s_{m}} \tag{3}
\end{align*}
$$

where $g_{s}^{i, s_{1}, \ldots, s_{m}} \in R_{d_{2}-j}$ is the nonzero monomial such that $g_{s}=$ $u_{1}^{s_{1}} \cdots u_{m}^{s_{m}} g_{s}^{i, s_{1}, \ldots, s_{m}}$. From (3) we deduce, as in the preceding case, that

$$
\begin{equation*}
\sum_{\substack{s_{k} \leq, r_{k}, k=1, \ldots, m \\ \sum_{k} s_{k}=j}} c_{s}^{i, s_{1}, \ldots, s_{m}} g_{s}^{i, s_{1}, \ldots, s_{m}}=0 \quad s=0, \ldots, n \tag{4}
\end{equation*}
$$

as before, given one choice of s_{1}, \ldots, s_{m} there exists an $s \in\{0, \ldots, n\}$ such $g_{s}^{i, s_{1}, \ldots, s_{m}}(f)$ is a nonzero monomial, and the (nonzero) $g_{s}^{i, s_{1}, \ldots, s_{m}}$'s in (4) are linearly independent since are obtained by a fixed g_{s}.
$i=d_{1}$: By duality, see Remark 2.2, $A_{\left(d_{1}, j\right)} \cong A_{\left(0, d_{2}-j\right)}^{\vee}$ so $\operatorname{dim} A_{\left(d_{1}, j\right)}=f_{d_{2}-j}$. To find a basis for $A_{\left(d_{1}, j\right)}$, we consider the exact sequence (1) given by evaluation at f, which in this case reads

$$
\begin{equation*}
0 \rightarrow I_{\left(0, d_{2}-j\right)} \rightarrow Q_{\left(0, d_{2}-j\right)} \rightarrow A_{\left(d_{1}, j\right)} \rightarrow 0 \tag{5}
\end{equation*}
$$

then a basis for $A_{\left(d_{1}, j\right)}$ is obtained in the following way: if $\left\{\Omega_{1}, \ldots \Omega_{f_{d_{2}-j}}\right\}$ is the basis for $A_{\left(0, d_{2}-j\right)} \cong Q_{\left(0, d_{2}-j\right)} / I_{\left(0, d_{2}-j\right)}$ of the case $i=0$, then a basis for $A_{\left(d_{1}, j\right)}$ is $\left\{X_{0}^{d_{1}} \Omega_{1}, \ldots, X_{n}^{d_{1}} \Omega_{f_{d_{2}}-j}(f)\right\}$.

As a corollary of Theorem 3.16 we see that we can deduce the general case of the simplicial Nagata polynomial, which is a slight improvement of the first part of [1, Theorem 3.5].

Corollary 3.17. Let $f=\sum_{r=0}^{n} x_{r}^{d_{1}} g_{r} \in R_{\left(d_{1}, d_{2}\right)}$, with $g_{r}=x_{r_{1}} \cdots x_{r_{d_{2}}}$, be a simplicial Nagata polynomial of (positive) degree d_{1}, where $n \leq\binom{ m}{d_{2}}$, let Δ_{f} be the simplicial complex associated to f and let $A=Q / \operatorname{Ann}(f)$. Then

$$
A=\bigoplus_{h=0}^{d=d_{1}+d_{2}} A_{h}
$$

where

$$
A_{h}=A_{(h, 0)} \oplus \cdots \oplus A_{(p, q)} \oplus \cdots \oplus A_{(0, h)}, p \leq d_{1}, q \leq d_{2}, A_{d}=A_{\left(d_{1}, d_{2}\right)}
$$

and moreover, $\forall j \in\left\{0,1, \ldots, d_{2}\right\}$,

$$
\operatorname{dim} A_{(i, j)}=a_{i, j}= \begin{cases}f_{j} & i=0 \\ \sum_{r=0}^{n} f_{j, r} & i \in\left\{1, \ldots, d_{1}-1\right\} \\ f_{d_{2}-j} & i=d_{1}\end{cases}
$$

where:

- f_{j} is the number of $(j-1)$-cells of the Δ_{f} (with the convention that $f_{0}=1$);
- $f_{j, r}$ is the number of $(j-1)$-subcells of $\Delta_{g_{r}}$, i.e. the $\left(d_{2}-1\right)$-cell of the Δ_{f} associated to g_{r} (with the convention that $f_{0, r}=1$, so that $\operatorname{dim} A_{(i, 0)}=n+1$).

More precisely, a basis for $A_{(i, j)}, \forall j \in\left\{0,1, \ldots, d_{2}\right\}$, is given by
(1) If $i=0,\left\{\Omega_{1}, \ldots, \Omega_{f_{j}}\right\}$, where any $\Omega_{s}:=U_{s_{1}} \cdots U_{s_{j}}$ is associated to the $(j-1)$-subcell $\left\{u_{s_{1}}, \ldots, u_{s_{j}}\right\}$ of Δ_{f};
(2) If $i=1, \ldots, d_{1}-1,\left\{\Omega_{s}^{i, s_{1}, \ldots, s_{j}}\right\}_{\substack{s \in\{0, \ldots, n\} \\ s_{1}, \ldots, s_{j} \in\left\{r_{1}, \ldots, r_{d_{2}}\right\}}}$ where $\Omega_{s}^{i, s_{1}, \ldots, s_{j}}:=X_{s}^{i} U_{s_{1}} \cdots U_{s_{j}}$ is associated to the $(j-1)$-subcell $\left\{u_{s_{1}}, \ldots, u_{s_{j}}\right\}$ of $\Delta_{g_{s}}\left(\subset \Delta_{f}\right)$;
(3) If $i=d_{1},\left\{X_{0}^{d_{1}} \Omega_{1}(f), \ldots X_{n}^{d_{1}} \Omega_{f_{d_{2}}-j}(f)\right\}$, where $\left\{\Omega_{1}, \ldots \Omega_{f_{d_{2}-j}}\right\}$ is the basis for $A_{\left(0, d_{2}-j\right)}$ of case (1).

In the cases (1) and (2) the bases are given by monomials, in the case (3), in general, not.

Theorem 3.18. Let $f=\sum_{r=0}^{n} x_{r}^{d_{1}} g_{r} \in S_{\left(d_{1}, d_{2}\right)}$, with $g_{r}=x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ such that $r_{1}+\cdots+r_{m}=$ d_{2}, be a $C W$-Nagata polynomial whose associated $C W$-complex is Δ_{f}, as in the preceding theorem.

Then $I:=\operatorname{Ann}(f)$ is generated by:
(1) $X_{i} X_{j}$ and $X_{k}^{d_{1}+1}$, for $i, j, k \in\{0, \ldots, n\}, i<j$;
(2) $\left\langle U_{1}, \ldots, U_{m}\right\rangle^{d_{2}+1}$, i.e. all the (monic) monomials of degree $d_{2}+1$;
(3) The monomials $U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ such that $s_{1}+\cdots+s_{m}=j$, where $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ is a (minimal) element of the $(j-1)$-skeleton of $P(m)$ not contained in Δ_{f} (for $j \in$ $\left.\left\{1, \ldots, d_{2}\right\}\right)$;
(4) The monomials $X_{r} U_{i}$, where u_{i} does not divide g_{r} (i.e. $\left\{u_{i}\right\}$ is not an element of the 0-skeleton of $X_{g_{r}}$);
(5) The monomials $X_{s} U_{1}^{r_{1}} \cdots U_{m}^{r_{m}}$ such that $r_{1}+\cdots+r_{m}=j$, where $u_{1}^{r_{1}} \cdots u_{m}^{r_{m}}$ is minimal among those that do not divide g_{s} (i.e. the (minimal) element of the ($j-1$)skeleton of $P(m), X_{u_{1}^{r_{1}} \ldots u_{m}^{r_{m}}}$, is not contained in $\left.X_{g_{s}}\right)$, for $j \in\left\{1, \ldots, d_{2}\right\}$;
(6) The binomials $X_{r}^{d_{1}} U_{1}^{\rho_{1}} \cdots U_{m}^{\rho_{m}}-X_{s}^{d_{1}} U_{1}^{\sigma_{1}} \cdots U_{m}^{\sigma_{m}}$ with $\rho_{1}+\cdots+\rho_{m}=\sigma_{1}+\cdots+\sigma_{m}=j$ such that $g_{r, s}=\operatorname{GCD}\left(g_{r}, g_{s}\right)$ and $g_{r}=u_{1}^{\rho_{1}} \cdots u_{m}^{\rho_{m}} g_{r, s}, g_{s}=u_{1}^{\sigma_{1}} \cdots u_{m}^{\sigma_{m}} g_{r, s}$ (i.e. $X_{g_{r, s}}$ is the element of the $\left(d_{2}-j-1\right)$-skeleton of Δ_{f} which represents the intersection of $X_{g_{r}}$ and $X_{g_{s}}: X_{g_{r, s}}=X_{g_{r}} \cap X_{g_{s}}$).

Proof. Let $A:=T / I$, where $T=\mathbb{K}\left[X_{0}, \ldots, X_{n}, U_{1}, \ldots, U_{m}\right]$.

By Theorem 3.16, (1) a basis for $A_{(0, j)}, \forall j \in\left\{1, \ldots, d_{2}\right\}$, is $\left\{\Omega_{1}, \ldots, \Omega_{f_{j}}\right\}$, where $\Omega_{s}:=U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$, with $s_{1}+\cdots+s_{m}=j$, is associated to the element $X_{u_{1}^{s_{1}} \cdots u_{m}^{s_{m}}}$ of the ($j-1$)-skeleton of Δ_{f}. Therefore, using the identification introduced in Remark 3.15, a basis for $I_{(0, j)}$ is given by the monomials $U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ such that $s_{1}+\cdots+s_{m}=j$, where $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ is an element of the $(j-1)$-skeleton of $P(m)$ not contained in Δ_{f} (for $\left.j \in\left\{1, \ldots, d_{2}\right\}\right)$;

Observe that $X_{i} X_{j}(f)=0$ if $i \neq j$ and $X_{k}^{d_{1}+1}(f)=0=U_{1}^{i_{1}} \cdots U_{m}^{i_{m}}(f)$ with $\sum_{j=1}^{m} i_{j}=$ $d_{2}+1$, for degree reasons. Set

$$
\beta:=\left(X_{0} X_{1}, \ldots, X_{n-1} X_{n}, X_{0}^{d_{1}+1}, \ldots, X_{n}^{d_{1}+1},\left\langle U_{1}, \ldots, U_{m}\right\rangle^{d_{2}+1}\right)
$$

this is a homogeneous ideal such that $\beta \subset I$ and $A \cong \frac{T}{\beta} / \frac{I}{\beta}$.
By Theorem 3.16, (2), if $i=1, \ldots, d_{1}-1$, a basis for $A_{(i, j)} \forall j \in\left\{1, \ldots, d_{2}\right\}$, is given by

$$
\left\{\Omega_{s}^{i, s_{1}, \ldots, s_{m}}\right\}_{\substack{s \in\{0, \ldots, n\} \\ s_{k} \leq, r_{k}, k=1, \ldots, m}}^{\substack{k \\ s_{k}=j}}
$$

where $\Omega_{s}^{i, s_{1}, \ldots, s_{m}}:=X_{s}^{i} \cdot U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ is associated to the element $X_{u_{1}^{s_{1}} \ldots u_{m}^{s_{m}}}$ of the $(j-1)$ skeleton of $X_{g_{s}}$.

Again using the identification introduced in Remark 3.15, a basis for $\left(\frac{I}{\beta}\right)_{(i, j)}$ is given by

- The monomials $X_{r}^{i} U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$ such that $s_{1}+\cdots+s_{m}=j$, with $r \neq s$, where $u_{1}^{s_{1}} \cdots u_{m}^{s_{m}}$ divides g_{s} (i.e. $X_{u_{1}^{s_{1}} \cdots u_{m}^{s_{m}}}$ is an element of the $(j-1)$-skeleton of $X_{g_{s}}$), for $i=1, \ldots, d_{1}-1$, and
- The monomials $X_{s}^{i} U_{1}^{r_{1}} \cdots U_{m}^{r_{m}}$ such that $r_{1}+\cdots+r_{m}=j$, where $u_{1}^{r_{1}} \cdots u_{m}^{r_{m}}$ does not divide g_{s} (i.e. the element of the $(j-1)$-skeleton of $P(m), X_{u_{1}^{r_{1}} \ldots u_{m}^{r_{m}}}$, is not contained in $X_{g_{s}}$),
for $j \in\left\{1, \ldots, d_{2}\right\}$.
It remains to find the generators of I of bidegree $\left(d_{1}, j\right)$, with $j \in\left\{1, \ldots, d_{2}\right\}$. This is more complicated since the generators of $A_{\left(d_{1}, j\right)}$ are not monomials. Let γ be the homogeneous ideal generated by the monomials of the cases (1), (2), (3), (4) and (5), i.e. the generators that we have found so far. We have $\beta \subset \gamma \subset I$ and the exact sequence (1) given by evaluation at f becomes

$$
0 \rightarrow\left(\frac{I}{\gamma}\right)_{\left(d_{1}, j\right)} \rightarrow\left(\frac{T}{\gamma}\right)_{\left(d_{1}, j\right)} \rightarrow A_{\left(0, d_{2}-j\right)} \rightarrow 0
$$

since we identify $A \cong \frac{T}{\gamma} / \frac{I}{\gamma}$. Then, if $\rho_{1}+\cdots+\rho_{m}=\sigma_{1}+\cdots+\sigma_{m}=j, X_{r}^{d_{1}} U_{1}^{\rho_{1}} \cdots U_{m}^{\rho_{m}}-$ $X_{s}^{d_{1}} U_{1}^{\sigma_{1}} \cdots U_{m}^{\sigma_{m}} \in\left(\frac{T}{\gamma}\right)_{\left(d_{1}, j\right)}$ is in $\left(\frac{I}{\gamma}\right)_{\left(d_{1}, j\right)}$ if and only if $X_{r}^{d_{1}} U_{1}^{\rho_{1}} \cdots U_{m}^{\rho_{m}}=$ $X_{s}^{d_{1}} U_{1}^{\sigma_{1}} \cdots U_{m}^{\sigma_{m}} \in A_{\left(0, d_{2}-j\right)}$, which means $U_{1}^{\rho_{1}} \cdots U_{m}^{\rho_{m}}\left(g_{r}\right)=U_{1}^{\sigma_{1}} \cdots U_{m}^{\sigma_{m}}\left(g_{s}\right)$. Since $A_{\left(0, d_{2}-j\right)}$ is generated by the monomials $\Omega_{s}:=U_{1}^{s_{1}} \cdots U_{m}^{s_{m}}$, with $s_{1}+\cdots+s_{m}=d_{2}-j$, associated to the elements of the $\left(d_{2}-j-1\right)$-skeleton of Δ_{f}, we obtain case (6).

As we have done for Theorem 3.16, we give, as a corollary of Theorem 3.18 the case of the simplicial Nagata polynomial, giving an improvement of the second part of [1, Theorem 3.5]; we also correct that statement, since the authors forgot the generators $X_{i} X_{j}, i \neq j$.

Corollary 3.19. Let $f=\sum_{r=0}^{n} x_{r}^{d_{1}} g_{r} \in R_{\left(d_{1}, d_{2}\right)}$, with $g_{r}=x_{r_{1}} \cdots x_{r_{d_{2}}}$, be a simplicial Nagata polynomial whose associated simplicial complex is Δ_{f}, as in the preceding theorem.

Then $I:=\operatorname{Ann}(f)$ is generated by:
(1) $X_{i} X_{j}$ and $X_{k}^{d_{1}+1}$, for $i, j, k \in\{0, \ldots, n\}, i<j$;
(2) $U_{1}^{2}, \ldots, U_{m}^{2}$;
(3) The monomials $U_{s_{1}} \cdots U_{s_{j}}$, where $\left\{u_{s_{1}}, \ldots, u_{s_{j}}\right\}$ is a (minimal) $(j-1)$-cell of $2^{\left\{u_{1}, \ldots, u_{m}\right\}}$ not contained in $\Delta_{f}\left(\right.$ for $\left.j \in\left\{1, \ldots, d_{2}\right\}\right)$;
(4) The monomials $X_{r} U_{i}$, where u_{i} does not divide g_{s} (i.e. $\left\{u_{i}\right\} \notin \Delta g_{r}$);
(5) The binomials $X_{r}^{d_{1}} U_{\rho_{1}} \cdots U_{\rho_{j}}-X_{s}^{d_{1}} U_{\sigma_{1}} \cdots U_{\sigma_{j}}$ such that $g_{r, s} \operatorname{GCD}\left(g_{r}, g_{s}\right), g_{r}=$ $u_{\rho_{1}} \cdots u_{\rho_{j}} g_{r, s}, g_{s}=u_{\sigma_{1}} \cdots u_{\sigma_{j}} g_{r, s}$ (i.e. $g_{r, s}$ represents the $\left(d_{2}-j-1\right)$-face given by the intersection $\Delta_{g_{r}} \cap \Delta_{g_{s}}$ of the facets of g_{r} and $g_{s}: \Delta_{g_{r, s}}=\Delta_{g_{r}} \cap$ $\Delta_{g_{s}}$).

Proof. We note only that we have to add the squares of case (2) although they do not correspond to cells, since the polynomials g_{i} are square-free. The rest follows from Theorem 3.18. We observe that these squares are in case (2) of Theorem 3.18.

Example 3.20. Let

$$
\begin{aligned}
f= & x_{0}^{d} u_{1} u_{2} u_{3}+x_{1}^{d} u_{1} u_{2} u_{4}+x_{2}^{d} u_{1} u_{4} u_{5}+x_{3}^{d} u_{1} u_{3} u_{5}+x_{4}^{d} u_{2} u_{3} u_{6}+x_{5}^{d} u_{2} u_{4} u_{6}+x_{6}^{d} u_{4} u_{5} u_{6} \\
& +x_{7}^{d} u_{3} u_{5} u_{6}
\end{aligned}
$$

be a bihomogeneous bidegree $(d, 3)$ polynomial with $d \geq 1$; it is a simplicial Nagata polynomial, whose associated simplicial complex is in the following figure:

We have:

$$
A=A_{0} \oplus A_{1} \oplus \ldots \oplus A_{d+3}
$$

We want firstly to compute the Hilbert vector by applying Corollary 3.17; first of all,

$$
a_{1,0}=8 \quad a_{0,1}=6,
$$

and therefore

$$
\begin{aligned}
& h_{0}=h_{d+3}=1 \\
& h_{1}=h_{d+2}=a_{1,0}+a_{0,1}=8+6=14 .
\end{aligned}
$$

Then, we analyze the possible cases depending on the degree d :

- If $d=1$, then

$$
\begin{aligned}
a_{1,1} & =8 \cdot 3=24 \\
a_{0,2} & =12 \\
h_{2} & =a_{1,1}+a_{0,2}=36
\end{aligned}
$$

and the Hilbert vector is $(1,14,36,14,1)$.

- If $d=2$, then, recalling bigraded Poincaré duality,

$$
a_{2,0}=a_{0,3}=8 \quad a_{2,1}=a_{0,2}=12
$$

and therefore

$$
\begin{aligned}
& h_{2}=a_{2,0}+a_{1,1}+a_{0,2}=8+8 \cdot 3+12=44, \\
& h_{3}=0+a_{2,1}+a_{1,2}+a_{0,3}=8+8 \cdot 3+8=44
\end{aligned}
$$

in accordance with Poincaré duality; so the Hilbert vector is $(1,14,44,44,14,1)$ (cfr. [1, Example 3.6]).

- If $d=3$, then, again by bigraded Poincaré duality,

$$
\begin{gathered}
a_{3,0}=a_{0,3}=8, \quad a_{2,1}=a_{1,2}=8 \cdot 3=24, \quad a_{3,1}=a_{0,2}=12, \\
a_{2,2}=a_{1,1}=24, \quad a_{1,3}=a_{2,0}=8
\end{gathered}
$$

therefore

$$
\begin{aligned}
h_{2} & =a_{2,0}+a_{1,1}+a_{0,2}=44 \\
h_{3} & =a_{3,0}+a_{2,1}+a_{1,2}+a_{0,3}=64 \\
h_{4} & =0+a_{3,1}+a_{2,2}+a_{1,3}=44
\end{aligned}
$$

$h_{2}=h_{4}$ in accordance with Poincaré duality and the Hilbert vector is $(1,14,44,64,44$, $14,1)$.

- In general, let $d \geq 4$; by hypothesis

$$
h_{d+1}=h_{2}=a_{2,0}+a_{1,1}+a_{0,2}=44,
$$

and

$$
h_{k}=a_{k, 0}+a_{k-1,1}+a_{k-2,2}+a_{k-3,3} \quad \forall k \in\{3, \ldots, d\},
$$

where

$$
a_{k, 0}=8 \quad a_{k-1,1}=8 \cdot 3=24 \quad a_{k-2,2}=8 \cdot 3=24 \quad a_{k, 3}=8
$$

Again using the Poincaré duality we have:

$$
h_{d+3-k}=h_{k}=64 \quad \forall k \in\left\{3, \ldots,\left\lfloor\frac{d+3}{2}\right\rfloor\right\}
$$

and the Hilbert vector is $(1,14,44,64, \ldots, 64,44,14,1)$.

Now, we want to find the generators of $\operatorname{Ann}(f)$, by applying Corollary 3.19. Behavior depends on d :

- If $d=1$, by Corollary 3.19 $\operatorname{Ann}(f)$ is (minimally) generated by:
(1) $\left\langle X_{0}, \ldots, X_{7}\right\rangle^{2}=X_{0}^{2}, X_{0} X_{1}, \ldots$;
(2) $U_{1}^{2}, \ldots, U_{6}^{2}$;
(3) $U_{1} U_{6}, U_{2} U_{5}, U_{3} U_{4}$;
(4) $X_{0} U_{4}, X_{0} U_{5}, X_{0} U_{6}, X_{1} U_{3}, X_{1} U_{5}, X_{1} U_{6}, X_{2} U_{2}, X_{2} U_{3}, X_{2} U_{6}, X_{3} U_{2}, X_{3} U_{4}, X_{3} U_{6}$, $X_{4} U_{1}, X_{4} U_{4}, X_{4} U_{5}, X_{5} U_{1}, X_{5} U_{3}, X_{5} U_{5}, X_{6} U_{1}, X_{6} U_{2}, X_{6} U_{3}, X_{7} U_{1}, X_{7} U_{2}, X_{7} U_{4} ;$
(5) $X_{0} U_{3}-X_{1} U_{4}, X_{0} U_{2}-X_{3} U_{5}, X_{0} U_{1}-X_{4} U_{6}, X_{1} U_{2}-X_{2} U_{5}, X_{1} U_{1}-X_{5} U_{6}, X_{2} U_{4}-$ $X_{3} U_{3}, X_{2} U_{1}-X_{6} U_{6}, X_{3} U_{1}-X_{7} U_{6}, X_{4} U_{3}-X_{5} U_{4}, X_{4} U_{2}-X_{7} U_{5}, X_{5} U_{2}-$ $X_{6} U_{5}, X_{6} U_{4}-X_{7} U_{3}$.
- If $d \geq 2$, by Corollary 3.19 $\operatorname{Ann}(f)$ is (minimally) generated by
(1) $\left\langle X_{0}, \ldots, X_{7}\right\rangle^{d+1}$ and $X_{h} X_{k}$ where $h, k \in\{0, \ldots, 7\}, h<k$;
(2) $U_{1}^{2}, \ldots, U_{6}^{2}$;
(3) $U_{1} U_{6}, U_{2} U_{5}, U_{3} U_{4}$;
(4) $X_{0}^{d} U_{4}, X_{0}^{d} U_{5}, X_{0}^{d} U_{6}, X_{1}^{d} U_{3}, X_{1}^{d} U_{5}, X_{1}^{d} U_{6}, X_{2}^{d} U_{2}, X_{2}^{d} U_{3}, X_{2}^{d} U_{6}, X_{3}^{d} U_{2}, X_{3}^{d} U_{4}, X_{3}^{d} U_{6}$, $X_{4}^{d} U_{1}, X_{4}^{d} U_{4}, X_{4}^{d} U_{5}, X_{5}^{d} U_{1}, X_{5}^{d} U_{3}, X_{5}^{d} U_{5}, X_{6}^{d} U_{1}, X_{6}^{d} U_{2}, X_{6}^{d} U_{3}, X_{7}^{d} U_{1}, X_{7}^{d} U_{2}, X_{7}^{d} U_{4} ;$
(5) $X_{0}^{d} U_{3}-X_{1}^{d} U_{4}, X_{0}^{d} U_{2}-X_{3}^{d} U_{5}, X_{0}^{d} U_{1}-X_{4}^{d} U_{6}, X_{1}^{d} U_{2}-X_{2}^{d} U_{5}, X_{1}^{d} U_{1}-X_{5}^{d} U_{6}$, $X_{2}^{d} U_{4}-X_{3}^{d} U_{3}, X_{2}^{d} U_{1}-X_{6}^{d} U_{6}, X_{3}^{d} U_{1}-X_{7}^{d} U_{6}, X_{4}^{d} U_{3}-X_{5}^{d} U_{4}, X_{4}^{d} U_{2}-X_{7}^{d} U_{5}$, $X_{5}^{d} U_{2}-X_{6}^{d} U_{5}, X_{6}^{d} U_{4}-X_{7}^{d} U_{3}$.

Example 3.21. Let

$$
f=x_{0}^{d} u_{1} u_{2}+x_{1}^{d} u_{1}^{2}+x_{2}^{d} u_{2} u_{3}
$$

be a bihomogeneous bidegree $(d, 2)$ polynomial, with $d \geq 1$; it is a CW-Nagata polynomial whose CW-complex is the following:

We have:

$$
A=A_{0} \oplus A_{1} \oplus \ldots \oplus A_{d+2}
$$

and we want to find its Hilbert vector; first of all,

$$
a_{1,0}=3 \quad a_{0,1}=3
$$

and therefore

$$
h_{0}=h_{d+2}=1 \quad h_{1}=h_{d+1}=a_{1,0}+a_{0,1}=6
$$

Therefore, if $d=1$, then Hilbert vector is $(1,6,6,1)$.
If $d=2$, we have

$$
a_{1,1}=2+1+2=5
$$

so

$$
h_{2}=\operatorname{dim} A_{2}=a_{2,0}+a_{1,1}+a_{0,2}=3+5+3=11
$$

and the Hilbert vector is $(1,6,11,6,1)$.
If $d=3$ then, by bigraded Poincaré duality

$$
a_{3,0}=a_{0,2}=3 \quad a_{0,3}=3
$$

so

$$
\begin{aligned}
& h_{2}=a_{2,0}+a_{1,1}+a_{0,2}=11 \\
& h_{3}=a_{3,0}+a_{2,1}+a_{1,2}+a_{0,3}=3+5+3=11
\end{aligned}
$$

and the Hilbert vector is $(1,6,11,11,6,1)$.
In general, let $d \geq 4$; by hypothesis

$$
h_{d}=h_{2}=a_{2,0}+a_{1,1}+a_{0,2}=11
$$

and

$$
h_{k}=\operatorname{dim} A_{(k, 0)}+\operatorname{dim} A_{(k-1,1)}+\operatorname{dim} A_{(k-2,2)} \quad \forall k \in\{3, \ldots, d\}
$$

so, since

$$
a_{k, 0}=3 \quad a_{k-1,1}=5 \quad a_{k-2,2}=3
$$

using Poincaré duality we have:

$$
h_{d+2-k}=h_{k}=a_{k, 0}+a_{k-1,1}+a_{k-2,2}=11 \quad \forall k \in\left\{3, \ldots,\left\lfloor\frac{d+2}{2}\right\rfloor\right\}
$$

and the Hilbert vector is $(1,6,11, \ldots, 11,6,1)$.
Let $d=1$, by Theorem 3.18 $\operatorname{Ann}(f)$ is (minimally) generated by:

- $\left\langle X_{0}, X_{1}, X_{2}\right\rangle^{2}, U_{2}^{2}, U_{3}^{2}, U_{1} U_{3}, U_{1}^{3}$;
- $X_{0} U_{1}^{2}, X_{0} U_{3}, X_{1} U_{2}, X_{1} U_{3}, X_{2} U_{1}$;
- $X_{0} U_{2}-X_{1} U_{1}, X_{0} U_{1}-X_{3} U_{3}$.

Let $d \geq 2$, by Theorem 3.18 $\operatorname{Ann}(f)$ is (minimally) generated by:

- $\left\langle X_{0}, X_{1}, X_{2}\right\rangle^{d+1}, X_{0} X_{1}, X_{0} X_{2}, X_{1} X_{2}, U_{2}^{2}, U_{3}^{2}, U_{1} U_{3}, U_{1}^{3}$;
- $X_{0}^{d} U_{1}^{2}, X_{0}^{d} U_{3}, X_{1}^{d} U_{2}, X_{1}^{d} U_{3}, X_{2}^{d} U_{1}$;
- $X_{0}^{d} U_{2}-X_{1}^{d} U_{1}, X_{0}^{d} U_{1}-X_{3}^{d} U_{3}$.

References

[1] A. Cerminara, R. Gondim, G. Ilardi, F. Maddaloni, Lefschetz properties for higher Nagata idealizations, Adv. Appl. Math. 106 (2019) 37-56.
[2] S. Faridi, The facet ideal of a simplicial complex, Manuscr. Math. 109 (2002) 159-174.
[3] A. Franchetta, Sulle forme algebriche di S_{4} aventi l'hessiana indeterminata, Rend. Mat. 13 (1954) 1-6.
[4] R. Gondim, On higher Hessians and the Lefschetz properties, J. Algebra 219 (2017) 241-263.
[5] R. Gondim, F. Russo, Cubic hypersurfaces with vanishing Hessian, J. Pure Appl. Algebra 219 (2015) 779-806.
[6] R. Gondim, F. Russo, G. Staglianò, Hypersurfaces with vanishing Hessian via dual Cayley trick, J. Pure Appl. Algebra 224 (3) (2020) 1215-1240.
[7] P. Gordan, M. Noether, Ueber die algebraischen Formen, deren Hesse'sche Determinante identisch verschwindet, Math. Ann. 10 (1876) 547-568.
[8] T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi, J. Watanabe, The Lefschetz Properties, Springer, 2013.
[9] A.E. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[10] O. Hesse, Über die Bedingung, unter welche eine homogene ganze Function von n unabhängigen Variabeln durch Lineäre Substitutionen von n andern unabhn̈gigen Variabeln auf eine homogene Function sich zurückführen lässt, die eine Variable weniger enthält, J. Reine Angew. Math. 42 (1851) 117-124.
[11] O. Hesse, Zur Theorie der ganzen homogenen Functionen, J. Reine Angew. Math. 56 (1859) 263-269.
[12] F.H.S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Univ. Press, Cambridge U.K., 1916, reprinted with a foreword by P. Roberts, Cambridge Univ. Press, London and New York, 1994.
[13] T. Maeno, J. Watanabe, Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Ill. J. Math. 53 (2009) 593-603.
[14] U. Perazzo, Sulle varietà cubiche la cui hessiana svanisce identicamente, G. Mat. Battaglini 38 (1900) 337-354.
[15] R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978) 57-83.
[16] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980) 168-184.
[17] R. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph Theory Appl. (1986) 500-535.
[18] J. Watanabe, A remark on the Hessian of homogeneous polynomials, Pure Appl. Math. 119 (2000) 171-178.

[^0]: 频 P.D.P. \& G.I. are members of INdAM - GNSAGA and P.D.P. is supported by PRIN2017 "Advances in Moduli Theory and Birational Classification".

 * Corresponding author.

 E-mail addresses: armando.capasso@unina.it (A. Capasso), pietro.depoi@uniud.it (P. De Poi), giovanna.ilardi@unina.it (G. Ilardi).

