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We introduce a construction which allows us to identify the 
elements of the skeletons of a CW-complex P (m) and the 
monomials in m variables. From this, we infer that there is a 
bijection between finite CW-subcomplexes of P (m), which are 
quotients of finite simplicial complexes, and certain bigraded 
standard Artinian Gorenstein algebras, generalizing previous 
constructions of Faridi and ourselves.
We apply this to a generalization of Nagata idealization for 
level algebras. These algebras are standard graded Artinian 
algebras whose Macaulay dual generator is given explicitly 
as a bigraded polynomial of bidegree (1, d). We consider 
the algebra associated to polynomials of the same bidegree 
(d1, d2).
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0. Introduction

Let X = V (f) ⊂ PN
K be a hypersurface, where the underlying field K has characteristic 

0; the Hessian determinant of f (which we call the Hessian of f or the Hessian of X) is 
the determinant of the Hessian matrix of f .

Hypersurface with vanishing Hessian were studied for the first time in 1851 by O. 
Hesse; he wrote two papers ([10,11]) according to which these hypersurfaces should be 
necessarily cones. In 1876 Gordan and Noether ([7]) proved that Hesse’s claim is true for 
N ≤ 3, and it is false for N ≥ 4. They and Franchetta classified all the counterexamples 
to Hesse’s claim in P 4 (see [7,3,4,6]). In 1900, Perazzo classified cubic hypersurfaces with 
vanishing Hessian for N ≤ 6 ([14]). This work was studied and generalized in [5], and 
the problem is still open in spaces of higher dimension.

Hessians of higher degree were introduced in [13] and used to control the so called 
Strong Lefschetz Properties (for short, SLP). The Lefschetz properties have attracted a 
great attention in the last years. The basic papers of the algebraic theory of Lefschetz 
properties were the original ones of Stanley [15–17] and the book of Watanabe and 
others [8].

An algebraic tool that occurs frequently in these papers is the Nagata Idealization: it 
is a tool to convert any module M over a (commutative) ring (with unit) R to an ideal 
of another ring R�M . The starting point is the isomorphism between the idealization of 
an ideal I = (g0, . . . , gn) of K[u1, . . . , um] and its level algebra see [8, Definition 2.72]. In 
this way, the new ring is a Standard Graded Artinian Gorenstein Algebra (SGAG algebra, 
for short). An explicit formula for the Macaulay generator f is:

f = x0g0 + · · · + xngn ∈ K[x0, . . . , xn, u1, . . . , um](1,d).

A generalization of this construction is to consider polynomials of the form:

f = xd
0g0 + · · · + xd

ngn ∈ K[x0, . . . , xn, u1, . . . , um](d,d+1);

these are called Nagata polynomials of degree d. The Lefschetz properties for the relevant 
associated algebras A, the geometry of Nagata hypersurfaces of degree d, the interaction 
between the combinatorics of f and the structure of A were studied in [1], where the gi’s 
are square free monomials, using a simplicial complex associated to f .

In this paper we use the CW-complexes, to study Nagata polynomials of bidegree 
(d1, d2). We study the Hilbert vector and we give a complete description of the ideal I
for every case, also if the gi’s are not square free monomials.

The geometry of the Nagata hypersurface is very similar to the geometry of the 
hypersurfaces with vanishing Hessian.

More precisely, we introduce a new Construction 3.10 which allows us to identify each 
(monic) monomial of degree d in m variables with an element of the (d − 1)-skeleton 
of a CW-complex that we call P (m). This CW-complex is constructed by generalizing 
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the construction introduced in [2] which associates to a (monic) square-free monomial 
in m variables of degree d a unique (d − 1)-cell of the simplex of dimension m − 1, and 
vice versa. We consider an h-power uh

i as a product of h linear forms: ũ1 · · · ũh; this 
corresponds to a (h − 1)-simplex, and we identify all the δ-faces, with δ < h − 1, of this 
simplex to just one δ-face, recursively, starting from δ = 0 to δ = h − 2: for δ = 0 we 
identify all the points to one, then if δ = 1 we obtain a bouquet of h-circles, and we 
identify all these circles, and so on. Generalizing this construction to a general monic 
monomial and attaching the corresponding CW-complexes along the common skeletons, 
we obtain P (m).

The paper is organized as follows: in Section 1 we recall some generalities about graded 
Artinian Gorenstein Algebras and Lefschetz Properties, with their connections with the 
vanishings of higher order Hessians. In Section 2 we recall what the Nagata idealization 
is, what we intend for a higher Nagata idealization and we show its connection with the 
Lefschetz Properties for bihomogeneous polynomials. Section 3 is the core of this arti-
cle. After recalling generalities about bigraded algebras and the topological definitions 
that we need, we give the construction of the CW-complex P (m); then, we apply it to 
the Nagata polynomials (Definition 2.5) in Theorems 3.16 and 3.18, which give Theo-
rem 3.16 a precise description of the Artinian Gorenstein Algebra associated to a Nagata 
polynomial and Theorem 3.18 the generators of the annihilator of the polynomial. We 
show that from these theorems a generalization of the principal results of [1] follows: 
Corollaries 3.17 and 3.19.

We think that the study of the Nagata hypersurfaces can be—among other things—a 
useful tool for the classification of the hypersurfaces with vanishing Hessian in Pn.

Notations. In this the paper we fix the following notations and assumptions:

• K is a field of characteristic 0.
• R := K[x0, . . . , xn] will always be the ring of polynomials in n +1 variables x0, . . . , xn.
• Q := K[X0, . . . , Xn] will be the ring of differential operators of R, where Xi = ∂

∂xi
.

• The subscript of a graded K-algebra will indicate the part of that degree; Rd is the 
K-vector space of the homogeneous polynomials of degree d, and Qδ the K-vector 
space of the homogeneous differential operators of order δ.

1. Graded Artinian Gorenstein algebras and Lefschetz properties

1.1. Graded Artinian Gorenstein algebras are Poincaré algebras

Definition 1.1. Let I be a homogeneous ideal of R such that A = R/I =
d⊕

i=0
Ai is a 

graded Artinian K-algebra, where Ad �= 0. The integer d is the socle degree of A. The 
algebra A is said standard if it is generated in degree 1. Setting hi = dimKAi, the vector 
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Hilb(A) = (1, h1, . . . , hd) is called Hilbert vector of A. Since I1 = 0, then h1 = n + 1 is 
called codimension of A.

We also recall the following definitions.

Definition 1.2. A graded Artinian K-algebra A =
⊕d

i=0 Ai is a Poincaré algebra if · : Ai×
Ad−i → Ad is a perfect pairing for i ∈ {0, . . . , d}.

Definition 1.3. A graded Artinian K-algebra A is Gorenstein if (and only if) dimKAd = 1
and it is a Poincaré algebra.

Remark 1.4. The Hilbert vector of a Poincaré algebra A is symmetric with respect to 
h⌊d

2
⌋, that is Hilb(A) = (1, h1, h2, . . . , h2, h1, 1). �

1.2. Graded Artinian Gorenstein quotient algebras of Q

For any d ≥ δ ≥ 0 there exists a natural K-bilinear map B : Rd ×Qδ → Rd−δ defined 
by differentiation

B(f, α) = α(f)

Definition 1.5. Let I = 〈f1, . . . , f�〉—where f1, . . . , f� are forms in R—be a finite dimen-
sional K-vector subspace of R. The annihilator of I in Q is the following homogeneous 
ideal

Ann(I) := {α ∈ Q | ∀f ∈ I, α(f) = 0}.

In particular, if I is generated by a homogeneous element f , we write Ann(I) = Ann(f).

Let A = Q/ Ann(f), where f is homogeneous. By construction A is a standard graded 
Artinian K-algebra; moreover A is Gorenstein.

Theorem 1.6 ([12], §60ff, [13], theorem 2.1 ). Let I be a homogeneous ideal of Q such 
that A = Q/I is a standard Artinian graded K-algebra. Then A is Gorenstein if and only 
if there exist d ≥ 1 and f ∈ Rd such that A ∼= Q/ Ann(f).

Remark 1.7. Using the notation as above, A is called the SGAG K-algebra associated to 
f . The socle degree d of A is the degree of f and the codimension is n +1, since I1 = 0. �
1.3. Lefschetz properties and the Hessian criterion

Let A =
d⊕

Ai be a graded Artinian K-algebra.

i=0
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Definition 1.8. If there exists an L ∈ A1 such that:

(1) The multiplication map ·L : Ai → Ai+1 is of maximal rank for all i, then A has the 
Weak Lefschetz Property (WLP, for short);

(2) The multiplication map ·Lk : Ai → Ai+k is of maximal rank for all i and k, then A
has the Strong Lefschetz Property (SLP, for short);

Definition 1.9. Let A be the SGAG K-algebra associated to an element f ∈ Rd, and let 
Bk = {αj ∈ Ak | j ∈ {1, . . . , σk}} be an ordered K-basis of Ak. The k-th Hessian matrix
of f with respect to Bk is

Hesskf = (αiαj(f))σk

i,j=1 .

The k-th Hessian of f with respect to Bk is

hesskf = det
(
Hesskf

)
.

Theorem 1.10 ([18] Theorem 4). An element L = a0X0 + · · · + anXn ∈ A1 is a strong 

Lefschetz element of A if and only if hesskf (a0, . . . , an) �= 0 for all k ∈
{

0, . . . ,
⌊
d

2

⌋}
. In 

particular, if for some k one has hesskf = 0, then A does not have SLP.

2. Higher order Nagata idealization

2.1. Nagata idealizations

Definition 2.1. Let A be a ring and let M be an A-module. The Nagata idealization 
A �M of M is the ring with underlying set A ×M and operations defined as follows:

(r,m) + (s, n) = (r + s,m + n), (r,m) · (s, n) = (rs, sm + rn).

2.1.1. Bigraded Artinian Gorenstein algebras

Let A =
d⊕

i=0
Ai be a SGAG K-algebra, it is bigraded if:

Ad = A(d1,d2)
∼= K, Ai =

i⊕
h=0

A(i,h−i) for i ∈ {0, . . . , d− 1},

since A is a Gorenstein ring, and the pair (d1, d2) is said the socle bidegree of A. In this 
case we call A an SBAG algebra.

Remark 2.2. By Definition 1.3, Ai
∼= A∨

d−i = HomK(Ad−i, K) and since the duality 
commutes with direct sums, one has A(i,j) ∼= A∨ for any pair (i, j). �
(d1−i,d2−j)
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We fix notation as in Theorem 2.4:

• S := R⊗K K[u1, . . . , um] = K[x0, . . . , xn, u1, . . . , um] is the bigraded ring of polyno-
mials in m + n + 1 variables x0, . . . , xn, u1, . . . , um;

• We have chosen the natural bigrading of S: xi has bidegree (1, 0) and uj has bidegree 
(0, 1);

• Define S(d1,d2) to be the K-vector space of bihomogeneous polynomials f of bidegree 

(d1, d2); that is, f can be written as 
p∑

i=0
aibi, where ai ∈ Rd1 = K[x0, . . . , xn]d1 and 

bi ∈ K[u1, . . . , um]d2 .
• T := Q ⊗K K[U1, . . . , Um] = K[X0, . . . , Xn, U1, . . . , Um] is the (bigraded) ring of 

differential operators of S, where Xi = ∂

∂xi
and Uj = ∂

∂uj
; Xi has bidegree (1, 0)

and Uj has bidegree (0, 1).

A homogeneous ideal I of S is a bihomogeneous ideal if:

I =
∞⊕

i,j=0
I(i,j), where ∀i, j ∈ N≥0, I(i,j) = I ∩ S(i,j).

Let f ∈ S(d1,d2), then I = Ann(f) is a bihomogeneous ideal and using Theorem 1.6, A =
T/(Ann(f)) is a SBAG K-algebra of socle bidegree (d1, d2) (and codimension m +n +1).

Remark 2.3. Using the above notations, one has:

∀i > d1, j > d2, I(i,j) = T(i,j).

Indeed, for all α ∈ T(i,j) with i > d1, j > d2, α(f) = 0; as a consequence:

∀k ∈ {0, . . . , d1 + d2}, Ak =
⊕

0≤i≤d1
0≤j≤d2
i+j=k

A(i,j).

Moreover, the evaluation map α ∈ T(i,j) �→ α(f) ∈ A(d1−i,d2−j) provides the following 
short exact sequence:

0 I(i,j) T(i,j) A(d1−i,d2−j) 0. � (1)

The following theorem, which links Nagata idealizations with bihomogeneous polyno-
mials, holds.

Theorem 2.4 ([8], Theorem 2.77). Let S′ := K[u1, . . . , um] and S := R ⊗K S′ be rings 
of polynomials, let T ′ = K[U1, . . . , Um] and T := Q ⊗K T ′ be the associated ring of 
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differential operators, where Xi = ∂

∂xi
and Uj = ∂

∂uj
. Let g0, . . . , gn be homogeneous 

elements of S′ of degree d, let I be the T ′-submodule of S′ generated by {∂(gi) ∈ R | ∂ ∈
T, i ∈ {0, . . . , n}} and let A′ := T ′/ Ann(I). Define f = x0g0 + · · · + xngn ∈ R, it is a 
bihomogeneous polynomial of bidegree (1, d), and let A := T/ Ann(f). Considering I as 
an A′-module, A′ � I ∼= A.

2.2. Lefschetz properties for higher Nagata idealizations

Definition 2.5. A bihomogeneous polynomial

f =
n∑

i=0
xd1
i gi ∈ S(d1,d2)

is called a CW-Nagata polynomial of degree d1 ≥ 1 if gi ∈ K[u1, . . . , um], i = 0, . . . , n, 
are linearly independent monomials of degree d2 ≥ 2.

Remark 2.6. One needs n ≤
(
m + d2 − 1

d2

)
otherwise the gi cannot be linearly indepen-

dent.
From now on, we assume that n satisfies this condition. �
We will need the following propositions.

Proposition 2.7 ([4] Proposition 2.5). Let n + 1 ≥ m ≥ 2, d2 > d1 ≥ 1 and s >(
m + d1 − 1

d1

)
; for any j ∈ {1, . . . , s}, let fj ∈ S(d1,0), gj ∈ S(0,d2). Then the form 

f = f1g1 + · · · + fsgs of degree d1 + d2 satisfies

hessd1
f = 0;

that is, A = T/ Ann(f) does not have the SLP condition.

Proposition 2.8 ([1] Proposition 2.7). Let n + 1 ≥ m ≥ 2, d1 ≥ d2. Then L =
n∑

i=0
Xi is a

Weak Lefschetz Element; that is, A = T/ Ann(f) has the WLP condition.

3. CW-complex Nagata idealization of bidegree (d1, d2)

Let S and T be as in the previous subsection.

Definition 3.1. A bihomogeneous CW-Nagata polynomial

f =
n∑

xd1
i gi ∈ S(d1,d2)
i=0
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is called a simplicial Nagata polynomial of degree d1 if the monomials gi are square free.

Remark 3.2. One needs n ≤
(
m

d2

)
otherwise the gi cannot be square free. �

3.1. CW-complexes and bihomogeneous polynomials

3.1.1. Abstract finite simplicial complexes

Definition 3.3. Let V = {u1, . . . , um} be a finite set. An abstract simplicial complex Δ
with vertex set V is a subset of 2V such that

(1) ∀u ∈ V ⇒ {u} ∈ Δ,
(2) ∀σ ∈ Δ, τ � σ, τ �= ∅ ⇒ τ ∈ Δ.

The elements σ of Δ are called faces or simplices; a face with q + 1 vertices is called 
q-face or face of dimension q and one writes dim σ = q; the maximal faces (with respect 
to the inclusion) are called facets; if all facets have the same dimension d ≥ 1 then one 
says that Δ is of pure dimension d. The set Δk of faces of dimension at most k is called 
k-skeleton of Δ. 2V is called simplex (of dimension m − 1).

Remark 3.4.

(1) (cfr. [1, Remark 3.4]) There is a natural bijection, introduced in [2], between the 
square free monomials, of degree d, in the variables u1, . . . , um and the (d − 1)-faces 
of the simplex 2V , with vertex set V = {u1, . . . , um}. In fact, a square free monomial 
g = ui1 · · ·uid corresponds to the subset {ui1 , . . . , uid} of 2V . Vice versa, to any 
subset F of V with d elements one associates the free square monomial mF =

∏
ui∈F

ui

of degree d.

(2) Let f =
n∑

i=0
xd1
i gi ∈ S(d1,d2) be a simplicial Nagata polynomial; by hypothesis there 

is bijection between the monomials gi and the indeterminates xi. From this, we can 
associate to f a simplicial complex Δf with vertices u1, . . . , um where the facet which 
corresponds to gi is identified with xd1

i . �
3.1.2. CW-complexes

For the topological background, we refer to [9]. We start by fixing some notations.

Definition 3.5. Let k ∈ N≥1. A topological space ek homeomorphic to the open (unitary) 
ball {(x1, . . . , xk) ∈ Rk | x2

1 + · · · + x2
k < 1} of dimension k (with the natural topology 

induced by Rk+1) is called a k-cell. Its boundary, i.e. the (k − 1)-dimensional sphere
will be denoted by Sk−1 = {(x1, . . . , xk) ∈ Rk | x2

1 + · · · + x2
k = 1} and its closure, i.e. 
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the closed (unitary) k-dimensional disk will be denoted by Dk := {(x1, . . . , xk) ∈ Rk |
x2

1 + · · · + x2
k ≤ 1}.

We reall the following

Definition 3.6. A CW-complex is a topological space X constructed in the following way:

(1) There exists a fixed and discrete set of points X0 ⊂ X, whose elements are called 
0-cells;

(2) Inductively, the k-skeleton Xk of X is constructed from Xk−1 by attaching k-cells ekα
(with index set Ak) via continuous maps ϕk

α : Sk−1
α → Xk−1 (the attaching maps). 

This means that Xk is a quotient of Y k = Xk−1
⋃

α∈Ak

Dk
α under the identification 

x ∼ ϕα(x) for x ∈ ∂Dk
α; the elements of the k-skeleton are the (closure of the) 

attached k cells;
(3) X =

⋃
k∈N≥0

Xk and a subset C of X is closed if and only if C ∩Xk is closed for any 

k (closed weak topology).

Definition 3.7. A subset Z of a CW-complex X is a CW-subcomplex if it is the union of 
cells of X, such that the closure of each cell is in Z.

Definition 3.8. A CW-complex is finite if it consists of a finite number of cells.

We will be interested mainly in finite CW-complexes.

Example 3.9 (Geometric realization of an abstract simplicial complex). It is an obvious 
fact that to any simplicial complex Δ one can associate a finite CW-complex Δ̃ via the 
geometric realization of Δ as a simplicial complex (as a topological space) Δ̃. �

In what follows we will always identify abstract simplicial complexes with their cor-
responding simplicial complexes.

Construction 3.10. In Remark 3.4, we saw that to any degree d square-free monomial 
ui1 · · ·uid ∈ K[u1, . . . , um]d one can associate the (d −1)-face {ui1 , . . . , uid} of the abstract 
(m − 1)-dimensional simplex Δ(m) := 2{u1,...,um}, and vice versa: if we call

ρd := {f ∈ K[u1, . . . , um]d | f �= 0 is a square-free monic monomial}
D(m)d := Δ(m)d \ Δ(m)d−1,

we have a bijection

σd : ρd → D(m)d
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ui1 · · ·uid �→ {ui1 , . . . , uid} .

Alternatively, we can associate to ui1 · · ·uid the element of the (d − 1)-skeleton 

{ui1 , . . . , uid} ∈ Δ̃(m)
d−1

, so we have a bijection

σd : ρd → Δ̃(m)
d−1

ui1 · · ·uid �→ {ui1 , . . . , uid}

between the square-free monomials and the (d − 1)-faces of the (topological) simplex 

Δ̃(m).
Using CW-complexes, we will extend this construction to the non-square-free monic 

monomials. We proceed as follows. Let g := uj1
1 · · ·ujm

m be a generic degree d := j1+ · · ·+
jm monomial. Consider the following finite set: W :=

{
u1

1, . . . , u
j1
1 , . . . , u1

m, . . . , ujm
m

}
, and 

if Δ(d) := 2W is the abstract associated (finite) simplex, we consider the corresponding 

(topological) simplex (which is a CW-complex) Δ̃(d).
If jk ≤ 1 we do nothing, while if jk ≥ 2, we recursively identify, for 	 varying from 

0 to jk − 2, the 	-faces of the subsimplex 
˜

2
{
u1
k,...,u

jk
k

}
⊂ Δ̃(d): start with 	 = 0, and we 

identify all the jk points to one point—call it uk. Then, for 	 = 1, we obtain a bouquet of (
jk+1

2
)

circles, and we identify them in just one circle S1 passing through uk, and so on, 

up to the facets of 
˜

2
{
u1
k,...,u

jk
k

}
, i.e. its jk + 1 (jk − 1)-faces, which, by the construction, 

have all their boundary in common, and we identify all of them.
Make all these identifications for all j1, . . . , jm; in this way, we obtain a finite CW-

complex X = Xg of dimension d − 1, with 0-skeleton X0 = {ui | ji �= 0} ⊂ {u1, . . . , um}, 
obtained from the (d − 1)-dimensional simplex Δ̃(d), with the above identification.

In this way, we obtain a finite CW-complex X = Xg of dimension d −1, with 0-skeleton 

X0 = {ui | ji �= 0} ⊂ {u1, . . . , um}, obtained from the (d −1)-dimensional simplex Δ̃(d), 
with the above identification. Under this identification each closure of a (jk − 1)-cell {
u1
k, . . . , u

jk
k

}
becomes a point if jk = 1, a circle S1 if jk = 2, a topological space with 

fundamental group Z3 if jk = 2 (i.e. it is not a topological surface), etc. We will denote 
these spaces in what follows by εjk−1

k , i.e. εjk−1
k corresponds to ujk

k , and vice versa:

Proposition 3.11. Every power in uj1
1 · · ·ujm

m (up to a permutation of the variables) cor-
responds to a εjk−1

k , and vice versa.

We can see Xg as a (d − 1)-dimensional join between these spaces εjk−1
k and the span 

of the 0-skeleton X0 i.e. the simplex SX ⊂ Δ̃(m) associated to it; SX
∼= Δ̃(	), where 

	 = #X0 ≤ m.
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Remark 3.12. This last observation suggests we consider an alternative construction: 
recall that the cellular decomposition of the real projective space is obtained attaching 
a single cell at each passage; indeed, Pn

R is obtained from Pn−1
R by attaching one n-cell 

with the quotient projection ϕn−1 : Sn−1 → Pn−1
R as the attaching map.

Then, to each power ujk
k we associate a real projective space of dimension jk−1 P jk−1

k

and immersions ik−1 : P jk−1
k ↪→ P jk

k ; so P 0
k = uk ∈ P jk−1

k .
Finally, to g = uj1

1 · · ·ujm
m we associate the join between the P jk−1

k and the SX defined 
above; if we call this join by Xg, we can proceed in an equivalent way, by changing εjk−1

k

with P jk−1
k . �

It is clear how to glue two of these finite CW-complexes—say X = X
u
j1
1 ···ujm

m
and 

Y = Y
u
k1
1 ···ukm

m
, of degree d = j1 + · · · + jm and d′ = k1 + · · · + km—along Δ̃(m): we 

simply attach X and Y via the inclusion maps SX ⊂ Δ̃(m) and SY ⊂ Δ̃(m), where SX

and SY are the simplexes associated to, respectively, X and Y .
Finally, taking all these finite CW-complexes together, we obtain a CW-complex P

in the following way:

C := �
u
j1
1 ···ujm

m ∈K[u1,...,um]

X
u
j1
1 ···ujm

m
P (m) := C/∼

where ∼ is the equivalence relation induced by the above gluing.

Proposition 3.13. There is bijection between the monomials of degree d in K[u1, . . . , um]
and the elements of the (d − 1)-skeleton of P (m).

In other words, if we define

ρ′d := {f ∈ K[u1, . . . , um]d | f �= 0 is a monic monomial}

we have a bijection, using the above notation

σ′
d : ρ′d → P (m)d−1

uj1
1 · · ·ujm

m �→ X
u
j1
1 ···ujm

m
.

Proposition 3.14. X
u
j1
1 ···ujm

m
⊂ X

u
k1
1 ···ukm

m
if and only if uj1

1 · · ·ujm
m divides uk1

1 · · ·ukm
m .

Let f =
n∑

i=0
xd1
i gi ∈ S(d1,d2) be a CW-Nagata polynomial; by hypothesis there is bijec-

tion between the monomials gi and the indeterminates xi. From this, we can associate to 
f a finite (d2−1)-dimensional, CW-subcomplex of P (m), Δf where the (d2−1)-skeleton 
is given by the Xgi ’s glued together with the above procedure. Each Xgi can be identified 
with xd1

i as before.
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The previous construction generalizes the analogous one given in [1].

3.2. The Hilbert function of SBAG algebras

The first main result of this paper is the following general theorem.

Remark 3.15. In order to state it, we observe that the canonical bases of

S(d1,d2) = K[x0, . . . , xn]d1 ⊗K[u1, . . . , um]d2

and

T(d1,d2) = K[X0, . . . , Xn]d1 ⊗K[U1, . . . , Um]d2

given by monomials are dual bases each other, i.e.

Xk0
0 · · ·Xkn

n U �1
1 · · ·U �m

m (xi0
0 · · ·xin

n uj1
1 · · ·ujm

m ) = δi0,...,in,j1,...,jmk0,...,kn,�1,...,�m

where i0 + · · · + in = k0 + · · · + kn = d1, j1 + · · · + jm = 	1 + · · · + 	m = d2 and 
δi0,...,in,j1,...,jmk0,...,kn,�1,...,�m

is the Kronecker delta.
This simple observation allows us to identify—given a CW-Nagata polynomial f =

n∑
r=0

xd1
r gr ∈ S(d1,d2)— the dual differential operator Gr of the monomial gr—i.e. the 

monomial Gr ∈ K[U1, . . . , Um]d2 such that Gr(gr) = 1 and Gr(g) = 0 for any other 
monomial g ∈ K[u1, . . . , um]d2—with the same element of the (d2 − 1)-skeleton of Δf

associated to gr. In other words, we associate to gr = uj1
1 · · ·ujm

m and to Gr = U j1
1 · · ·U jm

m

the CW-subcomplex of Δf ⊂ P (m), X
u
j1
1 ···ujm

m
.

Theorem 3.16. Let f =
n∑

r=0
xd1
r gr ∈ R(d1,d2), with gr = uj1

1 · · ·ujm
m , be a CW-Nagata 

polynomial of (positive) degree d1, where n ≤
(
m

d2

)
, let Δf be the CW-complex associated 

to f and let A = Q/ Ann(f). Then

A =
d=d1+d2⊕

h=0

Ah

where

Ah = A(h,0) ⊕ · · · ⊕A(p,q) ⊕ · · · ⊕A(0,h), p ≤ d1, q ≤ d2, Ad = A(d1,d2)

and moreover, ∀j ∈ {0, 1, . . . , d2},
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dimA(i,j) = ai,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fj i = 0
n∑

r=0
fj,r i ∈ {1, . . . , d1 − 1},

fd2−j i = d1

where:

• fj is the number of the elements of the (j− 1)-skeleton of the CW-complex Δf (with 
the convention that f0 = 1);

• fj,r is the number of the elements of the (j − 1)-skeleton of the CW complex XGr

(with the convention that f0,r = 1, so that dimA(i,0) = n + 1).

More precisely, a basis for A(i,j), ∀j ∈ {0, 1, . . . , d2}, is given by

(1) If i = 0, {Ω1, . . . , Ωfj}, where any Ωs := Us1
1 · · ·Usm

m , with s1 + · · · + sm = j, is 
associated to the element Xu

s1
1 ···usm

m
of the (j − 1)-skeleton of Δf ;

(2) If i = 1, . . . , d1 − 1, 
{
Ωi,s1,...,sm

s

}
s∈{0,...,n}

sk≤,rk,k=1,...,m∑
k sk=j

where Ωi,s1,...,sm
s := Xi

s · Us1
1 · · ·Usm

m

is associated to the element Xu
s1
1 ···usm

m
of the (j − 1)-skeleton of Xgs ;

(3) If i = d1, 
{
Xd1

0 Ω1(f), . . . Xd1
n Ωfd2−j(f)

}
, where 

{
Ω1, . . .Ωfd2−j

}
is the basis for 

A(0,d2−j) of case (1).

In the cases (1) and (2) the basis are given by monomials, in the case (3), in general, 
not.

Proof. We divide the proof into computing the dimension of A(i,j) and find a basis for 
it, as i varies:

i = 0: A(0,0) ∼= K.
Then, by definition, if j ∈ {1, . . . , d2}, A(0,j) is generated by the (canonical 
images of the) monomials Ωs ∈ Qj = K[U1, . . . , Um]j ∼= Q(0,j) that do not 
annihilate f . This means that, if we write

Ωs = Us1
1 · · ·Usm

m s1 + · · · + sm = j,

there exists an rs ∈ {0, . . . , n} such that grs = us1
1 · · ·usm

m g′rs , where g′rs ∈
Rd2−j is a (nonzero) monomial; this means that Xu

s1
1 ···usm

m
is an element of 

the (j − 1)-skeleton of the CW-complex Δf by Proposition 3.14.
We need to prove that these monomials are linearly independent over K: 
let {Ω1, . . . , Ωfj} be a system of monomials of Q(0,j), where any Ωs =
Us1

1 · · ·Usm
m with s1 + · · ·+sm = j, is associated to an element of the (j−1)-
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skeleton of the CW-complex Δf ; take a linear combination of them and 
apply it to f :

0 =
fj∑
s=1

csΩs(f) =
fj∑
s=1

cs

n∑
r=0

xd1
r Ωs(gr) =

n∑
r=0

xd1
r

fj∑
s=1

csΩs(gr).

By the linear independence of the xd1
r ’s

fj∑
s=1

csΩs(gr) = 0, ∀r ∈ {0, . . . , n}. (2)

By hypothesis, for any index s there exists an rs ∈ {0, . . . , n} such that 
Ωs(grs) = g′rs ∈ Rd2−j \ {0}, then for any index s one has cs = 0, since the 
linear combinations in (2) are formed by linearly independent monomials (gr
is fixed in each linear combination!). In other words, dimA(0,j) = fj .

0 < i < d1: Observe that XaXb(f) = 0 if a �= b. Therefore A(i,j) is generated by the only 
(canonical images of) the monomials Ωi,s1,...,sm

s := Xi
sU

s1
1 · · ·Usm

m ∈ Q(i,j), 
with s1 + · · · + sm = j, that do not annihilate f . In particular, a basis for 
A(i,0) is given by Xi

0, . . . , X
i
n and we can suppose from now on that j > 0. 

Since

Ωi,s1,...,sm
s (f) = xd1−i

s (Us1
1 · · ·Usm

m ) (gs),

in order to obtain that this is not zero, we must have that gs = us1
1 · · ·usm

m g′s, 
where g′s ∈ Rd2−j is a nonzero monomial. This means Xu

s1
1 ···usm

m
⊂ Xgs by 

Proposition 3.14.
As above, we can prove that these monomials are linearly independent over 
K: let

{
Ωi,s1,...,sm

s

}
s∈{0,...,n}

sk≤,rk,k=1,...,m∑
k sk=j

be a system of monomials of Q(i,j), where any Ωi,s1,...,sm
s = Xi

s ·Us1
1 · · ·Usm

m

is associated to the element Xu
s1
1 ···usm

m
of the (j − 1) skeleton of Xgs ⊂ Δf , 

i.e. Xu
s1
1 ···usm

m
⊂ Xgs ⊂ Δf by Proposition 3.14.

Take a linear combination of them and apply it to f :

0 =
∑

s∈{0,...,n}
sk≤,rk,k=1,...,m∑

k sk=j

ci,s1,...,sms Ωi,s1,...,sm
s (f)

=
n∑

s=0
xd1−i

∑
sk≤,rk,k=1,...,m∑

ci,s1,...,sms gi,s1,...,sms (3)
k sk=j
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where gi,s1,...,sms ∈ Rd2−j is the nonzero monomial such that gs =
us1

1 · · ·usm
m gi,s1,...,sms . From (3) we deduce, as in the preceding case, that

∑
sk≤,rk,k=1,...,m∑

k sk=j

ci,s1,...,sms gi,s1,...,sms = 0 s = 0, . . . , n; (4)

as before, given one choice of s1, . . . , sm there exists an s ∈ {0, . . . , n} such 
gi,s1,...,sms (f) is a nonzero monomial, and the (nonzero) gi,s1,...,sms ’s in (4) are 
linearly independent since are obtained by a fixed gs.

i = d1: By duality, see Remark 2.2, A(d1,j)
∼= A∨

(0,d2−j) so dimA(d1,j) = fd2−j . To 
find a basis for A(d1,j), we consider the exact sequence (1) given by evaluation 
at f , which in this case reads

0 → I(0,d2−j) → Q(0,d2−j) → A(d1,j) → 0, (5)

then a basis for A(d1,j) is obtained in the following way: if {Ω1, . . .Ωfd2−j
}

is the basis for A(0,d2−j) ∼= Q(0,d2−j)/I(0,d2−j) of the case i = 0, then a basis 
for A(d1,j) is 

{
Xd1

0 Ω1, . . . , X
d1
n Ωfd2−j(f)

}
. �

As a corollary of Theorem 3.16 we see that we can deduce the general case of the sim-
plicial Nagata polynomial, which is a slight improvement of the first part of [1, Theorem 
3.5].

Corollary 3.17. Let f =
n∑

r=0
xd1
r gr ∈ R(d1,d2), with gr = xr1 · · ·xrd2

, be a simplicial 

Nagata polynomial of (positive) degree d1, where n ≤
(
m

d2

)
, let Δf be the simplicial 

complex associated to f and let A = Q/ Ann(f). Then

A =
d=d1+d2⊕

h=0

Ah

where

Ah = A(h,0) ⊕ · · · ⊕A(p,q) ⊕ · · · ⊕A(0,h), p ≤ d1, q ≤ d2, Ad = A(d1,d2)

and moreover, ∀j ∈ {0, 1, . . . , d2},

dimA(i,j) = ai,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fj i = 0
n∑

r=0
fj,r i ∈ {1, . . . , d1 − 1},

f i = d
d2−j 1
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where:

• fj is the number of (j − 1)-cells of the Δf (with the convention that f0 = 1);
• fj,r is the number of (j−1)-subcells of Δgr , i.e. the (d2−1)-cell of the Δf associated 

to gr (with the convention that f0,r = 1, so that dimA(i,0) = n + 1).

More precisely, a basis for A(i,j), ∀j ∈ {0, 1, . . . , d2}, is given by

(1) If i = 0, {Ω1, . . . , Ωfj}, where any Ωs := Us1 · · ·Usj is associated to the (j−1)-subcell 
{us1 , . . . , usj} of Δf ;

(2) If i = 1, . . . , d1 − 1, 
{

Ωi,s1,...,sj
s

}
s∈{0,...,n}

s1,...,sj∈
{
r1,...,rd2

} where Ωi,s1,...,sj
s := Xi

sUs1 · · ·Usj

is associated to the (j − 1)-subcell {us1 , . . . , usj} of Δgs(⊂ Δf );
(3) If i = d1, 

{
Xd1

0 Ω1(f), . . . Xd1
n Ωfd2−j(f)

}
, where {Ω1, . . .Ωfd2−j

} is the basis for 
A(0,d2−j) of case (1).

In the cases (1) and (2) the bases are given by monomials, in the case (3), in general, 
not.

Theorem 3.18. Let f =
n∑

r=0
xd1
r gr ∈ S(d1,d2), with gr = xr1

1 · · ·xrm
m such that r1+· · ·+rm =

d2, be a CW-Nagata polynomial whose associated CW-complex is Δf , as in the preceding 
theorem.

Then I := Ann(f) is generated by:

(1) XiXj and Xd1+1
k , for i, j, k ∈ {0, . . . , n}, i < j;

(2) 〈U1, . . . , Um〉d2+1, i.e. all the (monic) monomials of degree d2 + 1;
(3) The monomials Us1

1 · · ·Usm
m such that s1 + · · · + sm = j, where Xu

s1
1 ···usm

m
is a 

(minimal) element of the (j − 1)-skeleton of P (m) not contained in Δf (for j ∈
{1, . . . , d2});

(4) The monomials XrUi, where ui does not divide gr (i.e. {ui} is not an element of 
the 0-skeleton of Xgr);

(5) The monomials XsU
r1
1 · · ·Urm

m such that r1 + · · · + rm = j, where ur1
1 · · ·urm

m is 
minimal among those that do not divide gs (i.e. the (minimal) element of the (j−1)-
skeleton of P (m), Xu

r1
1 ···urm

m
, is not contained in Xgs), for j ∈ {1, . . . , d2};

(6) The binomials Xd1
r Uρ1

1 · · ·Uρm
m −Xd1

s Uσ1
1 · · ·Uσm

m with ρ1+· · ·+ρm = σ1+· · ·+σm = j

such that gr,s = GCD(gr, gs) and gr = uρ1
1 · · ·uρm

m gr,s, gs = uσ1
1 · · ·uσm

m gr,s (i.e. Xgr,s

is the element of the (d2 − j− 1)-skeleton of Δf which represents the intersection of 
Xgr and Xgs : Xgr,s = Xgr ∩Xgs).

Proof. Let A := T/I, where T = K[X0, . . . , Xn, U1, . . . , Um].



A. Capasso et al. / Advances in Applied Mathematics 120 (2020) 102079 17
By Theorem 3.16, (1) a basis for A(0,j), ∀j ∈ {1, . . . , d2}, is {Ω1, . . . , Ωfj}, where 
Ωs := Us1

1 · · ·Usm
m , with s1 + · · ·+ sm = j, is associated to the element Xu

s1
1 ···usm

m
of the 

(j − 1)-skeleton of Δf . Therefore, using the identification introduced in Remark 3.15, 
a basis for I(0,j) is given by the monomials Us1

1 · · ·Usm
m such that s1 + · · · + sm = j, 

where Xu
s1
1 ···usm

m
is an element of the (j − 1)-skeleton of P (m) not contained in Δf (for 

j ∈ {1, . . . , d2});
Observe that XiXj(f) = 0 if i �= j and Xd1+1

k (f) = 0 = U i1
1 · · ·U im

m (f) with 
∑m

j=1 ij =
d2 + 1, for degree reasons. Set

β := (X0X1, . . . , Xn−1Xn, X
d1+1
0 , . . . , Xd1+1

n , 〈U1, . . . , Um〉d2+1);

this is a homogeneous ideal such that β ⊂ I and A ∼= T

β
/
I

β
.

By Theorem 3.16, (2), if i = 1, . . . , d1 − 1, a basis for A(i,j) ∀j ∈ {1, . . . , d2}, is given 
by

{
Ωi,s1,...,sm

s

}
s∈{0,...,n}

sk≤,rk,k=1,...,m∑
k sk=j

where Ωi,s1,...,sm
s := Xi

s ·Us1
1 · · ·Usm

m is associated to the element Xu
s1
1 ···usm

m
of the (j−1)-

skeleton of Xgs .

Again using the identification introduced in Remark 3.15, a basis for 
(
I

β

)
(i,j)

is given 

by

• The monomials Xi
rU

s1
1 · · ·Usm

m such that s1 + · · · + sm = j, with r �= s, where 
us1

1 · · ·usm
m divides gs (i.e. Xu

s1
1 ···usm

m
is an element of the (j−1)-skeleton of Xgs), for 

i = 1, . . . , d1 − 1, and
• The monomials Xi

sU
r1
1 · · ·Urm

m such that r1 + · · · + rm = j, where ur1
1 · · ·urm

m does 
not divide gs (i.e. the element of the (j − 1)-skeleton of P (m), Xu

r1
1 ···urm

m
, is not 

contained in Xgs),

for j ∈ {1, . . . , d2}.
It remains to find the generators of I of bidegree (d1, j), with j ∈ {1, . . . , d2}. This 

is more complicated since the generators of A(d1,j) are not monomials. Let γ be the 
homogeneous ideal generated by the monomials of the cases (1), (2), (3), (4) and (5), 
i.e. the generators that we have found so far. We have β ⊂ γ ⊂ I and the exact sequence 
(1) given by evaluation at f becomes

0 →
(
I

γ

)
→

(
T

γ

)
→ A(0,d2−j) → 0,
(d1,j) (d1,j)
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since we identify A ∼= T

γ
/
I

γ
. Then, if ρ1 + · · ·+ρm = σ1 + · · ·+σm = j, Xd1

r Uρ1
1 · · ·Uρm

m −

Xd1
s Uσ1

1 · · ·Uσm
m ∈

(
T
γ

)
(d1,j)

is in 
(
I

γ

)
(d1,j)

if and only if Xd1
r Uρ1

1 · · ·Uρm
m =

Xd1
s Uσ1

1 · · ·Uσm
m ∈ A(0,d2−j), which means Uρ1

1 · · ·Uρm
m (gr) = Uσ1

1 · · ·Uσm
m (gs). Since 

A(0,d2−j) is generated by the monomials Ωs := Us1
1 · · ·Usm

m , with s1 + · · ·+ sm = d2 − j, 
associated to the elements of the (d2 − j − 1)-skeleton of Δf , we obtain case (6). �

As we have done for Theorem 3.16, we give, as a corollary of Theorem 3.18 the case 
of the simplicial Nagata polynomial, giving an improvement of the second part of [1, 
Theorem 3.5]; we also correct that statement, since the authors forgot the generators 
XiXj , i �= j.

Corollary 3.19. Let f =
n∑

r=0
xd1
r gr ∈ R(d1,d2), with gr = xr1 · · ·xrd2

, be a simplicial 

Nagata polynomial whose associated simplicial complex is Δf , as in the preceding theo-
rem.

Then I := Ann(f) is generated by:

(1) XiXj and Xd1+1
k , for i, j, k ∈ {0, . . . , n}, i < j;

(2) U2
1 , . . . , U

2
m;

(3) The monomials Us1 · · ·Usj , where {us1 , . . . , usj} is a (minimal) (j − 1)-cell of 
2{u1,...,um} not contained in Δf (for j ∈ {1, . . . , d2});

(4) The monomials XrUi, where ui does not divide gs (i.e. {ui} /∈ Δgr);
(5) The binomials Xd1

r Uρ1 · · ·Uρj
− Xd1

s Uσ1 · · ·Uσj
such that gr,s GCD(gr, gs), gr =

uρ1 · · ·uρj
gr,s, gs = uσ1 · · ·uσj

gr,s (i.e. gr,s represents the (d2 − j − 1)-face 
given by the intersection Δgr ∩ Δgs of the facets of gr and gs: Δgr,s = Δgr ∩
Δgs).

Proof. We note only that we have to add the squares of case (2) although they do 
not correspond to cells, since the polynomials gi are square-free. The rest follows from 
Theorem 3.18. We observe that these squares are in case (2) of Theorem 3.18. �
Example 3.20. Let

f = xd
0u1u2u3 + xd

1u1u2u4 + xd
2u1u4u5 + xd

3u1u3u5 + xd
4u2u3u6 + xd

5u2u4u6 + xd
6u4u5u6

+ xd
7u3u5u6

be a bihomogeneous bidegree (d, 3) polynomial with d ≥ 1; it is a simplicial Nagata 
polynomial, whose associated simplicial complex is in the following figure:
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u1

u2

u3

u4

u5

u6

xd
0

xd
1

xd
2

xd
3

xd
4

xd
5

xd
6

xd
7

We have:

A = A0 ⊕A1 ⊕ . . .⊕Ad+3.

We want firstly to compute the Hilbert vector by applying Corollary 3.17; first of all,

a1,0 = 8 a0,1 = 6,

and therefore

h0 = hd+3 = 1

h1 = hd+2 = a1,0 + a0,1 = 8 + 6 = 14.

Then, we analyze the possible cases depending on the degree d:

• If d = 1, then

a1,1 = 8 · 3 = 24

a0,2 = 12

h2 = a1,1 + a0,2 = 36

and the Hilbert vector is (1, 14, 36, 14, 1).
• If d = 2, then, recalling bigraded Poincaré duality,

a2,0 = a0,3 = 8 a2,1 = a0,2 = 12

and therefore

h2 = a2,0 + a1,1 + a0,2 = 8 + 8 · 3 + 12 = 44,

h3 = 0 + a2,1 + a1,2 + a0,3 = 8 + 8 · 3 + 8 = 44
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in accordance with Poincaré duality; so the Hilbert vector is (1, 14, 44, 44, 14, 1)
(cfr. [1, Example 3.6]).

• If d = 3, then, again by bigraded Poincaré duality,

a3,0 = a0,3 = 8, a2,1 = a1,2 = 8 · 3 = 24, a3,1 = a0,2 = 12,

a2,2 = a1,1 = 24, a1,3 = a2,0 = 8,

therefore

h2 = a2,0 + a1,1 + a0,2 = 44,

h3 = a3,0 + a2,1 + a1,2 + a0,3 = 64

h4 = 0 + a3,1 + a2,2 + a1,3 = 44

h2 = h4 in accordance with Poincaré duality and the Hilbert vector is (1, 14, 44, 64, 44,
14, 1).

• In general, let d ≥ 4; by hypothesis

hd+1 = h2 = a2,0 + a1,1 + a0,2 = 44,

and

hk = ak,0 + ak−1,1 + ak−2,2 + ak−3,3 ∀k ∈ {3, . . . , d},

where

ak,0 = 8 ak−1,1 = 8 · 3 = 24 ak−2,2 = 8 · 3 = 24 ak,3 = 8.

Again using the Poincaré duality we have:

hd+3−k = hk = 64 ∀k ∈
{

3, . . . ,
⌊
d + 3

2

⌋}

and the Hilbert vector is (1, 14, 44, 64, . . . , 64, 44, 14, 1).

Now, we want to find the generators of Ann(f), by applying Corollary 3.19. Behavior
depends on d:

• If d = 1, by Corollary 3.19 Ann(f) is (minimally) generated by:

(1) 〈X0, . . . , X7〉2 = X2
0 , X0X1, . . . ;

(2) U2
1 , . . . , U

2
6 ;

(3) U1U6, U2U5, U3U4;
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(4) X0U4, X0U5, X0U6, X1U3, X1U5, X1U6, X2U2, X2U3, X2U6, X3U2, X3U4, X3U6, 
X4U1, X4U4, X4U5, X5U1, X5U3, X5U5, X6U1, X6U2, X6U3, X7U1, X7U2, X7U4;

(5) X0U3−X1U4, X0U2−X3U5, X0U1−X4U6, X1U2−X2U5, X1U1−X5U6, X2U4−
X3U3, X2U1 − X6U6, X3U1 − X7U6, X4U3 − X5U4, X4U2 − X7U5, X5U2 −
X6U5, X6U4 −X7U3.

• If d ≥ 2, by Corollary 3.19 Ann(f) is (minimally) generated by

(1) 〈X0, . . . , X7〉d+1 and XhXk where h, k ∈ {0, . . . , 7}, h < k;
(2) U2

1 , . . . , U
2
6 ;

(3) U1U6, U2U5, U3U4;
(4) Xd

0U4, Xd
0U5, Xd

0U6, Xd
1U3, Xd

1U5, Xd
1U6, Xd

2U2, Xd
2U3, Xd

2U6, Xd
3U2, Xd

3U4,X
d
3U6,

Xd
4U1, Xd

4U4, Xd
4U5, Xd

5U1, Xd
5U3, Xd

5U5, Xd
6U1, Xd

6U2, Xd
6U3, Xd

7U1, Xd
7U2,X

d
7U4;

(5) Xd
0U3 − Xd

1U4, Xd
0U2 − Xd

3U5, Xd
0U1 − Xd

4U6, Xd
1U2 − Xd

2U5, Xd
1U1 − Xd

5U6, 
Xd

2U4 − Xd
3U3, Xd

2U1 − Xd
6U6, Xd

3U1 − Xd
7U6, Xd

4U3 − Xd
5U4, Xd

4U2 − Xd
7U5, 

Xd
5U2 −Xd

6U5, Xd
6U4 −Xd

7U3.

Example 3.21. Let

f = xd
0u1u2 + xd

1u
2
1 + xd

2u2u3

be a bihomogeneous bidegree (d, 2) polynomial, with d ≥ 1; it is a CW-Nagata polynomial 
whose CW-complex is the following:

xd
0

xd
1

u1

u2

u3
xd

2

We have:

A = A0 ⊕A1 ⊕ . . .⊕Ad+2

and we want to find its Hilbert vector; first of all,

a1,0 = 3 a0,1 = 3

and therefore

h0 = hd+2 = 1 h1 = hd+1 = a1,0 + a0,1 = 6.
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Therefore, if d = 1, then Hilbert vector is (1, 6, 6, 1).
If d = 2, we have

a1,1 = 2 + 1 + 2 = 5,

so

h2 = dimA2 = a2,0 + a1,1 + a0,2 = 3 + 5 + 3 = 11

and the Hilbert vector is (1, 6, 11, 6, 1).
If d = 3 then, by bigraded Poincaré duality

a3,0 = a0,2 = 3 a0,3 = 3

so

h2 = a2,0 + a1,1 + a0,2 = 11

h3 = a3,0 + a2,1 + a1,2 + a0,3 = 3 + 5 + 3 = 11

and the Hilbert vector is (1, 6, 11, 11, 6, 1).
In general, let d ≥ 4; by hypothesis

hd = h2 = a2,0 + a1,1 + a0,2 = 11,

and

hk = dimA(k,0) + dimA(k−1,1) + dimA(k−2,2) ∀k ∈ {3, . . . , d},

so, since

ak,0 = 3 ak−1,1 = 5 ak−2,2 = 3

using Poincaré duality we have:

hd+2−k = hk = ak,0 + ak−1,1 + ak−2,2 = 11 ∀k ∈
{

3, . . . ,
⌊
d + 2

2

⌋}
,

and the Hilbert vector is (1, 6, 11, . . . , 11, 6, 1).
Let d = 1, by Theorem 3.18 Ann(f) is (minimally) generated by:

• 〈X0, X1, X2〉2, U2
2 , U

2
3 , U1U3, U3

1 ;
• X0U

2
1 , X0U3, X1U2, X1U3, X2U1;

• X0U2 −X1U1, X0U1 −X3U3.
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Let d ≥ 2, by Theorem 3.18 Ann(f) is (minimally) generated by:

• 〈X0, X1, X2〉d+1, X0X1, X0X2, X1X2, U2
2 , U

2
3 , U1U3, U3

1 ;
• Xd

0U
2
1 , X

d
0U3, Xd

1U2, Xd
1U3, Xd

2U1;
• Xd

0U2 −Xd
1U1, Xd

0U1 −Xd
3U3.
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