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Abstract: Large-scale flood risk assessment is essential in supporting national and global policies, 
emergency operations and land-use management. The present study proposes a cost-efficient 
method for the large-scale mapping of direct economic flood damage in data-scarce environments. 
The proposed framework consists of three main stages: (i) deriving a water depth map through a 
geomorphic method based on a supervised linear binary classification; (ii) generating an exposure 
land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning 
classification algorithm; and (iii) performing a flood damage assessment using a GIS tool, based on 
the vulnerability (depth–damage) curves method. The proposed integrated method was applied 
over the entire country of Romania (including minor order basins) for a 100-year return time at 30-
m resolution. The results showed how the description of flood risk may especially benefit from the 
ability of the proposed cost-efficient model to carry out large-scale analyses in data-scarce 
environments. This approach may help in performing and updating risk assessments and 
management, taking into account the temporal and spatial changes in hazard, exposure, and 
vulnerability. 

Keywords: flood damage; flood risk; large scale mapping; data-scarce environments; digital 
elevation model; GFI; geomorphic flood area; machine learning; land use; geographic information 
system 

 

1. Introduction 

Flood damage assessment and analysis is a key component of any strategy for flood risk 
mitigation and management [1–3], especially considering the potential consequences of climate 
change [4], increasing human activities and high-value assets in vulnerable areas [5]. Methods and 
tools for estimating and mapping economic damage [6–8] are essential for comparing the efficiency 
and sustainability of a portfolio of flood mitigation measures to support decision-makers in 
delineating flood risk management plans as required by the Flood Directive [9]. Therefore, a 
comprehensive approach that appropriately quantifies the three components of risk, hazard, 
exposure and vulnerability, is essential to identify exposed areas, design the most appropriate 
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strategies for flood management, aid the decision-making process to ensure preparedness, response 
and recovery [10–12], and, thus, improve the sustainability and resilience of risk-based flood 
management practices (e.g., [13,14]). 

In this context, the need for national and transboundary flood risk assessment is gaining 
attention at all levels [15]. Indeed, large-scale flood risk assessments can offer support for national 
and global policies. For example, governments can use risk information to prioritize investments 
(e.g., cost-benefit analysis), and take measures for flood risk reduction, for emergency operations and 
for land-use planning, while insurance companies can improve their estimations of flood risk-based 
insurance premiums [16].  

Large-scale analyses often face a range of practical difficulties due to: (i) the large amount of data 
and parameters needed for the calibration and validation of traditional models; (ii) the 
moderate/coarse resolution of data accessible at a global scale and the limited availability of high-
resolution data, which may affect the accuracy of results and (iii) the computational demand of 
hydraulic models. Therefore, in most countries across the globe, existing hazard and risk maps are 
incomplete, and there is a wide variety of models used and level of detail adopted [17–19]. There is a 
need to identify efficient and inexpensive ways to develop flood risk maps for large areas.  

In this context, the present study proposes a simple and cost-effective model for large scale flood 
economic damage quantification and mapping in data-scarce environments that aims to improve the 
completeness of existing flood risk maps. 

2. Background of the Study 

Recent decades have seen a growing availability of data from new technologies of earth 
observation (EO) and environmental monitoring [20]. At the same time, the high-computational 
power and number of newly developed algorithms to analyse Big Data have increased significantly 
(e.g., machine learning techniques). Their aim is to provide cost-effective solutions for large scale 
flood hazard estimation that are critical to economies and organizations with limited resources. The 
use of free and open source Geographic Information System (GIS) software has also increased 
significantly and has become a consolidated technique for the analysis, visualisation and transparent 
communication of flood risk worldwide [21]. Such advances have increased the range of possibilities 
for geo-scientists, updating and re-inventing the way highly resource- and data-intensive processes, 
such as risk mapping and management, are carried out [22]. 

Several fast-processing methods have been proposed for a preliminary delineation of flood-
prone areas using EO information that is readily available. Generally, these approaches are based on 
indicators of the geomorphologic, climatic, hydrologic, geologic and land-use characteristics of the 
basins. Among these, the approaches that appear the most suitable for the purpose of this study are 
those based on the use of Digital Elevation Models (DEMs) for simplicity of application and reliability 
of results [23–28]. These methods represent a valid alternative to traditional hydrological/hydraulic 
modelling where detailed analyses are not possible due to limited data and/or resource availability.  

Several studies have been carried out (for example [29–31]) to identify the most influential DEM-
retrieved geomorphological features for the delineation of areas with high flood susceptibility and to 
understand how to use these descriptors for large-scale applications. These investigations 
highlighted the strong performance of a linear binary classifier based on a morphological index 
named the Geomorphic Flood Index (GFI). GFI was recognized as the most suitable morphological 
indicator among those examined for preliminary mapping over large areas and under limited data 
conditions [31]. The intrinsic properties of the GFI and the analysis of the DEM were further 
investigated [32] to obtain an immediate estimate of the spatial distribution of the water surface 
elevation. Importantly, water surface elevations can be coupled with the vulnerability of exposed 
assets to obtain an assessment of the direct economic damage in a simple and effective way [33].  

A wide range of damage models, e.g., empirical (data-driven approaches) or synthetic (i.e., 
expert-based/what-if-analysis approaches), for different sectors (agriculture, industry, residential, 
etc.) and levels of detail (micro, meso and macroscale), is available in the literature [1,3,34–37]. These 
methods are based on damage functions and vulnerability curves (e.g., depth–damage curves based 
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on flood water level) in order to describe component-by-component analysis of physical damage to 
buildings, which considers available information of damage mechanisms. To support the European 
(EU) policies on flood risk management, the European Commission-Joint Research Centre (JRC) 
collected and harmonized information of damage models developed specifically for some EU 
countries (e.g., the Rhine Atlas and FLEMO (Flood Loss Estimation MOdel) [36] in Germany, the 
Standard Method [38] and the Damage Scanner model [39] in the Netherlands), in order to develop 
vulnerability curves and maximum damage values for all EU member countries [40]. These curves 
can be effectively used since the maximum damage values have been collected for all European states. 
For each damage class, an average value has been calculated, which can be scaled based on per capita 
GDP and applied for each nation or region [41]. Recently, all the above-mentioned curves were 
integrated into an open-source and user-friendly QGIS tool called FloodRisk [42] that is able to 
automatize the damage assessment and mapping routine. These damage curves and their relative 
economic values vary according to the land-use type. Exposure analysis, which consists of 
recognizing potentially vulnerable elements and assigning them an economic value on the basis of 
land-use or considering individual units, is important to explore prior to the application of the 
damage curves.  

It is widely recognized that satellite remote sensing is able to provide useful information quickly 
and economically regarding the classification of elements potentially exposed to flood risk based on 
land-use analysis. In particular, medium-resolution Landsat-8 satellite sensors show high potential 
for timely analyses and regional scale studies with reduced costs [43,44]. In analysing the built 
environment using Landsat images, the different land-use classes are generally determined by the 
alignment of buildings, roads and open spaces, thus they cannot be effectively described only by the 
spectral values of a single pixel. Recently, object-based image analysis has shown better results 
compared to pixel-based approaches; in addition, object-based image analysis can be usefully 
combined with machine learning techniques to improve the description of urban models [45].  

Based on the scientific advances described above, we propose a simplified and practical 
framework for the quantification of direct economic flood damage through the integration of 
geomorphic methods, land-use classification with machine learning techniques, and the damage 
curves method (Section 4). The proposed integrated framework was tested in Romania for a 100-year 
return time (country attributes are described in Section 3.) The resulting map, with a resolution of 30 
m, covers the entire country, including minor streams which are often not considered in large-scale 
analyses. The demonstration application (Section 5) reveals how the flood risk description may 
particularly benefit from the integrated use of geomorphic and geospatial methods, object-based 
image analysis combined with machine learning algorithms, and EO freely available monitoring data. 
A discussion and conclusion are provided in Section 6. 

3. Case Study 

According to CRED EM-DAT [46], Romania is one of the European countries most affected by 
floods. Flooding was responsible for 86% of the economic damage caused by natural hazards in the 
last 30 years in Romania [47].  

The total area of Romania is about 238,000 km2. The Danube basin covers 97.8% of Romania and 
30% of the entire Danube basin falls in the administrative area of Romania [48] (Figure 1). 

In the last two decades, agricultural areas in Romania have decreased in favor of built-up areas, 
which increased by 176 km2 from 1990 to 2006 [49]. Furthermore, the built-up areas increased by 112 
km2 from 2006 to 2012, with an average annual growth of 19 km2 (0.15% increase from 2006 to 2012) 
[50]. As land uses shift, flooding is causing additional serious damage, due to the greater 
concentration of people and economic assets in areas crossed by the waterways. 
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Figure 1. Geographic and topographic setting of Romania, showing the adopted Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model (DEM) (m a.s.l) at 30-m resolution. 

4. Methodology 

The proposed methodological framework for flood damage mapping (for a single scenario 
event) is based on the three main steps described below and shown in Figure 2. 

The first step (see 4.1 of Figure 2) was the application of a supervised linear binary classification 
model based on the Geomorphic Flood Index (GFI) [30–32]. This step aimed to derive the maps of 
flood extent and water depth for Romania (including minor order basins) using Shuttle Radar 
Topography Mission (SRTM) [51] elevation data. The SRTM is one of the most widely used altimetric 
data sources in the world, due to its quality, accessibility and global coverage. Since 2000, a number 
of SRTM DEMs have been created and made available to the public with different ground sampling. 
In this study, we adopted the highest resolution dataset SRTM-1 Arc-Second Global elevation data (1 
arc-second/30 m). The second step (see 4.2 of Figure 2) aimed to realize an exposure map obtained by 
supervised land-use classification, by using a machine learning technique combined with an object-
based EO image analysis. In particular, the information obtained from Landsat-8 remotely sensed 
optical images [52] was used together with the discontinuous (i.e., available for a few large cities in 
Europe) existing high resolution land-use map Urban-Atlas [53], to obtain a harmonized and 
consistent land-use map with a resolution of 30 m for the areas estimated as flooded in the previous 
step. 

Finally, the flood economic damage (see 4.3 of Figure 2) mapping was carried out for a given 
return time by using vulnerability curves and maximum damage values proposed by [41] contained 
in the free and open-source GIS FloodRisk tool [42], by combining the water depth map (estimated in 
step 1) with information on exposure and vulnerability (evaluated in step 2). 
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Figure 2. Workflow of the Methodological Framework. 

4.1. Flood Hazard Analysis 

A hydrogeomorphic method based on the Geomorphic Flood Index (GFI) [31] was adopted to 
derive flooding characteristics in terms of inundation extent and expected flood water levels. The GFI 
is defined as the natural logarithm of the ratio between a variable water depth hr and the elevation 
difference H:  

GFI = 𝑙𝑙𝑙𝑙 �
ℎ𝑟𝑟
𝐻𝐻
� (1) 

For each basin location, hr represents the river stage at the point of the river network closest to 
the one under examination, which is considered as the most probable source of flood hazard. The 
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parameter H represents the difference in elevation between the two above-mentioned points. The 
estimate of the river stage hr is derived as a function of the upslope contributing area 𝐴𝐴𝑟𝑟 using a 
hydraulic scaling relationship [54]: 

ℎ𝑟𝑟 ≈ 𝑎𝑎𝐴𝐴𝑟𝑟𝑛𝑛 (2) 

A simplified method to derive flood-susceptible areas based on the GFI has been recently 
proposed and implemented in a QGIS plugin called the Geomorphic Flood Area tool (GFA tool) [48]. 
This tool performs a linear binary classification based on the GFI to identify flood-prone areas by 
combining morphological information extracted from digital descriptions of the earth’s surface 
(DEMs), along with flood hazard information derived by existing inundation maps (e.g., official flood 
hazard maps derived by hydraulic simulations). These maps are usually available for limited sections 
of a basin, and are used as references to train the classifier by identifying the optimal discrimination 
threshold of the GFI, τ. It represents the linear boundary of decision between the two classes (flood-
prone areas and flood-free areas) that best approximates the reference flood map. After the classifier 
has been trained, it is able to detect flood-prone areas over unstudied portions of the basin. 

Recently, Ref. [32] further explored the GFI approach to obtain a rapid estimation of floodwater 
level. Specifically, since paired values of hr and Ar are generally not available to calibrate the hydraulic 
scaling relationship of Equation (2), the authors suggest the GFI can be computed by estimating the 
exponent n from literature values (see, e.g., [47]) and assuming the coefficient a using the threshold 
calibrated with the linear binary classification. In particular, the coefficient a can be obtained as shown 
in Equation (3): 

𝑎𝑎 = �
1

𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏)
� (3) 

Consequently, the scaling relationship of Equation (2) can be used for a more reliable estimate 
of the floodwater level at each point of the river network. From the geomorphic analysis previously 
performed, the difference in elevation H that separates all basin locations from the closest river is 
known. Therefore, the hr values can be used to estimate the water depth (WD) within the delineated 
flood-prone areas as follows: 

WD = hr − H (4) 

The main advantages of this approach are its limited requirements in terms of computational 
time and input data (a DEM and a flood hazard map of at least 2% of the basin area). This makes it 
particularly useful in poor data environments and for large scale analyses, where hydraulic 
simulations are prevented by data unavailability, computational complexity and excessive costs.  

4.2. Exposure Analysis 

A central issue in exposure analysis is the availability of up-to-date information on the extent, 
type and composition of the land-use map [55]. Nowadays, satellite imagery can provide, in a time 
and cost-efficient manner, the information needed to derive land-cover information over large areas 
[56]. Thus, in this study, medium-resolution satellite images with a spatial resolution comparable to 
the hazard information estimated above were used to derive proxies (land use/land cover) to support 
an indirect characterization of exposure over large areas. The latest Landsat-8 free images were 
adopted in this study for land cover classification due to their constant improvement in terms of 
richness in spectral, spatial, radiometric and temporal resolution thanks to new generations of 
satellites being launched with new and improved sensors [57,58]. 

This study used an object-based approach for image analysis and combined it with a machine 
learning technique in order to derive a land-use pattern covering the flood susceptible areas. Object-
based image analysis (OBIA) uses geographic objects as basic units for land cover classification that 
allows for the incorporation of various sources of information, such as spectral and texture, as the 
basis for classification, reducing the within class variation and generally removing salt-and-pepper 
effects, which result from isolated pixels mainly due to misclassification [44,45]. To partition the 
multi-dimensional feature space into homogenous areas and label each image object/segment with 
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respect to the desired land-use classes, an Artificial Neural Network (ANN) was used. The ANN is 
able to estimate the non-linear relationship between the input data and desired outputs, has a fast 
generalization capability and no a-priori knowledge requirements of the distribution model of the 
input data, as it is a non-parametric classifier [59–61]. To train and test the adopted supervised 
classifier, a reference dataset was compiled for the study area using the high-resolution Urban Atlas 
land-use data, resampled to a 30 m raster to be consistent with the hazard map and Landsat dataset, 
available for large cities (i.e., all urban areas with a population greater than 50K in Europe) as part of 
the Copernicus Land Monitoring Service [53]. 

The proposed image processing and analysis chain consisted of three main modules, described 
in the following sections: (i) image segmentation, (ii) feature-based description, and (iii) classification.  

4.2.1. Image Segmentation 

This study adopted an object-based approach to produce high classification accuracies based on 
Landsat images [44,62,63]. However, OBIA has limitations, such as choosing an appropriate 
segmentation scale: under-segmentation means that the image-objects are larger than the objects on 
the ground, thus two or more land covers will be included in one large image object, while over-
segmentation results in more subdivision, in particular with low spatial resolution images [64]. 

Image pixels were clustered into segments in an unsupervised manner using image statistics 
through an algorithm [65], called Efficient Graph-based Image Segmentation. This algorithm 
delineates segment boundaries by minimizing intra-segment variability and maximizing inter-
segment separability. It does this through a comparison of the feature space, defined on the basis of 
the brightness values of the pixels in the Landsat spectral bands, with that between neighboring 
pixels within each segment. The segments were produced with a parameter combination [45], in an 
application on Landsat-8 images, where the runtime parameter k was equal to 25 and the segment 
size m was equal to 75 to effectively set a scale of analysis. The segmentation parameters were tuned 
using a spatial autocorrelation metric, Global Moran’s I [45]. This measured, on average, how similar 
a region was to its neighbors [66]. It quantified inter-segment heterogeneity and the standard 
deviation of the brightness values of the input image bands, weighted by each segment’s size, and 
summed over all the segments in the image scene, to assess intra-segment homogeneity. 

4.2.2. Feature-Based Description 

A recursive feature selection algorithm [45,67] was used to identify the most significant image 
features using all spectral bands of Landsat-8. A pre-selected set of the 18 spectral features, 6 spectral 
band indices and 20 textural features derived from the grey-level co-occurrence matrix (GLCM), were 
calculated at the computational unit of segments for the most important spectral bands of Landsat-8. 
A summary list of the features is presented in Table 1. 
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Table 1. List of image features derived from Landsat-8 [45]. Note: All image features were computed 
per segment with i being the row number and j being the column number of the grey-level co-

occurrence matrix (GLCM). 𝑃𝑃𝑖𝑖,𝑗𝑗 was defined as: 𝑃𝑃𝑖𝑖,𝑗𝑗 =  𝑉𝑉𝑖𝑖,𝑗𝑗 ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗𝑁𝑁−1
𝑖𝑖,𝑗𝑗=𝑜𝑜

�  where V is the value of GLCM. 

Image Feature Features Class 
Mean spectral value in image bands 1, 2, 4, 5, 6, 7; Spectral 

Standard deviation in image bands 1, 3; Spectral 
Weighted brightness, with I being the number of image bands, J being 
the number of pixels per segment and p being the brightness value of 

the pixels; 

𝑤𝑤𝑤𝑤 =  
1
𝐼𝐼𝑒𝑒𝐼𝐼

��𝑒𝑒𝑖𝑖𝑗𝑗

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

 

Spectral 

Minimum brightness value in image bands 1, 3, 9, 10; Spectral 
Maximum brightness value in image bands 1, 4, 6, 9, 10; Spectral 

Mean value of normalized difference vegetation index (NDVI) 
NDVI = (NIR − Red)/(NIR + Red); 

Band index 

Mean value of normalized difference water index (NDWI) 
NDWI = (Green − NIR)/(Green + NIR); Band index 

Mean value of modified normalized difference water index (MNDWI) 
MNDWI = (Green − SWIR)/(Green + SWIR); Band index 

Mean value of soil adjusted vegetation index (SAVI), where L (here 
equal to 0.5) is the soil brightness correction factor 

𝑆𝑆𝐴𝐴𝑉𝑉𝐼𝐼 =   (𝑁𝑁𝐼𝐼𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅)
 (𝑁𝑁𝐼𝐼𝑁𝑁 + 𝑟𝑟𝑅𝑅𝑅𝑅 + 𝐿𝐿) 

 (1 + 𝐿𝐿); 
Band index 

Mean and standard deviation value of normalized difference built-up 
index (NDBI) 

NDBI = (SWIR − NIR)/(SWIR + NIR); 
Band index 

Angular Second Moment derived from the GLCM in band 7; 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  � 𝑃𝑃𝑖𝑖,𝑗𝑗

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

(𝑖𝑖 − 𝑗𝑗)2 Textural 

Dissimilarity derived from the GLCM in bands 1, 2, 6; 

𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆 = � 𝑃𝑃𝑖𝑖𝑗𝑗

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

|𝑖𝑖 − 𝑗𝑗| Textural 

Contrast derived from GLCM in bands 1, 2, 4, 7; 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  � 𝑃𝑃𝑖𝑖,𝑗𝑗

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

(𝑖𝑖 − 𝑗𝑗)2 Textural 

Homogeneity derived from the GLCM in bands 1, 4, 6; 

𝐻𝐻𝐶𝐶𝐻𝐻 =  �
𝑃𝑃𝑖𝑖𝑗𝑗

1 + (𝑖𝑖 − 𝑗𝑗)2

𝑁𝑁−1

𝑖𝑖.𝑗𝑗=0

 Textural 

Mean derived from the GLCM in bands 1, 3, 4, 5, 6, 7, 9, 10; 

𝑢𝑢𝑖𝑖 =  � 𝑖𝑖�𝑃𝑃𝑖𝑖𝑗𝑗�
𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

 Textural 

Variance derived from the GLCM in band 10; 

𝜎𝜎𝑖𝑖2 =  � 𝑃𝑃𝑖𝑖𝑗𝑗

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

(𝑖𝑖 − 𝑢𝑢1)2 Textural 
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4.2.3. Classification 

The multi-layer perceptron (MLP) neural network [68], was used to recognize land cover 
patterns. The MLP consisted of an input layer that corresponded to individual data sources, such as 
the 44 image features (listed in Table 1), a hidden layer used for computation and an output layer 
that included a set of codes to represent the classes to be recognized. The inputs were introduced into 
the ANN in a feed forward manner, which propagated through the hidden layer and the output layer. 
The values associated with each node were estimated from the sum of the multiplications between 
input node values and weights of the links connected to that node [69]. The initial weights were 
selected randomly and then the back propagation (BP) training algorithm compared the calculated 
output for a given observation with the expected output for that observation. The differences between 
the expected and calculated output values across all observations were summarized using the mean 
squared error. This process of feeding forward signals and back-propagating the errors was repeated 
iteratively until the total error was minimized and distributed among the various nodes in the 
network [60]. 

In this study, several ANNs in sequences, each with a binary output layer, were used to solve 
and decompose the multi-class problems, i.e., the clusterization of several land-use classes, as a 
flexible classification scheme that consisted of different hierarchical levels [45]. For example, first, the 
extraction of built-up areas and non-built-up areas was performed and, in order to get a more 
differentiated picture of the built environment, the class ‘‘built-up area” was further refined and split 
into more detailed classes (e.g., ‘‘residential” and ‘‘industrial/commercial”). 

4.3. Damage Analysis 

The free and open source FloodRisk GIS tool [42] was used to calculate the possible direct tangible 
damage at the national level. This tool uses the powerful QGIS functions and python libraries to 
calculate and display the expected economic damage in the form of maps.  

Specifically, the spatial distribution of the water depth estimated by the geomorphic method 
GFA for a 100-year return period (described in Section 4.1), and the land-use map, derived by the 
Landsat-8 image analysis that combined object-based image analysis with an ANN (Section 4.2), were 
overlapped and combined in the FloodRisk tool. Moreover, the asset values and vulnerability (i.e., the 
propensity of the asset exposed to suffer damage) were associated with each land-use class in the 
damage model. In particular, FloodRisk uses specific vulnerability functions, called depth–damage 
curves, to calculate the range of damage (0 = no damage to 1 = complete destruction) for the different 
type of land-use classes on the basis of the water depth in each cell of the land-use map. Considering 
that these curves are context-specific, (i.e., very sensitive to local characteristics [35] and that functions 
developed for the specific context of Romania were not available [33]), a set of average functions [40] 
based on data and functions collected and harmonized for all of Europe by the JRC, were used in this 
application. These can provide uniform and comparable results not only at the national level but also 
at a pan-European scale. It is notable that the use of depth–damage functions is well-suited to large 
scale analysis because the uncertainty of damage estimates decreases over larger sample areas due to 
the averaging effect [32]. The degree of damage in each land-use map pixel, obtained on the basis of 
these depth–damage curves, was multiplied for the asset value associated with each land-use class 
[41], and adjusted on the basis of inflation to estimate the total economic damage. 

5. Results of the Application in Romania 

The proposed integrated framework was tested in Romania for the 100-year return period. The 
demonstration application over the entire country (including minor order rivers) and resulting maps 
with a resolution of 30 m are presented in detail in the following sub-sections. 

5.1. Flood Hazard Mapping in Romania 

By applying the GFI method, a water depth map at 30 m spatial resolution was developed. To 
derive the geomorphic features of the study area, the SRTM-1 Arc-Second Global elevation data (1 
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arc-second/30 m) were adopted. Its horizontal accuracy, as estimated by the NASA Jet Propulsion 
Laboratory (JPL), ranges from 7.2 m (Australia) to 12.6 m (North America), while the absolute vertical 
accuracy ranges from 5.6 m (Africa) to 9 m (North America) [70]. Indeed, the performance of this 
hydrogeomorphic method, like almost all applications related to hydraulic and hydrological 
modelling, is influenced by the quality of elevation data. For example, finer-resolution bare-ground 
Digital Terrain Model (DTM) derived by airborne LiDAR (Light Detection and Ranging) would 
improve the terrain analysis, and consequently the accuracy of the results [71]. Although the 
availability of these kinds of high-resolution data is increasing, they are still limited in terms of extent, 
and in many cases cover only river courses and not full hydrographic basins. It was therefore not 
feasible for our study that has a country wide coverage. Thus, the SRTM dataset was chosen since, to 
the best of our knowledge, it represents the highest quality elevation dataset freely available at the 
scale of our interest. It also matches the spatial resolution of the Landsat-8 optical images used in the 
exposure analysis.  

To train the classification, the 100-year pan-European flood hazard map derived by the JRC [18] 
was used. This flood hazard dataset, to the best of our knowledge, is the most complete and state-of-
the-art dataset for the study area and, in addition, is open-access 
(https://data.jrc.ec.europa.eu/dataset/jrc-floods-floodmapeu_rp100y-tif). 

In a preliminary study, the extent of the 100-year flood-prone areas had been derived by using 
the GFA tool over Romania, which sub-divided the country into five major basins (for more details 
please see [48]). Starting from these maps, the procedure described in Section 4.1 was carried out for 
the estimation of flood water levels assuming the exponent n was the average of literature values, 
with n = 0.3544 [48], and the values for the coefficient a listed in Table 2. 

Table 2. The calibrated optimal threshold for the linear binary classification based on the geomorphic 
flood index (GFI), and the relative estimated value of the scale factor for each of the five major basins 
identified in Romania (see [48]). 

Basin τ Scale Factor a 
1 1.561 0.21 
2 1.269 0.281 
3 3.91 0.02 
4 1.176 0.309 
5 1.165 0.312 

The obtained hazard map (Figure 3) includes minor order streams that are usually neglected in 
large scale analyses. Therefore, it offered a more extended identification of areas exposed to flood 
hazard, filling the gaps of the JRC pan-European map that essentially covers the major rivers. 
Additionally, the use of a resolution of 30 m represented a further improvement in the detail of the 
results.  

Unfortunately, we cannot provide a validation of these hydrogeomorphic flood maps, since real 
recorded flow depths are rarely available for validation purposes. However, the performance of the 
GFI method adopted here was validated against hydraulic flood hazard maps in previous studies 
[31,32,72].  

5.2. Exposure Mapping in the Case Study 

The exposure maps (Figure 4) at 30 m spatial resolution were derived by using a supervised 
land-use classification through the combination of a machine learning approach and an object-based 
image analysis on Landsat-8 optical images [52].  

The use of a consistent and complete dataset for all of Romania with a finer resolution would 
enable rapid assessments of flood risk for local policymakers in regions where few data are available 
and would also allow for consistent assessment across the country. Landsat-8 has 10 bands with a 
resolution of 30 m for the visible spectrum, near infrared spectrum and shortwave infrared spectrum, 
100 m for thermal infrared spectrum, plus an additional panchromatic band of 15 m resolution [52]. 
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The images are available in processing Level 1 T-Terrain Corrected, which means they are 
orthorectified, radiometrically corrected and the TIRS bands are resampled to 30 m by using cubic 
convolution [45]. Moreover, these images were pre-processed by conversion to top-of-atmosphere 
reflectance, mosaicked and transformed into the ETRS89/LAEA Europe coordinate reference system. 
The use of global EO datasets, such as Landsat-8 images, for information on exposure enabled a rapid 
(due to the use of machine learning) flood damage assessment with a controlled degree of consistency 
in terms of accuracy and coverage. In addition, the analysis was done using a resolution of 30 m, 
which further improved accuracy. 

To train and test the adopted supervised classifier, a reference dataset was compiled for the 
study area using the high-resolution Urban Atlas land-use data, available for large cities (i.e., all 
urban areas with a population greater than 50K in Europe) as part of the Copernicus Land Monitoring 
Service [53], resampled to a 30 m raster to be consistent with the hazard map and Landsat dataset. In 
particular, data available for the 35 main cities in Romania were acquired from the website of the 
European Union’s Earth Observation Programme Copernicus [73]. The three main steps described in 
the methodological section for the land-use classification (i.e., image segmentation, feature-based 
description, and classification) were based on commonly used ANN algorithms (e.g., [60,68]) and 
extensively tested methodologies (e.g., for the choice of the segmentation method and parameters or 
the image features derived by Landsat-8 images, see, e.g., [44]). However, a validation test was 
performed to verify if the above-described methodologies could be effectively used in the proposed 
case study. 
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Figure 3. Geomorphic Flood Area (GFA) water depth (hazard) map for: (A) the entire area of Romania 
(including minor order rivers) for a 100-year return time at 30 m resolution, and (B,C) details of two 
of the major cities of Romania affected by past flood events. 

The reference dataset, the Urban Atlas land-use map [53], was used to produce a large dataset 
for training (90%) and a small dataset for testing (10%). After the ANN training, the classification 
performance was evaluated on the testing dataset through an error matrix where the individual 
accuracy of each category was plainly described with the classification errors of both inclusion 
(commission errors) and exclusion (omission errors) [74]. Overall accuracy was defined as the total 
number of correctly classified segments divided by the total number of test segments. Sensitivity, 
defined as the true positive rate or producer’s accuracy, was estimated as the proportion of actual 
positives, which were correctly classified as positives. Specificity, also defined as the true negative rate 
or user’s accuracy, was assessed as the proportion of actual negatives, which were correctly classified 
as negatives. 
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Figure 4. Exposure map for: (A) the flood susceptible areas of Romania at 30 m resolution; (B,C) 
detailed images of two of the major cities of Romania affected by past flood events. 

For the testing dataset, the overall accuracy of the performed classification was around 85%. The 
user’s and producer’s accuracies of individual classes were consistently good except for the land-use 
type infrastructure (around 40%), due possibly to the resolution adopted in the study (e.g., 30 m 
resolution could be too coarse to effectively identify roads or railway lines). The user’s accuracy of 
other land-use classes ranged from almost 71% for industrial uses to 90% for agricultural uses. The 
producer’s accuracy was reasonable for all other land-use classes (>62%). All results are shown in Table 
3. 
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Table 3. Performance evaluation of the testing dataset (Confusion/Error Matrix). 

 Urban Industrial Infrastructure Agricultural Forest Water 
User’s 

Accuracy 
(%) 

Urban 51,398 3101 175 4421 0 358 86.5% 
Industrial 2379 43,008 1153 13,116 32 1002 70.9% 

Infrastructure 1881 3226 7526 5739 70 525 39.7% 
Agricultural 16,339 11,868 5792 379,258 234 6755 90.2% 

Forest 1314 2094 646 1165 15,794 625 73.0% 
Water 467 5362 3772 6260 0 64,998 80.4% 

Producer’s 
accuracy (%) 

69.7% 61.7% 39.5% 92.5% 96.7% 87.5%  

5.3. Economic Damage Mapping of Romania  

The direct economic damage map (Figure 5) for the 100-year return time was derived in the free 
and open-source GIS FloodRisk tool [42] by using vulnerability curves and maximum damage values 
[40], and adjusted on the basis of inflation (see Table 4).  

Along with the results obtained using the hazard and exposure data described above, additional 
damage maps were produced for comparison. For the description of the flood hazard, the pan-
European flood hazard map (available in the JRC data catalogue) produced by applying a 
combination of distributed hydrologic and hydraulic models for a return period of 100 years at a 
resolution of 100 m [18] (here resampled at 30 m), was adopted. 

Regarding exposure, open data available for all of Europe, were adopted (Corine Land-Cover 
(CLC)). The CLC database is part of the Copernicus Land Monitoring Service and provides a 
consistent, comparable, pan-European land cover product [75]. The first CLC product was developed 
for the reference year 1990, with updates in 2000, 2006 and 2012. The products, generated in raster 
format at resolutions of 100 m and freely available for downloading from the EEA website [75], were 
resampled at 30 m in order to be consistent with the results proposed in this study. 

The comparison analysis covered only major rivers since the maps developed by [18] do not 
cover minor order basins. The result of the combination of the different data and methods in the 
FloodRisk tool are presented below: Figure 6 and Table 5 show the results of economic flood damage 
analysis using (i) the GFA method and Landsat-8 data (as proposed in this study), (ii) the GFA 
method and the CLC, (iii) the JRC flood hazard map [18] and Landsat-8 image analysis, (iv) the JRC 
flood hazard map [18] and CLC.  

The approach proposed in this study (i.e., (i) GFA method combined with Landsat-8 data) 
presents the highest total value of economic damage due to the higher level of detail of the land-use 
maps but also due to the greater water depths estimated by the GFA method. The Urban Atlas maps 
(used to train the adopted ANN for producing, on the basis of the Landsat-8 images, the Romanian 
exposure map), adopted a large number of classes to describe land-use with detailed classification. 
This could result in a refined identification of the urban and industrial areas, and an efficient 
separation from different classes with respect to CLC, where aggregated results could be affected by 
errors at this scale. Considering that parts of the urban and industrial areas were located close to the 
river, the increase in water depth values could strongly affect the final damage results. 

Absolute damage values may not matter for prioritization of locations for investment, where the 
risk ranking may be the same irrespective of the absolute values. However, it is important to highlight 
that the difference was amplified by the very high maximum damage values proposed by [41] for the 
industrial and urban classes, and that tended to produce a large increase in total damage with a small 
increase in flooded areas or water depths. 
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Figure 5. Damage map for (A) Romania at 30 m resolution for an event with a 100-year return time 
and for (B) and (C) two major cities of Romania affected by past flood events. 

Table 4. Economic asset values divided by land-use classes for Romania. 

Code Land Use Class Adjusted Assets Value (Euro/m2) 
11100 Urban 495 
12100 Industrial 667 
12220 Infrastructure 11.2 
20000 Agricultural 0.07 
30000 Forest 0.04 

Moreover, because the GFA approach neglected diffusion and transients of the flooding process, 
it presented structural differences with respect to the method proposed by [18], which could influence 
the final results. It should also be mentioned that the linear binary classifier was calibrated using only 
the extent of the reference inundation map, while the flow depths obtained from the JRC maps were 
not used to calibrate the geomorphic water depth. In fact, the spatial distribution of water depth could 
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eventually be optimized to reach the minimum error with respect to the reference hydraulic map, but 
our aim was to derive the water depth using only flood extent (for more detail please see [32]). 

Considering that a proper validation of flood risk assessments was not possible at this scale due 
to data limitations in the study area, it was difficult to validate the performance of the combination 
of different methods and data. However, the results showed that the major advantages of the 
proposed method were its use of commonly available input data, the possibility of performing rapid 
analyses at large scales with a medium spatial resolution (30 m) that also considered minor order 
basins, and allowing for downscaling between spatial scales. This resulted in a rapid assessment of 
flood risk in a data and resource-limited environment, and a more consistent comparison of flood 
risks in cities across Romania. 

Finally, the results of the methodology proposed in this study could support stakeholders in, for 
example, developing national insurance programs and communication and awareness campaigns, to 
help control local development and planning, and in prioritizing investments. While the central 
approach is quite general, there are notable novel aspects in this study in terms of the integration of 
different innovative methodologies and the applicability of the framework at different scales due to 
its simplicity and cost-efficiency in using parsimonious and commonly available data. 

  
Figure 6. Comparison of the results of economic flood damage analysis of anthropic land-use classes 
(i.e., urban, industrial and roads) using (i) the GFA method and Landsat-8 data (as proposed in this 
study), (ii) the GFA method and the Corine Land-Cover (CLC), (iii) the Joint Research Centre (JRC) 
flood hazard map [18] and Landsat-8 image analysis, (iv) the JRC flood hazard map and CLC. N.B: 
forest and agricultural land-use classes are not visualized in this graph but they are reported in Table 
5. 

Table 5. Results of economic flood damage analysis using (i) the GFA method and Landsat-8 data (as 
proposed in this study), (ii) the GFA method and the CLC, (iii) the JRC flood hazard map [18] and 
Landsat-8 image analysis, (iv) the JRC flood hazard map and CLC. 

  Economic Flood Damage (M€) 
  GFA_Landsat8 JRC_Landsat8 GFA_CLC JRC_CLC 

La
nd

 U
se

 
C

la
ss

 

Urban 140,674.86 107,996.13 84,299.48 54,422.28 
Industrial 111,012.6115 82,446.2972 34,116.04 22,025.98 

Roads 1143.17 1100.11 74.78 57.72 
Agricultural 444.30 399.11 536.24 507.55 

Forests 11.78 10.92 15.68 12.71 
Total 253,286.73 191,952.57 119,042.22 77,026.24 
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6. Conclusions 

The present study proposes a cost-efficient method for a large-scale analysis and mapping of 
direct economic flood damage at medium resolution in data-scarce environments. The proposed 
methodological framework consists of three main stages: (i) deriving a water depth map through a 
DEM-based geomorphic method using a linear binary classification; (ii) generating an exposure land-
use map developed from multi-spectral Landsat 8 satellite images using a machine-learning 
classification algorithm; and (iii) performing a flood damage assessment using a GIS tool based on 
the vulnerability (depth–damage) curves method. The cost-effective model was based on commonly 
available datasets and innovative methodologies that took advantage of increased computing power. 

The proposed integrated framework was tested in Romania for a 100-year return period. The 
resulting map, with a resolution of 30 m, covered all of Romania including minor order streams, 
which are often not considered in large-scale analyses. The proposed method can therefore enhance 
the completeness and spatial details of existing flood hazard and damage maps, allowing for a 
methodologically consistent assessment for Romania. The use of free and open data allows for more 
consistent comparisons on flood risks in cities across the EU and within individual countries. 
However, it is important to stress that these datasets may be subject to error that may certainly affect 
the final quality of the results. In the case of higher quality input data availability (for example, 
increased accuracy and spatial resolution), model results might be improved by including a 
validation against real event data at varying return periods. In the present case, the use of 
global/continental datasets enable rapid assessments of flood risk for policymakers in regions of the 
country where there are few data available and, in particular, it allows for quantitative comparisons 
of the damage in different regions/communities. On one hand, this is particularly important to 
identify the total risk facing the country in order to determine investment priorities, and the scale of 
government grants for flood risk management measures undertaken on the basis of consistent 
assessments. It is also necessary to demarcate the limits of the national insurance program. This is 
particularly important to identify the flood risk at the country level in order to determine investment 
priorities and flood risk management measures. On the other hand, this responds to the need of local 
decision-makers for controlling development where little data is available but a significantly higher 
level of detail is required—not least because decisions made based on that information are likely to 
be contested.  

Although detailed and accurate flood inundation maps can be obtained by means of 
hydrological and hydraulic models, very few continental-scale studies that employ detailed 
hydraulic models are presented in the literature (e.g., [76,77]) due to the difficulties of data 
availability and computational expense. However, significant research advances and increasing 
computational and data resources are extending the range of possibilities for practical applications, 
filling the gap that exists between simplified large-scale approaches and detailed reach scale 
hydraulic models. The low complexity of the proposed approach provides a computationally 
inexpensive flood hazard assessment that does not account for the spatio-temporal dynamic of 
inundations especially in territories where numerous hydraulic infrastructures exist. However, 
hydrogeomorphic approaches benefit from the increasing availability of high-resolution DEMs, and 
our study has shown the potential of fast-processing DEM-based algorithms for consistent flood 
hazard characterization. Additionally, the results of the proposed integrated framework, due to its 
simplicity and cost-efficiency in using parsimonious and commonly available data, could be used to 
explore future scenarios at large scale to study temporal and spatial changes related to, for example, 
impacts of climate change, socio-economic growth or both. Taking into account these changes, the 
proposed model could perform future risk assessments in terms of hazard, exposure and 
vulnerability. 
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