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Abstract—Our ability to coordinate the behavior in networks of
complex dynamical systems in often challenged by the presence
of noise affecting the individual dynamics and the communi-
cation links. In the literature, conservative global conditions
guaranteeing the almost sure convergence toward the desired
trajectory of a virtual node, the pinner, have been derived. In
this paper, we identify the minimal conditions on the individual
dynamics, interconnection topology, and noise intensities, so
that the network exponentially converges onto the pinner’s
trajectory. Specifically, we broaden the Master Stability Function
approach to deal with networks of coupled stochastic differential
equations, and provide necessary and sufficient conditions for
local exponential pinning controllability of networks of stochastic
systems. Interestingly, our analyses show that noise can be either
beneficial or detrimental for pinning controllability, depending
on how it diffuses in each node. Our analytical findings are
illustrated with representative numerical examples.

Index Terms—Stochastic complex networks, pinning control,
synchronization, stochastic differential equations, communication
noise.

I. INTRODUCTION

In the last decades, the emergence of spontaneous coordi-
nated behaviors in networks of coupled dynamical systems has
attracted the interest of diverse scientific communities. A sub-
stantial research effort contributed to uncover how ensembles
of interconnected systems may spontaneously coordinate to
achieve consensus on a point of the space space [1]-[6] or to
converge towards a common synchronous trajectory [7]-[13].
Synchronization and consensus have been widely studied for
their relevance in several domains of application, including
social networks analyses [14], [15], animal group dynamics
[16], [17], power grids [18], [19], and metabolic networks
[20], [21]. Formally, analytical conditions have been derived
guaranteeing convergence toward a common solution of the
individual dynamics, which, in general, cannot be arbitrarily
imposed. Then, a major control problem still remained in
all the engineering applications where the network nodes are
prescribed to synchronize onto a predefined desired trajectory.
This is the case, for instance, of formation control problems,
where a subset of the network nodes, commonly denoted as
leaders, is aware of the target trajectory of the formation and
sets the reference for the remaining nodes, the followers [22].
The reference trajectory may also not be assigned by a node
of the network, but rather come from an external reference
signal. For instance, in power grids we would ideally drive
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the generators’ network to nominal synchronous operation at
the reference frequency [18].

A possible solution to this control problem could be to
inject a feedback control signal to each node in the network.
However, this is not always feasible in applications, as the
desired solution may not be accessible to all the network
nodes. To cope with this constraint, in the literature the so-
called pinning control [23]-[25] has been proposed, which
only requires to directly control a small fraction of the network
nodes. Specifically, conditions for the local convergence to-
ward the synchronization manifold have been provided in [26],
[27] by linearizing the dynamics around the pinner’s trajectory.
Later works have provided conditions on the number of
pinned nodes required to achieve global convergence of the
whole network [28]-[31] or of a maximal node subset [32],
[33]. Furthermore, decentralized adaptive strategies have been
developed to tune both the coupling and the control gains in
a distributed fashion [34], [35].

Most of the existing results on pinning control of complex
networks have been obtained in a deterministic setting, in
which the individual node dynamics are driven by ordinary
differential equations, and the interaction topology is either
static or varies according to known dynamics. However, this is
seldom true in applications. For instance, in formation control
problems, ground robots might be subject to perturbations due
to internal factors such as fluctuations of the battery level,
possible component failures, chassis vibrations, or environ-
mental factors such as rough terrain, wind gusts, and sensor
measurement errors [36], [37], while, in biology, deterministic
models are not capable of capturing the cell-to-cell fluctuations
in genetic switching [38]. Furthermore, the communication
among the network nodes in engineered networks might
be subject to quantization or measurement uncertainty [39],
[40]. Recent work have tried to extend the pinning control
framework to deal with the presence of noise on the individual
dynamics and on the communication [41]-[44]. In particular,
the authors of [44] provided sufficient conditions for global
pinning controllability of complex networks in a stochastic
setting. Specifically, they suggested that noise can have a ben-
eficial impact on the convergence toward a desired stochastic
trajectory, while it negatively affects controllability when it
disturbs the communications.

Statement of Contribution: our manuscript contributes a
novel method to investigate pinning controllability in complex
networks affected by noise. Namely, we broaden the Master
Stability Function (MSF) approach to cope with the presence
of mismodeling noise, that is, noise on the individual dynamics
that accounts for modeling uncertainties, and of communi-
cation noise on the coupling protocol. With respect to the



existing approaches, our method allows to

o Provide the minimal requirements for pinning controlla-
bility. Indeed, the global results available in the literature
are unavoidably conservative, thus requiring restrictive
assumptions on the individual dynamics, the coupling
structure of the network, and the control gain of the pin-
ner. Our approach, instead, allows to establish necessary
and sufficient conditions for the local exponential pinning
controllability of noisy complex networks.

o Clarify the impact of noise on pinning controllability.
Existing work [44], based on the derived sufficient con-
ditions, posited that, while the mismodeling noise is
beneficial for control, the noise acting on the commu-
nication hinders pinning controllability. Our necessary
and sufficient conditions allow to better specify the effect
of noise, which strongly depends on the way it diffuses
in each node. Indeed, we observe that i) mismodeling
noise can also be detrimental for synchronization, and
this happens when it diffuses unevenly on the node state
variables, and ii) pinning controllability can benefit from
the presence of noise in the communication when it acts
on all the node states.

We emphasize that the sharpness of our condition goes hand in
hand with their applicability in practical applications on large
network systems. Indeed, as for the deterministic MSF [26],
the computation of our Stochastic Master Stability Function
(SMSF) only requires evaluating the sample Lyapunov expo-
nents of a low-dimensional system, whose size coincides with
that of the node.

Outline of the paper: in Section II, we review the stability
properties of stochastic differential equations and introduce
pinning control in the context of deterministic networks. In
Section III, we introduce our stochastic complex network
model and then derive necessary and sufficient conditions
for exponential pinning controllability in a stochastic sense.
Section IV illustrates through a paradigmatic example of
nonlinear stochastic network the impact of mismodeling and
communication noise on pinning controllability. Finally, con-
clusions are drawn in Section V.

II. MATHEMATICAL PRELIMINARIES
A. Stochastic differential equations

Let us consider the following stochastic It6 equation:
dz(t) = @(2(t),t)dt + y(=(t), t)db(t), (D)

where 2 € R™, p : R™ x Rt — R™ and v : R™ x
R* — R™*9 are nonlinear vector fields commonly denoted
as drift and diffusion functions, respectively, and b(t) is a g-
dimensional Wiener process [45]. Let (2, F, P) be a complete
probability space with a filtration {F;} satisfying the usual
properties

1) @ € F, where () denotes the empty set;

2) Ae F= A€ € F, where A :=Q — A;

3) A € F, AQE]‘—:>A1UA2€F.
Given a vector v, we denote by ||v| its Euclidean norm. The
following Lemma provides sufficient conditions on ¢ and -y
ensuring the existence and uniqueness of the solution z(t) of
equation (1) on every finite sub-interval [tg,T] of [to, +00]:

Lemma 1 (Existence and uniqueness of a global solution).
[45, Ch. 2, Thm. 3.6] If
1) (Lipschitz condition) for every real number T > to and
integer § > 1, there exists a positive constant K 5 such
that

max(|le(z,t) — oy, 1% 7 (2,1) = 1(y, )]?)
< Krllz —y|?

for all t € [to,T] and z,y € R™ fulfilling
max(|[z]], lyl]) < 6, and

2) (Growth condition) for every T' > tq there exists a
positive constant K such that

1
2lo(@,t) + 5llv(z DI7 < KL+ 2])

forall z€ R™ and t € [to,T),

then there exists a unique global solution z(t) to equation
(1), with z(t) being a real-valued measurable {F;}-adapted
process with finite variance.

Definition 1 (Equilibrium of a stochastic equation). z(t) =z
is an equilibrium of the stochastic It6 equation (1) if both

©(z,t) =0 and v(z,t) =0 Vi.

If z = 0, the equilibrium is also called the trivial solution
of the stochastic system (1).

Definition 2 (Sample Lyapunov exponent and almost sure
stability). Let us consider a stochastic 1td process of the form
(1) having the trivial solution z = 0. The sample Lyapunov
exponent [45, Eq. (5.4)] associated to Z is

Lyap(t, =(t0)) = 7 log (l2(t: 10, 200 . @)

The trivial solution is locally almost sure exponentially stable
[45, Def. 3.1] if there exists € > 0 such that

lim sup Lyap(¢, z(t9)) < 0 almost surely, 3)
t—+o00
for all z(to) : ||z(to)|| < e, while it is globally almost sure
exponentially stable if (3) holds for all z(tp) € R™.

Note that the limsup and the strict inequality in (3) grant
that the norm of z(¢) (almost surely) vanishes at least exponen-
tially, and therefore the computation of the left-hand side of
inequality (3) can be used to estimate the rate of convergence
toward the trivial solution of (1).

B. Pinning control of deterministic complex networks

Here, we consider a controlled complex network of N > 1
identical dynamical systems, diffusively coupled through an
undirected and connected graph G = (V, &), where V and &
are the set of the network nodes and edges, respectively. The
network dynamics are described by

N
dzi(t) = (f(xi(t% t)+ 0y ay(h(e;(t),t) — h(zi(t),t))
j=1

+ ui(t)) dt,
4)



where z; € R™ is the state of node i, f(z;,t): R" x Rt —
R™ describes the individual dynamics of each node, h(x;,t) :
R" x RT — R" is the coupling function, a;; is the ij-th
element of the adjacency matrix A € RV*¥ agsociated to
G, and o is the coupling strength. The scope of the external
input u; is to synchronize the network nodes onto a desired
reference trajectory, denoted x,(¢) from now on, which is a
solution of the uncoupled dynamics

da,(t) = f(a.(t),t)dt.

The pinning control strategy consists in a proportional feed-
back control action that only acts on the proper subset P C V
of pinned nodes that can be directly controlled, that is,

uz(t) = _pik(h(xi(t)v t) - h(x?“(t)a t))?

where k£ > 0 is the control gain, and p; = 1 if ¢ € P, while it
is zero otherwise.

III. STOCHASTIC PINNING CONTROLLABILITY
A. Stochastic complex network model

Here, we consider that network (4) is affected by two types
of noise, one acting on the individual node dynamics and the
other on the communication links. In the absence of coupling
and control inputs, the individual dynamics of the ¢-th node
are described by

dz; (t) = f(xz (t)’ t)dt + (ng(fﬂi (t)7 t)dbm (t)a (5)

where the stochastic term o,,g(x;(t),t)db,,(t) represents
modeling uncertainties on the individual dynamics. Specifi-
cally, b, is a scalar Wiener process representing the mismod-
eling noise, g : R™ x Rt — R” is the diffusion function
determining how the Wiener increment db,, propagates on
the state of the ¢-th node, and o,,, modulates its variance.

When coupled and controlled, in writing the dynamics of the
i-th node we also need to account for the possible uncertainties
in the communication protocol. Therefore, in the presence
of both mismodeling and communication noise, the overall
network dynamics are described by the following nonlinear
stochastic differential equations of It6 type:

N
dai) = (a0 0)+ 7 3y (hlas(0.0) = hai(0).1)

<.
Il
-

(6)
for all ¢ € V, where the last addend models possible
uncertainties on the communication, with b, being a one-
dimensional Wiener process, independent of b,,,, representing
the communication noise, and o, modulating its intensity. To
enforce the existence of a unique global solution, throughout
the manuscript we assume that functions f, g, and h fulfill the
assumptions of Lemma 1.

As in the deterministic case, pinning control assumes that
the reference trajectory z,.(t) is a solution of the uncoupled
dynamics (5). To provide a definition of pinning controllability
for the controlled network (6), we need to introduce the control
error e(t) = [eT(t),...,eL ()]T, with e;(t) := xi(t) — x,.(2).
The error dynamics can be written as

N
de; = (f(xr +ei) = flar) + JZ @i (h(fﬂr +e5)

— h(z, + ei)) - pﬂv(h(wr +e) — h(xr))> dt
+ om (g(xr +e)— g(x,«))dbm (7
+ o, (0 XN: a;j (h(z,« +e;) — h(z, + ei))

- pik‘(h(:vT e — h(m,)))dbc,

fort =1,..., N, where we omitted the explicit dependence
on time ¢. Noting that e(t) = 0 is the trivial solution of (7),
we are ready to give the following definition:

Definition 3. System (6) is exponentially pinning controllable
in a stochastic sense onto a solution x,.(t) of (5) if there exist
a value of the control gain k, a set of pinned nodes P, and a
positive scalar € such that

1
lim sup ;Lyap(t, €(0)) < 0 almost surely (8)

t—+oo

for all e(0) : |[e(0)|| < e.

B. Pinning controllability analysis

A direct application of the definition of exponential pinning
controllability would require the computation of the sample
Lyapunov exponent of the set of stochastic equations (7).
However, this could be computationally prohibitive for large
networks, as the order of the error dynamics would be nN,
thus scaling with the network size. Moreover, even if such a
computation were performed, this would only assess whether
our control goal can be achieved with the current selection
of the control gain k and of the set of pinned nodes P. A
negative result would not provide any insight on how to tune
the control parameters to enforce pinning controllability.

In what follows, we derive a necessary and sufficient con-
dition for exponential pinning controllability that overcomes
the above limitations. Specifically, we aim at broadening the
Master Stability Function approach firstly applied to pinning
control of deterministic networks in [26] to deal with the
presence of mismodeling and communication noise. Toward
this goal, we can linearize the error dynamics (7) at the origin,
and write them in compact matrix as

de(t) = (In ® fa (zr(t), 1) = M @ hy (z,(t),t) )e(t)dt
+ 0 (In @ go (@, (1), 1)) e(t)dbm (¢) )
— 0c(M ® hy(z(t),t))e(t)dbe(t),

where ® is the Kronecker product, Iy is the NV x N identity
matrix, f,, hs;, and g, are the Jacobian of f, h, and g,



respectively, and the matrix M is the augmented Laplacian
matrix defined as

ody +p1k  —oare —oaiN

M:

—oaN1  —Oan? odn +pnk

where d; is the degree of node i.

Let us now consider the transformation 7" that diagonalizes
M, (i.e, TMT' = A, with A being the diagonal matrix
containing the eigenvalues of M) and define a transformed
variable £(t) := (T'®I,)e. This transformation does not affect
the terms Iy ® f,. (z5(t),t) and Iy ® g, (xs(t),t) in equation
(9). Hence, the dynamics of £(¢) can be obtained from (9) by
applying the It6’s formula as follows:

dé(t) = (In ® fa (zr(t),t) — A® hy (z,(2), 1) )E(t)dt
+ o (In ® go(@r(t),1))E(t)dbi (1)
— O¢ (A ® hy (xr (t)’ t))f(t)dbc(t)
The dynamics matrix of system (10) is in block-diagonal form.
Namely, it is composed by N diagonal blocks of size n X n,
with each block being associated to an eigenvalue of M. Being
G undirected and connected, if at least one node is pinned,

these eigenvalues are all real and positive [28], and can then
be sorted in ascending order as

0< A (M) < Xa(M) < ... < An(M).

(10)

We can now rewrite (10) as the following set of n-dimensional
stochastic differential equations:

d&i(t) = (fo(ze(t),t) = Ni(M)ha (@, (t),1))(t)dt
+ m (9o (20 (), 1)) & () dbin (t)
= AiM)ocha(zr(t), )& (t)dbe(1),
for ¢ = 1,..., N. By replacing \; with a nonnegative scalar

7, we define the stochastic master stability equation as the
following parametric equation:

dC(t) = (fx (1‘7- (t)a t) - nhx ($7'(t)v t))C(t)dt
+ o (92 (2 (), 1)) C(t)dbi (t)
—nochy (1'7“ (t)v t)C(t)dbc (t)
The stochastic master stability function SMSF(n) is the func-
tion that associates to each value of 7 the sample Lyapunov

exponent associated to the trivial solution ((¢) = 0 of (12).
We are now ready to provide our main stability result.

(1)

12)

Theorem 1. Network (6) is exponentially pinning controllable
in a stochastic sense onto the solution x,.(t) of (5) if and only
if there exist a value of the control gain k, a set of pinned nodes
P, and a positive scalar € such that SMSF(X\;(M)) < 0 for
alli=1,...,N.

Proof. Notice that, by direct comparison of equations (11) and
(12), SMSF(A;(M)) < 0 for all ¢ = 1,..., N is equivalent
to the local almost sure exponential stability of £(t), see
Definition 2. Since e(t) = (T~ '®1,,)&(t), and from Definition
3, the thesis follows. O

The above necessary and sufficient condition highlights
the contribution of each term of the stochastic network dy-
namics to pinning controllability. In particular, we observe

that the SMSF depends on the individual dynamics through
the Jacobian f, and g, of the drift and diffusion functions,
respectively, and on the coupling function through its Jacobian
h;. The network topology, together with the selection of
the set of pinned nodes P and the control gain k, impacts
on the pinning controllability through the eigenvalues of the
augmented Laplacian M.

Remark 1. An intrinsic advantage of the proposed stochastic
master stability function approach is computational. Indeed,
independent of the network size, checking pinning controlla-
bility requires to compute the sample Lyapunov exponents of
the n-dimensional system (12) for selected values of 7, rather
then studying the stability of the n/V-dimensional error system
(.

Remark 2. The diffusion function g appears in the stochastic
master stability equation (12) only through its Jacobian g,.
This means that a mismodeling noise whose intensity is
independent on the value of the state does not affect the
exponential pinning controllability of network (6).

Remark 3. In the absence of noise, that is, when ¢,,, = 0. = 0,
the SMSF coincides with the Master Stability Function (MSF)
for deterministic networks. The value of the MSF when n = 0
is the maximum Lyapunov exponent of the uncoupled and
uncontrolled system. This implies that, in a deterministic
setting, if the MSF is negative at the origin, then the pinner and
the uncontrolled network are both locally converging towards
the same equilibrium point, and this is the only case in which
an uncontrolled network would converge toward z,. On the
contrary, in the presence of noise this is not necessarily true,
and a negative value of the SMSF at n = 0 does not imply
that the pinner is converging towards an equilibrium point, as
the individual dynamics might not admit any equilibrium. This
may determine the so-called noise-induced synchronization of
an uncontrolled network, a phenomenon that is discussed in
Section IV-A.

The case of affine stochastic networks

When the drift and output functions f and g are both
affine, we can provide two relevant corollaries of Theorem
1. For clarity, we start with the simplest case of networks of
scalar linear systems, and then we generalize the results to
n-dimensional affine dynamics.

Linearly coupled scalar linear systems: in this case, the

individual dynamics are given by
dz;(t) = az;(t)dt + opmai(t)dbm(t), (13)

where a € R, while the stochastic complex network (6) can
be rewritten as

N
das(t) = (awi(t) + 0> ag(w;(t) - wi(1))
j=1
— pik(a(t) — xr(t))>dt + o pi (£)dbin (£)
N (14)
to, (a Z aij(z;(t) — z5(t))

— pik(ai(t) = (1)) ) dbe (1)



Corollary 1. Network (14) is exponentially pinning control-
lable in a stochastic sense onto the solution x,(t) of (13) if
and only if there exist a value of the control gain k, and a set
of pinned nodes P such that

2a — 02, <0V A\ (M) > (Vl-l—(?a—a?n)ag— 1) /o>
15)

Proof. The SMSF for network (14) is the sample Lyapunov
exponent of the following linear stochastic differential equa-
tion:

dC(t) = (a_n)C(t)dt+UmC(t)dbm(t)_nacC(t)dbc(t)' (16)

Next, we show that the unique solution of (16) is

C(t) = ¢(0) exp(2(1)), a7
where
2(t) = (a—n— ‘%ﬂ _ ";) t+ o (b (t) — b (0))

—noe(be(t) — be(0)).
(18)

Indeed, as exp(z(t)) = 1, for ¢t = 0 we find the identity
¢(0) = ¢(0). Now, notice that from (18) we get

2 2.2
ddﬂ—(anznn;vdHom%m@n%%dﬂ

19)
Then, applying the multi-dimensional 1t6’s formula [45, The-
orem 6.4] to (17), and considering (19), we obtain

2 2 2
)= (%2 (-5 95
L9°¢(t) (0'72n + 7]2af)> dt

2 922
Omdby (t) — no.db.(t)).

a¢(t)
+ 0z (
Noting that 9¢(t)/9z = 0%((t)/02% = ((t), we obtain that
(20) is equivalent to (16), and therefore (17) is a solution of
(16). The solution is unique as the stochastic equation (16)
fulfills the assumptions of Lemma 1. Therefore, by combining
(17) and (18), we find that the stochastic master stability
function of (14) is

(20)

2

2
g g
SMSF (1) = —an—nM— 77“. 1)

From Theorem 1, the thesis follows. O

The deterministic MSF for this system can be viewed as
a specific instance of (21) when o, = o, = 0, and it is
therefore a line with slope —1 that starts at a for n = 0,
i.e., a Type I MSF. The introduction of the mismodeling
noise has the effect of shifting downwards the MSF, while
the communication noise has the effect of turning the straight
line into a downward parabola, as illustrated in Figure 1. This
means that, for the linear network (14), noise can only be
beneficial for pinning controllability.

We notice that the mismodeling noise acting on all the nodes
of the linear network (14) has a stabilizing effect. Indeed, as
long as 02, /2 > a, the pinner trajectory converges to zero with
probability one even when the drift component of the system

Fig. 1. (Left panel) SMSF of the linear network (14) for . = 0 and o,
equal to v/a, v/2a, and v/3a, respectively (grey lines, left panel), and for
om = 0 and o, equal to v/a/2, v/a, and 21/a, respectively (grey lines, right
panel). In both panels, the blue line identifies the deterministic MSF and the
black arrow points towards increasing values of the noise.

is unstable (@ > 0). This property can be well explained by
interpreting the noisy system as a Markov chain: as long as
the noise intensity is sufficiently large, the unique absorbing
state of the chain is the trivial solution, that will eventually
be reached. In this case, the network is exponentially pinning
controllable regardless of the coupling configuration and even
if it is not pinned. This happens as a stochastic stability
function that is negative at the origin (SMSF(0) < 0) implies
that all the nodes eventually reach zero even if disconnected
from the pinner.

The effect of the noise on the communication is less
trivial. Indeed, it does not affect the pinner and, therefore,
if @ > 0 the network cannot synchronize towards the pinner’s
trajectory when uncontrolled. Nonetheless, by increasing the
communication noise it becomes easier to pinning control the
network, as smaller values of A\ (M) are required to fulfill
condition (15), see the right panel in Figure 1.

Linearly coupled n-dimensional affine systems: in this case,

the individual dynamics are given by
de(t) = (in (t) + b) dt + o, (Ii (t) + C) dbm(t)v (22)

where F' € R"*™, and b, ¢ € R", and the stochastic complex
network (6) can be rewritten as

N
dwi(t) = (Pai(t) + b+ 0 Y aisa; () — wi(t))

— pik(i(t) — xr(t)))dt + O (i(t) + )by ()
N

+ o (U Z a;j(xj(t) — zi(t))
=1

— pik(ai(t) — x.()) + d) dbe(1).

(23)

Corollary 2. Network (23) is exponentially pinning control-
lable in a stochastic sense onto the solution x,(t) of (22) if
and only if there exist a value of the control gain k, and a set
of pinned nodes P such that

M (M) + 302N M) > max (R eig (F) — 307,

where R is the real-part operator and eig(F') is the spectrum
of F.
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Fig. 2. Stochastic Master Stability Function of the network of stochastic Lorenz systems (6)-(24) for 0. = 0 and o, € [0, 4] when h(xz;,t) = z;, g(x4,t) =
x; (@), h(zi,t) = [x51 0 0)T, g(z4,t) = 2; (b), and h(z;,t) = [x;1 0 0]7, g(x4,t) = [0 243 0]T (c). In panel (a), the points on the left of the white line

do not fulfil the conditions for global pinning controllability derived in [44].

Proof. Following the same line of arguments as in the proof A. Effect of the mismodeling noise (o, # 0, 0. = 0)

of Corollary 1, we can compute the SMSF as

. 1 1
SMSF (1) = max (R (eig (F))) —n — 50% — So%7?.

From Theorem 1, the thesis follows. O

IV. NUMERICAL EXAMPLES

Here, we illustrate how our theoretical findings can be used
to assess the impact of noise on pinning controllability in the
case of nonlinear drift functions. To this aim, we consider
as individual dynamics a paradigmatic example of nonlinear
noisy system, that is, a stochastic version of the well-known
Lorenz system, which was used as a testbed in the recent
literature on stochastic complex networks [40], [44]. Namely,
in the general equation (6), we consider the following drift
function [46]:

s(xi2(t) — i1 (1))
sz (t) — ia(t) — v (H)zas(t) |,
xil(t)xig(t) — ﬁ(l‘ig(t) + P + S)

where 8 = 8/3, p = 28, and s = 10 are selected so that,
in the absence of noise, coupling and control, the dynamics
of each node admits a chaotic attractor. In all our numer-
ical analyses, the simulations of the stochastic differential
equations are performed with the standard Euler-Maruyama
weak integrator [47] with a time step of 10~%. The transversal
sample Lyapunov exponent is computed through an optimized
version of the heuristic discrete QR method described in [48],
which is easy to implement and numerically efficient.

In what follows, we first evaluate separately the impact
of mismodeling and communication noise on pinning con-
trollability, respectively, and then illustrate how the control
gains can be tuned in the presence of both noise types. When
discussing our numerical results, we will refer to the stability
set S of the SMSF as the set of values 17 > 0 such that the
SMSF is negative, that is,

fzi(t),t) = (24)

S :={n>0:SMSF(n) < 0}

Here, we discuss how the impact of mismodeling noise may
change dramatically with different selections of the diffusion
function g. In our first numerical experiment, we consider the
case in which both the coupling and diffusion functions are
the identity, that is, h(z;,t) = z; and g(x;,t) = ;. In this
scenario, we observe that the mismodeling noise generally
improves pinning controllability, with the stability set tending
to become larger and larger as o, increases, see the green
region in Figure 2(a). Interestingly, when the mismodeling
noise is sufficiently high, we notice that the SMSF becomes
negative even for n = 0. This means that all the nodes
converge towards the trajectory of the pinner even when
uncoupled. In a deterministic setting, this would only be
possible when all the nodes are converging towards a common
(asymptotically stable) equilibrium point. In the presence of
mismodeling noise, the nodes can converge toward a nontrivial
(e.g. chaotic) pinner trajectory.

To illustrate this paradoxical phenomenon, called noise-
induced synchronization [49]-[55], we considered the simplest
network of N = 2 uncoupled nodes that are also disconnected
from the pinner, that is, P = (. As illustrated in Figure 3,
the trajectory of the pinner converges towards a noisy coun-
terpart of the Lorenz chaotic attractor, and the pinning error
norm asymptotically goes to zero, even though the network
is uncontrolled. Figure 2(a) also highlights the unavoidable
conservativeness of the sufficient global conditions reported
in [44]. As an example, when o, = 1.72, our results show
that exponential pinning controllability is feasible also for
a disconnected network, while to fulfill the assumptions of
Theorem 4.3 in [44], we would need a coupling configuration
such that A\ (M) > 12.43.

Next, we focus on a case in which the function h is not
quadratic-Lipschitz (h(x;,t) = [x;1 0 0]7), and therefore the
sufficient conditions for pinning controllability reported in [44]
cannot be applied. In Figure 2(b) we observe that, as long as
the mismodeling noise equally affects all the state variables,
it generally facilitates the achievement of the control goal. On
the contrary, in panel (c), we notice that, when it only acts
on a subset of the state variables (g(z;,t) = [0 x;3 0]7), it
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Fig. 3. Simulation of N = 2 uncoupled and uncontrolled stochastic Lorenz
systems when o,, = 1.72. Phase portrait of the pinner dynamics (left panel)
and time evolution of the pinning error norm (right panel).

becomes detrimental for pinning controllability. More specif-
ically, although low noise seems to be moderately beneficial
for control, as the noise intensity further increases, the stability
set S becomes smaller and smaller, and exponential pinning
controllability becomes unfeasible for o,, > 3.71.

0 5 10
Ul

Fig. 4. Stochastic Master Stability Function associated to the network of
stochastic Lorenz system (6)-(24) for 0. = 0 and selected values of the noise
intensity oy, when h(t,z;) = g(t,x;) = x; (left panel) and h(t,z;) =
g(t,x;) = [0 0 2;3)T (right panel).

Overall, we observe that the effect of the mismodeling noise,
when it diffuses through the identity (g(x;, t) = x;), is to shift
downward the SMSF, thus enhancing pinning controllability.
This is analytically proved for stochastic networks of linear
systems in Section III, and numerically demonstrated in the
left panel of Figure 4 for a network of stochastic Lorenz
systems. On the other hand, when the noise diffuses unevenly
across the state variables, we noticed that it can be either
beneficial or detrimental. The right panel of Figure 4 shows the
SMSF for the the stochastic complex network (6)-(24) when
h(z;,t) = g(x;,t) = [0 0 243]7. In this case, the SMSF is
not shifted downward, but it is rather flattened. For low values
of o, this renders the stability set unbounded by paying the
price of an increase of the minimum 7 such that the SMSF is
negative. As the noise further increases, the SMSF becomes
flatter and flatter, until SMSF(n) > 0 for all n (S = 0), thus
making convergence toward x,.(t) impossible.

B. Effect of the communication noise (o, =0, 0. # 0)

We now discuss the impact of the communication noise
o. on the stochastic master stability function in the absence
of mismodeling noise. Notice that the communication noise

acts on both the links between the controlled network nodes
and those connecting the pinner with the network, and there-
fore existing results on pinning controllability of stochastic
networks cannot be directly applied [44]. In our numerical
investigation, we evaluate the SMSF of network (6)-(24)
when the coupling function is the identity, and therefore the
communication noise affects all the state variables, and when
the nodes only communicate through the first state variable.
As illustrated in the left panel of Figure 5, when h(z;,t) = z;,
in the absence of noise the SMSF linearly decreases with 7.
As the communication noise increases, pinning controllability
improves, with the SMSF decreasing faster and faster with 7).

A qualitatively different behavior is observed when
h(z;,t) = [z;1 0 0]T. In the absence of noise, this choice of
the coupling function yields a monotone decreasing MSF (see
Figure 5, right panel), which, according to the classification
in [56], is called of type II. As the communication noise in-
creases, the monotonicity is lost, and thus the SMSF becomes
of type III. More specifically, by increasing o, the stability
set S becomes a finite interval, whose width gets smaller
and smaller. On the other hand, the minimum 7 for which
the SMSF is negative reduces. This means that, with this
coupling function, noise can be either detrimental or beneficial
for pinning controllability depending on the network topology
G, the set of pinned nodes P, and the coupling and control
gains ¢ and k, respectively.

While the negative effect of the noise in this coupling
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Fig. 5. Stochastic Master Stability Function associated to the network of
stochastic Lorenz system (24) for oy, = 0 and selected values of the noise
intensity o when h(t, z;) = x; (left panel) and h(t,x;) = [x;1 0 0] (right
panel).
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Fig. 6. Network (6)-(24) when N = 2 and P = {1}. SMSF (left panel)
and time evolution of the pinning error norm (right panel) in the absence of
noise (blue lines) and when o,, = 0 and o. = 0.8 (orange lines).



configuration is apparent as it turns a type II MSF into a type
IIT SMSF, we introduce a simple example to illustrate that it
may also be beneficial for pinning controllability. Namely, we
consider N = 2 coupled nodes with P = {1}, and assume
the coupling and control gains to be ¢ = 15 and k = 25,
respectively. As a result, the two eigenvalues of the augmented
Laplacian are A\ (M) = 5.9 and A\2(M) = 34.1. Figure 6
illustrates how, in the absence of noise, the assumption of
Theorem 1 are not met and the error does not converge towards
zero, while the introduction of a moderate communication
noise (0. = 0.8) yields exponential pinning controllability.

C. Control design examples

To illustrate how our necessary and sufficient condition for
exponential pinning controllability can be used for tuning the
control gain k, we focus on a network of N = 3 Lorenz
systems with P = {1}, coupled as depicted in the left panel
of Figure 7. We select the coupling and diffusion functions as
h(z;,t) = g(z4,t) = [0 0 ;3] and assume the coupling gain
to be 0 = 10. The variances o, and o. of the mismodeling
and communication noises are both set to 0.5.

From Theorem 1, local exponential pinning controllability is
guaranteed if SMSF(\;(M)) < 0 for all ¢. Figure 7 shows that
SMSF(n) < 0 for all n > 1.78. Therefore, to enforce pinning
controllability, we need to select k so that \; (M) > 1.78,
with M in this case being

10-k =10 O
—10 20 10
0 —-10 10

Notice that, by selecting k& > 8.30, we obtain A;(M) > 1.78
as prescribed by Theorem 1. Hence, we set k = 20, thus
getting A1 (M) = 2.68 and SMSF(A;(M)) = —0.21. Figure
8 illustrates that, consistently with the theoretical predictions,
the choice £ = 20 yields an exponential convergence of the
pinning error norm to zero, with a rate that is approximately
equal to SMSF(A;(M)).

Note that the same method to tune the control gains can
be employed for networks of arbitrary size, while maintaining
the computational burden negligible. To illustrate this point,
we considered the randomly generated network of N = 1000
nodes reported in the left panel of Figure 9, where the pinned
nodes (30% of the nodes randomly selected) are depicted in
black. Assuming that the coupling strength is o = 0.1, we
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Fig. 7. First control design example. Topology (left panel) and SMSF of the
network (6)-(24) when h(z;,t) = g(z;,t) = [0 0 ;3]T (right panel).

Fig. 8. First control design example. Pinner trajectory (left panel) and time
evolution of the pinning error norm (right panel).

Fig. 9. Second control design example. Network topology generated with the
Watts-Strogatz algorithm [57] with complete rewiring and average degree 100
(left panel) and time evolution of the pinning error norm (right panel).

can enforce pinning controllability by selecting k € (7.8, 24],
which yields A (M) > 1.78 and Ay (M) < 40. Indeed, this
implies that SMSF(\;(M)) < 0 for all 4, see the orange line
in Figure 7. Note that computing the eigenvalues of matrix
M only required 0.1s with our laptop (17-4810MQ CPU
@ 2.8 GHz), this being the time required to assess pinning
controllability for a given selection of k. Performing a single
simulation with & = 20 (reported in the right panel of Fig.
9) took 2543 s. Thus, a brute force trial-and-error approach
to tune the control gain k£ based on simulations would not be
practically viable.

V. CONCLUSIONS

In this paper, we derived necessary and sufficient conditions
for exponential pinning controllability of stochastic complex
networks. Our theoretical findings address the fundamental
need in control of stochastic networks of assessing the impact
of noise on our ability of driving the network toward a de-
sired trajectory. Specifically, we expanded the master stability
function approach to deal with the presence of mismodeling
noise, accounting for the presence of unmodeled individual
dynamics, and of the communication noise on the coupling
protocol. A key contribution of our manuscript has been to
provide the minimal conditions guaranteeing exponential pin-
ning controllability in a stochastic sense. Indeed, the existing
stability results provided sufficient conditions, and therefore
nothing could be concluded when those conditions were not
met. Furthermore, we showed that the existing pinning con-
trollability conditions are very conservative, and could only



be applied when the coupling function fulfils the quadratic-
Lipschitz condition [44].

A previous study observed instances in which mismodeling
noise is beneficial for pinning control, while communication
noise was found to be detrimental [44]. As anticipated, the
sharpness of our stability conditions allowed for better clarify-
ing the impact of noise on pinning controllability. In particular,
we found that the way noise affects the network dynamics
is highly dependent on the coupling and diffusion functions.
More specifically, mismodeling noise is beneficial only when
it diffuses evenly on all the state variables, otherwise it may
also make pinning controllability unfeasible independent of
the network topology. When noise uniformly diffuses across
the node state variables, a phenomenon called noise-induced
synchronization may emerge: the network converges towards
a non-trivial solution (e.g. a chaotic trajectory) of the pinner’s
dynamics even in the absence of coupling and control. This
phenomenon has been already observed in biological systems,
in which a suitable noise intensity facilitates synchronization
of human brain waves [58].

As for the communication noise, we showed that it is not
necessarily deleterious for synchronization. On the contrary,
we analytically proved that for networks of affine stochastic
systems it improves pinning controllability, and numerical
evidence suggests that this is also true for nonlinear stochastic
systems if the coupling function is the identity. When the
network nodes are unevenly coupled on their state variables
(e.g. they are coupled only through a subset of the state
vector), then the impact of communication noise is less trivial.
Indeed, the range of values for which the stochastic master
stability function is negative, which we called the stability
set, becomes smaller, but it shifts closer to the origin. This
means that communication noise can have either a positive
or negative effect on pinning controllability depending on the
specific interconnection topology of the network we aim at
controlling. Ongoing work [59] is devoted to explore how
the method presented in this manuscript can be employed to
explain the spontaneous emergence of a synchronous behavior
in the absence of a control input.
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