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Abstract

Purpose: The geometries used to conduct numerical simulations of thebiomechanics
of the human cornea are reconstructed from images of the physiological configura-
tion of the system, which is not in a stress-free state because of the interaction with
the surrounding tissues. If the goal of the simulation is a realistic estimation of the
mechanical engagement of the system, it is mandatory to obtain a stress-free config-
uration to which the external actions can be applied.
Methods: Starting from a unique physiological image, the search of the stress-free
configuration must be based on methods of inverse analysis. Inverse analysis as-
sumes the knowledge of one or more geometrical configurations and, chosen a ma-
terial model, obtains the optimal values of the material parameters that provide the
numerical configurations closest to the physiological images. Given the multiplicity
of available material models, the solution is not unique.
Results: Three exemplary material models are used in this study to demonstrate that
the obtained, non-unique, stress-free configuration is indeed strongly dependent on
both material model and onmaterial parameters.
Conclusion: The likeliness of recovering the actual stress-free configuration of the hu-
man cornea can be improved by using and comparing two or more imaged configu-
rations of the same cornea.

Keywords: human cornea, inverse analysis, parameter identification, postoperative
cornea, preoperative cornea, stress-free configuration
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1. Introduction

Among all the so� biological tissues of the human body, the cornea is unique be-
cause of the transparency1 and the accessibility of its location. These features make
the cornea one of the most deeply studied and better known biological materi-
als, since advanced optical imaging has revealed all the details of the underlying
microstructure.2,3

The cornea belongs to the system of lenses that in the eye deviate the light rays
onto the specialized receptor cells of the retina. When the lens system is defective,
the image appears blurred and unfocused, requiring the use of additional lenses to
perceive a correct image. Spectacles and contact lenses have been and are largely
used, but in the last two decades laser technology has allowed to correct refraction
errors permanently by modifying the refractive power of cornea, in consideration of
theaccessibility of theorgan. The changeof the corneal refractivepower is principally
obtained by selective laser ablation of some portions of the tissue,4 or by the inser-
tion of small prosthesis or devices (arcuates, intraocular lenses, rings, etc.) within
the cornea. Refractive surgery technologies have become very safe and precise, but
still gross errors are occurring occasionally when the cornea presents geometrical or
structural anomalies. Fornon-standardcorneas thatmustundergo refractive surgery,
the support of a numerical model of the cornea with patient-specific features may
become of great importance to reduce the possibility of mistakes and to help in the
selection and design of the optimal treatment.

A numerical model of the human cornea must be constructed accounting for all
the important features of the tissue. Given the refractive function of the cornea, the
adoption of the patient-specific shape is a must. Nowadays, the availability of op-
tical apparatuses makes trivial the attainment of the customized shape that can be
transferred in the solid model of the cornea.5

Asa so�biological tissue, the cornea is verydeformableandwater rich, and there-
fore, almost incompressible. The mechanical behavior in physiological conditions is
characterized by reversibility even at large deformations. Relaxation experiments on
pig corneas have revealed a viscous-plastic-damaging behavior.6 Nevertheless, in ap-
plications concerning refractive surgery, degenerative aspects should not be of rele-
vance, since the postoperative cornea is supposed to behave in a reversible way as in
the preoperative conditions. Thus, in the literature it has become customary to adopt
finite strain hyperelastic models for thematerial, which imply directly reversibility.7,8

Although the corneal tissue is organized in five layers, from themechanical point
of view the most important properties are related to collagen, the structural compo-
nent of the stroma, the central and thicker layer. Stromal collagen, immersed in a
matrix of elastin and proteoglycans, is organized hierarchically in fibrils and lamellae
following a complex architecture that has been observed more than three decades
ago.2 In the central area of the cornea the lamellae are preferentially oriented in two
directions: nasal-temporal (NI) and superior-inferior (SI). This organization involves
approximately 60% of the fibrils, while the remaining 40% are randomly oriented.
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The change in curvature in the limbus zone is related to the presence of a consis-
tent amount of fibrils aligned in the circumferential direction.9 The distribution of
the fibrils is not homogeneous across the corneal thickness. Biomedical imaging
has revealed recently that collagen lamellae in the posterior cornea are commonly
twice as thick as those in the anterior10 and interlamellar interaction results from
interweaving,11 leading to a shear sti�ness three times larger than the one in the
posterior third of the stroma.12 At the limbus, the larger sti�ness is shown at the pos-
terior side, where the limbus merges with the iris.13 The architecture of the cornea
confers obvious characteristics of inhomogeneity and anisotropy to the material.
Thus, the material response varies with the position on the mid-surface, with the
position across the thickness of the cornea, and with the direction of loading, and
these features are very important in establishing the optimal state under physiologi-
cal conditions. The optimal state must be intended from the energetic point of view,
as a configuration characterized by a minimum of the mechanical energy of the sys-
tem, where the stresses are balancing the external actions. In particular, the cornea
is stressed by the intraocular pressure (IOP) exerted by the aqueous humor that fills
the anterior chamber of the eye.

The configuration of the cornea taken by optical imaging (physiological configu-
ration) is stressed, and as such, the geometrical models of the cornea obtained by
imaging cannot be directly used in numerical applications. Models require to be inte-
grated by accounting for the unknownphysiological stress state in the imaged config-
uration (pre-stress approach;7) or by detecting a stress free geometrical configuration
towhich the IOP is applied.8,14 In fact, if the imaged geometry is used directly, the ap-
plication of the IOP on the posterior surface of the cornea will modify ostensibly the
configuration of the cornea, changing the refractive power and the stress state. As in
other biological cases, a correctmodeling of the cornea requires to recover the stress-
free configuration (also knownas natural configuration) towhich the external actions
are applied. The configuration reached by the system under the proper actions will
coincide, in this way, to the physiological configuration. The procedure used to re-
cover the stress-free state of a system can be named identification of the natural con-
figuration.

The importance of the recovery of the stress-free geometry in human arteries has
been pointed out in Raghavan et al.,15 where an iterative procedure based on the ob-
servation of the self-similarity of the shape of abdominal aortic aneurisms under dif-
ferent blood pressures was used. More recently, a backward displacement method
able to solve the inverseproblem iterativelyusing fixedpoint iterationswasdescribed
by Bols et al.16,17 The correct estimate of the physiological stress state is an important
task for arterial walls, loaded by the blood pressure. Disregarding or approximating
in a rough way the physiological stress invalidates the predictions on aneurysm for-
mations and vessel ruptures.18–20 The importance of the prestress in scleral shells has
been pointed out also by Grytz and Downs,14 who developed a Forward Incremental
Prestressing Method for the computation of the prestress in the physiological config-
uration.
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As far as the cornea is concerned, the need to recover the stress-free state has
been considered in several contributions. An approach based on iterative estima-
tion of the physiological stress was proposed in Pinsky et al.7 A method based on
the modification of the coordinates of the discretized model has been proposed in
Pandolfi and Manganiello,8 and the same concept has been applied in subsequent
works.21–23 A similar procedure has been used by Ariza-Gracia’s group.24–27 A varia-
tional approach based on iterative finite element solutions was proposed in a study
by Otani and Tanaka.28

The approaches described in the literature have a comparable validity, as long as
they are able to reconstruct the physiological state in terms of stresses and strains.
What has not been su�iciently emphasized is that the stress-free configuration is de-
pendent on the chosenmaterialmodel and on the values of thematerial parameters.
Identification procedures have been used in combination with Mooney-Rivlin mate-
rialmodels,29 Ogdenmaterialmodels,30 neo-Hookeanmaterialmodels,31 Yeohmate-
rial models,27 or with more realistic fiber reinforced models.8,22,23,32 Clearly, the pre-
dicted stress state in physiological conditions will be very di�erent in all these cases.

The dependence onmaterial model and parameters renders the identification of
the stress-free geometry very delicate and not definitive. The consequence of this
uncertainty is that, for a chosen material model, the identification of the stress-free
geometry cannot be disjointed from the simultaneous identification of the material
parameters. Thismeans that a single configuration, or a single image, is not su�icient
to characterize at once geometry andmaterials, calling for the need of conducting in-
vivo tests on each patient.26,33 Furthermore, no useful information of the in-vivome-
chanical properties can be derived from ex-vivo tests,34 which deal with a completely
di�erentmaterial removed from its natural environment. Possible candidates for the
use in identification procedures are the probe test35 and the air pu� test.25,26,36–39

As an alterative, when two images corresponding to two di�erent configurations
of the same cornea are available, it is possible to characterize a reduced selection
of the material parameters together with the stress-free configuration. This can be
possible, for example, when images of the same cornea in preoperative and postop-
erative conditions are available. The approach has been used in a rather successful
way in several works using anisotropicmaterialmodelswith inclusion of the fibril mi-
crostructure and considering preoperative and postoperative geometries of corneas
that underwent photo-refractive keratectomy (PRK),5,32,36,37,40 but an accurate anal-
ysis on the influence of the material model on the identified material properties and
stress-free geometry has never been conducted.

Goal of this study is to gain awareness on the relevance on the choice of a ma-
terial model in the identification of the stress-free configuration and of the material
parameters.

Therefore, we consider a set of patient-specific corneas that underwent laser re-
profiling surgery (PRK) and three material models characterized by a growing com-
plexity: the isotropic Hooke material model extended to the finite kinematics, the
Mooney-Rivlin material model, and the sophisticated anisotropic model proposed in
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Pandolfi and Vasta.23Wedescribe the approach for the simultaneous identification of
the natural configuration and a limited number ofmaterial properties of the adopted
material models, present the results obtained on the set of patient specific corneas,
and discuss the numerical findings in view of possible applications.

2.Methods

Theprocedure of the identificationof the stress-free geometry andof a selectednum-
ber ofmaterial parameters based on the comparison of the preoperative and postop-
erative physiological configurations of a PRK-ablated cornea has been conceived on
the following idea.40

Cornea reprofiling conducted with laser ablation removes the anterior tissues
of the cornea, including epithelium, Bowman’s membrane and a certain amount of
the anterior stromal tissue. Clearly, ablation burns the tissue, and causes temporary
modifications in the immediately adjacent tissues that need a week or more to heal
and renew the epithelial layer. Since the posterior surface of the cornea is not directly
touched by the laser, it is possible to make the assumption that the posterior third
of the cornea is not a�ected. An additional assumption is that IOP is not modified by
refractive surgery.

The stress-free configuration is intended as an ideal non-physiological state
where thematerial is not loaded, or the IOP is zero. The stress-free state is not known,
and cannot be achieved under in vivo conditions, but it can be estimated through an
inverse numerical calculation. Having chosen a material model and a set of material
parameters, a numerical analysis where the posterior surface of the cornea is pres-
surized with the physiological IOP will provide, as solution, the displacement field
associated to the stresses that balance the IOP by means of the material model. The
displacements modify the cornal configuration, which will not longer respect the
physiological shape.

Letusnowassume tosubtract thecomputeddisplacements to theoriginal coordi-
natesof the cornea in thephysiological configuration. The resulting configurationwill
be less convex than the physiological configuration. If a new analysis under the same
IOP is conducted on the modified geometry, the resulting stressed geometry will be
closer to the physiological geometry. Clearly, there will be di�erences related to the
fact that the analysis has to be conducted in finite kinematics, which induces geomet-
rical non-linearity; therefore the procedure must be repeated several times using an
iterative algorithm that will be interrupted when the desired precision is reached.

The sameprocedure canbe applied to thepreoperative andpostoperative config-
urations of the corneas, using the samematerial model and parameters. If the choice
of material model and parameters are correct, the posterior surfaces of the stress-
free geometries of the two cases will coincide. If they do not, thematerial model, the
material parameters, or both are not correct.

The discrepancy between the coordinates of the posterior surfaces of the preop-
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(a) Top view (b) Bottom view

(c) Section

Fig. 1. Example of finite element discretization for one of the corneas considered in this study.
The geometry refers to the physiological preoperative configuration.

erative and postoperative stress-free geometries can be taken as a measure of the
likeness (ML) of thematerial parameters for the adoptedmaterial model. The ML can
thenbeused to identify theoptimal set ofmaterial parameters for thepatient-specific
cornea.

The actual procedure is described in detail in the following section.

2.1 Recovery of the stress-free configuration of the cornea

Twelve pairs of preoperative and postoperative corneal geometries were chosen in
a random way from a large set of informed patients that underwent PRK refractive
surgery. The data used in this work were collected by the same experienced surgeon
using a high definition corneal tomographer coupled with a pachymeter, according
to a protocol approved by the Italian Data Protection Authority and to the principles
expressed in theDeclaration of Helsinki. Purely geometrical data elaborated from the
imagesby the tomographerwereanonymizedandde-identifiedprior to the transmis-
sion to us and disjoined fromall the other clinical information (age, gender, ethnicity,
and IOP).

Data are provided as a list of coordinate of a cloud of points representing the an-
terior and posterior surface of the cornea in preoperative or postoperative configu-
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ration. The data are elaborated through a so�ware to produce a solid model of the
cornea discretized in finite elements, as shown in Figure 1.

Toeachcornea,weapply theprocedureproposed firstly inPandolfi andManganiello.8
The algorithm of identification of the stress-free geometry begins with the construc-
tion of the mesh in the physiological configuration, seen as a final target of the iter-
ative process. Each step consists in the application on the posterior surface of the
cornea of the patient-specific IOP, keeping the limbus constrained to rotate in order
to maintain the cross-section always orthogonal to the deformed mid-surface of the
cornea. The rotating boundaries have been proved to be the ones that optimize the
refractive behavior of the cornea in the physiological IOP range.21 The solution of the
static problem with an assigned material model provides the set of displacements
employed in the iterative algorithm to compute the stress-free configuration. The
iterative process ends when, within an assigned tolerance ε, the deformed configura-
tion superposes the target physiological configuration. The algorithm is described in
Algorithm. 1

Algorithm 1 Unstressed geometry recovery algorithm, as proposed in Pandolfi and
Manganiello8

1: SetX0 as the nodal coordinates corresponding to the physiological IOP.
2: Set k = 1
3: SetXk = X0
4: for k ≤ kmax do
5: Assign the physiological IOP on the posterior surface of the cornea
6: Solve the static problem and obtain the k-th nodal displacements uk

7: Compute the k-th physiological nodal coordinates xk = Xk + uk

8: Compute the coordinate di�erence ∆X = X0 − xk and the corresponding
norm |∆X|

9: if |∆X| < ε|X0| then
10: Exit
11: end if
12: SetXk+1 = X0 − uk

13: Set k = k + 1
14: end for

2.2 Identification of the optimal material properties

For the chosenmaterialmodel, the identificationof theoptimalmaterial properties is
achieved by comparing the coordinates of the nodes lying on the posterior surface of
the same cornea in the preoperative and postoperative configurations. In the follow-
ing, the set of pmaterial properties is referred to as c = {c2, c2, . . . , cp}. Note that,
in general, thematerial property set will includematerial parameters, parameters re-
lated to inhomogeneity and anisotropy distribution, variability across the thickness,
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and others. Moreover, the setmight not include all the parameters of the chosenma-
terial model; when a parameter is su�iciently well characterized by other means, it
might be excluded from the c set.

The recovery procedure described in the previous section is applied to both the
preoperative and postoperative configuration, using the same material properties
and the same IOP, leading to two sets of nodal coordinates,Xpre andXpost, respec-
tively. Both sets will be dependent on the material properties.

Given the obvious di�erence in the geometry due to the cornea reprofiling, the
comparisonbetweenstress-freepreoperativeandpostoperative configurationcanbe
conducted only on the nodes lying on the posterior surface of the cornea. The coor-
dinates of the nodes of the posterior surface are collected in the subsets Ypre and
Ypost, respectively.

We introduce the index ML representing ameasure of likeness of the property set
c as

ML(c) = |Y
post −Ypre|
|Ypre|

(1)

where the norm |X| is defined as

|X| =

√√√√ N∑
1

(X2
1 +X2

2 +X2
3 ) (2)

andN is the number of elements in the subsets X. Clearly, the more likely the ma-
terial properties are, the smaller is the value of the ML index. Thus, the identification
procedure can be stated as an optimization problem

copt = arg min
c

ML(c) . (3)

In thiswork, the search for the optimal values of the parameters is organized by span-
ning discrete values of the p parameters within a realistic range, determined through
a few preliminary calculations. For each set of values of p, we apply the iterative re-
covery procedure for both preoperative andpostoperative cases and compute theML
index. Since each evaluation of ML involves a certain number of finite element anal-
yses, the e�iciency of the approach is clearly related to the chosen material model,
which may a�ect considerably the computational time requested by the static solu-
tion.

In the following calculations, the missing value of the patient-specific IOP is as-
sumed to be equal to 14 mmHg (1.87 kPa) for all cases.

3.Results

The method is applied to three di�erent material models. The first material model
is a Hooke material extended to the finite kinematics. The second material model
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is a Mooney-Rivlin model. The third material model is the second order approxima-
tion anisotropic model, accounting for the complex architecture of distributed colla-
gen fibrils within the cornea, described in Pandolfi and Vasta23 and used in previously
cited studies.5,32.

3.1 Hookematerial model extended to finite kinematics

Thematerial model considered here is a fictitiousmaterial, since it adopts the Hooke
model to finite kinematic stress and strain measure. The model can be expressed
through the strain energy density

ΨHooke = 1
2E : D(E, ν)E , S = ∂ΨHooke

∂E (4)

whereE is theGreen-Lagrange strain tensor,S the secondPiola-Kirchho� tensor, and
D is the isotropic constant constitutive tensor, dependent on the Young’s modulusE
andon thePoisson’s coe�icientν. Weassume thatPoisson’s coe�icient is known, and
set it to ν = 0.45, thus the parameter drops from the set c. The optimization problem
in Eq. (3) reduces to

Eopt = arg min
E

ML(E) . (5)

Table 1. Geometrical characteristics of the baseline cornea.
Geometrical parameter mm
Average anterior surface in-plane radius (AAR) 5.8100
Average posterior surface in-plane radius (APR) 5.2900
Pre-operative central corneal thickness (BCCT) 0.5117
Post-operative central corneal thickness (ACCT) 0.4414
Maximum ablation profile depth (∆CCT) 0.0720

The approach is described in detail with reference to one of the patient-specific
corneas (heretofore referred to as baseline analysis), characterized by the geometri-
cal parameters listed in Table 1. We begin by constructing a finite elementmesh from
the supplied tomographer data. Themesh, shown in Figure 1, consists of 2,700 exahe-
dron solid elements, with 30 elements along theNT and SImeridians, and 3 elements
across the thickness.

Figure 2 compares the physiological preoperative and postoperative configura-
tions of the NT meridional section of the baseline cornea, as obtained from the to-
mographer images, showing the whole section Fig. 2(a), and a detail of the optical
zone at the center, Fig. 2(b). Images visualize clearly the reshaping induced by the
PRK reprofiling and, moreover, testify the forward deflection of the posterior surface
induced by the reduction in corneal sti�ness.

The optimal value of Young’s modulus is obtained by running several recovery
analyseswith thepreoperativeandpostoperativegeometries, assuming forE thedis-
crete values 0.25, 0.375, 0.5, 0.625, 0.75, 1, and 1.25 MPa. The dependence of the ML
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Fig. 2. Baseline cornea, Hooke material. Physiological preoperative and postoperative con-
figurations of the cornea across the NT meridian, as provided by the tomographer. (a) Whole
extension. (b) Detail in the central optical zone.

indexonE is shown inFigure3. Theminimumvalueof theML index, corresponding to
2.546×10−5 is located atEopt = 0.625MPa. Figure 4 compares the recovered stress-
free preoperative and postoperative geometries corresponding to the optimal value
Eopt, showing the good correspondence of the position of the posterior surfaces.

The role played by Young’s modulus on the recovered stress-free geometry is
shown with the aid of Figure 5. Starting from the same physiological postoperative
configuration and assuming two di�erent values for Young’s modulus, 0.25 MPa and
1.25 MPa, respectively, the recovered geometries are ostensibly di�erent.

The analysis described for the baseline corneawas repeated for 12 pairs of corneal
geometries, whose geometrical parameters are listed in Table 2. The baseline cornea
is labelled 1S. The same table also lists theminimumvalue of theMLopt index and the
correspondingEopt.
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Table 2. Geometrical characteristics of the 12 human corneas used in this study. AAR: average
anterior radius

Cornea AAR APR BCCT ACCT ∆CCT Eopt MLopt

mm mm mm mm mm MPa
1S 5.812 5.29 0.512 0.440 0.072 0.625 2.546 10−5

1D 5.820 5.19 0.506 0.449 0.057 0.750 3.304 10−6

2S 5.570 5.00 0.540 0.425 0.115 0.750 3.415 10−5

2D 5.529 4.96 0.535 0.403 0.132 1.000 1.672 10−5

3S 5.579 5.00 0.501 0.462 0.039 0.500 3.180 10−5

3D 5.529 5.02 0.509 0.471 0.038 0.500 2.116 10−5

4S 5.525 5.01 0.567 0.502 0.065 < 0.125 –
4D 5.538 5.03 0.564 0.473 0.091 0.125 3.020 10−4

5S 5.786 5.29 0.523 0.458 0.065 < 0.125 –
5D 5.873 5.32 0.530 0.452 0.078 – –
6S 5.507 4.98 0.597 0.436 0.161 < 0.125 –
6D 5.590 5.04 0.553 0.438 0.115 < 0.125 –

Average 5.622 5.076 0.539 0.452 0.087 0.413 –
Std dev 0.134 0.131 0.028 0.024 0.036 0.308 –

APR: average posterior radius. BCCT: Preoperative central corneal thickness. ACCT:
post-operative central corneal thickness.∆CCT: central ablation depth. Eopt: optimal value of
the Young’s modulus. MLopt: minimum value of the ML
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Fig. 3. Baseline corneawithHookematerialmodel. Dependence of theML index on the Young’s
modulus.

-6 -4 -2 0 2 4 6

x [mm]

0

1

2

3

z
 [

m
m

]

pre-operative

post-operative

Fig. 4. Baseline corneawith Hookematerial model. Comparison between the recovered stress-
free preoperative and postoperative geometries for the optimal value of Young’s modulus,
Eopt = 0.625 MPa.
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Fig. 5. Baseline corneawith Hookematerial model. Comparison between the recovered stress-
free preoperative geometries obtained with two di�erent values of Young’s modulus E, i. e.,
0.25 MPa and 1.25 MPa, respectively.
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Table 2 shows that, within the explored rangeE = {0.25, 1.25}MPa, the corneas
labelled 1S, 1D, 2S, 2D, 3S, and 3D are characterized by a minimum value of the ML
index, and the correspondingEopt falls in the range {0.5, 1}MPa. Regrettably a min-
imum was not detected for the corneas labelled 4S, 4D, 5D, 5S, 6D, and 6S. Corneas
labelled 4S, 4D, 5S, 6S, and 6D reveal an increasing trend, and theminimumML index
might fall belowE = 0.25MPa. The cornea labelled 5D, instead, shows a decreasing
trend thatmay be ascribed to an imprecise detection of the postoperative image that
does not allow alignment to the preoperative image.

To investigate the behavior of the corneas that failed to show a minimum in the
range E = {0.25, 1.25} MPa, for the sole cornea 4D the analysis has been extended
to a wider range exploring the values E = 0.2, 0.1125, 0.12, 0.125, 0.13, 0.1375, and
0.15 MPa. The second search revealed a minimum of the ML index forE = 0.125 MPa
(Fig. 6). Interestingly, theMLopt is one order or magnitude larger than in the cases
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Fig. 6. Anomalous cornea 4D with Hooke material model. Dependence of the ML index on
Young’s modulus.

that provided a good response in the reduced range of E, suggesting that some dis-
crepancy characterizes the data obtained from the preoperative and postoperative
images. The discrepancy is indeed confirmed by the comparison of the recovered
stress-free preoperative andpostoperative geometries, that, for the optimal values of
the Young’s modulus Eopt = 0.125 MPa does not show any agreement on the shape
of the posterior surface (Fig. 7).
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Fig. 7. Anomalous cornea 4D with Hooke material model. Comparison of the recovered
stressed-free preoperative and postoperative geometries, at the optimal Young’s modulus
Eopt = 0.125MPa.

3.2 Mooney-Rivlin material model

The quasi-incompressible version of the isotropic Mooney-Rivlin material model is
governed by a strain energy function of the form

ΨMR = 1
4K(J2 − 1− 2 log J) + 1

2µ1(Ī1 − 3) + 1
2µ2(Ī2 − 3) (6)

whereJ is thedeterminantof thedeformation tensorF, Ī1 and Ī2 are the first andsec-
ond invariant of the isochoric part of theCauchy-Green strain tensor C̄ = J−2/3FT F,
K is a sti�ness-like coe�icient used to enforce the incompressibility of the material,
andµ1,µ2 are shear sti�ness parameters related to the shearmodulus of thematerial
as µ = µ1 + µ2.

In order to reduce the number of parameters to identify to µ1 and µ2, given the
meaning of a penalization coe�icient forK, we setK = 7MPa in all the calculations.

As already mentioned, in the present work we did not use a true optimization al-
gorithm to detect the optimal values of the parameters, but performedmultiple iter-
ative recovery procedures over discrete sets of values. To reduce the heaviness of the
calculations in the case of the two-parameter Mooney-Rivlin model, the search for
the optimal pair of parameters has been restricted in a rather arbitrary way by per-
forming a two-phase search. In the first phase, we constrain the two parameters to
assume the same value and search the optimal value of µ2 = µ1 over discrete values
within a wide range. In the second phase, we constrain µ1 to the fixed optimal value
and perform a second search onµ2 again over a discrete set of values (Fig. 8). Clearly,
since the two searches are discrete and constrained, the algorithm reduces in a sen-
sible way the possibility to find the absolute minimum; thus the present results have
to be considered only in a demonstrative way. In particular, we remark that the two
parameters cannot be identified in a unique way, since we are comparing only two
configurations.

We replicate for the baseline cornea 1D the optimization search conducted for the
case of a Hooke material model. The optimization of the parameter µ1 (solid line in
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Fig. 8. Visualization of the search strategy adopted for the shear sti�ness parametersµ1 andµ2
of the Mooney-Rivlin material model.

Fig. 8) gives µopt
1 = µ2 = 0.14 MPa. The dependence of the ML index on µ1 can be

observed in Figure 9(a).
Next, the parameter µopt

1 = 0.14 MPa is kept fixed at the optimal value, and the
ML index is computed for µ2 in the range {−0.06, 0.30} MPa (dashed line in Fig. 8).
The dependence of the ML index on µ2 is shown in Figure 9(b). The optimal value of
µopt

2 = 0.18MPa is obtained for a value of ML = 7.453×10−6 one order of magnitude
inferior to the best value obtained for the Hookematerial model.
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(b) Second search

Fig. 9. Baseline corneawithMooney-Rivlinmaterial. (a) Dependenceof theML index on the first
shear sti�ness parameter µ1, under the constraint µ2 = µ1. (b) Dependence of the ML index
on the second shear sti�ness parameter µ2 for a fixed value µ1 = 0.14MPa.

3.3 Anisotropic distributed fiber reinforcedmaterial model

The anisotropic distributed fiber reinforcedmaterial model here considered is an ad-
vanced second order model that accounts for the average and the variance of two
distributions of fibers. Themodel has beendeveloped in Pandolfi and Vasta23 and ap-
plied successfully to themodelling of the human cornea in several applications.5,32,40
The model can be thought as an extension of the Mooney-Rivlin material model to
account for the anisotropy induced by the presence of dispersed reinforcing fibers
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embedded into an isotropic matrix. The strain energy function has the form

ΨV = ΨMR +
2∑

M=1

k1M

2k2 M
exp

[
k2 M (Ī∗

4 M − 1)2] (1 +K∗
Mσ2

I4 M

)
(7)

where Ī∗
4 ,M and σI4 M

are the average and the variance of the pseudo-invariantmea-
suring the square of the stretch along any spatial direction of theM -th set of fibers,
k1 M is a sti�ness parameter that controls the behavior of the fibers at small strains,
k2 M is a dimensionless rigidity parameter that controls the behavior of the fibrils at
large strains, andK∗

M a coe�icient dependent on Ī∗
4 ,M , k1 M , and k2 M , cf.23

The number of parameters of thematerialmodel (seven)makes the search for the
non-unique optimal set of parameters rather expensive from the numerical point of
view. To illustrate themethod,we reduce theproblem to the same level of di�iculty of
the Mooney-Rivlin material model, by assigning the values of the penalty coe�icient
K and of the four fiber parameters k1 M , k2 M according to the data documented in
in Sánchez et al.40 Therefore, we setK = 5.5MPa, k1 1 = k1 2 = 0.05MPa, and k2 1 =
k2 2 = 200. Again, the baseline cornea labelled S1 has been used for demonstration.
The search is conducted only on the shear sti�ness parameters µ1 and µ2, adopting
the same strategy described in Section 3.2.

The parameter µ1 has been set as {0.04, 0.05, 0.06, 0.07} MPa. The computed
ML index as a function of µ1 = µ2 is shown in Figure 10(a). The optimal value of
µopt

1 = 0.05MPa is clearly shown in the plot, with the corresponding ML index equal
to 6.1114 ×10−6. The second search is conduced for µopt

1 = 0.05 MPa, varying µ2 in
{0.03−−0.07}MPa. The dependence of the ML index on µ2 is shown in Figure 10(b),
and the optimal value is µopt

2 = 0.05MPa.
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(a) First search
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(b) Second search

Fig. 10. Baseline cornea with anisotropic distributed fiber reinforced material. (a) Dependence
of the ML index on the first shear sti�ness parameter µ1, under the constraint µ2 = µ1. (b)
Dependence of the ML index on the second shear sti�ness parameter µ2 for a fixed value µ1 =
0.05MPa.

4.Discussion

We illustratedaprocedure for the simultaneous identificationof the stress-freegeom-
etry and a reduced set ofmaterial parameters for a patient-specificmodel of a human
cornea that underwent laser ablation surgery (PRK). The identification procedure is
specifically related to the availability of two comparable configurations, correspond-
ing to a preoperative and a postoperative state, respectively.

The situation is not the ideal one, since the material properties can be identified
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only a�er the surgery. Therefore the model cannot exploit its predictability in view
of optimizing the ablation profile. Nevertheless, we have been motivated by several
reasons to conduct this study.

First, the achieved patient-specific model could be employed to estimate the re-
sponse of the eye to additional surgery, for example, the insertion of an intraocular
lens or the execution of a crosslinking procedure. Second, the aim of this work is to
describe a conceptually general procedure that can bemodified and improved by the
suitable selection of two ormore comparative configurations of the same cornea, ob-
tained with other means, for example, with a planned protocol of in-vivo tests. Third,
the application of this approach to a large set of human corneas that have undergone
PRK refractive surgery can be used to restrict the variability of the material parame-
ters of di�erent material models into physically significant ranges of values.

The proposed method must be intended as one of the several ways that allow
to identify the material properties of an assigned material model. In particular, the
method relies on the existence of an ideal stress-free configuration that cannot be at-
tainedunder physiological conditions, because it is associated to anon-physiological
state, at zero IOP. The ideal unstressed configuration can be determined only through
numerical calculations conducted in finite kinematics. In fact, linear elastic ap-
proaches are based on the assumption that there is no change of configuration under
loading, or no di�erence between he stress-free and the physiological configuration,
excluding thepossibility to use themethod for the estimationofmaterial parameters.
Therefore, the proposedmethod is suitable only to finite kinematicsmaterialmodels
that describe the behavior of deformable so� tissues.

To compensate the missing surrounding tissues, throughout the calculation we
adopted special boundary conditions consisting in theadaptive rotation, i. e., a driven
motion of the nodes located at the limbus boundary to preserve the planarity of the
boundary while enforcing the normality to the mid-surface of the deforming cornea.
The concept of rotating boundaries has beenpresented in a previous study,21 as an al-
ternative to fixed boundary (mimicking rigid environment) and to elastic boundaries
(mimicking by means of tuned springs the elasticity of surrounding tissues). With re-
spect to other boundary conditions, the adaptive rotations of the limbus have been
proven bymeans of comparative analyses to be the ones providing themost realistic
refractive properties of the deforming cornea, showing the minimal variation of the
refractive powerwith growing IOP and the lowest elastic energy stored in the system.

Among themethods proposed in the literature for the identification of the stress-
free state, the approach proposed in Grytz and Downs,14 where the concept of the
comparison between distinct configurations is used to estimate the physiological
stress/strain state in biological tissues, stands close to our previously described
algorithm.8 Although presented in a more formal and elegant way with respect to
our work,8 the underlying idea is the same: to reconstruct the physiological stress
state by searching for a stress-free configuration. The di�erence between the two
methods is that here we are comparing two configurations that di�er for tissuemass
and volume but withstand the same load, Grytz and Downs14 compare two configu-
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rations that di�er for loads but preserve mass and volume.
The approach has been illustrated with reference to three material models: the

Hooke extended to the non-linear range, the Mooney-Rivlin, and the anisotropic
stochastic fiber reinforcedmodel.23 The first twomaterial models, which are not par-
ticularly suitable formodelling the human corneas, have been considered in order to
set up and verify the procedure. In particular, the Hooke model should not be used
for so� tissues, since it overestimates the sti�ness, and therefore the stress, within
the tissue.

The advantages of using the Hookemodel is related to the computational conve-
nience in the solution of the elastic problem: the algorithm is rather fast and it has
been possible to conduct numerous analyses considering twelve corneas. In this re-
spect, it has been possible to observe that one of the key points in the procedure is
the alignment of the corneas in order to allow the comparison. Specifically, images
of the eye may be a�ected by some unavoidable change of reference system. Opti-
cal machines detect at best the NT direction, so that images are generally taken with
a minimum di�erence in terms or rotation. However, misplacement in the optical
axis directions is always possible. Thus, a�er creating of the solid model, it may be
necessary to perform some additional relative roto-translation to minimize the ge-
ometrical di�erences. In our approach, we refer to the limbus geometry as the one
that undergoes theminimum changes also a�er PRK surgery and conduct all sorts of
re-alignment using the limbus as reference. The particular unsuccessful case of the
cornea labelled 1D is exemplary in this regard. We believe that the images have been
a�ected by some unwanted bias that we were not able to detect. Therefore, in gen-
eral, it is important that the images are taken with the same tomographer operated
by the same surgeon to minimize the di�erences.

The identified geometry and set of material properties obtained by the approach
will be dependent also on the patient-specific IOP. In this study, we used an ideal IOP
(14 mmHg) because this information was not available. The fact that the IOP was
not patient-specific can also justify the fact that some corneas showed clear optimal
parameter values, whereas for others the procedure failed. It is important to note
that, in general, IOPmeasured by tonometers is biased due to corneal sti�ness. Many
tonomoters are based on correction tables, o�en based on a wide set of numerical
calculations conducted on ideal corneas to provide a less biased indication of IOP.
This expedient does not avoid to obtain the patient-specific IOP, but only an averaged
value. We believe that IOP has to be considered as an unknownof the problem, and it
must be identified, togetherwith the stress-free geometry andmaterial properties, in
a more sophisticated inverse analysis, which is presently the object of a study in our
group.

The di�iculties observed in using unrealistic materials (Hooke and Mooney-
Rivlin) for the identification of an anisotropic body are indeed less marked when
a more accurate material model is selected, as it has been observed in our previ-
ous applications.5,32,40 As matter of fact, the ML index plot is characterized by the
presence of a well-identified minimum, with smaller values, in the anisotropic case.
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This indicates that an accurate material model is the basis of any good numerical
simulation.

A final comment must be given on the search approach used in this study, con-
ducted in a rather rough way by varying slightly one of the material parameters at
time, under some assumptions not really supported by clinical evidence. Thus, crit-
icism can be raised for the choice of keeping Poisson’s coe�icient constant in the
Hooke material model case, or in conducting two disjoined searches on a single pa-
rameter for the Mooney-Rivlin model case, or in excluding from the search the fibril
sti�ness and rigidity parameters for the anisotropic material model.

We are convinced that the optimization of the ML index must be conducted with
more solid search algorithms, that include not only all the relevant material proper-
ties, but also the IOP as unknown action. Themulti-objective search can be based on
faster algorithms, typically used in inverse analysis, such as the conjugate gradient
andmethods based on Pareto optimality criteria.
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