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Abstract 

Composites are experiencing a new era. The spatial resolution at which is to date possible to build up 

complex architectured microstructures through additive manufacturing-based and sintering of powder 

metals 3D printing techniques, as well as the recent improvements in both filament winding and 

automated fiber deposition processes, are opening new unforeseeable scenarios for applying 

optimization strategies to the design of high-performance structures and metamaterials that could 

previously be only theoretically conceived. Motivated by these new possibilities, the present work, 

by combining computational methods, analytical approaches and experimental analysis, shows how 

finite element Design Optimization algorithms can be ad hoc rewritten by identifying as design 

variables the orientation of the reinforcing fibers in each ply of a layered structure for redesigning 

fiber-reinforced composites exhibiting at the same time high stiffness and toughening, two features 

generally in competition each other. To highlight the flexibility and the effectiveness of the proposed 

strategy, after a brief recalling of the essential theoretical remarks and the implemented procedure, 

selected example applications are finally illustrated on laminated plates under different boundary 

conditions, cylindrical layered shells with varying curvature subjected to point loads and composite 

tubes made of carbon fiber-reinforced polymers, recently employed as structural components in 

advanced aerospace engineering applications.  

 

 

1. Introduction 

 

Fiber Reinforced Composites (FRC) have found extensive use in advanced applications of many 

engineering fields thanks to their high stiffness/weight ratio and high structural performances, which 

are often the result of specific design and manufacturing strategies that aim to optimize the response 

of these composite structures to specific working conditions. This determined an increasing interest 

in the study of new possible design solutions aimed to enhance the performances of laminate shell 

structures under prescribed regimes through the appropriate choice of materials and the determination 

of the optimal fiber orientation for each FRC layer (Foldager et al., 1998; Stegmann and Lund, 2005). 

Experiments have shown that the optimal fiber orientation can increase structural stiffness, failure 

loading and buckling stress over the traditional quasi-isotropic fiber distribution without increasing 

the weight (Wu 2008; Tosh and Kelly 2000; Gürdal and Olmedo 1993; Raju et al. 2012), resulting 

particularly attractive for applications where weight is critical (Kim et al. 2012; Lukaszewicz et al. 

2012). It is well known that the composite stiffness is significantly higher in the direction of fibers, 

and therefore different strategies, such as sizing, shape and Topology Optimization (TO), have been 

presented in the literature to optimize the fiber orientation in a way to gain higher mechanical 
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performance. The optimization process is usually gradient-driven. The so-called strain-based method 

(Gea and Luo 2004; Pedersen 1989, 1990, 2011), the stress-based method (Cheng et al. 1994; Dıaz 

and Bendsøe 1992; Gea and Luo 2004) and the energy-based method (Luo and Gea, 1998) represent 

in particular three principal approaches, corresponding to three different orthotropic material TO 

strategies, proposed to solve the optimal orientation problems. All these procedures consider the 

effect of the material orientation on the internal strains and stresses, by exploring the condition that 

returns the stiffest structure possible, which represents the one whose material symmetry planes allow 

to minimize the total elastic energy and thus minimize mean compliance. Moreover, all methods 

assume the invariance of strain and stress fields inside each design cell. The optimality criterion of 

the strain- and stress-based methods is formulated in the stress and strain form, respectively. On the 

other hand, the energy-based method requires that the dependency of strain and stress fields on the 

material orientation needs to be explored by involving an energy factor in the inclusion model.  

Different gradient-driven procedures are represented by material selection methods, such as the 

optimal material selection technique (Sigmund and Torquato, 1997) adapted by (Stegmann and Lund, 

2005) in the so-called Discrete Material Optimization for the design of laminated composite 

structures, Shape Function with Penalization (SFP) (Bruyneel, 2011) and Bi-value Coding 

Parameterization (BCP) (Gao et al., 2012). An improved curvilinear parameterization method 

(Tatting and Gürdal, 2001; Wu 2008) exploits the Level Set method to optimize fiber paths by 

enforcing the continuity of fiber angles at the element interfaces (Brampton et al, 2015). In (Xu et al. 

2019) the authors proposed a non-deterministic robust topology optimization of ply orientation for 

multiple fiber-reinforced plastic materials under loading uncertainties.  

Other wide applications of TO strategies are based on the exploration of the optimal material 

distribution within a prescribed design domain, to maximize the stiffness of the structure by fixing 

the volume or the mass of the system (Eschenauer and Olhoff, 2001; Bendsøe and Sigmund, 2003). 

These methods employ particularly advantageous distribution methods, i.e. the homogenization 

approach (Bendsøe and Kikuchi, 1988) and the Solid Isotropic Material with Penalization Method 

(SIMP) (Bendsøe, 1989), in which the material properties are interpolated by using smooth functions 

of the material density, which serves as design variable. 

The above discussed pioneering contributions have been recently extended to a wide range of design 

problems, including heat transfer (Bruns, 2007; Subramanian et al. , 2018), acoustics (Dühring et al. 

, 2008), fluid flow (Borrvall and Petersson, 2003), electromagnetics (Byun and Hahn, 2001; Deng 

and Korvink, 2018), biomechanics (Jang and Kim, 2008; Fraldi et al., 2010, Wang et al. , 2016) and 

many other multi-physics applications (Kato et al. , 2015; Takezawa et al. , 2018; Esposito et al., 

2019; Nerilli and Vairo, 2017). 

Different criteria have been developed to drive the optimization processes, extensively reviewed by 

Sigmund and Maute (2013). Some of them adopt continuous density design variables with gradient-

based optimization algorithms (Zhou and Rozvany 1991; Bendsøe and Sigmund, 1999) or level set 

operating with boundaries instead of local densities (Allaire et al. 2004; Wang et al. 2003), while 

other evolutionary approaches instead provide the removal of the elements with lowest strain energy 

density (Xie and Steven, 1993). The technique proposed by Stolpe (2010) investigated, in topology 

optimization problems, the differences in selecting continuous and discrete variables. 

By invoking the theory of homogenization for anisotropic materials, Esposito et al. (2019) adapt the 

topology optimization to fiber-reinforced composites, by prescribing the materials of both matrix and 

reinforcement and also constraining within technological (process-induced) ranges the volume 

fraction of fibers, in this manner searching elastic solutions at minimal energy over all the possible 

families of curves that the continuous fibers can draw in any composite layer. Furthermore, Minutolo 
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et al. (2019) proposed to abandon the classical design and topology optimization approaches by 

introducing a "third way" for mechanically optimizing materials and structures, baptized as Galilei's 

Optimization. Based on the concept of equalizing a proper stress measure at any point of the body 

and maximizing the global toughness of a given structure, the proposed strategy traded spatially 

homogeneous stress maps with spatially inhomogeneous resizing, with the toughening effect of 

killing stress peaks that are potentially onset of crack nucleation and fracture initiation. 

In the present work, the optimal orientation of fibers in multilayer composite shells is pursued through 

design optimization method by assuming as objective function the strain energy of the structure and 

as design variables the orientation of the fibers in the plies.  

Different examples of plane and curved shells, subjected to several load and boundary conditions, 

have been analyzed using custom-made routines developed in APDL (Ansys Parametric Design 

Language) in Ansys® Multiphysics environment (Ansys Inc., 2013). In particular, the case studies 

described in the following sections analyze the behavior of a rectangular panel subject to in-plane 

boundary conditions and torsional regime, and a square panel subject to out-of-plane loading, such 

as symmetric and asymmetric bending regime. In these examples, the quality of the optimization 

procedure has been evaluated through a specific indicator, i.e. the Strain Energy Gain (SEG), which 

measures the perceptual variation of strain energy before and after the optimization. Besides, the 

response of three-dimensional structures is investigated. In particular, a layered cylindrical shell 

subjected to one point concentrated force is first studied. Lastly, the proposed procedure is applied to 

optimize the mechanical performances of Carbon Fiber Reinforced Polymer (CFRP) composite 

cylinders under high compression regimes, used as primary structural components for advanced 

applications in aerospace engineering. However, the generality of these results suggests their possible 

extension to many other applications in which the prevention of critical load conditions is crucial to 

ensure the functionality of the structure (Nappi 2016; Fraldi 2019; Palumbo et al. 2018). Here, design 

optimization leads to conceive a new possible optimal microstructural arrangement of the CFRP able 

to avoid critical stress conditions that are associated with the instability mechanisms observed in 

composites with standard fiber orientation.  

The remainder of the paper is organized as follows. The following section presents a remark on the 

design optimization formulation, firstly describing the ruling equations in a general form and then 

detailing them for the optimal orientation in FR composites. Section 3 illustrates and discusses the 

results obtained from the application of the described design optimization procedure to plane and 

curved FRC panels subject to in-plane or out-of-plane loading conditions. Section 4 closes with a 

conclusion and outlook.  

 

2. Optimal orientation in FR composites: remarks on problem formulation 

 

The general problem of Design Optimization can be classically stated as: 

 

 

minimize (objective function)

subject to 1,.., (state constraints)

1,.., (design constraints)

L U

j j j

L U

i i i

s s s j m

T t T i n



  

  

t

t  (1) 

where   t is the cost or objective function to be minimized. The n design variables it  
are the 

independent quantities, collected into the vector t , that varies to pursue the optimum design. The 
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domain of the design variables is defined by the design constrains (1)3, while additional constraint 

equations can be stated as in (1)2 in terms of the state functions  js t , which depend on the design 

variables. In the work by Esposito et al. (2019), an analytical solution is provided for an orthotropic 

layer where the optimal orientation of the fibers has been determined by minimizing the mean 

compliance of the structure under either prescribed tractions or imposed displacements. By 

considering the total potential energy Φ , the weak formulation of the linear elastostatic problem for 

a plane structure under the action of both body forces  , Ωx xf , surface tractions  , Ωtx xt  and 

prescribed displacements  0 , Ωux xu , requires that 

 

Ω Ω Ω

1
minΦ, Φ Ω Ω Γ

2
t

i k
ijkl i i i i

j l

u v
C d f v d t v d

x x


 
  

   v
       (2) 

 

where ijklC  are the components of the 4th order stiffness tensor of the orthotropic material that here 

depends on the fiber orientationθ , while iu and iv  are the displacement satisfying the first momentum 

balance and a kinematically admissible virtual displacement, respectively. 

The stiffest structure guarantees the minimum amount of total internal elastic energy, or, equivalently, 

the minimum compliance. Therefore, the objective function to be minimized can be identified by the 

elastic energy: 

 

Ω Ω Ω

2Π Ω Ω Ωi k
ij ij ijkl ij kl ijkl

j l

u u
σ ε d C ε ε d C d

x x

 
  

           (3) 

 

defined in terms of the Cauchy stresses ijσ and of the strains ijε when the solution is found for any value 

ofθ , here representing the design variable. The optimality condition is obtained by imposing 

stationarity of  Π θ , that is: 

 

Ω

Π
2 ( ) Ω 0

ijkl i k i k
ijkl

j l j l

C u u u u
C d

θ θ x x θ x x

      
   

        
        (4) 

 

By virtue of the principle of virtual displacements, under the condition k kv u , the following relation 

through direct derivation with respect to θ : 

 

Ω Ω

Ω ( ) Ω,
ijkl i k i k

ijkl

j l j l

C u u u u
d C d

θ x x θ x x

    
 

               (5) 

 

can be finally obtained. Substituting Eqn. (5) in Eqn. (4) gives the optimality condition: 

 

Ω

Π
Ω 0

ijkl i k

j l

C u u
d

θ θ x x

  
  

              (6) 
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Finite element-based discretization of the domain Ω  in m elements implies that the optimality 

condition is rewritten as: 

 

Ω Ω

Π
Ω Ω 0

e e

ijkl ijkle ei k
ij kl

e e j l e

C Cu u
d ε ε d

θ θ x x θ

  
    

             (7) 

 

WhereΩe  represents the measure of the 
the  design cell. Assuming, for a sufficiently small element 

size, a uniform strain and stress fields within each homogeneous design cell, the optimality condition 

in terms of strains (prescribed displacements) reads as: 

 

Π
0Tε

e e e

e e

A
θ θ

 
  

 

C
ε ε  1,2,..,e m         (8) 

 

where eε represents the strain vector, C  is the rotated orthotropic stiffness matrix and eA  is the area 

of the 
the  design cell, set as unity. Dually, the optimality condition in the stress form (prescribed 

tractions) is: 

 

Π
0Tσ

e e

e eθ θ

 
  

 

S
σ σ   1,2,..,e m         (9) 

 

where eσ  is the stress vector and S is the rotated orthotropic compliance matrix (Pedersen and 

Pedersen, 2011; Klarbring and Stromberg, 2012).  

For the design cell element, the orthotropic stress-strain equations, as well as the uncoupled 

constitutive equations for interlaminar shear stresses, can be written as (Barbero, 1999; 2008): 

 

1 12 2

12 21 12 21

1 1

12 2 2
2 2

12 21 12 21

6 6

12

0
1 1

0
1 1

0 0e e

e

E υ E

υ υ υ υ
σ ε

υ E E
σ ε

υ υ υ υ
σ ε

G

 
  
    
    

    
     

    
 
 

and 
4 23 4

5 13 5

0

0
e e e

σ G ε

σ G ε

     
    

     
    (10) 

 

where subscripts 1 and 2 denote the fiber and the orthogonal-to-the-fiber directions, respectively,  

 1 2,E E
 
are the orthotropic Young moduli,  12 13 23, ,G G G

 
are the shear moduli and 12υ  is the Poisson's 

ratio in the plane referred to the subscripts. The inverse relationships is:  

12

1 1

1 1

12
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By introducing the rotation matrix T :  

 
2 2

2 2

2 2

cos sin 2cos sin

sin cos 2cos sin

cos sin cos sin cos sin

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

 
 

  
   

T         (12) 

 

the stress and strain vectors, as well as the compliance and stiffness matrices, can be transformed 

from the material coordinate system  1,2,3
 
of the fibers to the global coordinate system  , ,x y z  - for 

which an over-lined notation is adopted in what follows -  so that: 

 
1

1

T

T

 

 





C T CT

S T ST
            (13) 

 

Specifically, the elastic moduli ijE for the orthotropic design cell element are (Jones RM, 1999): 

 
4 2 2 4
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2 2 4 4
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2 2 4 4
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2 2

44 44 55

2 2
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sin cos ( 2 )sin cos

( 2 2 )sin cos (sin cos )

cos sin

sin cos

( )sin cos
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     (14) 

 

where: 

1 12 1 2
11 12 22 66 12 44 23 55 13

12 12 12 12 12 12

, , , , ,
1 1 1

E ν E E
E E E E G E G E G

ν ν ν ν ν ν
     

  
.     (15) 

 

Similarly, the components ijS of the rotated compliance matrix can be obtained as: 
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where: 
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Algebraic manipulations allow rewriting the optimality conditions (8) and (9) respectively as: 
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and: 
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where both strain and stress components refer to values at the centroid of the design cell. Both Eqns. 

(18) and (19) are of the type: 

 

cos2 cos4 cos2 sin 4 0e e e ea θ b θ c θ d θ           (20) 

 

Where the coefficients , ,a b c and d  are: 
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in the strain formulation and: 
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for prescribed tractions. It is worth noticing that the coefficients listed in Eqns. (21) and (22) depend 

both on stiffness and compliance moduli and on the stress and strain levels, including interlaminar 

shear stresses and strains. By setting 2 ex θ
 and by substituting 

2

x
t tg , equation (20) can be finally 

expressed as: 

 
3 2

2 3

4

1 4 5 0c t c tc c ct t               (23) 

   

where 1c b a  , 2 2 4c c d  , 3 6c b  , 4 2 4c c d  and 5c a b  . The fourth-order polynomial 

equation (23) admits analytical solutions it by virtue of the Ferrari-Cardano formula, so that the fiber 

angles in the design element cell are finally obtained as: 

 

 arctg
ie it             (24) 

 

Among the real solutions, the optimal fiber orientation OPT
 
provides the minimum value of the strain 

energy. To avoid undesired computational costs related to the implementation of numerical 

procedures based on theoretical variational approaches including constraints (for instance Lagrange 

multipliers and inequalities), the optimization algorithm is designed to control, step-by-step, that the 

von Mises stress does not overcome a prescribed yield value. Nevertheless, a selected criterion for 

redistributing the exceeding stresses at the subsequent step of the analysis, in case of critical stress 

occurrence, was a priori established. As a consequence, in case of over-load at a given optimization 

step, the algorithm was written to perform two parallel analyses. A first one is launched by starting 

from a trial configuration by assigning ply-by-ply sets of fibers orientation characterized by angles 

placed at intermediate positions between the ones obtained at the previous step (when no critical 
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stresses occurred) and the ones corresponding to the step at which inadmissible stresses were 

somewhere found.  

 

 

 

3. Results and discussion 

 

3. 1 Optimization of plane and curved shells 

 

Design Optimization procedures have been applied to optimize the mechanical response of different 

composite structures. In order to catch the optimal composite stacking sequences, a FE design 

optimization algorithm has been developed with the aid of Ansys solver. The algorithm uses the 

subproblem approximation method (an advanced zero-order method) that can be efficiently applied 

to many engineering problems. The algorithm considers the reinforcement orientations of laminae as 

design variables and the Strain Energy as objective function to be minimized. This section illustrates 

and discusses the results obtained from the application of the described design optimization procedure 

to plane and curved FRC panels subject to in-plane or out-of-plane loading conditions. More in detail, 

the addressed examples concern composite materials made of two symmetrically positioned 

components, each comprising four adjacent orthotropic layers containing fibers arranged to form 

angles of 0°, 90°, 45° and -45°, respectively, to generate a symmetrical stacking sequence, from here 

on identified as  0 ,90 ,45 , 45
s

     . The material properties considered in the FEM simulations for 

the single layer are relative to the ThermoPlastic Composite APC-2/AS4. Therefore, with reference 

to a local (i.e. layer-specific) orthogonal coordinate system 
 1 2 3, ,x x x

having the 1
x -axis aligned 

along the fibers direction, the nine elastic constants for each layer are the following:  

 

   

   

   

1 2 3

12 13 23

12 13 23

, , 138,10,10 ,

, , 5.65,5.65,3.7

, , 0.28,0.28,0.33

E E E MPa

G G G MPa

  







 

 

Based on the adopted stacking sequence, the overall behavior of the multi-ply deriving from the 

assembly of the eight single layers can be assumed as quasi-isotropic. For those composite systems, 

optimized distributions of the fibers orientations in each layer, leading to a strain energy minimization 

for prescribed geometries and boundary conditions, have been determined through a custom-made 

procedure developed by APDL (Ansys Parametric Design Language) and implemented in Ansys® 

Multiphysics environment (Ansys Inc. , 2013).  

The effects of the optimization process are described in the following paragraphs, and compared with 

the original case of symmetrical sequence. In particular, to measure the advantage obtained by 

adopting an optimally configured structure in place of the original quasi-isotropic one, the Strain 

Energy Gain (SEG) parameter, defined as the strain energy percentage difference for the structure 

before and after the optimization: 
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PRE OPT OPT

OPT

SE SE
SEG

SE

 
   (25) 

 

is calculated for each investigated example.  

 

3.1.1 Rectangular panel under in-plane loading conditions  

 

The first example concerns the optimization of a rectangular panel (length=500 mm, height=200 mm, 

thickness=2.24 mm) laying in the classical cantilever-like configuration pictorially represented in 

Fig.1b, with one of the shorter sides fully constrained and the opposite subject to a vertical load

1000F N . The FE model of the structure has been achieved by hexahedral multi-layer solid-shell 

element type, with eight nodes having three degrees of freedom for each node and linear shape 

functions. The starting, symmetrical, sequence of layers  0 ,90 ,45 , 45
s

     , generating a quasi-

isotropic structure, and the optimized sequence  46 ,0 ,0 ,0
s

     are respectively illustrated in Fig.1a 

and Fig.1c for one half of the structure, the other being symmetrical. It is worth noticing that the 

proposed approach allows to choose any real value for the orientation angles of the reinforcing fibers, 

although the angle values resulting from the numerical procedure and reported in the next figures, are 

approximated to the closest integer. As a matter of fact, as not hardly predictable, the resulting optimal 

orientations of the fibers approximately follow the principal directions of stress and strain in the 

bending cantilever.  

Figures 1.d-g show the vertical displacements and the von Mises stresses arising within the panel in 

both the original and the optimized configuration. In this regard, it is worth noting that, in the 

optimized case, the magnitude of the vertical displacement is significantly reduced with respect to 

the quasi-isotropic configuration and the von Mises stress results to be homogeneous almost 

everywhere, with the higher values localized around the force application point.  

The advantage - in terms of strain energy reduction - deriving from the optimization process for the 

considered application is expressed by a SEG equal to 29.77%.  
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Fig. 1: a) The symmetrical stacking sequence generating the quasi-isotropic rectangular FRC panel; b) Sketch of the 

geometry and boundary conditions considered for the rectangular FRC panel; c) Fibers’ orientations for (one half of) the 

optimized configuration of the structure; Contour plots of the (d-e) vertical displacement and (f-g) Von Mises stress 

through the first layer of the panel in the quasi-isotropic and optimized case.  

 

3. 1. 2 Square panel bending under normal force 

The present paragraph focuses on the design optimization of the square panel (side length=500 mm, 

thickness=2.24 mm) shown in Fig. 2b. The panel is constrained on two of its edges and subjected to 

a force F=10 N orthogonal to the panel’s plane. The analyses are performed by employing the same 

FE discretization adopted in the previous application.  

The starting and optimized fibers orientations maps are shown in Fig. 2a and Fig. 2c, respectively. In 

particular, the latter shows that, resembling the previous outcomes, the optimal orientations of the 

fibers result to nearly coincide with the principal directions of stress and strain in the bending plate. 

In addition, the vertical displacements, reported in Fig. 2e, appear reduced in magnitude in the 

optimized condition with respect to the quasi-isotropic structure (Fig. 2d) and the von Mises stresses 

exhibit a distribution mainly oriented toward the external load (Fig. 2f, and Fig. 2g). The advantage 

deriving from the optimization process for this case turns out to be higher than the previous one, with 

a resulting SEG of about 48.80%.  
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Fig. 2: a)The symmetrical stacking sequence generating the quasi-isotropic square FRC panel; b) Sketch of the geometry 

and boundary conditions considered for the square FRC panel; c) Fibers’ orientations for (one half of) the optimized 

configuration of the structure; Contour plots of the (d-e) vertical displacement and (f-g) Von Mises stress through the first 

layer of the panel in the quasi-isotropic and optimized case.  

 

3. 1. 3 Square panel under pure bending regime 

The optimal configuration of the same composite square structure considered above is here addressed 

for boundary conditions reproducing the pure bending regime illustrated in Fig. 3b. In this case, the 

four corners are fully constrained and all the edges of the structure are loaded via external bending 

moments 2.24M Nmm .  

The main outcomes of the optimization procedure related to this application are shown in Fig. 3, in 

comparison with the mechanical response provided by the non-optimized configuration.  

It is worth underling that the present case is the one attaining the lowest advantage from the 

optimization process in terms of strain energy reduction, with an estimated SEG value to be 

approximately 12.25%.  
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Fig. 3: a)The symmetrical stacking sequence generating the quasi-isotropic square FRC panel; b) Sketch of the geometry 

and boundary conditions considered for the square FRC panel under pure bending; c) Fibers’ orientations for (one half 

of) the optimized configuration of the structure; Contour plots of the (d-e) vertical displacement and (f-g) Von Mises 

stress through the first layer of the panel in the quasi-isotropic and optimized case.  

 

3. 1. 4 Rectangular panel under torsion  

The design optimization is here performed on a rectangular panel (length=500 mm, height=200 mm, 

thickness=2.24 mm) fully constrained at the center of both its shorter edges and subject, through the 

imposition of linearly variable vertical forces, to a torsion moment M=5Nmm and vanishing resultant 

force. The described boundary conditions are sketched in Fig. 4b, while the fibers distributions for 

the original and optimized systems are shown, in the order, in Fig. 4a and Fig. 4c. It is possible to 

observe that, even in this case, optimal orientations for the fibers essentially coincide with the 

principal stress directions. Additionally, the results achieved in terms of out-of-plane displacements 

and von Mises stress maps in the case of isotropic composite (Fig. 4d and f) and optimized structure 

(Fig. 4e and g), still show a lower displacements magnitude and a smoother and widely spread 

distribution of von Mises stress in the optimized case. Under these conditions, the SEG results to be 

about 34.40%.  
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Fig. 4: a) The symmetrical stacking sequence generating the quasi-isotropic rectangular FRC panel; b) Sketch of the 

geometry and boundary conditions considered for the rectangular FRC panel under torsion; c) Fibers’ orientations for 

(one half of) the optimized configuration of the structure; Contour plots of the (d-e) vertical displacement and (f-g) Von 

Mises stress through the first layer of the panel in the quasi-isotropic and optimized case.  

 

 

3. 1. 5 Cylindrical vault under prescribed point-force  

The previously described design optimization examples deal with the optimization of the fibers’ 

distribution in multi-ply composite plates, aimed to minimize the strain energy of the system under 

prescribed loading conditions. In all the analyzed cases, the optimized structures show preferential 

alignment of the fibers very close to the principal stress and strain directions and, as highlighted by 

the lower displacements magnitude, they exhibit a stiffer response in comparison with the non-

optimized, quasi-isotropic, composites.  

An advanced application of the same strategy regards the characterization of optimal fibers maps in 

three-dimensional FRC shells discussed in the following.  

By way of example, a parametric analysis of the cylindrical vault illustrated in Fig.5, fully constrained 

at its edges and loaded by a vertical point-force F=10 N at a prescribed position, has been performed 

through the implementation of a FE model employing a classical laminated shell element with four 

nodes and six degrees of freedom for each node. In this way, different results have been provided by 

the optimization algorithm depending on the span-to-rise ratio of the vault -namely by varying the 
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rise (h) as a function of the span (d)- in terms of optimal angles’ sequences and corresponding SEG 

values, as reported in Tab. 1.  

 

 
Fig. 5: a) Sketch of the geometry and boundary conditions considered for the studied FRC cylindrical vault under external 

point-load; b) Schematization of the structure’s cross section for different rise-to-span (i. e. h-to-d) ratios and fixed (not 

symmetrical) point of application of the external force.  

 

 
Tab. 1 Stacking sequence and Strain Energy Gain resulting by the optimization procedure for a FRC cylindrical vault 

under external point-force.  

 

The plots of the vertical displacements and the von Mises stresses induced by the application of the 

vertical point-load on both the quasi-isotropic and optimized structures, are reported in Fig. 6. 

Therein, it is worth highlighting that the same maximum value of stress is reached, with a different 

distribution, in the original and optimized configurations of the system. In particular, in the quasi-

isotropic structure, high stress values are localized around the point of application of the force, 

resulting distributed with low magnitudes over wider areas in the corresponding optimized solutions.  
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Fig. 6: Contour plots of the displacements (on the left column) and Von Mises stresses (on the right column) obtained for 

the original and optimized cylindrical vaults under external point-load, for different rise-to-span ratios (from top to 

bottom).  

 

Figure 6 clearly shows that the stiffness optimization process is generally accompanied by an 

improvement of the average stress level everywhere: in fact, when this improvement does not 

correspond to a reduction of the stress magnitude (as it happens for statically determinate problems, 

for example), the same stress level leads however to have a greater safety factors with respect to the 

not-optimized case, because the optimized materials is solicited along directions of maximum 

stiffness that are often associated to maximum strength as well.  

 

 

3. 2 Carbon Fiber-Reinforced Polymer (CFRP) structures 

Experimental studies on the mechanical performances of combustion chambers made up with CFRP 

multi-layer cylinders have been made, in order to highlight the effects that specific fiber orientations 

and the scaling of the mechanical properties of the cylindrical laminae had on the onset of damages 

and their propagation in both undamaged and repaired structures (Giusto G. , 2016). In particular, the 

two CFRP cylindrical structures with diameter and height are about 377 mm were manufactured by 

using a high strength carbon fiber epoxy pre-preg tape by building up a quasi-isotropic layup of 24 

plies   2 2 2
0 ; 45;90

s


 
through the Filament Winding technology. The constitutive properties of each 
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lamina (with thickness of about 0.195 mm ) are collected in Table 2. Two identical specimens were 

realized with the same procedure and, successively, one of them was damaged and repaired with a 

specific repair resin.  

 Elastic moduli Poisson'sratios Shear moduli 

 

153,000xE MPa  0,39xy   4,900xyG MPa  

6,900yE MPa  0,34xz   4,900xzG MPa  

6,900zE MPa  0,30yz   3,425yzG MPa  

Tab. 2 Constitutive properties of the CFRP laminae 

The mechanical response of both undamaged and repaired cylinders have been tested under 

compressive load by means of a servoidraulic machine ITALSIGMA -with a capability of 3000kN in 

compression and a maximum crosshead displacement equal to 75 mm- with the aim to evaluate the 

stiffness of cylinders, their elastic strength and the critical load at which failure occurs. The 

experimental setup is shown in detail in Figure 7.  

 
Fig. 7. Experimental setup. a) Placement of the strain gauges 1V, 2V, 3V, 4V - (four of them in axial direction, spaced 

of 45° each other along the cylindrical surface; and others in tangential direction, spaced out of 180° each other). b and 

c) Location of the LVDT sensors A, B, C, D (on the external surface of the specimens) and N, O, B60 (fixed to the rigid 

plates). d) Complete setup.  
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The compression tests reported in Figure 8 mainly evidenced the occurrence of structural damages 

close to the potting zone, caused by the compressive over-load associated with delamination 

phenomena and followed by unstable buckling behavior due to the high stresses in the constrained 

zone. These localized damages under increasing load slowly propagated, until the entire structure 

collapsed. Additional non-axisymmetrical damages were also observed at the ends of not-repaired 

cylinders, suggesting that potting imperfections could cause an incorrect load transfer along the 

thickness of cylinder, by inducing a premature failure of the system because of localized bulging 

effects.  

 

Fig. 8. Highlights from compression tests on CFRP skirts showing the specific damaging mechanisms due to 

compression load 

In the light of such experimental evidence, an optimized design of the CFRP microstructure able to 

improve the composite mechanical strength would help to better resist to the high-pressure levels 

occurring in the combustion chamber during the flight, and an optimized stiffness allow to reduce the 

stresses responsible for local damages and bulging effects detected. Both these aspects are in fact 

diriment to prevent –or at least contain- the undesired failure mechanisms in CFRP above described, 

by preserving its structural integrity. To this aim, the proposed design optimization procedure has 

been applied to obtain the optimal fiber orientation in the composite laminae of the CFRP cylinder, 

in order to minimize the von Mises stress in the critical distal region and to preserve the composite 

longitudinal stiffness within prescribed limits (±10%). To reduce the computational efforts, the 

geometry of the cylinder has been meshed with 15544 elements with bending and membrane regimes 

and 15776 nodes with six degrees of freedom. The microstructural stacking sequence across the 

thickness has been modeled through multilayered shell features allowing large savings in terms of 

computational efforts. Anisotropic constitutive properties of the single lamina reproduced the 

manufactured ones by modelling an initially 24-ply structure with the symmetrical quasi-isotropic 

stacking sequence  2 2 2
0 / 45 / 45 / 90

S
        

shown in Figure 9. Herein, the applied boundary 

conditions are also illustrated, which consist in both an imposed axial displacements and vanishing 

rotations, in order to induce a compressive state inside the cylinder and reproduce the constraining 

effects of the potting, respectively.  
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Fig. 9. FE Model of the composite scaled cylinder, with the considered boundary conditions. The stacking sequence of 

composite laminae in pre-optimized structure is also illustrated.  

A first FE analysis has been performed to evaluate the elastic stiffness of the undamaged pre-

optimized composites. In order to replicate the experimental conditions an axial displacement 

 0.85zU mm   has been imposed at the cylinder bases, obtaining a maximum value of the 

reaction force 920num

MAXF kN , very close to the measured value achieved during compression tests 

( max 913F kN , see Figure 10). By considering both the initial height  0L  and the initial cross-

section  0A  of the composite structure, it is then possible to estimate the homogenized Young 

modulus of the composite (Cutolo et al ., 2020) as: 

0

0

66,5
num

num z Z
Z

z Z

F L
E GPa

A U




 


         (26) 

A successive eigenvalue analysis allowed to estimate numerically the critical compressive loads at 

which the wall of composite cylinder undergoes buckling instability exhibiting specific deformation 

modes. In particular, by considering a symmetrical prescribed load in which the bases are moved in 

parallel, the first four buckling modes corresponding to load multipliers 

1 2 3 44.3221, 4.3221, 4.4684, 4.4684       are reported in Figure 11. Due to the higher values 

of the associated critical loads, these deformation modes did not occur during experiments, and a 

moderate asymmetry of the load at the top base of the CFRP cylinder was considered in order to 

simulate an undesired partial detachment of the potting phase around the composites. This 

imperfection was numerically implemented by prescribing the linear variation of the applied nodal 

displacement by means: 

2

ASYM i
Z Z Z

R x
U U U

R


 
     

 
         (27) 
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in which ,  R and  ix   are the position of the i-th node, the radius of the cylindrical structure and the 

slope assigned as imperfection, respectively. In this case, the value of the critical loads decrease to 

about 1050ASYM

MAXF kN with multipliers 1 2 3 41.9796, 1.9797, 2.1346, 2.1347       .  The 

associated deformation modes, reported in Figure 12, qualitatively reproduce the localized failure 

mechanisms experimentally observed, by confirming the hypothesis that imperfections of the potting 

phase could induce premature failure of the undamaged scaled skirt.  

 

 

Figure 10: Comparison of experimental and FE results in terms of load-strain curves.  

 

Figure 11: First four deformation modes and associated critical loads resulting from the eigenbuckling FE analysis 

under symmetric (top) and asymmetric (bottom) load conditions.  

Starting from this these results, design optimization was performed on the quasi-isotropic structure 

with stacking sequence  2 2 2
0 / 45 / 45 / 90

S
        in order to find a new possible microstructure of 

the laminae able to prevent the undesired damaging phenomena experimentally observed and 

investigated by means of the above described in silico simulations. By requiring the minimization of 

von Mises stress in the potting region and by choosing a constant axial stiffness as design constraint, 

the implemented design optimization routine highlights the possibility to determinate an optimal fiber 
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placement within the CFRP plies. In particular, the stacking sequence in the post-optimized situation 

showed angles equal to  2 2 2
90 / 88 / 33 / 0

S
      . This particular arrangement, although it does not 

change the quasi-isotropic global behavior of the structure, reduce drastically the von Mises stress in 

the potting region, where buckling mechanisms occur, without compromising the axial response of 

the cylinder. Results in Figure 12 highlight as the optimized composite structure exhibits improved 

stress conditions with a volume-averaged von Mises stress in the post-optimized case more of one 

order of magnitude lower than the one in the pre-optimized condition. Furthermore, lateral expansion 

appears to be moderated by approximately 50% (see Figure 12a,b,c), whereas the specific fiber angles 

determined induce a sensible increase of the composite axial stiffness in the post-optimized case with 

respect to the initial disposition, also recalling the nonlinear scaling of composite moduli with the 

fiber directions. In addition, the reduced longitudinal stress peaks in the potting zones of the post-

optimized CFRP suggest a minor risk of localized bulging phenomena (Figure 12d).  

 

Fig. 12. Results of the design optimization in the CFRP cylinder. a) radial displacements; b) circumferential stress; c) 

von Mises stress and d) longitudinal stress.  
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4. Conclusions 

In the present work, the application of a classical design optimization technique to fiber-reinforced 

composites was discussed. In particular, it was aimed to determine the optimal sequences of fibers 

orientations within plane and curved multilayered shells, to minimize the strain energy of the system 

under prescribed boundary conditions. The implementation of the optimization strategy and all the 

simulations were performed in Ansys® Multiphysics environment (Ansys Inc., Canonsburg, PA, 

USA) by developing a custom-made procedure based on the Ansys Parametric Design Language. The 

effectiveness of the optimization was evaluated in relation to the mechanical performances offered 

by quasi-isotropic composite structures consisting in sequences of layers with symmetrically oriented 

fibers. Specifically, a Strain Energy Gain parameter was defined as the measure of the advantage 

deriving from the employment of optimally arranged structures, thus obtaining more or less 

significant results depending on the specific geometry and loading conditions of the systems. As a 

matter of fact, in all the analyzed cases, the optimization process provided anisotropic fiber-reinforced 

composites exhibiting reduced displacements magnitude and, as a consequence, an overall stiffer 

response with respect to the quasi-isotropic configurations, the importance of this effect is being 

directly correlated to the SEG value. On the other hand, variations of the stress distributions –here 

evaluated in terms of von Mises stress—were also obtained as a result of the optimization, with high 

stress levels in some cases spread over wider areas of the optimized structure compared to the non-

optimized case, suggesting that a different strategy could be hereafter implemented if one needed to 

minimize the strain energy by simultaneously containing the stress levels.  

Finally, the proposed design optimization strategy has allowed to find a new optimal fiber 

arrangement in CFRP multi-layer cylinders by ensuring minimum von Mises stress and by preserving 

the longitudinal response under compression, in a way to prevent buckling phenomena associated to 

the failure mechanisms experimentally observed in the structures with conventional quasi-isotropic 

stacking sequences.  
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