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Abstract: B cell superantigens, also called immunoglobulin superantigens, bind to the variable regions
of either the heavy or light chain of immunoglobulins mirroring the lymphocyte-activating properties
of classical T cell superantigens. Protein A of Staphylococcus aureus, protein L of Peptostreptococcus
magnus, and gp120 of HIV are typical immunoglobulin superantigens. Mast cells are immune cells
expressing the high-affinity receptor for IgE (FcεRI) and are strategically located in the human
heart, where they play a role in several cardiometabolic diseases. Here, we investigated whether
immunoglobulin superantigens induced the activation of human heart mast cells (HHMCs). Protein
A induced the de novo synthesis of cysteinyl leukotriene C4 (LTC4) from HHMCs through the
interaction with IgE VH3+ bound to FcεRI. Protein L stimulated the production of prostaglandin D2

(PGD2) from HHMCs through the interaction with κ light chains of IgE. HIV glycoprotein gp120
induced the release of preformed (histamine) and de novo synthesized mediators, such as cysteinyl
leukotriene C4 (LTC4), angiogenic (VEGF-A), and lymphangiogenic (VEGF-C) factors by interacting
with the VH3 region of IgE. Collectively, our data indicate that bacterial and viral immunoglobulin
superantigens can interact with different regions of IgE bound to FcεRI to induce the release of
proinflammatory, angiogenic, and lymphangiogenic factors from human cardiac mast cells.

Keywords: angiogenesis; heart; histamine; IgE; leukotriene C4; lymphangiogenesis; mast cells;
myocardial infarction; prostaglandin D2; superantigens

1. Introduction

The term “superantigen” (SAg) refers to several proteins synthesized by a variety of bacteria and
viruses that not only mimic, but also exceed the activity of conventional antigens in activating T and B
cells [1–5]. Typical antigens are processed by antigen-presenting cells (APCs) into small peptides that
bind a distal groove in the molecules of the major histocompatibility complex (MHC) [6]. The peptide:
MHC (p:MHC) complex on the APC surface acts as a ligand of both T cell receptor (TCR) α and TCR β
variable domains on a few specific T cell clones. By contrast, SAgs bind directly to the lateral surfaces
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of the MHC class II molecules and to the Vβ domain of the TCR and thus bypass the processing and
presentation of conventional antigens by APCs [7–10]. As a result, conventional antigens stimulate
less than 1 in 10,000–100,000 T cells, while SAgs can stimulate up to 20% of all T cells [1,3]. A wide
range of diseases from autoimmune and allergic disorders, neoplasia, and immunodeficiencies can be
associated with SAgs [11–15].

In addition to classical T cell Sags, there are also B cell SAgs endowed with immunoglobulin
(Ig)-binding capacity. In contrast to conventional antigens, which bind to both the heavy and light chain
variable (V)-domains of Igs, B cell SAgs bind to the conserved sides of either the heavy (H)- or light
(L)-chain [16–18], resulting in a massive proliferation of B cells. Staphylococcus aureus (S. aureus) is a
source of several T cell SAgs (S. aureus enterotoxins: SE) [19]. Two staphylococcal B cell SAgs, S. aureus
protein A and SEA, bind specifically to VH3 domain of human Igs, whereas SED, which is also a T cell
SAg, binds to VH4 [11]. VH3 is the largest of human Ig germline VH families; thereby, protein A can
stimulate almost half of the B cells in the circulation [17]. Protein A is the archetypal B cell SAg and
contains five homologous repeated domains, each of which can bind to all or most of the VH3+ Igs.
S. aureus is a common pathogen causing toxic shock syndrome and endocarditis [20,21]. Most of clinical
isolates of S.aureus synthesize protein A, which can be released from the cell wall [22]. Protein A has two
binding sites for human Igs: the classical site binds Fcγ, a constant region of IgG [23] and an alternative
site that binds the Fab portion of 15% to 50% of human polyclonal IgG, IgM, IgA, and IgE [24].

Similarly, glycoprotein 120 (gp120) of HIV-1 is a viral B cell SAg, because it interacts with Ig
VH3+ [25,26]. The entry of HIV into host cells is mediated the interaction of viral glycoprotein [27]
gp120 with CD4 [28] and chemokine receptors on the cell surface [29,30]. HIV gp120 is a member of
the Ig SAg family [31–33]. Emergence of cardiovascular disease has become a leading concern for
patients with HIV infection [34,35].

Protein L is a cell wall protein synthesized by Peptostreptococcus magnus (P. magnus) [36]. Protein L
is a multi-domain protein that binds to some κ light chain variable domain without interfering with
the antigen-binding site [37,38]. Protein L binds to the V domain of the κ light chains of Igs [39–41].
In particular, protein L binds with high affinity (~1010 M−1) only human Vk I, Vk III and Vk IV subtypes,
but does not interact with Vk II subtype [42].

Mast cells are tissue resident immune cells present in most connective tissues including murine [43–45],
canine [46,47], and human heart [48–51]. Mast cells are canonically considered key effectors of allergic
responses [52–56] and are critical sentinels in immunity [57,58]. Mast cells and their mediators
participate in a variety of pathophysiological processes including response to infections [58–60],
angiogenesis [61–65], lymphangiogenesis [61,66], autoimmune disorders [67–69], cancer [70–73], and
cardiometabolic diseases [49,74–78].

Human mast cells express the high-affinity receptor (FcεRI) for immunoglobulin E (IgE) and
cross-linking of the IgE-FcεRI network induces the release of preformed (e.g., histamine, tryptase,
chymase) and de novo synthesized lipid mediators (e.g., prostaglandin D2 (PGD2), cysteinyl leukotriene
C4 (LTC4)). We have previously shown that several immune cells, such as human lung mast cells [61],
basophils [79], macrophages [80,81], and neutrophils [82], produce angiogenic (e.g., vascular endothelial
growth factor A:VEGF-A) and/or lymphangiogenic factors (e.g., vascular endothelial growth factor C:
VEGF-C) [52,61,81]. However, there is a marked heterogeneity of human mast cells with respect to the
mediators released from cells isolated from different anatomic sites [83–85].

This study has been undertaken to evaluate whether bacterial (protein A and protein L) and viral
(gp120) superantigens induce the release of proinflammatory, angiogenic, and lymphangiogenic factors
from human cardiac mast cells.
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2. Results

2.1. Effect of Human IgG Anti-IgE on Mediator Release from HHMCs

We have previously reported that IgG anti-IgE purified from the serum of a small percentage
of atopic dermatitis patients can induce histamine and LTC4 release from human basophils [86].
The activating property of human IgG anti-IgE (H-aIgE) is mediated by the interaction with
membrane-bound IgE on human basophils. Therefore, we used this human autoantibody to activate
human heart mast cells (HHMCs) in vitro. Figure 1 shows that H-aIgE (10−2 to 3 µg/mL) induced
a concentration-dependent histamine release from five different preparations of HHMCs. Four
preparations of IgG (10−2 to 3 µg/mL) purified from the serum of normal donors did not cause
histamine release (data not shown). These results suggest that mast cells isolated from human heart
express IgE bound to FcεRI.

Figure 1. Effect of increasing concentrations of human IgG anti-IgE purified from the serum of a patient
with atopic dermatitis [86] on histamine release from five different preparations of human heart mast
cells (HHMCs). HHMCs were incubated (45 min at 37 ◦C) with the indicated concentrations of human
IgG anti-IgE. Each point shows the mean of duplicate determinations. Each symbol represents the
results from an individual donor.

Vascular endothelial growth factors (VEGFs) are involved in new vessel formation and play
a central role in cardiac pathophysiology [87]. Therefore, we evaluated the release of angiogenic
(VEGF-A) and lymphangiogenic factors (VEGF-C) induced by H-aIgE from HHMCs. Figure 2 shows
that H-aIgE induced a concentration-dependent release of both VEGF-A and VEGF-C from four
different preparations of HHMCs.
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Figure 2. Effect of increasing concentrations of human IgG anti-IgE on the release of vascular endothelial
growth factor-A (VEGF-A) and vascular endothelial growth factor-C (VEGF-C) from HHMCs from
four donors. HHMCs were incubated (6 h at 37 ◦C) in the presence of the indicated concentrations of
human IgG anti-IgE. Each bar is the mean ± SEM. * p < 0.05; ** p < 0.01.

2.2. Effect of Bacterial Superantigens on Mediator Release from HHMCs

Figure 3A shows that protein A induced a concentration-dependent release of LTC4 from four
different preparations of HHMC. To evaluate the mechanism by which protein A activates HHMCs, it
was preincubated with human monoclonal IgM possessing different VH domains. Figure 3B shows
that human monoclonal IgM VH3+ dose-dependently inhibited the LTC4-releasing activity of protein
A. By contrast, human monoclonal IgM VH6+ had no inhibitory effect. These findings are compatible
with the hypothesis that protein A activates HHMCs through the binding to IgE VH3+ bound on FcεRI.

Figure 3. (A) Effect of increasing concentrations of protein A on the de novo synthesis of cysteinyl
leukotriene C4 (LTC4) from four different preparations of HHMCs. HHMCs were incubated (45 min
at 37 ◦C) with the indicated concentrations of protein A. Each point shows the mean of duplicate
determinations. Each symbol represents the results from an individual donor. (B) Effect of preincubation
of protein A with human monoclonal IgM on the activation of HHMCs. Protein A (300 nM) was
preincubated (15 min at 37 ◦C) with increasing concentrations (1 to 10 µg/mL) of human monoclonal
IgM VH3+ or IgM VH6+. HHMCs were then added and incubation continued for another 45 min at
37 ◦C. Each point shows the mean of duplicate determinations of a representative experiment. Similar
results were obtained in two other experiments.
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We have previously found that P. magnus and protein L activate human basophils and mast
cells [39,41]. Figure 4A shows that increasing concentrations of protein L induced de novo synthesis of
PGD2 from HHMCs. The activating property of protein L (100 nM) was inhibited by preincubation
with increasing concentrations (0.1 to 3 µg/mL) of human monoclonal IgE k, but not by two human
monoclonal IgE λ (Figure 4B). These results are compatible with the hypothesis that protein L activates
HHMCs through the interaction with the k light chain of IgE on cardiac mast cells.

Figure 4. (A) Effect of increasing concentrations of protein L on the de novo synthesis of prostaglandin
D2 (PGD2) from four different preparations of HHMCs. HHMCs were incubated (45 min at 37 ◦C)
with the indicated concentrations of protein L. Each point shows the mean of duplicate determinations.
Each symbol represents the results from an individual donor. (B) Effect of preincubation of protein
L with human monoclonal IgE on the activation of HHMCs. Protein L (100 nM) was preincubated
(15 min at 37 ◦C) with increasing concentrations (0.1 to 3 µg/mL) of two human monoclonal IgE λ light
chain and one human monoclonal IgE κ light chain and incubation continued for another 45 min at
37 ◦C. Each point shows the mean of duplicate determinations of PGD2 of a representative experiment.
Similar results were obtained in two other experiments.

2.3. Effect of Viral Superantigens on Mediator Release from HHMCs

Figure 5 shows the results of four independent experiments in which we incubated HHMCs
with recombinant gp120. These experiments demonstrated that increasing concentrations of gp120
stimulated the release of histamine (Figure 5A) and the de novo synthesis of LTC4 from HHMCs
(Figure 5B). Preincubation of gp120 (30 nM) with increasing concentrations (0.1 to 3 µg/mL) of human
monoclonal IgE VH3+ inhibited the releasing activity of gp120 (data not shown). These results indicate
that gp120 activates HHMCs by interacting with IgE VH3+ bound to FcεRI.
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Figure 5. Effect of increasing concentrations of human immunodeficiency virus (HIV) gp120 on
mediator release from four different preparations of HHMCs. HHMCs were incubated (45 min at 37 ◦C)
with the indicated concentrations of gp120. At the end of incubation, the concentrations of histamine
(A) and LTC4 (B) were measured in the four supernatants. Each point shows the mean of duplicate
determinations. Each symbol represents the results from an individual donor.

We then cultured HHMCs with increasing concentrations of recombinant gp120 (10 to 60 nM)
for 6 h at 37 ◦C. At the end of this incubation the release of VEGF-A and VEGF-C was assayed in the
supernatants of mast cells. Figure 6 shows the results of three preparations of HHMCs, indicating
that gp120 induced the release of angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors
from HHMCs.
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Figure 6. Effect of increasing concentrations of HIV gp120 on the release of VEGF-A (open bars) and
VEGF-C (black bars) from four different preparations of HHMCs. HHMCs were incubated (6 h at 37 ◦C)
in the presence of the indicated concentrations of gp120. Each bar shows the mean ± SEM. * p < 0.05;
** p < 0.01.

3. Discussion

This study shows that primary mast cells isolated from human myocardial tissue can be activated
by a human IgG anti-IgE isolated from the serum of a patient with atopic dermatitis. These results
are compatible with the hypothesis that HHMCs bind IgE, which has a role not only in allergic
diseases [53,88] but also in several cardiovascular disorders [89–91]. Bacterial (protein A and protein L)
and viral (gp120) superantigens can activate HHMCs to release a variety of proinflammatory (histamine,
LTC4, PGD2), angiogenic (VEGF-A), and lymphangiogenic (VEGF-C) mediators. The releasing activity
of protein A and gp120 appears to be mediated by interaction with the VH3 region of IgE on HHMCs.
By contrast, protein L of P. magnus activates HHMCs by interaction with the κ light chains of IgE
on cardiac mast cells. Our findings provide evidence, to our knowledge for the first time, that the
immunologic (human IgG anti-IgE) and superantigenic activation of human myocardial mast cells can
induce the release of angiogenic and lymphangiogenic factors.

Mast cells are present in strategically important locations of murine [43,92] and humanheart [48,49,51,77].
Mast cells are present in atherosclerotic lesions [50,93] and promote atherogenesis [89]. These cells
and their mediators are also involved in cardiometabolic diseases [78], myocardial infarction [76]
and remodeling [94], atrial fibrillation [95], thromboembolism [45,51,96], and myocarditis [74,97,98].
Therefore, understanding how cardiac mast cells participate in these inflammatory disorders could
help in the development of targeted therapies for these common diseases.

Serum IgE levels are elevated in patients with myocardial infarction [90,91] and coronary artery
disease compared to controls [89]. Moreover, IgE and FcεRI are overexpressed in human atherosclerotic
lesions. These findings suggest that mast cells and perhaps other immune cells expressing FcεRI
(e.g., dendritic cells, macrophages, basophils, platelets) [89,99,100] could play a role in the pathogenesis
of human atherosclerosis. Previous studies have demonstrated that autoantibodies anti-IgE and
anti-FcεRI can occur in several immunologic disorders [86,101–104]. In this study we found that a
human IgG anti-IgE induced the release of histamine, VEGF-A, and VEGF-C from HHMCs. To our
knowledge this is the first evidence that cross-linking of IgE on human myocardial mast cells can induce
the release of angiogenic factors. Angiogenesis, the process by which new capillaries develop from
the pre-existing vasculature [105], plays a central role in cardiac pathophysiology [87,106]. VEGF-A is
a pivotal mediator in angiogenesis and is synthesized by several immune cells [61,79,81,82,107–110].
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The possibility that human cardiac mast cells can contribute to myocardial angiogenesis, a process of
major relevance in cardiac pathophysiology [106], requires further investigations.

The mammalian heart is rich of lymphatic vessels [111,112] and their number is increased in
human heart following myocardial infarction, in atherosclerosis lesions, and in endocarditis [113,114].
The involvement of VEGF-C in salt-sensitive hypertension [115,116] and in coronary artery
development [117] further add to the implications of lymphangiogenic factors in cardiovascular
diseases [112]. Our results provide the first indication to our knowledge that immunologic and
superantigenic activation of HHMCs leads to the production of VEGF-C, a major selective mediator of
lymphangiogenesis [112].

S. aureus is an important human pathogen implicated in sepsis and endocarditis [118], and sepsis
is a risk factor for cardiac arrhythmias [119]. This study demonstrates that protein A induces the
release of LTC4 from HHMCs through the interaction of the VH3 region of IgE. These results extend on
the previous observation that protein A induces the in vitro release of histamine from HHMCs [40].
Recently, it has been reported that in vivo challenge with protein A resulted in fatal anaphylaxis
involving VH3+ immunoglobulin interaction on mast cells and basophils [120]. Given the relevance of
histamine and cysteinyl leukotrienes in heart pathophysiology [121–123], our results might explain,
at least in part, how S. aureus can cause heart damage in patients with sepsis.

Protein L synthesized by P. magnus induces the de novo synthesis of PGD2 from HHMCs, by
interacting with the κ light chains of IgE on HHMCs. These results extend previous findings indicating
that protein L induces the release of preformed histamine from HHMC [40]. Therefore, protein L is a
complete secretagogue capable of releasing preformed and de novo synthesized mediators implicated
in cardiovascular pathophysiology [121–124].

Our results provide the first indication that HIV gp120 activates HHMCs, thus acting as Ig
SAg. Previous studies from our group have shown that gp120 induces the release of cytokines
(IL-4 and IL-13) from human basophils [26]. Collectively, these findings support the hypothesis
that virus-bound or shed gp120 [125] can function as a viral superantigen activating HMMCs and
basophils to release proinflammatory mediators (histamine, LTC4), cytokines (IL-4 and IL-13), and
angiogenic/lymphangiogenic factors (VEGF-A and VEGF-C), thus contributing to the dysregulation of
immune system in HIV infection. The successful rollout of anti-viral therapy ensured that HIV infection
is managed as a chronic condition. Persistent inflammation and immune dysregulation associated
with HIV leads to accelerated aging and cardiovascular diseases [34,35,126,127]. HIV-positive persons
are, therefore, exhibiting increasing cardiovascular complications [34,35]. Our results, indicating that
gp120 can induce the release of potent proinflammatory (histamine and LTC4) mediators that exert
cardiovascular effects [121–123] from myocardial mast cells, might explain, at least in part, how HIV
can cause heart damage.

In this study we have identified several immunological, bacterial, and viral products that
activate human cardiac mast cells through the interaction with IgE bound to FcεRI. However, mast
cells can be activated by non-IgE- mediated stimuli such as cytokines (e.g., IL-33, SCF) [65,77,128],
TLR ligands [60,129], and neuropeptides [52,130]. Additional studies are necessary to evaluate the
effects of non-IgE-mediated stimuli on the release of proinflammatory mediators, angiogenic and
lymphangiogenic factors from human cardiac mast cells.

Our study has a limitation which has to be pointed out. It was performed using primary
mast cells isolated from myocardial tissue obtained from patients undergoing heart transplantation.
Thus, these mast cells might have different characteristics from cells obtained from healthy donors.
We have previously had the opportunity to address this important issue by comparing the release of
mediators from mast cells isolated from failing hearts and from subjects who died in accidents without
cardiovascular diseases [77]. We found quantitative, but not qualitative differences in the release of
mediators from “normal” cardiac mast cells when compared with those from explanted hearts.
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In conclusion, our results demonstrate that bacterial and viral immunoglobulin superantigens can
activate primary human cardiac mast cells to release vasoactive and proinflammatory mediators and
angiogenic and lymphangiogenic factors.

4. Materials and Methods

4.1. Reagents

HClO4 (Baker Chemical Co., Deventer, The Netherlands), BSA, piperazine-N,N′-bis
(2-ethanesulfonic acid), L-glutamine, antibiotic-antimycotic solution (10,000 IU penicillin, 10 mg/mL
streptomycin, and 25 µg/mL amphotericin B), hyaluronidase, chymopapain, elastase type I, LTC4, and
PGD2 (Sigma-Aldrich, St. Louis, MO, USA), collagenase (Worthington Biochemical Co., Freehold,
NJ, USA), Hanks’ balanced salt solution and fetal calf serum (FCS) (GIBCO, Grand Island, NY, USA),
deoxyribonuclease I and pronase (Calbiochem, La Jolla, CA, USA), RPMI 1640 with 25 mM HEPES
buffer, Eagle’s minimum essential medium (Flow Laboratories, Irvine, UK), Percoll (Pharmacia Fine
Chemicals, Uppsala, Sweden), (3H)-LCT4 and (3H)-PGD2 (New England Nuclear, Boston, MA, USA)
were commercially purchased. CD117 MicroBead kit was purchased from Miltenyi Biotech (Bologna,
Italy). The rabbit anti-LTC4 and anti-PGD2 antibodies were a gift of Dr. Lawrence M. Lichtenstein (The
Johns Hopkins University, Baltimore, MD, USA). Human IgG anti-IgE was purified from the serum of
a patient with atopic dermatitis as described elsewhere [86].

4.2. Buffers

The Pipes (P) buffer used in these experiments was a mixture of 25 mM Pipes, 110 mM NaCl, 5 mM
KCl, pH 7.37, referred to as P. P2CG, contains, in addition to P, 2 mM CaCl2 and 1 g/L dextrose [49]; pH
was titrated to 7.4 with sodium bicarbonate. PGMD contains 0.25 g/L MgCl2·6H2O, 10 mg/L DNase,
and 1 g/L gelatin in addition to P, pH 7.37.

4.3. Human Monoclonal IgM and IgE and Human Polyclonal IgG

Monoclonal IgM were purified from the serum of patients with Waldenström’s macroglobulinemia
as described elsewhere [77]. IgE myeloma proteins were purified from the serum of three patients
described elsewhere [131,132]. Variable regions of these monoclonal IgM were determined using a
panel of primary sequence-dependent VH and VK family specific reagents that identify framework
regions [133]. Human polyclonal IgG were purified from the serum of healthy donors as described
elsewhere [132].

4.4. Isolation of HHMCs

The study was approved by the Ethics Committee of the University of Naples Federico II (Protocol:
Human MC No 7/19, 05/03/2009). The heart tissue was obtained from patients undergoing heart
transplantation at the Deutsches Herzzentrum, Berlin, mostly for cardiomyopathy [77]. The explanted
heart was immediately immersed in cold (4 ◦C) cardioplegic solution and was processed within 5 to
18 h of removal. Fat tissue, large vessels, and pericardium were removed. The tissue was finely minced
into 2–5 mm fragments, suspended in P buffer (10 mL/g of wet tissue), and washed by centrifugation
3 times. After each centrifugation, the heart fragments were filtered through a 150 µm pore Nytex
cloth (Tetko, Elmsford, NY, USA). Fragments were incubated (15 min, 37 ◦C) under constant stirring in
P buffer containing 10 mg collagenase/g of wet tissue. At the end of the incubation the cell suspension
was filtered through a 150 µm pore Nytex cloth and three additional cycles of enzymatic digestion
were performed. After the last procedure, the cells were centrifuged (150× g, 22 ◦C, 8 min) and
filtered through a 60 µm pore Nytex cloth to remove large particles and large cells (mostly myocytes).
Lastly, cells were washed twice in PGMD by centrifugation (150× g, 22 ◦C, 8 min). Cell pellets were
resuspended in P buffer containing 2% BSA and centrifuged (25× g, 22 ◦C, 2 min) to remove sedimented
myocytes (>100 µm long). Supernatants containing endothelial cells, fibroblasts, and mast cells were
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then collected and centrifuged (150× g, 22 ◦C, 8 min). HHMC were partially purified by flotation
through a discontinuous Percoll gradient [77]. The purity of these populations ranged from 0.1% to
18%. The enzymatic dispersion tissue yields ≈ 5 × 104 mast cells per gram of heart tissue. HHMCs
were further purified using a CD117 MicroBead kit sorting system (Miltenyi Biotec, Bologna, Italy).
Mast cell purities using these techniques ranged from 26% to 58% and was assessed by toluidine
blue staining.

4.5. Histamine Release Assay

HHMCs (≈ 3 × 104 mast cells per tube) were resuspended in P2CG, and 0.3 mL of the cell
suspension were placed in 12 × 75 mm polyethylene tubes and warmed to 37 ◦C; 0.2 mL of each
prewarmed releasing stimulus was added, and incubation was continued at 37 ◦C for 45 min [39]. The
reaction was stopped by centrifugation (1000× g, 22 ◦C, 2 min), and the supernatants were stored at
−80 ◦C for subsequent assay of histamine, LTC4, and PGD2 content. The cell-free supernatants were
assayed for histamine with an automated fluorometric technique [134]. To calculate histamine release
as a percentage of total cellular histamine, the “spontaneous” release from mast cells was subtracted
from both numerator and denominator. All values are based on means of duplicate determinations
which differed by less than 10%.

4.6. Immunoassay of LTC4 and PGD2

LTC4 and PGD2 were measured in duplicate determinations by radioimmunoassay [39,135]. The
anti-LTC4 and anti-PGD2 antibodies are highly selective, with less than 1% cross-reactivity to other
eicosanoids [39,135].

4.7. VEGF-A and VEGF-C Release

HHMCs (≈ 4× 104 mast cells/per tube) were incubated (37 ◦C, 6 h) in RPMI 1640 containing 5% FCS,
2 mM L-glutamine, and 1% antibiotic-antimycotic solution, and activated with various concentrations
of stimuli. At the end of incubation, cells were centrifuged (1000× g, 4 ◦C, 5 min) and the supernatants
were stored at −80 ◦C for subsequent determination of mediator release. VEGF-A and VEGF-C
were measured in duplicate determinations using commercially available ELISA kits (R&D System,
Minneapolis, MN, USA) as previously described [136]. The ELISA sensitivity is 31.1–2000 pg/mL for
VEGF-A and 62–4000 pg/mL for VEGF-C.

4.8. Statistical Analysis

Values were expressed as means ± SEM (standard error of the mean). The one-way repeated
measures analysis of variance (ANOVA) with Greenhouse–Geisser corrections was used to examine
the variations of continuous variables at different experimental conditions. Results were analyzed
with GraphPad Prism software (version 8.01; GraphPad Software, La Jolla, CA, USA), and p values of
less than 0.05 were considered significant.

Author Contributions: G.V., S.L., A.P., A.G., G.S., and G.M. conceived and designed the study. G.V., S.L., F.R., and
F.B. performed the experiments. A.P. performed the statistical analysis of the results. A.P. and G.M. elaborated the
figures. All the authors contributed intellectually and to the writing of the submitted version of the manuscript.

Funding: This work was supported in part by grants from Regione Campania CISI-Lab Project, CRèME Project,
and TIMING Project.

Acknowledgments: Gjada Criscuolo for critical reading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2019, 20, 1828 11 of 17

Abbreviations

S. aureus Staphylococcus aureus
P. magnus Peptostreptococcus magnus
LTC4 Cysteinyl leukotriene C4
HHMCs Human heart mast cells
Ig Immunoglobulin
FcεRI High-affinity receptor for IgE
PGD2 Prostaglandin D2
gp120 Glycoprotein 120
VEGF Vascular endothelial growth factor
SAg Superantigen
APCs Antigen-presenting cells
MHC Major histocompatibility complex
TCR T cell receptor
V Variable
H Heavy
L Light
SE Staphylococcus aureus enterotoxins
IL Interleukin
HIV Human immunodeficiency virus
FCS Fetal calf serum
BSA Bovine serum albumin
H-aIgE Human IgG anti-IgE

References

1. White, J.; Herman, A.; Pullen, A.M.; Kubo, R.; Kappler, J.W.; Marrack, P. The V beta-specific superantigen
staphylococcal enterotoxin B: Stimulation of mature T cells and clonal deletion in neonatal mice. Cell 1989,
56, 27–35. [CrossRef]

2. Kotzin, B.L.; Leung, D.Y.; Kappler, J.; Marrack, P. Superantigens and their potential role in human disease.
Adv. Immunol. 1993, 54, 99–166. [PubMed]

3. Marone, G. Superantigens and superallergens. Chem. Immunol. Allergy 2007, 93. [CrossRef]
4. Marrack, P.; Kappler, J. The staphylococcal enterotoxins and their relatives. Science 1990, 248, 705–711. [CrossRef]
5. Bouvet, J.P.; Pires, R.; Lunel-Fabiani, F.; Crescenzo-Chaigne, B.; Maillard, P.; Valla, D.; Opolon, P.; Pillot, J.

Protein F. A novel F(ab)-binding factor, present in normal liver, and largely released in the digestive tract
during hepatitis. J. Immunol. 1990, 145, 1176–1180. [PubMed]

6. Germain, R.N. Antigen presentation. The second class story. Nature 1991, 353, 605–607. [CrossRef] [PubMed]
7. Fields, B.A.; Ober, B.; Malchiodi, E.L.; Lebedeva, M.I.; Braden, B.C.; Ysern, X.; Kim, J.K.; Shao, X.; Ward, E.S.;

Mariuzza, R.A. Crystal structure of the V alpha domain of a T cell antigen receptor. Science 1995, 270, 1821–1824.
[CrossRef]

8. Li, H.; Llera, A.; Tsuchiya, D.; Leder, L.; Ysern, X.; Schlievert, P.M.; Karjalainen, K.; Mariuzza, R.A.
Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen
staphylococcal enterotoxin B. Immunity 1998, 9, 807–816. [CrossRef]

9. Malchiodi, E.L.; Eisenstein, E.; Fields, B.A.; Ohlendorf, D.H.; Schlievert, P.M.; Karjalainen, K.; Mariuzza, R.A.
Superantigen binding to a T cell receptor beta chain of known three-dimensional structure. J. Exp. Med. 1995,
182, 1833–1845. [CrossRef] [PubMed]

10. Sundberg, E.J.; Li, H.; Llera, A.S.; McCormick, J.K.; Tormo, J.; Schlievert, P.M.; Karjalainen, K.; Mariuzza, R.A.
Structures of two streptococcal superantigens bound to TCR beta chains reveal diversity in the architecture
of T cell signaling complexes. Structure 2002, 10, 687–699. [CrossRef]

11. Goodyear, C.S.; Silverman, G.J. B cell superantigens: A microbe’s answer to innate-like B cells and natural
antibodies. Springer Semin. Immunopathol. 2005, 26, 463–484. [CrossRef] [PubMed]

12. Viau, M.; Zouali, M. B-lymphocytes, innate immunity, and autoimmunity. Clin. Immunol. 2005, 114, 17–26.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/0092-8674(89)90980-X
http://www.ncbi.nlm.nih.gov/pubmed/8397479
http://dx.doi.org/10.1159/isbn.978-3-318-01451-8
http://dx.doi.org/10.1126/science.2185544
http://www.ncbi.nlm.nih.gov/pubmed/2380553
http://dx.doi.org/10.1038/353605a0
http://www.ncbi.nlm.nih.gov/pubmed/1833649
http://dx.doi.org/10.1126/science.270.5243.1821
http://dx.doi.org/10.1016/S1074-7613(00)80646-9
http://dx.doi.org/10.1084/jem.182.6.1833
http://www.ncbi.nlm.nih.gov/pubmed/7500029
http://dx.doi.org/10.1016/S0969-2126(02)00759-1
http://dx.doi.org/10.1007/s00281-004-0190-2
http://www.ncbi.nlm.nih.gov/pubmed/15633015
http://dx.doi.org/10.1016/j.clim.2004.08.019
http://www.ncbi.nlm.nih.gov/pubmed/15596405


Int. J. Mol. Sci. 2019, 20, 1828 12 of 17

13. Bachert, C.; Gevaert, P.; Zhang, N.; van Zele, T.; Perez-Novo, C. Role of staphylococcal superantigens in
airway disease. Chem. Immunol. Allergy 2007, 93, 214–236. [PubMed]

14. Marone, G.; Rossi, F.W.; Detoraki, A.; Granata, F.; Genovese, A.; Spadaro, G. Role of superallergens in allergic
disorders. Chem. Immunol. Allergy. 2007, 93, 195–213. [PubMed]

15. Pastacaldi, C.; Lewis, P.; Howarth, P. Staphylococci and staphylococcal superantigens in asthma and rhinitis:
A systematic review and meta-analysis. Allergy 2011, 66, 549–555. [CrossRef] [PubMed]

16. Pascual, V.; Capra, J.D. B-cell superantigens? Curr. Biol. 1991, 1, 315–317. [CrossRef]
17. Silverman, G.J.; Goodyear, C.S. A model B-cell superantigen and the immunobiology of B lymphocytes.

Clin. Immunol. 2002, 102, 117–134. [CrossRef] [PubMed]
18. Zouali, M. B-cell superantigens: Implications for selection of the human antibody repertoire. Immunol. Today

1995, 16, 399–405. [CrossRef]
19. Thomas, D.; Chou, S.; Dauwalder, O.; Lina, G. Diversity in Staphylococcus aureus enterotoxins. Chem.

Immunol. Allergy 2007, 93, 24–41. [PubMed]
20. Friedrich, R.; Panizzi, P.; Fuentes-Prior, P.; Richter, K.; Verhamme, I.; Anderson, P.J.; Kawabata, S.; Huber, R.;

Bode, W.; Bock, P.E. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen
activation. Nature 2003, 425, 535–539. [CrossRef]

21. Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [CrossRef] [PubMed]
22. Becker, S.; Frankel, M.B.; Schneewind, O.; Missiakas, D. Release of protein A from the cell wall of

Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2014, 111, 1574–1579. [CrossRef]
23. Forsgren, A.; Sjoquist, J. “Protein A” from S. aureus. I. Pseudo-immune reaction with human gamma-globulin.

J. Immunol. 1966, 97, 822–827.
24. Inganäs, M. Comparison of mechanisms of interaction between protein A from Staphylococcus aureus and

human monoclonal IgG, IgA and IgM in relation to the classical FC gamma and the alternative F(ab’)2
epsilon protein A interactions. Scand. J. Immunol. 1981, 13, 343–352.

25. Florio, G.; Petraroli, A.; Patella, V.; Triggiani, M.; Marone, G. The immunoglobulin superantigen-binding site
of HIV-1 gp120 activates human basophils. AIDS 2000, 14, 931–938. [CrossRef]

26. Patella, V.; Florio, G.; Petraroli, A.; Marone, G. HIV-1 gp120 induces IL-4 and IL-13 release from human Fc
epsilon RI+ cells through interaction with the VH3 region of IgE. J. Immunol. 2000, 164, 589–595. [CrossRef]

27. Killelea, B.K.; Chagpar, A.B.; Horowitz, N.R.; Lannin, D.R. Characteristics and treatment of human epidermal
growth factor receptor 2 positive breast cancer: 43,485 cases from the National Cancer Database treated in
2010 and 2011. Am. J. Surg. 2017, 213, 426–432. [CrossRef]

28. Kwong, P.D.; Wyatt, R.; Robinson, J.; Sweet, R.W.; Sodroski, J.; Hendrickson, W.A. Structure of an HIV gp120
envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998,
393, 648–659. [CrossRef] [PubMed]

29. Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a
seven-transmembrane, G protein-coupled receptor. Science 1996, 272, 872–877. [CrossRef]

30. Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.;
Koup, R.A.; Moore, J.P.; et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5.
Nature 1996, 381, 667–673. [CrossRef]

31. Karray, S.; Zouali, M. Identification of the B cell superantigen-binding site of HIV-1 gp120. Proc. Natl. Acad.
Sci. USA 1997, 94, 1356–1360. [CrossRef]

32. Silverman, G.J. B-cell superantigens. Immunol. Today. 1997, 18, 379–386. [CrossRef]
33. Zouali, M. B cell superantigens subvert innate functions of B cells. Chem. Immunol. Allergy 2007, 93, 92–105.
34. Durand, M.; Chartrand-Lefebvre, C.; Baril, J.G.; Trottier, S.; Trottier, B.; Harris, M.; Walmsley, S.; Conway, B.;

Wong, A.; Routy, J.P.; et al. The Canadian HIV and aging cohort study—Determinants of increased risk of
cardio-vascular diseases in HIV-infected individuals: rationale and study protocol. BMC Infect. Dis. 2017, 17,
611. [CrossRef]

35. Teer, E.; Essop, M.F. HIV and cardiovascular disease: Role of immunometabolic perturbations. Physiology
(Bethesda) 2018, 33, 74–82. [CrossRef]

36. Lakhrif, Z.; Pugniere, M.; Henriquet, C.; di Tommaso, A.; Dimier-Poisson, I.; Billiald, P.; Juste, M.O.; Aubrey, N.
A method to confer Protein L binding ability to any antibody fragment. mAbs 2016, 8, 379–388. [CrossRef]

37. Bjorck, L. Protein L. A novel bacterial cell wall protein with affinity for Ig L chains. J. Immunol. 1988, 140,
1194–1197.

http://www.ncbi.nlm.nih.gov/pubmed/17369708
http://www.ncbi.nlm.nih.gov/pubmed/17369707
http://dx.doi.org/10.1111/j.1398-9995.2010.02502.x
http://www.ncbi.nlm.nih.gov/pubmed/21087214
http://dx.doi.org/10.1016/0960-9822(91)90097-G
http://dx.doi.org/10.1006/clim.2001.5143
http://www.ncbi.nlm.nih.gov/pubmed/11846453
http://dx.doi.org/10.1016/0167-5699(95)80009-3
http://www.ncbi.nlm.nih.gov/pubmed/17369698
http://dx.doi.org/10.1038/nature01962
http://dx.doi.org/10.1056/NEJM199808203390806
http://www.ncbi.nlm.nih.gov/pubmed/9709046
http://dx.doi.org/10.1073/pnas.1317181111
http://dx.doi.org/10.1097/00002030-200005260-00004
http://dx.doi.org/10.4049/jimmunol.164.2.589
http://dx.doi.org/10.1016/j.amjsurg.2016.05.018
http://dx.doi.org/10.1038/31405
http://www.ncbi.nlm.nih.gov/pubmed/9641677
http://dx.doi.org/10.1126/science.272.5263.872
http://dx.doi.org/10.1038/381667a0
http://dx.doi.org/10.1073/pnas.94.4.1356
http://dx.doi.org/10.1016/S0167-5699(97)01101-8
http://dx.doi.org/10.1186/s12879-017-2692-2
http://dx.doi.org/10.1152/physiol.00028.2017
http://dx.doi.org/10.1080/19420862.2015.1116657


Int. J. Mol. Sci. 2019, 20, 1828 13 of 17

38. Myhre, E.B.; Erntell, M. A non-immune interaction between the light chain of human immunoglobulin and a
surface component of a Peptococcus magnus strain. Mol. Immunol. 1985, 22, 879–885. [CrossRef]

39. Patella, V.; Casolaro, V.; Bjorck, L.; Marone, G. Protein L. A bacterial Ig-binding protein that activates human
basophils and mast cells. J. Immunol. 1990, 145, 3054–3061.

40. Genovese, A.; Bouvet, J.P.; Florio, G.; Lamparter-Schummert, B.; Bjorck, L.; Marone, G. Bacterial immunoglobulin
superantigen proteins A and L activate human heart mast cells by interacting with immunoglobulin E.
Infect. Immun. 2000, 68, 5517–5524. [CrossRef]

41. Genovese, A.; Borgia, G.; Bjorck, L.; Petraroli, A.; de Paulis, A.; Piazza, M.; Marone, G. Immunoglobulin
superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction
with the kappa light chains of IgE. J. Immunol. 2003, 170, 1854–1861. [CrossRef]

42. Nilson, B.H.; Solomon, A.; Bjorck, L.; Akerstrom, B. Protein L from Peptostreptococcus magnus binds to the
kappa light chain variable domain. J. Biol. Chem. 1992, 267, 2234–2239.

43. Ingason, A.B.; Mechmet, F.; Atacho, D.A.M.; Steingrimsson, E.; Petersen, P.H. Distribution of mast cells
within the mouse heart and its dependency on Mitf. Mol. Immunol. 2018, 105, 9–15. [CrossRef]

44. Aldi, S.; Robador, P.A.; Tomita, K.; Di Lorenzo, A.; Levi, R. IgE receptor-mediated mast-cell renin release.
Am. J. Pathol. 2014, 184, 376–381. [CrossRef]

45. Ponomaryov, T.; Payne, H.; Fabritz, L.; Wagner, D.D.; Brill, A. Mast cells granular contents are crucial for
deep vein thrombosis in mice. Circ. Res. 2017, 121, 941–950. [CrossRef]

46. Somasundaram, P.; Ren, G.; Nagar, H.; Kraemer, D.; Mendoza, L.; Michael, L.H.; Caughey, G.H.; Entman, M.L.;
Frangogiannis, N.G. Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial
infarcts. J. Pathol. 2005, 205, 102–111.

47. Frangogiannis, N.G.; Mendoza, L.H.; Lindsey, M.L.; Ballantyne, C.M.; Michael, L.H.; Smith, C.W.; Entman, M.L.
IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J. Immunol. 2000, 165,
2798–2808. [CrossRef]

48. Patella, V.; Marino, I.; Lamparter, B.; Arbustini, E.; Adt, M.; Marone, G. Human heart mast cells. Isolation,
purification, ultrastructure, and immunologic characterization. J. Immunol. 1995, 154, 2855–2865.

49. Patella, V.; de Crescenzo, G.; Marino, I.; Genovese, A.; Adt, M.; Gleich, G.J.; Marone, G. Eosinophil granule
proteins activate human heart mast cells. J. Immunol. 1996, 157, 1219–1225.

50. Kaartinen, M.; Penttila, A.; Kovanen, P.T. Mast cells accompany microvessels in human coronary atheromas:
Implications for intimal neovascularization and hemorrhage. Atherosclerosis 1996, 123, 123–131. [CrossRef]

51. Bankl, H.C.; Radaszkiewicz, T.; Klappacher, G.W.; Glogar, D.; Sperr, W.R.; Grossschmidt, K.; Bankl, H.;
Lechner, K.; Valent, P. Increase and redistribution of cardiac mast cells in auricular thrombosis. Possible role
of kit ligand. Circulation 1995, 91, 275–283. [CrossRef] [PubMed]

52. Varricchi, G.; Raap, U.; Rivellese, F.; Marone, G.; Gibbs, B.F. Human mast cells and basophils-How are they
similar how are they different? Immunol. Rev. 2018, 282, 8–34. [CrossRef] [PubMed]

53. Borriello, F.; Granata, F.; Varricchi, G.; Genovese, A.; Triggiani, M.; Marone, G. Immunopharmacological
modulation of mast cells. Curr. Opin. Pharmacol. 2014, 17, 45–57. [CrossRef] [PubMed]

54. Mukai, K.; Tsai, M.; Saito, H.; Galli, S.J. Mast cells as sources of cytokines, chemokines, and growth factors.
Immunol. Rev. 2018, 282, 121–150. [CrossRef]

55. Galli, S.J. The mast cell-IgE paradox: From homeostasis to anaphylaxis. Am. J. Pathol. 2016, 186, 212–224.
[CrossRef]

56. Bradding, P.; Arthur, G. Mast cells in asthma—State of the art. Clin. Exp. Allergy 2016, 46, 194–263. [CrossRef]
57. Olivera, A.; Beaven, M.A.; Metcalfe, D.D. Mast cells signal their importance in health and disease. J. Allergy

Clin. Immunol. 2018, 142, 381–393. [CrossRef]
58. Piliponsky, A.M.; Romani, L. The contribution of mast cells to bacterial and fungal infection immunity.

Immunol. Rev. 2018, 282, 188–197. [CrossRef]
59. Marone, G.; Varricchi, G.; Loffredo, S.; Galdiero, M.R.; Rivellese, F.; de Paulis, A. Are basophils and mast

cells masters in HIV Infection? Int. Arch. Allergy Immunol. 2016, 171, 158–165. [CrossRef]
60. Suurmond, J.; Rivellese, F.; Dorjee, A.L.; Bakker, A.M.; Rombouts, Y.J.; Rispens, T.; Wolbink, G.;

Zaldumbide, A.; Hoeben, R.C.; Huizinga, T.W.; et al. Toll-like receptor triggering augments activation of
human mast cells by anti-citrullinated protein antibodies. Ann. Rheum. Dis. 2015, 74, 1915–1923. [CrossRef]

http://dx.doi.org/10.1016/0161-5890(85)90073-2
http://dx.doi.org/10.1128/IAI.68.10.5517-5524.2000
http://dx.doi.org/10.4049/jimmunol.170.4.1854
http://dx.doi.org/10.1016/j.molimm.2018.11.009
http://dx.doi.org/10.1016/j.ajpath.2013.10.016
http://dx.doi.org/10.1161/CIRCRESAHA.117.311185
http://dx.doi.org/10.4049/jimmunol.165.5.2798
http://dx.doi.org/10.1016/0021-9150(95)05794-3
http://dx.doi.org/10.1161/01.CIR.91.2.275
http://www.ncbi.nlm.nih.gov/pubmed/7528649
http://dx.doi.org/10.1111/imr.12627
http://www.ncbi.nlm.nih.gov/pubmed/29431214
http://dx.doi.org/10.1016/j.coph.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25063971
http://dx.doi.org/10.1111/imr.12634
http://dx.doi.org/10.1016/j.ajpath.2015.07.025
http://dx.doi.org/10.1111/cea.12675
http://dx.doi.org/10.1016/j.jaci.2018.01.034
http://dx.doi.org/10.1111/imr.12623
http://dx.doi.org/10.1159/000452889
http://dx.doi.org/10.1136/annrheumdis-2014-205562


Int. J. Mol. Sci. 2019, 20, 1828 14 of 17

61. Detoraki, A.; Staiano, R.I.; Granata, F.; Giannattasio, G.; Prevete, N.; de Paulis, A.; Ribatti, D.; Genovese, A.;
Triggiani, M.; Marone, G. Vascular endothelial growth factors synthesized by human lung mast cells exert
angiogenic effects. J. Allergy Clin. Immunol. 2009, 123, 1142–1149. [CrossRef]

62. Varricchi, G.; Loffredo, S.; Galdiero, M.R.; Marone, G.; Cristinziano, L.; Granata, F. Innate effector cells in
angiogenesis and lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 152–160. [CrossRef]

63. Marone, G.; Varricchi, G.; Loffredo, S.; Granata, F. Mast cells and basophils in inflammatory and tumor
angiogenesis and lymphangiogenesis. Eur. J. Pharmacol. 2016, 778, 146–151. [CrossRef]

64. Abdel-Majid, R.M.; Marshall, J.S. Prostaglandin E2 induces degranulation-independent production of vascular
endothelial growth factor by human mast cells. J. Immunol. 2004, 172, 1227–1236. [CrossRef] [PubMed]

65. Theoharides, T.C.; Zhang, B.; Kempuraj, D.; Tagen, M.; Vasiadi, M.; Angelidou, A.; Alysandratos, K.D.;
Kalogeromitros, D.; Asadi, S.; Stavrianeas, N.; et al. IL-33 augments substance P-induced VEGF secretion
from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. USA 2010, 107, 4448–4453.
[CrossRef]

66. Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in
inflammatory skin disorders. J. Am. Acad. Dermatol. 2015, 73, 144–153. [CrossRef] [PubMed]

67. Rivellese, F.; Suurmond, J.; Habets, K.; Dorjee, A.L.; Ramamoorthi, N.; Townsend, M.J.; de Paulis, A.;
Marone, G.; Huizinga, T.W.; Pitzalis, C.; et al. Ability of interleukin-33- and immune complex-triggered
activation of human mast cells to down-regulate monocyte-mediated immune responses. Arthritis Rheumatol.
2015, 67, 2343–2353. [CrossRef] [PubMed]

68. Rivellese, F.; Nerviani, A.; Rossi, F.W.; Marone, G.; Matucci-Cerinic, M.; de Paulis, A.; Pitzalis, C. Mast cells
in rheumatoid arthritis: friends or foes? Autoimmun. Rev. 2017, 16, 557–563. [CrossRef] [PubMed]

69. Rivellese, F.; Mauro, D.; Nerviani, A.; Pagani, S.; Fossati-Jimack, L.; Messemaker, T.; Kurreeman, F.A.S.;
Toes, R.E.M.; Ramming, A.; Rauber, S.; et al. Mast cells in early rheumatoid arthritis associate with disease
severity and support B cell autoantibody production. Ann. Rheum. Dis. 2018, 77, 1773–1781. [CrossRef]

70. Visciano, C.; Liotti, F.; Prevete, N.; Cali, G.; Franco, R.; Collina, F.; de Paulis, A.; Marone, G.; Santoro, M.;
Melillo, R.M. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid
cancer cells through an IL-8-Akt-Slug pathway. Oncogene 2015, 34, 5175–5186. [CrossRef] [PubMed]

71. Galdiero, M.R.; Varricchi, G.; Marone, G. The immune network in thyroid cancer. Oncoimmunology 2016, 5,
e1168556. [CrossRef]

72. Varricchi, G.; Galdiero, M.R.; Loffredo, S.; Marone, G.; Iannone, R.; Granata, F. Are mast cells MASTers in
cancer? Front Immunol. 2017, 8, 424. [CrossRef]

73. Varricchi, G.; Galdiero, M.R.; Marone, G.; Granata, F.; Borriello, F. Controversial role of mast cells in skin
cancers. Exp. Dermatol. 2017, 26, 11–17. [CrossRef]

74. Fairweather, D.; Frisancho-Kiss, S.; Gatewood, S.; Njoku, D.; Steele, R.; Barrett, M.; Rose, N.R. Mast cells and
innate cytokines are associated with susceptibility to autoimmune heart disease following coxsackievirus B3
infection. Autoimmunity 2004, 37, 131–145. [CrossRef]

75. Varricchi, G.; Galdiero, M.R.; Tocchetti, C.G. Cardiac toxicity of immune checkpoint inhibitors:
Cardio-oncology meets immunology. Circulation 2017, 136, 1989–1992. [CrossRef]

76. Ngkelo, A.; Richart, A.; Kirk, J.A.; Bonnin, P.; Vilar, J.; Lemitre, M.; Marck, P.; Branchereau, M.; Le Gall, S.;
Renault, N.; et al. Mast cells regulate myofilament calcium sensitization and heart function after myocardial
infarction. J. Exp. Med. 2016, 213, 1353–1374. [CrossRef]

77. Patella, V.; Marino, I.; Arbustini, E.; Lamparter-Schummert, B.; Verga, L.; Adt, M.; Marone, G. Stem cell factor
in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 1998, 97,
971–978. [CrossRef]

78. Shi, G.P.; Bot, I.; Kovanen, P.T. Mast cells in human and experimental cardiometabolic diseases. Nat. Rev.
Cardiol. 2015, 12, 643–658. [CrossRef]

79. De Paulis, A.; Prevete, N.; Fiorentino, I.; Rossi, F.W.; Staibano, S.; Montuori, N.; Ragno, P.; Longobardi, A.;
Liccardo, B.; Genovese, A.; et al. Expression and functions of the vascular endothelial growth factors and
their receptors in human basophils. J. Immunol. 2006, 177, 7322–7331. [CrossRef] [PubMed]

80. Granata, F.; Frattini, A.; Loffredo, S.; Staiano, R.I.; Petraroli, A.; Ribatti, D.; Oslund, R.; Gelb, M.H.; Lambeau, G.;
Marone, G.; et al. Production of vascular endothelial growth factors from human lung macrophages induced
by group IIA and group X secreted phospholipases A2. J. Immunol. 2010, 184, 5232–5241. [CrossRef]

http://dx.doi.org/10.1016/j.jaci.2009.01.044
http://dx.doi.org/10.1016/j.coi.2018.05.002
http://dx.doi.org/10.1016/j.ejphar.2015.03.088
http://dx.doi.org/10.4049/jimmunol.172.2.1227
http://www.ncbi.nlm.nih.gov/pubmed/14707101
http://dx.doi.org/10.1073/pnas.1000803107
http://dx.doi.org/10.1016/j.jaad.2015.03.041
http://www.ncbi.nlm.nih.gov/pubmed/25922287
http://dx.doi.org/10.1002/art.39192
http://www.ncbi.nlm.nih.gov/pubmed/25989191
http://dx.doi.org/10.1016/j.autrev.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/28411167
http://dx.doi.org/10.1136/annrheumdis-2018-213418
http://dx.doi.org/10.1038/onc.2014.441
http://www.ncbi.nlm.nih.gov/pubmed/25619830
http://dx.doi.org/10.1080/2162402X.2016.1168556
http://dx.doi.org/10.3389/fimmu.2017.00424
http://dx.doi.org/10.1111/exd.13107
http://dx.doi.org/10.1080/0891693042000196200
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029626
http://dx.doi.org/10.1084/jem.20160081
http://dx.doi.org/10.1161/01.CIR.97.10.971
http://dx.doi.org/10.1038/nrcardio.2015.117
http://dx.doi.org/10.4049/jimmunol.177.10.7322
http://www.ncbi.nlm.nih.gov/pubmed/17082651
http://dx.doi.org/10.4049/jimmunol.0902501


Int. J. Mol. Sci. 2019, 20, 1828 15 of 17

81. Staiano, R.I.; Loffredo, S.; Borriello, F.; Iannotti, F.A.; Piscitelli, F.; Orlando, P.; Secondo, A.; Granata, F.;
Lepore, M.T.; Fiorelli, A.; et al. Human lung-resident macrophages express CB1 and CB2 receptors whose
activation inhibits the release of angiogenic and lymphangiogenic factors. J. Leukoc. Biol. 2016, 99, 531–540.
[CrossRef]

82. Loffredo, S.; Borriello, F.; Iannone, R.; Ferrara, A.L.; Galdiero, M.R.; Gigantino, V.; Esposito, P.; Varricchi, G.;
Lambeau, G.; Cassatella, M.A.; et al. Group V secreted phospholipase A2 induces the release of proangiogenic
and antiangiogenic factors by human neutrophils. Front. Immunol. 2017, 8, 443. [CrossRef]

83. Benyon, R.C.; Lowman, M.A.; Church, M.K. Human skin mast cells: Their dispersion, purification, and
secretory characterization. J. Immunol. 1987, 138, 861–867. [PubMed]

84. Guhl, S.; Lee, H.H.; Babina, M.; Henz, B.M.; Zuberbier, T. Evidence for a restricted rather than generalized
stimulatory response of skin-derived human mast cells to substance P. J. Neuroimmunol. 2005, 163, 92–101.
[CrossRef]

85. De Paulis, A.; Marino, I.; Ciccarelli, A.; de Crescenzo, G.; Concardi, M.; Verga, L.; Arbustini, E.;
Marone, G. Human synovial mast cells. I. Ultrastructural in situ and in vitro immunologic characterization.
Arthritis Rheum. 1996, 39, 1222–1233. [CrossRef]

86. Marone, G.; Casolaro, V.; Paganelli, R.; Quinti, I. IgG anti-IgE from atopic dermatitis induces mediator release
from basophils and mast cells. J. Investig. Dermatol. 1989, 93, 246–252. [CrossRef]

87. Taimeh, Z.; Loughran, J.; Birks, E.J.; Bolli, R. Vascular endothelial growth factor in heart failure. Nat. Rev.
Cardiol. 2013, 10, 519–530. [CrossRef]

88. Varricchi, G.; Harker, J.; Borriello, F.; Marone, G.; Durham, S.R.; Shamji, M.H. T follicular helper (Tfh) cells in
normal immune responses and in allergic disorders. Allergy 2016, 71, 1086–1094. [CrossRef] [PubMed]

89. Wang, J.; Cheng, X.; Xiang, M.X.; Alanne-Kinnunen, M.; Wang, J.A.; Chen, H.; He, A.; Sun, X.; Lin, Y.;
Tang, T.T.; et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and
promotes atherogenesis in Apoe-/-mice. J. Clin. Investig. 2011, 121, 3564–3577. [CrossRef] [PubMed]

90. Szczeklik, A.; Sladek, K.; Szczerba, A.; Dropinski, J. Serum immunoglobulin E response to myocardial
infarction. Circulation 1988, 77, 1245–1249. [CrossRef] [PubMed]

91. Kovanen, P.T.; Manttari, M.; Palosuo, T.; Manninen, V.; Aho, K. Prediction of myocardial infarction in
dyslipidemic men by elevated levels of immunoglobulin classes A, E, and G, but not M. Arch. Intern. Med.
1998, 158, 1434–1439. [CrossRef]

92. Kareinen, I.; Baumann, M.; Nguyen, S.D.; Maaninka, K.; Anisimov, A.; Tozuka, M.; Jauhiainen, M.;
Lee-Rueckert, M.; Kovanen, P.T. Chymase released from hypoxia-activated cardiac mast cells cleaves human
apoA-I at Tyr(192) and compromises its cardioprotective activity. J. Lipid Res. 2018, 59, 945–957. [CrossRef]

93. Theoharides, T.C.; Sismanopoulos, N.; Delivanis, D.A.; Zhang, B.; Hatziagelaki, E.E.; Kalogeromitros, D.
Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol.
Sci. 2011, 32, 534–542. [CrossRef]

94. Dell’Italia, L.J.; Collawn, J.F.; Ferrario, C.M. Multifunctional role of chymase in acute and chronic tissue
injury and remodeling. Circ. Res. 2018, 122, 319–336.

95. Uemura, K.; Kondo, H.; Ishii, Y.; Kobukata, M.; Haraguchi, M.; Imamura, T.; Otsubo, T.; Ikebe-Ebata, Y.;
Abe, I.; Ayabe, R.; et al. Mast cells play an important role in the pathogenesis of hyperglycemia-induced
atrial fibrillation. J Cardiovasc. Electrophysiol. 2016, 27, 981–989. [CrossRef] [PubMed]

96. Shubin, N.J.; Glukhova, V.A.; Clauson, M.; Truong, P.; Abrink, M.; Pejler, G.; White, N.J.; Deutsch, G.H.;
Reeves, S.R.; Vaisar, T.; et al. Proteome analysis of mast cell releasates reveals a role for chymase in the
regulation of coagulation factor XIIIA levels via proteolytic degradation. J. Allergy Clin. Immunol. 2017, 139,
323–334. [CrossRef]

97. Wroblewski, M.; Bauer, R.; Cubas Cordova, M.; Udonta, F.; Ben-Batalla, I.; Legler, K.; Hauser, C.; Egberts, J.;
Janning, M.; Velthaus, J.; et al. Mast cells decrease efficacy of anti-angiogenic therapy by secreting
matrix-degrading granzyme B. Nat. Commun. 2017, 8, 269. [CrossRef]

98. Nascimento, C.R.; Andrade, D.; Carvalho-Pinto, C.E.; Serra, R.R.; Vellasco, L.; Brasil, G.; Ramos-Junior, E.S.;
da Mota, J.B.; Almeida, L.N.; Andrade, M.V.; et al. Mast cell coupling to the kallikrein-kinin system fuels
intracardiac parasitism and worsens heart pathology in experimental chagas disease. Front. Immunol. 2017,
8, 840. [CrossRef]

99. Marone, G.; Borriello, F.; Varricchi, G.; Genovese, A.; Granata, F. Basophils: Historical reflections and
perspectives. Chem. Immunol. Allergy. 2014, 100, 172–192.

http://dx.doi.org/10.1189/jlb.3HI1214-584R
http://dx.doi.org/10.3389/fimmu.2017.00443
http://www.ncbi.nlm.nih.gov/pubmed/2433332
http://dx.doi.org/10.1016/j.jneuroim.2005.02.015
http://dx.doi.org/10.1002/art.1780390723
http://dx.doi.org/10.1111/1523-1747.ep12277582
http://dx.doi.org/10.1038/nrcardio.2013.94
http://dx.doi.org/10.1111/all.12878
http://www.ncbi.nlm.nih.gov/pubmed/26970097
http://dx.doi.org/10.1172/JCI46028
http://www.ncbi.nlm.nih.gov/pubmed/21821913
http://dx.doi.org/10.1161/01.CIR.77.6.1245
http://www.ncbi.nlm.nih.gov/pubmed/3286037
http://dx.doi.org/10.1001/archinte.158.13.1434
http://dx.doi.org/10.1194/jlr.M077503
http://dx.doi.org/10.1016/j.tips.2011.05.005
http://dx.doi.org/10.1111/jce.12995
http://www.ncbi.nlm.nih.gov/pubmed/27097848
http://dx.doi.org/10.1016/j.jaci.2016.03.051
http://dx.doi.org/10.1038/s41467-017-00327-8
http://dx.doi.org/10.3389/fimmu.2017.00840


Int. J. Mol. Sci. 2019, 20, 1828 16 of 17

100. Sun, Y.; Vandenbriele, C.; Kauskot, A.; Verhamme, P.; Hoylaerts, M.F.; Wright, G.J. A human platelet receptor
protein microarray identifies the high affinity immunoglobulin E receptor subunit alpha (FcepsilonR1alpha)
as an activating platelet endothelium aggregation receptor 1 (PEAR1) ligand. Mol. Cell Proteom. 2015, 14,
1265–1274. [CrossRef] [PubMed]

101. Nawata, Y.; Koike, T.; Hosokawa, H.; Tomioka, H.; Yoshida, S. Anti-IgE autoantibody in patients with atopic
dermatitis. J. Immunol. 1985, 135, 478–482.

102. Sabroe, R.A.; Seed, P.T.; Francis, D.M.; Barr, R.M.; Black, A.K.; Greaves, M.W. Chronic idiopathic urticaria:
comparison of the clinical features of patients with and without anti-FcepsilonRI or anti-IgE autoantibodies.
J. Am. Acad. Dermatol. 1999, 40, 443–450. [CrossRef]

103. Gruber, B.L.; Baeza, M.L.; Marchese, M.J.; Agnello, V.; Kaplan, A.P. Prevalence and functional role of anti-IgE
autoantibodies in urticarial syndromes. J. Investig. Dermatol. 1988, 90, 213–217. [CrossRef]

104. Sanjuan, M.A.; Sagar, D.; Kolbeck, R. Role of IgE in autoimmunity. J. Allergy Clin. Immunol. 2016, 137, 1651–1661.
[CrossRef]

105. Marone, G.; Granata, F. Angiogenesis, lymphangiogenesis and clinical implications. Preface. Chem. Immunol.
Allergy. 2014, 99, 11–12.

106. Bry, M.; Kivela, R.; Holopainen, T.; Anisimov, A.; Tammela, T.; Soronen, J.; Silvola, J.; Saraste, A.; Jeltsch, M.;
Korpisalo, P.; et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats
without inducing angiogenesis, vascular leak, or inflammation. Circulation 2010, 122, 1725–1733. [CrossRef]

107. Bosisio, D.; Ronca, R.; Salvi, V.; Presta, M.; Sozzani, S. Dendritic cells in inflammatory angiogenesis and
lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 180–186. [CrossRef]

108. Longo, V.; Tamma, R.; Brunetti, O.; Pisconti, S.; Argentiero, A.; Silvestris, N.; Ribatti, D. Mast cells and
angiogenesis in pancreatic ductal adenocarcinoma. Clin. Exp. Med. 2018, 18, 319–323. [CrossRef]

109. Albini, A.; Bruno, A.; Noonan, D.M.; Mortara, L. Contribution to tumor angiogenesis from innate immune
cells within the tumor microenvironment: Implications for immunotherapy. Front. Immunol. 2018, 9, 527.
[CrossRef]

110. Wilson, A.M.; Shao, Z.; Grenier, V.; Mawambo, G.; Daudelin, J.F.; Dejda, A.; Pilon, F.; Popovic, N.; Boulet, S.;
Parinot, C.; et al. Neuropilin-1 expression in adipose tissue macrophages protects against obesity and
metabolic syndrome. Sci. Immunol. 2018, 3, eaan4626. [CrossRef]

111. Miller, A.J. The grossly invisible and generally ignored lymphatics of the mammalian heart. Med. Hypotheses
2011, 76, 604–606. [CrossRef]

112. Aspelund, A.; Robciuc, M.R.; Karaman, S.; Makinen, T.; Alitalo, K. Lymphatic system in cardiovascular
medicine. Circ. Res. 2016, 118, 515–530. [CrossRef]

113. Kholova, I.; Dragneva, G.; Cermakova, P.; Laidinen, S.; Kaskenpaa, N.; Hazes, T.; Cermakova, E.; Steiner, I.;
Yla-Herttuala, S. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in
cholesterol-rich and calcified atherosclerotic lesions. Eur. J. Clin. Investig. 2011, 41, 487–497. [CrossRef]

114. Norman, S.; Riley, P.R. Anatomy and development of the cardiac lymphatic vasculature: Its role in injury
and disease. Clin. Anat. 2016, 29, 305–315. [CrossRef]

115. Machnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; Machura, K.; Park, J.K.; Beck, F.X.;
Muller, D.N.; Derer, W.; et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular
endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009, 15, 545–552. [CrossRef]

116. Wiig, H.; Schroder, A.; Neuhofer, W.; Jantsch, J.; Kopp, C.; Karlsen, T.V.; Boschmann, M.; Goss, J.; Bry, M.;
Rakova, N.; et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin.
Investig. 2013, 123, 2803–2815. [CrossRef]

117. Chen, H.I.; Poduri, A.; Numi, H.; Kivela, R.; Saharinen, P.; McKay, A.S.; Raftrey, B.; Churko, J.; Tian, X.;
Zhou, B.; et al. VEGF-C and aortic cardiomyocytes guide coronary artery stem development. J. Clin. Investig.
2014, 124, 4899–4914. [CrossRef]

118. Mylonakis, E.; Calderwood, S.B. Infective endocarditis in adults. N. Engl. J. Med. 2001, 345, 1318–1330. [CrossRef]
119. Shahreyar, M.; Fahhoum, R.; Akinseye, O.; Bhandari, S.; Dang, G.; Khouzam, R.N. Severe sepsis and cardiac

arrhythmias. Ann. Transl. Med. 2018, 6, 6. [CrossRef]
120. Ulloa-Morales, A.J.; Goodyear, C.S.; Silverman, G.J. Essential domain-dependent roles within soluble IgG for

in vivo superantigen properties of staphylococcal Protein A: Resolving the B-Cell Superantigen paradox.
Front. Immunol. 2018, 9, 2011. [CrossRef]

http://dx.doi.org/10.1074/mcp.M114.046946
http://www.ncbi.nlm.nih.gov/pubmed/25713122
http://dx.doi.org/10.1016/S0190-9622(99)70495-0
http://dx.doi.org/10.1111/1523-1747.ep12462239
http://dx.doi.org/10.1016/j.jaci.2016.04.007
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.957332
http://dx.doi.org/10.1016/j.coi.2018.05.011
http://dx.doi.org/10.1007/s10238-018-0493-6
http://dx.doi.org/10.3389/fimmu.2018.00527
http://dx.doi.org/10.1126/sciimmunol.aan4626
http://dx.doi.org/10.1016/j.mehy.2011.01.012
http://dx.doi.org/10.1161/CIRCRESAHA.115.306544
http://dx.doi.org/10.1111/j.1365-2362.2010.02431.x
http://dx.doi.org/10.1002/ca.22638
http://dx.doi.org/10.1038/nm.1960
http://dx.doi.org/10.1172/JCI60113
http://dx.doi.org/10.1172/JCI77483
http://dx.doi.org/10.1056/NEJMra010082
http://dx.doi.org/10.21037/atm.2017.12.26
http://dx.doi.org/10.3389/fimmu.2018.02011


Int. J. Mol. Sci. 2019, 20, 1828 17 of 17

121. Vigorito, C.; Giordano, A.; Cirillo, R.; Genovese, A.; Rengo, F.; Marone, G. Metabolic and hemodynamic
effects of peptide leukotriene C4 and D4 in man. Int. J. Clin. Lab. Res. 1997, 27, 178–184. [CrossRef]

122. Levi, R.; Malm, J.R.; Bowman, F.O.; Rosen, M.R. The arrhythmogenic actions of histamine on human atrial
fibers. Circ. Res. 1981, 49, 545–550. [CrossRef]

123. Vigorito, C.; Poto, S.; Picotti, G.B.; Triggiani, M.; Marone, G. Effect of activation of the H1 receptor on coronary
hemodynamics in man. Circulation 1986, 73, 1175–1182. [CrossRef]

124. Hattori, Y.; Levi, R. Effect of PGD2 on cardiac contractility: A negative inotropism secondary to coronary
vasoconstriction conceals a primary positive inotropic action. J. Pharmacol. Exp. Ther. 1986, 237, 719–724.

125. Gelderblom, H.R.; Hausmann, E.H.; Ozel, M.; Pauli, G.; Koch, M.A. Fine structure of human immunodeficiency
virus (HIV) and immunolocalization of structural proteins. Virology 1987, 156, 171–176. [CrossRef]

126. Tseng, Z.H.; Secemsky, E.A.; Dowdy, D.; Vittinghoff, E.; Moyers, B.; Wong, J.K.; Havlir, D.V.; Hsue, P.Y.
Sudden cardiac death in patients with human immunodeficiency virus infection. J. Am. Coll. Cardiol. 2012,
59, 1891–1896. [CrossRef]

127. Zaaqoq, A.M.; Khasawneh, F.A.; Smalligan, R.D. Cardiovascular complications of HIV-associated immune
dysfunction. Cardiol. Res. Pract. 2015, 2015, 302638. [CrossRef]

128. Theoharides, T.C.; Kavalioti, M. Stress, inflammation and natural treatments. J. Biol. Regul. Homeost Agents
2018, 32, 1345–1347.

129. Kritas, S.K.; Gallenga, C.E.; Ronconi, G.; Caraffa, A.; Toniato, E.; Lauritano, D.; Conti, P. Impact of mold on
mast cell-cytokine immune response. J. Biol. Regul. Homeost. Agents 2018, 32, 763–768.

130. Gupta, K.; Idahosa, C.; Roy, S.; Lee, D.; Subramanian, H.; Dhingra, A.; Boesze-Battaglia, K.; Korostoff, J.;
Ali, H. Differential regulation of mas-related G Protein-coupled receptor X2-mediated mast cell degranulation
by antimicrobial host defense peptides and porphyromonas gingivalis Lipopolysaccharide. Infect. Immun.
2017, 85, e00246-17. [CrossRef]

131. Sala, P.; Tonutti, E.; Ruscio, M.; Colle, R.; Antonutto, G.; Falconieri, G. IgE myeloma. Report of a new case
and review of the literature. Haematologica 1981, 66, 787–795.

132. Marone, G.; Tamburini, M.; Giudizi, M.G.; Biagiotti, R.; Almerigogna, F.; Romagnani, S. Mechanism of
activation of human basophils by Staphylococcus aureus Cowan 1. Infect. Immun. 1987, 55, 803–809. [PubMed]

133. Patella, V.; Giuliano, A.; Bouvet, J.P.; Marone, G. Endogenous superallergen protein Fv induces IL-4 secretion
from human Fc epsilon RI+ cells through interaction with the VH3 region of IgE. J. Immunol. 1998, 161,
5647–5655. [PubMed]

134. Siraganian, R.P. An automated continuous-flow system for the extraction and fluorometric analysis of
histamine. Anal. Biochem. 1974, 57, 383–394. [CrossRef]

135. De Paulis, A.; Cirillo, R.; Ciccarelli, A.; de Crescenzo, G.; Oriente, A.; Marone, G. Characterization of the
anti-inflammatory effect of FK-506 on human mast cells. J. Immunol. 1991, 147, 4278–4285.

136. Loffredo, S.; Ferrara, A.L.; Bova, M.; Borriello, F.; Suffritti, C.; Veszeli, N.; Petraroli, A.; Galdiero, M.R.;
Varricchi, G.; Granata, F.; et al. Secreted phospholipases A2 in hereditary angioedema with C1-inhibitor
deficiency. Front. Immunol. 2018, 9, 1721. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02912454
http://dx.doi.org/10.1161/01.RES.49.2.545
http://dx.doi.org/10.1161/01.CIR.73.6.1175
http://dx.doi.org/10.1016/0042-6822(87)90449-1
http://dx.doi.org/10.1016/j.jacc.2012.02.024
http://dx.doi.org/10.1155/2015/302638
http://dx.doi.org/10.1128/IAI.00246-17
http://www.ncbi.nlm.nih.gov/pubmed/2434428
http://www.ncbi.nlm.nih.gov/pubmed/9820545
http://dx.doi.org/10.1016/0003-2697(74)90093-1
http://dx.doi.org/10.3389/fimmu.2018.01721
http://www.ncbi.nlm.nih.gov/pubmed/30083168
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Effect of Human IgG Anti-IgE on Mediator Release from HHMCs 
	Effect of Bacterial Superantigens on Mediator Release from HHMCs 
	Effect of Viral Superantigens on Mediator Release from HHMCs 

	Discussion 
	Materials and Methods 
	Reagents 
	Buffers 
	Human Monoclonal IgM and IgE and Human Polyclonal IgG 
	Isolation of HHMCs 
	Histamine Release Assay 
	Immunoassay of LTC4 and PGD2 
	VEGF-A and VEGF-C Release 
	Statistical Analysis 

	References

