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Studi di Napoli Federico II, Via Cintia, Monte S. Angelo, I-80126 Napoli, Italy

bDepartment of Mathematics, University of North Texas, P.O. Box 311430,
Denton, TX 76203-1430

Abstract

In this paper we study a class of infinite words on a finite alphabet A whose factors
are closed under the image of an involutory antimorphism θ of the free monoid A∗.
We show that given a recurrent infinite word ω ∈ AN, if there exists a positive
integer K such that for each n ≥ 1 the word ω has 1) cardA + (n − 1)K distinct
factors of length n, and 2) a unique right and a unique left special factor of length
n, then there exists an involutory antimorphism θ of the free monoid A∗ preserving
the set of factors of ω.
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1 Introduction

Let ω = ω0ω1ω2 · · · ∈ AN be a word on a finite alphabet A. We denote by Ln(ω)
the set of all factors of ω of length n, that is Ln(ω) = {ωjωj+1 · · ·ωj+n−1 | j ≥
0}; note that L0(ω) = {ε}, where ε is the empty word. We set L(ω) =⋃
n≥0 Ln(ω). The (factor) complexity function p(n) = pω(n) is defined as the

cardinality of Ln(ω). A celebrated result of Morse and Hedlund states that a
word is eventually periodic if and only if p(n) ≤ n for some n (see [30]). A
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binary word ω is called Sturmian if p(n) = n + 1 for all n ≥ 1. Thus among
all aperiodic words, Sturmian words are those having the smallest complexity.
Perhaps the most well known example is the Fibonacci word

f = 01001010010010100101001001010010010100101001001010010 · · ·

defined as the fixed point of the morphism 0 7→ 01 and 1 7→ 0.

The study of Sturmian words was originated by M. Morse and G. A. Hedlund
in 1940. They showed that Sturmian words provide a symbolic coding of the
orbit of a point on a circle with respect to a rotation by an irrational number
α (cf. [30]). Sturmian words have since been extensively studied from many
different points of view: (cf. [3–6,10,11,13,15,20,28–31]). A general survey on
the subject is given in [4]. It is well known that if ω is a Sturmian word, then for
each factor u = u1u2 · · ·un with ui ∈ {0, 1} the reverse ũ = unun−1 · · ·u2u1 is
also a factor of ω, in other words the language of ω is closed under the reversal
operator R defined by R(u) = ũ. Also the condition p(n + 1) − p(n) = 1
implies that for each n there exists exactly one word u ∈ Ln(ω) which is a
prefix (respectively suffix) of two words in Ln+1(ω); such a word is called a
right special (respectively left special) factor of ω.

For a general word ω ∈ AN and for any n ≥ 0, a factor u ∈ Ln(ω) is said to be
right special (respectively left special) if it is a prefix (respectively suffix) of at
least two words in Ln+1(ω). A factor of ω which is both right and left special
is called bispecial. The degree of a right (respectively left) special factor u of
ω is the number of distinct letters a ∈ A such that ua ∈ L(ω) (respectively
au ∈ L(ω)).

An infinite word ω ∈ AN is called episturmian if for each n there exists at
most one right special factor of length n, and if the set of factors of ω is closed
under the reversal operator R. It follows directly from the definition that ω
contains at most one left special factor of every length, and that each bispecial
factor of ω is a palindrome, that is a fixed point of R.

Episturmian words were originally introduced by Droubay, Justin, and Pirillo
in [14] and are a natural generalization of Sturmian words (in fact Sturmian
words are precisely the binary aperiodic episturmian words), and Arnoux-
Rauzy words [2]. They have been extensively studied since by numerous au-
thors (cf. [1,16–19,21,23–25]).

Still a further extension of episturmian words was recently introduced by the
authors in [7,8] in which the reversal operator R is replaced by an arbitrary
involutory antimorphism θ of the free monoid A∗, that is, a map θ : A∗ → A∗

satisfying θ ◦ θ = id, and θ(UV ) = θ(V )θ(U) for all U, V ∈ A∗. It is readily
verified that every involutory antimorphism θ is the composition θ = R ◦ τ =
τ ◦R where τ is an involutory permutation of the alphabet A. Given such a θ,
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a finite word u is called a θ-palindrome if it is a fixed point of θ. We denote by
u⊕θ the θ-palindromic closure of u, i.e., the shortest θ-palindrome beginning
in u. This leads to the following definition (see [8]):

Definition 1 A word ω ∈ AN is called θ-episturmian if for each n there
exists at most one left special factor of length n, and if the set of factors of
ω is closed under an involutory antimorphism θ of the free monoid A∗. If
in addition each left special factor of ω is a prefix of ω, then we say ω is a
standard θ-episturmian word.

Involutory antimorphisms arise naturally in various settings [1,12,7,8,26,33].
For instance, in the context of the so-called Fine and Wilf words (cf. [32,9,22])
in which one wants to construct a word of some given length n on the great-
est number of distinct symbols, having specified periods {p1, p2, .., pk}. For
example, it is readily verified that a word of length 16 having periods 8 and
11 and on the greatest number of distinct symbols is isomorphic to the word
w = abcabcababcabcab. This word is fixed by the involutory antimorphism
θ : {a, b, c}∗ → {a, b, c}∗ generated by θ(a) = b and θ(c) = c. In [33] it is
shown that every Fine and Wilf word is a θ-palindrome for some involutory
antimorphism θ. Another natural example is the Watson and Crick antimor-
phism involution arising in molecular biology [26].

The main result of this paper shows that the existence of an underlying invo-
lutory antimorphism θ is a consequence of three natural word combinatorial
assumptions: recurrence, uniqueness of right and left special factors, and con-
stant growth of the factor complexity:

Theorem 2 Let ω ∈ AN be a word on a finite alphabet A. Suppose

(1) ω is recurrent.
(2) For each n ≥ 1, ω has a unique right special factor of length n and a

unique left special factor of length n.
(3) There exists a constant K such that p(n) = cardA + (n − 1)K for each

n ≥ 1.

Then there exists an involutory antimorphism θ : A∗ → A∗ relative to which
ω is a θ-episturmian word.

While each of the hypotheses (1)–(3) above is in fact necessary (see the ex-
amples below), Theorem 2 is not a characterization of θ-episturmian words
since the converse is in general false. For instance, it is easy to verify that the
word on {a, b, c} obtained by applying the morphism 0 7→ a and 1 7→ bac to
the Fibonacci word f does not satisfy condition (3) above but is θ-episturmian
relatively to the involutory antimorphism generated by θ(a) = a and θ(b) = c.

The next series of examples illustrate that each of the hypotheses (1)–(3)
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above is in fact necessary and independent of one another. In what follows f
denotes the Fibonacci infinite word.

Example 3 The word 2f = 201001010010010100101001001010 · · · satisfies
conditions (2) and (3) but not (1). The set of factors of this word is not closed
under θ for any choice of the involutory antimorphism θ of {0, 1, 2}, so that
2f is not θ-episturmian.

Example 4 The fixed point of the morphism 0 7→ 021, 1 7→ 0, 2 7→ 01 satisfies
(1) and (3) but not (2), in fact for each n ≥ 1, this word has a unique right
special factor of length n but two distinct left special factors of length n. Hence
this word is not θ-episturmian.

Example 5 Consider the word ω = τ ◦ σ(f) where σ(0) = 0, σ(1) = 12,
τ(0) = 10, τ(1) = 1, and τ(2) = 12. It is readily verified that ω satisfies
conditions (1) and (2), but not (3) as p(1) = 3, p(2) = 5, and p(3) = 6. The
word ω is not θ-episturmian, in fact one easily verifies that the factor 10112101
is a bispecial factor of ω and yet is not fixed by any involutory antimorphism.

Using the notion of degree, condition (3) in Theorem 2 can be replaced by
the following: All nonempty right special factors and all nonempty left special
factors of ω have the same degree, namely K+1 (cf. Lemma 6 in next section).
We remark that in the case K = cardA− 1 condition (3) is trivially true also
for n = 0, and conditions (1)–(3) give a characterization of Arnoux-Rauzy
words.

For definitions and notations not given in the text the reader is referred
to [27,4,7,8].

2 Proof of Theorem 2

The proof is organized as follows. First we prove that any factor of ω is con-
tained in a bispecial factor of ω. In particular, this implies that ω has infinitely
many distinct bispecial factors. Next, we prove that there exists an involu-
tory antimorphism θ of A∗ such that all bispecial factors are θ-palindromes.
From this we derive that θ preserves the set of factors of ω, so that ω is
ϑ-episturmian.

The following notation will be useful in the proof of Theorem 2: Let u and v
be non-empty factors of ω. We write u ` uv to mean that for each factor w of
ω with |w| = |u|+ |v|, if w begins in u then w = uv. If it is not the case that
u ` uv, then we will write u 0 uv. Similarly we will write vu a u to mean that
for each factor of ω with |w| = |u|+ |v| if w ends in u then w = vu. Otherwise
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we write vu 6a u.

We begin with a few lemmas. The following lemma is an immediate conse-
quence of the hypotheses of Theorem 2:

Lemma 6 Let u and u′ be right (respectively left) special factors of ω. Then
under the hypotheses of Theorem 2, for any letter a ∈ A, ua (respectively au)
is a factor of ω if and only if u′a (respectively au′) is a factor of ω.

PROOF. Conditions (2) and (3) of Theorem 2 imply that K is a positive
integer, and that each right special factor u has exactly K + 1 distinct right
extensions of the form ua with a ∈ A, i.e., has degree K + 1. Moreover, if u
and u′ are right special factors of ω, then by (2) one is a suffix of the other.
Hence ua is a factor of ω if and only if u′a is a factor of ω. A similar argument
applies to left special factors of ω. 2

Lemma 7 Let u be a factor of ω. Then under the hypotheses of Theorem 2
we have that u is a factor of a bispecial factor of ω. Let W denote the shortest
bispecial factor of ω containing u. Then u occurs exactly once in W .

PROOF. We first observe that by condition (2) of Theorem 2, ω is not pe-
riodic.

Since ω is recurrent, there exists a factor z of ω which begins and ends in u
and has exactly two occurrences of u. Writing z = vu, clearly we have vu 6a u,
otherwise ω would be periodic. Thus some suffix of z of length at least |u|
must be a left special factor of ω. Let x ∈ A∗ be of minimal length such that
xu is a left special factor of ω. Such a word is trivially unique, and we have
xu a u. In a similar way, there exists a unique y ∈ A∗ of minimal length such
that uy is right special in ω, and it satisfies u ` uy.

From the preceding relations one obtains xu ` xuy and xuy a uy. Since xu is
left special in ω and xu is always followed by y one has that xuy is also left
special. Similarly, since uy is right special and always preceded by x, xuy is
right special. Hence every factor u of ω is contained in some bispecial factor
W = xuy of ω. Furthermore, this W is the shortest bispecial factor containing
u. Indeed, if W ′ = x′uy′ is bispecial in ω and |W ′| < |W |, then either |x′| < |x|
or |y′| < |y|; since x′u and uy′ are respectively a left and a right special factor
of ω, this violates the minimality of x or y. Using the same argument, one
shows that W cannot have more than one occurrence of u. 2

It follows immediately from Lemma 7 that ω, under the hypotheses of Theo-
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rem 2, contains an infinite number of distinct bispecial factors

ε = W0,W1,W2, . . .

which we write in order of increasing length. Thus, as a consequence of con-
dition (2), for each k ≥ 1 we have that Wk+1 begins and ends in Wk.

Lemma 8 Let a ∈ A, and let Wk be the shortest bispecial factor of ω contain-
ing a. Then Wk = Wk−1VWk−1, where V contains the letter a. Moreover, all
letters in V are distinct and none of them occurs in Wk−1. If Ua is a factor
of ω for some bispecial factor U , then a is the first letter of V .

PROOF. Clearly since Wk begins and ends in Wk−1 and a does not occur
in Wk−1, it follows that Wk = Wk−1VWk−1, for some non-empty factor V
containing a. We will first show that the first letter of V does not occur in
Wk−1. Then we will show that no letter of V occurs in Wk−1. Thus for each
letter b which occurs in V , we have that Wk is the shortest bispecial factor
containing b. Hence by Lemma 7 we have that b occurs exactly once in V .

Let a′ denote the first letter of V which does not occur in Wk−1. We claim
that a′ is the first letter of V . The result is clear in case Wk−1 = ε. Thus we
can assume Wk−1 is non-empty. Suppose to the contrary that a′ is not the first
letter of V . Then there exists a letter b immediately preceding a′ in V , which
also occurs in Wk−1. We claim b is a right special factor of ω. This is trivial if
b is the last letter of Wk−1. If this is not true, then there is an occurrence of b
in Wk−1 followed by some letter c 6= a′. Thus b is a right special factor of ω.

Now, since ba′ is a factor of ω, it follows from Lemma 6 that Wka
′ is a factor

of ω. We can write Wka
′ = Wk−1Xa

′YWk−1a
′, with X non-empty. By the

definition of a′, one has that Wk is the shortest bispecial factor of ω containing
a′. It follows that every occurrence of a′ in ω is preceded by Wk−1X. Hence
Wk−1X is both a prefix and a suffix of Wk, whence is a bispecial factor of ω of
length greater than |Wk−1| and less than |Wk|, a contradiction. Hence a′ is the
first letter of V , in other words the first letter of V does not occur in Wk−1.

We next show that no letter in V occurs in Wk−1. Again this is clear in case
Wk−1 = ε. Thus we can assume Wk−1 is non-empty. Suppose to the contrary:
Let d denote the first letter in V which also occurs in Wk−1. We saw earlier
that d is not the first letter of V . Thus the letter e preceding d in V does not
occur in Wk−1. We claim that d is a left special factor, or equivalently is the
first letter of Wk−1. Otherwise, if d were not the first letter of Wk−1, there
would be an occurrence of d in Wk−1 preceded by some letter e′ 6= e. Thus d
is left special, a contradiction.

Since ed is a factor of ω, it follows from Lemma 6 that eWk is a factor of ω.
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We can write eWk = eWk−1X
′eY ′Wk−1 with Y ′ non-empty (since it contains

d). Since e does not occur in Wk−1, it follows that Wk is the shortest bispecial
factor of ω containing e, and hence every occurrence of e in ω is followed
by Y ′Wk−1. Hence Y ′Wk−1 is both a prefix and a suffix of Wk, and hence a
bispecial factor of ω whose length is greater than that of Wk−1 but smaller
than that of Wk. A contradiction. Hence, no letter occurring in V occurs in
Wk−1.

Finally suppose Ua is a factor of ω for some bispecial factor U . By Lemma 6
we have that Wka is a factor of ω. Writing Wka = Wk−1X

′′aY ′′Wk−1a, we
have that every occurrence of a in ω is preceded by Wk−1X

′′, whence Wk−1X
′′

is both a prefix and a suffix of Wk. This implies that Wk−1X
′′ is a bispecial

factor of ω, and hence equal to Wk−1. Thus X ′′ is empty and a is the first
letter of V as required. This concludes the proof of Lemma 8. 2

We now proceed with the proof of Theorem 2. It suffices to show that there
exists an involutory antimorphism θ : A∗ → A∗ relative to which each Wk is
a θ-palindrome. Indeed, by Lemma 7 any factor u of ω is contained in some
Wk, and hence so is θ(u).

We proceed by induction on k. By Lemma 7, W1 is of the form W1 = a0a1 · · · an
with ai ∈ A, 0 ≤ i ≤ n, and with ai 6= aj for i 6= j. Hence we can begin by
defining θ on the subset {a0, a1, . . . , an} of A, by θ(ai) = an−i. Thus θ(W1) =
W1, i.e., W1 is a θ-palindrome.

By induction hypothesis, let us assume θ is defined on the set of all letters
occurring in W1,W2, . . . ,Wk with each Wi (1 ≤ i ≤ k) a θ-palindrome. Let
a ∈ A be the unique letter such that Wka is a prefix of Wk+1 and then a left
special factor of ω. We consider two cases: Case 1: a does not occur in Wk,
and Case 2: a occurs in Wk.

Case 1: Since a, does not occur in Wk but occurs in Wk+1, it follows from
Lemma 8 that Wk+1 = WkVWk where all letters of V are distinct and none
of them occurs in Wk. Thus we can write V = b0b1 · · · b|V |−1 and extend the
domain of definition of θ to {b0, b1, . . . , b|V |−1} by θ(bi) = b|V |−i−1. In this way
Wk+1 becomes a θ-palindrome.

Case 2: In this case we will show that Wk+1 is the θ-palindromic closure of
Wka, that is the shortest θ-palindrome beginning in Wka. In fact we will show
that Wk+1 = WkaV where Wk = UaV for some word V and θ-palindrome U .

Let Wn be the shortest bispecial factor containing a. Hence n ≤ k. Since Wka
is a factor of ω, it follows from Lemma 8 that Wn−1a is a prefix of Wn, and
hence a prefix of Wk. Thus there exists a bispecial factor U (possibly empty)
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such that Ua is a prefix of Wk. Let U denote the longest bispecial factor of ω
with the property that Ua is a prefix of Wk, and write Wk = UaV , where V
is possibly the empty word. We will show that Wk+1 = WkaV .

Setting ā = θ(a), we will show that āUa ` āUaV . First of all, since Ua is a
prefix of the θ-palindrome Wk, and U is bispecial and then θ-palindrome, it
follows that āU is a factor of ω; hence by Lemma 6, āWk = āUaV is a factor
of ω. Suppose to the contrary that āUa 0 āUaV . Then there exists a proper
prefix V ′ of V and a letter b ∈ A such that V ′b is not a prefix of V and āUaV ′b
is a factor of ω. Thus āUaV ′ is right special, and hence āUaV ′ is a suffix of
Wk. Since UaV ′ is also a prefix of Wk, it follows that UaV ′ is bispecial, and
hence a θ-palindrome. We deduce that UaV ′a is a prefix of Wk contradicting
the maximality of the length of U . Thus, āUa ` āUaV as required. It follows
that Wka ` WkaV , since āUa is a suffix of Wka. Hence WkaV is a left special
factor of ω, as the Wka is left special and extends uniquely to WkaV .

It remains to show that WkaV is also right special. In the same way that we
showed that āUa ` āUaV , a symmetric argument shows that θ(V )āUa a āUa.
Thus to show that WkaV is right special, it suffices to show that āUaV is right
special. Now since Wka is left special and āU is a factor of ω, it follows from
Lemma 6 that āWka = āUaV a is a factor of ω. So if āUaV were not right
special, it would mean that āUa ` āUaV ` āUaV a = āθ(V )āUa. This implies
that ω is periodic, a contradiction. Thus WkaV is right special, and hence
bispecial. Since Wka ` WkaV , Wk+1 cannot be a proper prefix of WkaV , so
that Wk+1 = WkaV .

It remains to show that Wk+1 is a θ-palindrome. But, using the fact that
U is a θ-palindrome, θ(Wk+1) = θ(WkaV ) = θ(V )āWk = θ(V )āUaV =
θ(V )āθ(U)aV = θ(UaV )aV = θ(Wk)aV = WkaV = Wk+1. Thus Wk+1 is
a θ-palindrome.

Having established that each bispecial factor of ω is a θ-palindrome, we con-
clude that ω is a θ-episturmian word. This concludes the proof of Theorem 2.

Remark 9 It follows that for each k ≥ 1, the θ-palindromic prefixes of Wk

are precisely the bispecial prefixes of Wk.

Let θ be an involutory antimorphism of the free monoid A∗. In [8] the authors
introduced various sets of words whose factors are closed under the action of θ.
One such set is SWθ(N) consisting of all infinite words ω whose sets of factors
are closed under θ and such that every left special factor of ω of length greater
or equal to N is a prefix of ω. Thus SWθ(0) is precisely the set of all standard
θ-episturmian words. Fix N ≥ 0, and let ω ∈ SWθ(N). Let (Wn)n≥0 denote
the sequence of all θ-palindromic prefixes of ω ordered by increasing length.
For each n ≥ 0 let xn ∈ A be such that Wnxn is a prefix of ω. The sequence
(xn)n≥0 is called the subdirective word of ω. In [8], the authors establish the
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following lemma (Lemma 4.3 in [8]):

Lemma 10 Let ω ∈ SWθ(N). Suppose xn = xm for some 0 ≤ m < n and
with |Wm| ≥ N − 2. Then Wn+1 = (Wnxn)⊕θ .

In case N = 0, we can say more:

Proposition 11 Let ω be a standard θ-episturmian word. Suppose that Wna
is left special for some n > 0, and that the letter a occurs in Wn. Then Wn+1 =
(Wna)⊕θ .

PROOF. By Lemma 10 it suffices to show that for some 0 ≤ m < n, Wma is
left special. Let Wm+1 be the shortest bispecial factor containing the letter a.
Thus, m + 1 ≤ n since Wn contains a. Since Wm does not contain a, we can
write Wm+1 = WmXaYWm. Here any one of X, Y , and Wm may be the empty
word. Since Wm+1 is the shortest bispecial factor containing a, it follows that
every occurrence of a in ω is preceded by WmX. Since Wna is a factor, and
Wm+1 is a suffix of Wn, it follows that WmX is both a prefix and a suffix of
Wm+1. But this implies that WmX is bispecial, and since |WmX| < |Wm+1|,
we deduce that WmX = Wm, in other words, X is empty. Hence Wma is left
special as required. 2

We observe that Proposition 11 holds also for (general) θ-episturmian words,
since for any θ-episturmian word there exists a standard θ-episturmian word
having the same set of factors.

In general Proposition 11 does not extend to words ω ∈ SWθ(N) for N > 0.
For instance, let t be the Tribonacci word, i.e., the fixed point of the morphism
0 7→ 01, 1 7→ 02 and 2 7→ 0. Let ω be the image of t under the morphism
0 7→ a, 1 7→ bc, and 2 7→ cab. Let θ be the involutory antimorphism generated
by θ(a) = a, and θ(b) = c. Then it is readily verified that ω ∈ SWθ(4),
but ω /∈ SWθ(3) since both abc and cab are left special factors. We have that
W1 = a, W2 = abca, and W3 = abcacababca. Thus although W2c is left special,
and c occurs in W2, we have that W3 6= (W2c)

⊕θ = abcacbabca.
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2n+ 1, Bull. Soc. Math. France 119 (1991), 199–215.
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