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Abstract

In this paper we study a class of infinite words on a finite alphabet A whose factors
are closed under the image of an involutory antimorphism # of the free monoid A*.
We show that given a recurrent infinite word w € AN, if there exists a positive
integer K such that for each n > 1 the word w has 1) card A + (n — 1)K distinct
factors of length n, and 2) a unique right and a unique left special factor of length
n, then there exists an involutory antimorphism 6 of the free monoid A* preserving
the set of factors of w.
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1 Introduction

the set of all factors of w of length n, that is L,,(w) = {wjwjt1 - Wjin-1 | J
0}; note that Log(w) = {e}, where ¢ is the empty word. We set L(w)
Unso Ln(w). The (factor) complexity function p(n) = p,(n) is defined as the
cardinality of L,(w). A celebrated result of Morse and Hedlund states that a
word is eventually periodic if and only if p(n) < n for some n (see [30]). A

Let w = wowiwy - - - € AN be a word on a finite alphabet A. We denote by L,,(w)
>
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binary word w is called Sturmian if p(n) = n+ 1 for all n > 1. Thus among
all aperiodic words, Sturmian words are those having the smallest complexity.
Perhaps the most well known example is the Fibonacci word

f =01001010010010100101001001010010010100101001001010010 - - -
defined as the fixed point of the morphism 0 — 01 and 1 — 0.

The study of Sturmian words was originated by M. Morse and G. A. Hedlund
in 1940. They showed that Sturmian words provide a symbolic coding of the
orbit of a point on a circle with respect to a rotation by an irrational number
a (cf. [30]). Sturmian words have since been extensively studied from many
different points of view: (cf. [3-6,10,11,13,15,20,28-31]). A general survey on
the subject is given in [4]. It is well known that if w is a Sturmian word, then for
each factor u = ujus - - - u, with u; € {0, 1} the reverse @ = u,u,_1 - - uguy is
also a factor of w, in other words the language of w is closed under the reversal
operator R defined by R(u) = u. Also the condition p(n + 1) — p(n) = 1
implies that for each n there exists exactly one word u € L,(w) which is a
prefix (respectively suffix) of two words in L, ,1(w); such a word is called a
right special (respectively left special) factor of w.

For a general word w € AN and for any n > 0, a factor u € L,(w) is said to be
right special (respectively left special) if it is a prefix (respectively suffix) of at
least two words in L,1(w). A factor of w which is both right and left special
is called bispecial. The degree of a right (respectively left) special factor u of
w is the number of distinct letters a € A such that ua € L(w) (respectively
au € L(w)).

An infinite word w € AN is called episturmian if for each n there exists at
most one right special factor of length n, and if the set of factors of w is closed
under the reversal operator R. It follows directly from the definition that w
contains at most one left special factor of every length, and that each bispecial
factor of w is a palindrome, that is a fixed point of R.

Episturmian words were originally introduced by Droubay, Justin, and Pirillo
in [14] and are a natural generalization of Sturmian words (in fact Sturmian
words are precisely the binary aperiodic episturmian words), and Arnoux-
Rauzy words [2]. They have been extensively studied since by numerous au-
thors (cf. [1,16-19,21,23-25]).

Still a further extension of episturmian words was recently introduced by the
authors in [7,8] in which the reversal operator R is replaced by an arbitrary
inwvolutory antimorphism 6 of the free monoid A*, that is, a map 6 : A* — A*
satisfying 0 o 6 = id, and O(UV') = 0(V)0(U) for all U,V € A*. It is readily
verified that every involutory antimorphism 6 is the composition § = Ro 71 =
7o R where 7 is an involutory permutation of the alphabet A. Given such a 6,



a finite word w is called a 6-palindrome if it is a fixed point of . We denote by
u® the #-palindromic closure of u, i.e., the shortest #-palindrome beginning
in u. This leads to the following definition (see [8]):

Definition 1 A word w € AV is called 9-episturmian if for each n there
exists at most one left special factor of length n, and if the set of factors of
w is closed under an involutory antimorphism 0 of the free monoid A*. If
in addition each left special factor of w is a prefix of w, then we say w is a
standard 0-episturmian word.

Involutory antimorphisms arise naturally in various settings [1,12,7,8,26,33].
For instance, in the context of the so-called Fine and Wilf words (cf. [32,9,22])
in which one wants to construct a word of some given length n on the great-
est number of distinct symbols, having specified periods {p1, ps, .., pr}. For
example, it is readily verified that a word of length 16 having periods 8 and
11 and on the greatest number of distinct symbols is isomorphic to the word
w = abcabcababcabcab. This word is fixed by the involutory antimorphism
0 : {a,b,c}* — {a,b,c}* generated by 6(a) = b and 0(c) = c. In [33] it is
shown that every Fine and Wilf word is a #-palindrome for some involutory
antimorphism 6. Another natural example is the Watson and Crick antimor-
phism involution arising in molecular biology [26].

The main result of this paper shows that the existence of an underlying invo-
lutory antimorphism 6 is a consequence of three natural word combinatorial
assumptions: recurrence, uniqueness of right and left special factors, and con-
stant growth of the factor complexity:

Theorem 2 Let w € AN be a word on a finite alphabet A. Suppose

(1) w is recurrent.

(2) For each n > 1, w has a unique right special factor of length n and a
unique left special factor of length n.

(8) There exists a constant K such that p(n) = card A+ (n — 1)K for each
n>1.

Then there exists an involutory antimorphism 6 : A* — A* relative to which
w s a O-episturmian word.

While each of the hypotheses (1)—(3) above is in fact necessary (see the ex-
amples below), Theorem 2 is not a characterization of f-episturmian words
since the converse is in general false. For instance, it is easy to verify that the
word on {a, b, c} obtained by applying the morphism 0 — a and 1 — bac to
the Fibonacci word f does not satisfy condition (3) above but is #-episturmian
relatively to the involutory antimorphism generated by 6(a) = a and 6(b) = c.

The next series of examples illustrate that each of the hypotheses (1)—(3)



above is in fact necessary and independent of one another. In what follows f
denotes the Fibonacci infinite word.

Example 3 The word 2f = 201001010010010100101001001010 - - - satisfies
conditions (2) and (3) but not (1). The set of factors of this word is not closed
under 0 for any choice of the involutory antimorphism 0 of {0,1,2}, so that
2f is not O-episturmian.

Example 4 The fized point of the morphism 0 — 021, 1 — 0, 2 — 01 satisfies
(1) and (3) but not (2), in fact for each n > 1, this word has a unique right
special factor of length n but two distinct left special factors of length n. Hence
this word is not 0-episturmian.

Example 5 Consider the word w = 7 o o(f) where o(0) = 0, (1) = 12,
7(0) = 10, 7(1) = 1, and 7(2) = 12. It is readily verified that w satisfies
conditions (1) and (2), but not (3) as p(1) = 3, p(2) =5, and p(3) = 6. The
word w is not O-episturmian, in fact one easily verifies that the factor 10112101
1s a bispecial factor of w and yet is not fixed by any involutory antimorphism.

Using the notion of degree, condition (3) in Theorem 2 can be replaced by
the following: All nonempty right special factors and all nonempty left special
factors of w have the same degree, namely K +1 (cf. Lemma 6 in next section).
We remark that in the case K = card A — 1 condition (3) is trivially true also
for n = 0, and conditions (1)—(3) give a characterization of Arnoux-Rauzy
words.

For definitions and notations not given in the text the reader is referred

to [27,4,7.8].

2 Proof of Theorem 2

The proof is organized as follows. First we prove that any factor of w is con-
tained in a bispecial factor of w. In particular, this implies that w has infinitely
many distinct bispecial factors. Next, we prove that there exists an involu-
tory antimorphism 6 of A* such that all bispecial factors are #-palindromes.
From this we derive that 6 preserves the set of factors of w, so that w is
¥-episturmian.

The following notation will be useful in the proof of Theorem 2: Let u and v
be non-empty factors of w. We write v - uv to mean that for each factor w of
w with |w| = |u| + |v], if w begins in u then w = ww. If it is not the case that
u = uv, then we will write u ¥ wv. Similarly we will write vu 4 v to mean that
for each factor of w with |w| = |u| 4 |v| if w ends in v then w = vu. Otherwise



we write vu A u.

We begin with a few lemmas. The following lemma is an immediate conse-
quence of the hypotheses of Theorem 2:

Lemma 6 Let u and u' be right (respectively left) special factors of w. Then
under the hypotheses of Theorem 2, for any letter a € A, ua (respectively au)
is a factor of w if and only if u'a (respectively au') is a factor of w.

PROOF. Conditions (2) and (3) of Theorem 2 imply that K is a positive
integer, and that each right special factor u has exactly K + 1 distinct right
extensions of the form ua with a € A, i.e., has degree K + 1. Moreover, if u
and v’ are right special factors of w, then by (2) one is a suffix of the other.
Hence ua is a factor of w if and only if u/a is a factor of w. A similar argument
applies to left special factors of w. O

Lemma 7 Let u be a factor of w. Then under the hypotheses of Theorem 2
we have that u is a factor of a bispecial factor of w. Let W denote the shortest
bispecial factor of w containing u. Then u occurs exactly once in W.

PROOF. We first observe that by condition (2) of Theorem 2, w is not pe-
riodic.

Since w is recurrent, there exists a factor z of w which begins and ends in u
and has exactly two occurrences of u. Writing z = vu, clearly we have vu A u,
otherwise w would be periodic. Thus some suffix of z of length at least |u]
must be a left special factor of w. Let © € A* be of minimal length such that
zu is a left special factor of w. Such a word is trivially unique, and we have
xu 7 u. In a similar way, there exists a unique y € A* of minimal length such
that uy is right special in w, and it satisfies u F uy.

From the preceding relations one obtains xu - ruy and ruy - uy. Since zu is
left special in w and zu is always followed by y one has that xuy is also left
special. Similarly, since uy is right special and always preceded by z, xuy is
right special. Hence every factor u of w is contained in some bispecial factor
W = xuy of w. Furthermore, this W is the shortest bispecial factor containing
u. Indeed, if W’ = z’'uy’ is bispecial in w and |W’'| < |W/, then either |2/| < |z|
or |y < |yl; since z'u and uy’ are respectively a left and a right special factor
of w, this violates the minimality of = or y. Using the same argument, one
shows that W cannot have more than one occurrence of u. O

It follows immediately from Lemma 7 that w, under the hypotheses of Theo-



rem 2, contains an infinite number of distinct bispecial factors
€:W0,W1,W2,...

which we write in order of increasing length. Thus, as a consequence of con-
dition (2), for each k > 1 we have that Wj; begins and ends in W.

Lemma 8 Leta € A, and let Wy, be the shortest bispecial factor of w contain-
g a. Then Wy = Wy VWy_1, where V' contains the letter a. Moreover, all
letters in V' are distinct and none of them occurs in Wy_1. If Ua is a factor
of w for some bispecial factor U, then a is the first letter of V.

PROOQOF. Clearly since W}, begins and ends in Wj_; and a does not occur
in Wy_4, it follows that W, = W;,_1VW)_1, for some non-empty factor V'
containing a. We will first show that the first letter of V' does not occur in
Wi_1. Then we will show that no letter of V' occurs in Wj,_;. Thus for each
letter b which occurs in V', we have that W}, is the shortest bispecial factor
containing b. Hence by Lemma 7 we have that b occurs exactly once in V.

Let a’ denote the first letter of V' which does not occur in Wj_;. We claim
that o’ is the first letter of V. The result is clear in case Wj_; = . Thus we
can assume Wj_; is non-empty. Suppose to the contrary that a’ is not the first
letter of V. Then there exists a letter b immediately preceding a’ in V', which
also occurs in Wy_1. We claim b is a right special factor of w. This is trivial if
b is the last letter of W_;. If this is not true, then there is an occurrence of b
in W;,_; followed by some letter ¢ # a’. Thus b is a right special factor of w.

Now, since ba’ is a factor of w, it follows from Lemma 6 that Wyad' is a factor
of w. We can write Wiya' = Wy 1 Xd'YW,_1d/, with X non-empty. By the
definition of @', one has that W, is the shortest bispecial factor of w containing
a’. Tt follows that every occurrence of @’ in w is preceded by Wjy_1X. Hence
Wi_1X is both a prefix and a suffix of W, whence is a bispecial factor of w of
length greater than |Wy_;| and less than |Wy|, a contradiction. Hence @’ is the
first letter of V', in other words the first letter of V' does not occur in Wj_;.

We next show that no letter in V' occurs in Wjy_;. Again this is clear in case
Wyi_1 = €. Thus we can assume Wj_; is non-empty. Suppose to the contrary:
Let d denote the first letter in V' which also occurs in W,_;. We saw earlier
that d is not the first letter of V. Thus the letter e preceding d in V' does not
occur in Wy_1. We claim that d is a left special factor, or equivalently is the
first letter of Wy_;. Otherwise, if d were not the first letter of Wj_;, there
would be an occurrence of d in Wj,_; preceded by some letter ¢’ # e. Thus d
is left special, a contradiction.

Since ed is a factor of w, it follows from Lemma 6 that elW} is a factor of w.



We can write eW), = eW_1 X'eY'W,._; with Y’ non-empty (since it contains
d). Since e does not occur in Wj,_4, it follows that W} is the shortest bispecial
factor of w containing e, and hence every occurrence of e in w is followed
by Y'W,_i. Hence Y'W,._; is both a prefix and a suffix of W}, and hence a
bispecial factor of w whose length is greater than that of W;_; but smaller
than that of Wjy. A contradiction. Hence, no letter occurring in V' occurs in
Wk—l'

Finally suppose Ua is a factor of w for some bispecial factor U. By Lemma 6
we have that Wya is a factor of w. Writing Wiya = Wi_1 X"aY"Wy_1a, we
have that every occurrence of a in w is preceded by W;,_1 X", whence Wj_; X"
is both a prefix and a suffix of W},. This implies that W},_; X" is a bispecial
factor of w, and hence equal to Wj_;. Thus X" is empty and a is the first
letter of V' as required. This concludes the proof of Lemma 8. O

We now proceed with the proof of Theorem 2. It suffices to show that there
exists an involutory antimorphism 6 : A* — A* relative to which each W}, is
a O-palindrome. Indeed, by Lemma 7 any factor v of w is contained in some
W, and hence so is 0(u).

We proceed by induction on k. By Lemma 7, W is of the form W, = aga; - - - a,
with a; € A, 0 <7 < n, and with a; # a; for ¢ # j. Hence we can begin by
defining 0 on the subset {ag, ay,...,a,} of A, by 0(a;) = an—;. Thus (W;) =
Wy, i.e., W7 is a #-palindrome.

By induction hypothesis, let us assume 6 is defined on the set of all letters
occurring in Wy, Wy, ..., Wy with each W; (1 < i < k) a 6-palindrome. Let
a € A be the unique letter such that Wya is a prefix of Wy, and then a left
special factor of w. We consider two cases: Case 1: a does not occur in Wy,
and Case 2: a occurs in W,.

Case 1: Since a, does not occur in Wj but occurs in Wy, it follows from
Lemma 8 that Wy, = W, VW, where all letters of V' are distinct and none
of them occurs in Wj. Thus we can write V' = bgb, - - - bjy|—1 and extend the
domain of definition of 6 to {bo, b1, ..., by -1} by 0(b;) = bjy|—i—1. In this way
W11 becomes a #-palindrome.

Case 2: In this case we will show that Wy is the 8-palindromic closure of
Wia, that is the shortest #-palindrome beginning in Wya. In fact we will show
that Wy, = WiaV where Wy, = UaV for some word V' and #-palindrome U.

Let W,, be the shortest bispecial factor containing a. Hence n < k. Since Wya
is a factor of w, it follows from Lemma 8 that W,,_ja is a prefix of W,,, and
hence a prefix of Wj. Thus there exists a bispecial factor U (possibly empty)



such that Ua is a prefix of Wy. Let U denote the longest bispecial factor of w
with the property that Ua is a prefix of Wy, and write Wj, = UaV', where V'
is possibly the empty word. We will show that Wy.; = WyaV .

Setting a = 0(a), we will show that aUa - aUaV. First of all, since Ua is a
prefix of the #-palindrome Wj, and U is bispecial and then #-palindrome, it
follows that aU is a factor of w; hence by Lemma 6, alW, = aUaV is a factor
of w. Suppose to the contrary that aUa ¥ aUaV'. Then there exists a proper
prefix V' of V and a letter b € A such that V'b is not a prefix of V and aUaV"’b
is a factor of w. Thus aUaV” is right special, and hence aUaV”’ is a suffix of
W. Since UaV' is also a prefix of Wy, it follows that UaV”’ is bispecial, and
hence a #-palindrome. We deduce that Ual’a is a prefix of W) contradicting
the maximality of the length of U. Thus, aUa F aUaV as required. It follows
that Wia = WiaV, since aUa is a suffix of Wia. Hence WiaV is a left special
factor of w, as the Wya is left special and extends uniquely to WiaV'.

It remains to show that WjaV is also right special. In the same way that we
showed that aUa F aUaV', a symmetric argument shows that 6(V)aUa - aUa.
Thus to show that WiaV is right special, it suffices to show that aUaV is right
special. Now since Wya is left special and aU is a factor of w, it follows from
Lemma 6 that alWya = aUaVa is a factor of w. So if alUlaV were not right
special, it would mean that aUa F aUaV + aUaVa = af(V)aUa. This implies
that w is periodic, a contradiction. Thus WyraV is right special, and hence
bispecial. Since Wya - WiaV, Wy1 cannot be a proper prefix of WiaV', so
that Wk+1 = WkaV

It remains to show that Wj ., is a #-palindrome. But, using the fact that
U is a @-palindrome, 0(Wyi1) = 0(WiaV) = 0(V)aWy, = 0(V)aUaV =
O(V)ad(U)aV = 0(UaV)aV = 0(Wy)aV = WiraV = Wiy Thus Wiy is

a #-palindrome.

Having established that each bispecial factor of w is a f-palindrome, we con-
clude that w is a f-episturmian word. This concludes the proof of Theorem 2.

Remark 9 [t follows that for each k > 1, the 8-palindromic prefixes of Wi
are precisely the bispecial prefizes of Wi,.

Let 6 be an involutory antimorphism of the free monoid A*. In [8] the authors
introduced various sets of words whose factors are closed under the action of 6.
One such set is SWy (V) consisting of all infinite words w whose sets of factors
are closed under # and such that every left special factor of w of length greater
or equal to N is a prefix of w. Thus SWj(0) is precisely the set of all standard
-episturmian words. Fix N > 0, and let w € SWy(N). Let (W,,),>0 denote
the sequence of all #-palindromic prefixes of w ordered by increasing length.
For each n > 0 let z,, € A be such that W, z,, is a prefix of w. The sequence
(n)n>0 is called the subdirective word of w. In [8], the authors establish the



following lemma (Lemma 4.3 in [8]):

Lemma 10 Let w € SWy(N). Suppose x,, = x,, for some 0 < m < n and
with |Wy,| > N — 2. Then Wy1 = (Woz,)®°.

In case N = 0, we can say more:

Proposition 11 Let w be a standard 0-episturmian word. Suppose that W, a

15 left special for somen > 0, and that the letter a occurs in W,,. Then W, 1 =
(Wya)®e.

PROOF. By Lemma 10 it suffices to show that for some 0 < m < n, W,a is
left special. Let W, be the shortest bispecial factor containing the letter a.
Thus, m + 1 < n since W,, contains a. Since W,,, does not contain a, we can
write W,.1 = W, XaY W,,. Here any one of X, Y, and W,, may be the empty
word. Since W, is the shortest bispecial factor containing a, it follows that
every occurrence of a in w is preceded by W,,X. Since W,a is a factor, and
Wii1 is a suffix of W,,, it follows that W, X is both a prefix and a suffix of
Wins1. But this implies that W, X is bispecial, and since |W,,, X| < |W,,11],
we deduce that W,, X = W,,, in other words, X is empty. Hence W,,a is left
special as required. O

We observe that Proposition 11 holds also for (general) f-episturmian words,
since for any @-episturmian word there exists a standard #-episturmian word
having the same set of factors.

In general Proposition 11 does not extend to words w € SWy(N) for N > 0.
For instance, let t be the Tribonacci word, i.e., the fixed point of the morphism
0+ 01,1+ 02 and 2 — 0. Let w be the image of t under the morphism
0+ a, 1 bc, and 2 +— cab. Let 6 be the involutory antimorphism generated
by 6(a) = a, and 6(b) = c. Then it is readily verified that w € SWy(4),
but w ¢ SWy(3) since both abc and cab are left special factors. We have that
Wi = a, Wy = abca, and W3 = abcacababca. Thus although Woc is left special,
and ¢ occurs in Wa, we have that W3 # (Wac)®0 = abeacbabcea.
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