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Abstract
Aim: The	endemic	seagrass	Posidonia oceanica	 is	a	key	component	of	 the	coastal	
seascapes	of	the	Mediterranean	Sea,	where	it	provides	crucial	ecosystem	services	
and	promotes	 the	assembly	of	diverse	ecological	 communities.	Although	protec‐
tion	policies	exist,	P. oceanica	meadows	have	been	steadily	declining	in	the	recent	
past	because	of	human	activities	and	climate	change.	Here,	we	quantitatively	ana‐
lyse	basin‐wide	patterns	of	seagrass	connectivity	over	a	30‐year‐long	period	and	
identify	connectivity	hotspots	that	may	serve	as	priority	targets	for	conservation	
actions.
Location: Mediterranean	Sea.
Time period: 1987–2016.
Major taxa studied: The	seagrass	P. oceanica.
Methods: A	biophysical	Lagrangian	approach	is	used	to	simulate	dispersal	of	sea‐
grass	fruits	operated	by	marine	currents.	Connectivity	metrics	(self‐retention,	 in‐
degree	and	outdegree)	are	evaluated	on	top	of	Lagrangian	simulations	to	identify	
the	most	ecologically	connected	areas.	Time	series	of	local	connectivity	scores	are	
analysed	to	study	temporal	variability	and	possibly	detect	trends	at	different	spatial	
scales.
Results: Spatio‐temporal	variability	is	an	important	component	of	seagrass	connec‐
tivity	in	the	Mediterranean.	Connectivity	hotspots	are	unevenly	distributed	in	all	of	
its	four	main	sub‐basins,	and	along	both	European	and	African	coastlines.	Although	
statistically	 significant	 local	 trends	 in	 connectivity	 are	 generally	 quite	 infrequent	
across	the	whole	basin,	they	appear	to	be	relatively	more	prevalent	in	connectivity	
hotspots.	The	interannual	variability	of	average	connectivity	scores	seems	to	be	at	
least	partially	linked	to	meteorological	fluctuations.
Main conclusions: The	present	study	represents	a	step	forward	in	the	application	of	a	
quantitative,	scalable	and	replicable	methodological	framework	for	the	prioritization	
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1  | INTRODUC TION

Posidonia oceanica	 (L.)	Delile	 is	 a	 seagrass	 species	 endemic	 to	 the	
Mediterranean	Sea;	it	inhabits	the	coasts	of	the	entire	Mediterranean	
basin	in	a	1–45	m	depth	range,	except	for	large	estuaries	and	regions	
where	extreme	 thermal	 and	 salinity	 conditions	 are	not	 favourable	
for	its	persistence	(Gobert	et	al.,	2006;	Telesca	et	al.,	2015).	P. oce‐
anica	plays	a	pivotal	ecological	role	as	a	habitat‐forming	species.	Its	
vast	underwater	meadows	shape	the	submarine	seascape	in	coastal	
areas	 (Montefalcone,	 Albertelli,	 Bianchi,	 Mariani,	 &	 Morri,	 2006).	
They	also	create	favourable	conditions	for	the	assembly	of	diverse	
and	complex	communities	that	include	also	many	commercially	im‐
portant	fish	species	(Pergent	et	al.,	2016).	For	these	reasons,	P. oce‐
anica	 can	 be	 considered	 an	 ecosystem	 engineer,	 that	 is	 a	 species	
providing	 crucial	 ecosystem	 services,	 such	 as	 water	 oxygenation,	
carbon	sequestration,	nutrient	cycling,	water	purification	and	pro‐
tection	 from	 coastline	 erosion,	 and	 offering	 shelter	 or	 nursery	 to	
other	species	 (Campagne,	Salles,	Boissery,	&	Deter,	2015;	Vassallo	
et	 al.,	 2013).	 Despite	 remaining	 the	 most	 widespread	 seagrass	 in	
the	Mediterranean	Sea,	P. oceanica	populations	have	been	sharply	
declining	in	recent	decades	due	to	multiple	stressors,	including	the	
localized	effects	of	climate	change	and	human	activities,	with	an	es‐
timated	13%–50%	decrease	 in	areal	extent	over	the	past	60	years	
(de	 los	 Santos	 et	 al.,	 2019;	 Marbà,	 Díaz‐Almela,	 &	 Duarte,	 2014;	
Telesca	et	al.,	2015).	In	this	respect,	P. oceanica	shares	the	same	fate	
as	the	majority	of	seagrass	species	in	coastal	waters	across	the	globe	
(Orth	et	al.,	2006;	Waycott	et	al.,	2009).	Owing	to	its	importance	in	
the	context	of	 the	Mediterranean	Sea	coastal	 ecosystems,	 associ‐
ated	with	the	current	trends	of	species	distribution	decline,	P. ocean‐
ica	has	been	identified	as	a	key	target	for	conservation	by	European	
institutions	since	the	1990s	(Boudouresque	et	al.,	2012).

Posidonia oceanica can	 reproduce	sexually,	producing	seed‐car‐
rying,	positively	buoyant	 fruits	 that	may	be	carried	by	marine	cur‐
rents	and	thus	represent	the	main	dispersal	agents	for	this	species	
(McMahon	et	al.,	2014).	Data	on	 the	dispersal	distances	of	P. oce‐
anica	fruits	are	scarce.	As	an	example,	Arnaud‐Haond	et	al.	 (2007)	
showed	that	the	dispersal	of	P. oceanica	fruits	can	be	restricted	to	
the	scale	of	a	few	metres	in	some	meadows,	 in	spite	of	the	appar‐
ent	potential	for	larger‐scale	seed	dispersal.	In	the	same	study,	the	
authors	showed	the	existence	of	genetic	structure	within	individual	
seagrass	meadows	 and	 genetic	 differentiation	 among	 populations	
on	scales	ranging	from	tens	of	kilometres	up	to	the	great	divergence	
between	populations	 inhabiting	the	eastern	and	western	basins	of	

the	Mediterranean	 Sea.	However,	 evidence	 also	 exists	 suggesting	
that	dispersal	distances	for	P. oceanica	may	be	significantly	greater	
and	more	 variable	 than	previously	 considered.	 For	 instance,	 Serra	
et	 al.	 (2010)	 reported	 dispersal	 distances	 up	 to	 50	 km.	 Realized	
connectivity in P. oceanica	 is	 likely	mainly	 limited	 by	 the	 episodic	
nature	 of	 flowering,	 sexual	 reproduction	 and	 the	 overall	 low	 pro‐
duction	rate	of	fruits	in	most	locations	(e.g.	Balestri	&	Cinelli,	2003;	
Balestri,	Vallerini,	&	Lardicci,	2017;	Procaccini,	Orsini,	Ruggiero,	&	
Scardi,	2001).	This	implies	that	local	management	alone	may	not	be	
enough	for	P. oceanica	and	that	spatial	planning	should	not	dismiss	
connectivity	out	of	hand.	In	fact,	sexual	reproduction	and	fruit	dis‐
persal,	even	at	a	low	rate,	can	play	a	critical	role	in	the	colonization	
of	new	sites,	recovery	after	disturbance	and	establishment	of	new	
genotypes	 in	 existing	 seagrass	 populations.	 Because	 of	 the	wide‐
spread	distribution	of	this	foundation	species	along	Mediterranean	
coasts	and	the	reported	large‐scale	trajectories	of	loss,	conservation	
strategies	 should	 be	 planned	 at	 a	whole‐basin	 scale,	with	 priority	
being	 given	 to	 sites	 that	 play	 a	 key	 role	 in	 structuring	 population	
connectivity,	thus	supporting	effective	conservation	and	restoration	
strategies.	This	coordinated	effort	would	also	be	coherent	with	habi‐
tat‐based	policies	that	constitute	the	cornerstone	of	Europe's	nature	
conservation	policy	(e.g.	“Habitats	Directive,”	92/43/EEC).

Designing	 prioritization	 strategies	 at	 the	 scale	 of	 the	 whole	
Mediterranean	Sea	is	necessary	to	channel	resources	where	inter‐
ventions	are	most	urgently	needed	and/or	 likely	 to	be	effective.	
However,	 this	 requires	a	comprehensive	 framework	able	 to	cap‐
ture	the	complexity	of	both	patterns	and	processes,	and	duly	ac‐
counting	for	the	challenges	imposed	by	such	a	large	spatial	extent.	
This	problem	is	further	exacerbated	by	the	trans‐boundary	nature	
of	the	Mediterranean	Sea,	the	complex	social,	cultural	and	political	
conditions	of	the	countries	surrounding	it	and	its	high	sensitivity	
to	global	climate	change	(Lejeusne,	Chevaldonné,	Pergent‐Martini,	
Boudouresque,	 &	 Perez,	 2010;	 Micheli	 et	 al.,	 2013).	 Indeed,	 a	
regional	 approach	 for	 the	 protection	 and	 enhancement	 of	 the	
status	 of	 the	marine	 environment	 in	 the	Mediterranean	 Sea	 re‐
quires	a	close	cooperation	among	states	and	international	organi‐
zations,	which	 is	one	of	the	founding	principles	of	the	Barcelona	
Convention	 (“Convention	 for	 the	 Protection	 of	 the	 Marine	
Environment	and	the	Coastal	Region	of	the	Mediterranean”).	Also,	
the	Marine	 Strategy	 Framework	 Directive	 (MFSD,	 2008/56/EC)	
has	 established	 detailed	 criteria	 and	 methodological	 standards	
according	to	which	each	member	state	has	to	take	the	necessary	
measures	 to	 achieve	 or	 maintain	 “Good	 Environmental	 Status”	

of	 seagrass	 conservation	 actions	 in	 the	Mediterranean	 large	marine	 ecosystem,	 a	
challenging	environment	characterized	by	complex	socio‐economic	boundary	condi‐
tions	and	high	sensitivity	to	the	localized	effects	of	global	climate	change.
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in	 the	marine	environment.	 In	general,	 identifying	areas	 for	pro‐
tection	in	 large	marine	ecosystems	requires	techniques	involving	
multiple	scales	of	analysis.	The	spatial	structuring	imposed	by	the	
interplay	between	local	environmental	conditions	and	basin‐wide	
circulation	 patterns,	 in	 particular,	 calls	 for	 the	 design	 of	 marine	
protected	 areas	 ensuring	 and	 promoting	 seascape	 connectivity	
(Planes,	Jones,	&	Thorrold,	2009).	In	fact,	if	a	protected	area	is	not	
sufficiently	 connected	 to	 others,	 it	may	 not	 effectively	 receive/
send	propagules	 (such	 as	 larvae	or	 seeds),	 thus	 possibly	 thwart‐
ing	natural	recovery	(McCook	et	al.,	2009).	In	other	words,	spatial	
planning	of	marine	protection	should	be	conceived	as	the	design	of	
a	coherent	network	of	protected	areas	ecologically	connected	at	
various	spatial	scales,	in	order	to	fulfil	ecological	aims	more	effec‐
tively	 than	single	 individual	sites	could	do	 (Boero,	2015;	WCPA/
IUCN,	2007).	Assessing	the	functional	connectivity	of	species	that	
are	target	of	protection	efforts,	such	as	P. oceanica,	is	thus	of	par‐
amount	 importance	to	 large‐scale	conservation	planning	 (Jahnke	
et	al.,	2017;	Kendrick	et	al.,	2017).

In	this	work,	connectivity	patterns	of	P. oceanica are evaluated at 
the	scale	of	the	whole	Mediterranean	Sea	over	a	30‐year‐long	time	

span.	We	propose	a	definition	of	species‐specific	functional	connec‐
tivity	(suitability‐weighted	connectivity—for	brevity,	s‐connectivity)	
accounting	 for	 both	 local	 suitability	 conditions	 and	 dispersal	 pat‐
terns	driven	by	marine	currents.	This	definition	aims	to	account	not	
only	for	the	amount	of	propagules	potentially	exchanged	between	
marine	 sites	 but	 also	 for	 the	 environmental	 conditions	 that	 may	
influence	 local	suitability	for	the	species	under	study.	To	that	end,	
a	Lagrangian	approach	is	used	to	build	a	biophysical	model	for	the	
dispersal	 of	 P. oceanica.	 Following	 the	 methodological	 framework	
proposed	by	Melià	et	al.	(2016),	s‐connectivity	is	then	evaluated	on	
top	of	the	results	of	Lagrangian	simulations	to	single	out	the	stron‐
gest	and	most	time‐persistent	ecological	connections	for	P. oceanica 
across	the	Mediterranean	Sea,	specifically	 in	terms	of	the	possible	
functional	 roles	 that	 a	 local	 population	 can	 play	 in	 the	 context	 of	
a	 larger	 metapopulation,	 namely	 retainer,	 sink	 and	 source.	 The	
multi‐decadal	 temporal	span	of	the	simulation	exercise	also	allows	
the	study	of	temporal	variability	in	P. oceanica connectivity and the 
identification	of	trends,	as	well	as	the	investigation	of	the	possible	
relationships	between	connectivity	and	meteorological	fluctuations.	
The	ultimate	goal	of	the	analysis	is	to	improve	spatial	prioritization	

F I G U R E  1  The	biophysics	of	
Posidonia oceanica connectivity in the 
Mediterranean	Sea.	(a)	Species‐specific	
suitability	map	(Giannoulaki	et	al.,	2013).	
Colour‐coded	scores	represent	estimated	
probabilities	of	P. oceanica	presence.	
(b)	Example	of	circulation	field.	Colours	
represent	the	speed	of	surface	currents	
for	1	January	2014,	obtained	through	
bilinear	interpolation	of	data	from	a	
physical	reanalysis	of	Mediterranean	
circulation	(Lecci	et	al.,	2017;	Simoncelli	
et	al.,	2014).	(c)	Marine	sectors	for	the	
analysis	of	P. oceanica connectivity 
(centroids,	coloured	dots).	Colours	
represent	the	number	of	simulated	
Lagrangian	trajectories	starting	from	each	
sector	in	each	year	of	the	simulation	time	
span	(1987–2016).	This	variability	reflects	
the	small‐scale	spatial	heterogeneity	in	
the	distribution	of	suitable	sites.	Black	
dots	are	suitable	sites	that	fall	outside	the	
spatial	domain	of	the	physical	reanalysis	
and	that	are	thus	not	used	in	the	
numerical	simulations
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practice	in	conservation	planning	for	an	iconic	foundation	species	at	
a	Mediterranean‐wide	spatial	scale.

2  | METHODS

2.1 | Biophysical simulations of dispersal

Basin‐wide	 potential	 connectivity	 for	 P. oceanica in the 
Mediterranean	 Sea	 is	 estimated	 through	 Lagrangian	 simulations	
(Van	Sebille	et	al.,	2018),	with	dispersing	agents	representing	P. oce‐
anica	fruits.	Lagrangian	particles	are	released	at	marine	sites	that	are	
suitable	 for	P. oceanica	meadows,	are	 transported	by	currents	and	
may	eventually	settle	at	some	suitable	sites.

Release	 sites	 are	 determined	 based	 on	 a	 species‐specific	 suit‐
ability	map	 produced	 by	 the	MediSeH	 project	 (Giannoulaki	 et	 al.,	
2013),	in	which	binary	observations	of	P. oceanica	presence–absence	
(Telesca	et	al.,	2015)	and	a	set	of	36	mapped	predictor	variables	(en‐
compassing	bathymetry	 and	 geographical	 features,	 physico‐chem‐
ical	 characteristics,	 nutrient	 and	 pollutant	 concentrations,	 as	 well	
as	 human	 impact	 indicators)	 were	 used	 to	 train	 a	 random	 forest	
algorithm	(Breiman,	2001)	estimating	the	probability	of	P. oceanica 
occurrence	 throughout	 the	 whole	 Mediterranean	 Sea	 basin.	 The	
predictive	variables	that	played	the	most	relevant	roles	in	the	final	
species	distribution	model	by	Giannoulaki	et	al.	were	nitrate	and	sil‐
icate	 concentrations,	 average	 depth,	 sea	 surface	 temperature	 and	
salinity,	with	distance	from	river	mouths,	phosphate	concentration,	
pH,	bottom	salinity	and	photosynthetic	active	radiation	also	featur‐
ing	prominently.	The	estimated	occurrence	probability	of	P. oceanica 
meadows	 (a	 proxy	 for	 suitability)	 at	 site	A, sA,	was	 projected	 as	 a	
high‐resolution	(1/240°,	around	0.5	km)	raster	map	extending	over	
the	whole	Mediterranean	basin	(Figure	1a).

Circulation	 fields	 (daily	 averages,	Figure	1b)	 are	obtained	 from	
a	 state‐of‐the‐art,	 Mediterranean‐wide	 physical	 reanalysis	 (Lecci,	
Fratianni,	Drudi,	&	Grandi,	2017;	Simoncelli	et	al.,	2014)	produced	
by	the	Istituto	Nazionale	di	Geofisica	e	Vulcanologia	(Italy).	Because	
circulation	fields	have	lower	spatial	resolution	(1/16°,	around	7	km)	
than	the	suitability	map,	some	differences	in	the	representation	of	
the	coastlines	and	other	details	of	the	physical	domain	are	clearly	to	
be	expected.	For	instance,	the	currently	available	physical	reanalysis	
does	not	cover	yet	areas	like	the	Sea	of	Marmara	in	Turkey,	or	many	
of	 the	Greek	gulfs,	 including	the	Gulf	of	Corinth	and	the	Euboean	
Gulf.

Lagrangian	 simulations	 are	 performed	 over	 the	 time	 interval	
1987–2016	(ny	=	30	years).	 In	each	year,	timing	of	release	 is	set	to	
match	 the	 fruit‐release	 season	 of	 P. oceanica	 (typically,	 January	
throughout	April,	for	a	total	of	nd	=	120	days;	see	Melià	et	al.,	2016;	
Jahnke	et	al.,	2017).	For	each	day	in	this	season,	a	fixed	number	of	
particles	(np	=	15)	are	released	from	each	pixel	of	the	suitability	map	
that	has	strictly	positive	suitability	and	that	lies,	at	least	in	part,	inside	
the	domain	of	the	physical	reanalysis.	While	the	release	of	15	par‐
ticles	per	site	and	day	might	seem	quite	a	low	figure,	the	size	of	the	
spatial	domain	of	our	Lagrangian	exercise	(the	whole	Mediterranean	
basin)	 is	 such	 that	 matters	 of	 computational	 feasibility	 become	

relevant.	A	total	of	nr ≈	5.69	×	105	release	sites	are	in	fact	identified	
following	the	selection	criteria	outlined	above.	All	 in	all,	an	excess	
of	nt = ny nd np nr ≈	30	billion	Lagrangian	particles	is	tracked	over	the	
whole	numerical	assessment.	The	initial	position	of	particles	within	
each	release	site	is	randomly	assigned	to	uniformly	span	the	area	of	
the	pixel	and	a	depth	interval	of	0–1	m	(P. oceanica	fruits	are	free‐
floating	and	positively	buoyant;	Serra	et	al.,	2010).

The	 longitudinal	 and	 latitudinal	 components	of	 the	position	of	
each	 particle	 are	 updated	 by	 assuming	 passive	 transport	 driven	
by	 marine	 circulation	 fields,	 while	 particle	 depth	 is	 not	 updated.	
Numerical	 integration	 is	 performed	 with	 a	 Runge–Kutta	 fourth‐
order	 scheme	 with	 adaptive	 step	 size	 (Dormand	 &	 Prince,	 1980).	
At	 each	 time	 step,	 three‐dimensional	 trilinear	 interpolation	 of	 the	
longitudinal	and	latitudinal	components	of	the	velocity	field	is	per‐
formed.	Note	that	the	spatial	grain	of	the	circulation	model	(1/16°)	is	
much	coarser	than	the	suitability	map	used	to	identify	release	sites	
(1/240°).	As	such,	the	effects	of	releasing	a	large	number	of	particles	
from	each	pixel	of	the	latter,	higher‐resolution	grid	would	likely	be	
dampened	by	the	necessity	of	interpolating	current	velocities	from	
the	 former,	 lower‐resolution	 grid.	 The	 position	 of	 each	 particle	 is	
tracked	 for	 a	 period	of	 time	 corresponding	 to	 the	duration	of	 the	
dispersing	stage	of	P. oceanica,	after	which	fruits	dehisce	and	release	
their	seeds.

Duration	 estimates	 for	 the	 floating	 phase	 of	 the	 fruits	 of	 this	
seagrass	 species	 vary	 from	 one/two	weeks	 (e.g.	 Aliani,	 Gasparini,	
Micheli,	 Molcard,	 &	 Peirano,	 2006;	 Buia	 &	Mazzella,	 1991)	 up	 to	
4	weeks	(Serra	et	al.,	2010).	Here,	we	use	a	value	of	28	days,	which	is	
towards	the	maximum	reported	length	of	the	dispersal	window	and	
allows	an	assessment	of	potential	connectivity	(an	upper	bound	for	
realized	 connectivity).	This	 value	has	 consistently	been	used	 in	 all	
previous	modelling	studies	addressing	P. oceanica	dispersal	dynam‐
ics	(Jahnke	et	al.,	2017;	Melià	et	al.,	2016;	Serra	et	al.,	2010).

In	our	modelling	framework,	a	dispersal	event	is	considered	suc‐
cessful	only	if	a	particle	reaches	a	suitable	site	at	the	end	of	its	dis‐
persing	phase.	Although	this	approach	differs	from	what	has	been	
proposed	in	the	literature	to	describe	connectivity	in	other	seagrass	
species	(see	Appendix	S1	for	details),	it	has	consistently	been	used	in	
previous	works	addressing	P. oceanica	fruit	dispersal	via	Lagrangian	
simulations	(see	again	Jahnke	et	al.,	2017;	Melià	et	al.,	2016;	Serra	
et	al.,	2010).

2.2 | Posidonia oceanica‐specific connectivity

The	 strength	of	P. oceanica	 connectivity	 is	 assumed	 to	be	propor‐
tional	 to	the	number	of	successful	dispersal	events	nAB(y)	 that	 link	
(directionally)	any	two	suitable	sites	(say,	site	A	to	site	B)	 in	year	y. 
This	quantity	is	clearly	influenced	by	species‐specific	traits	such	as	
timing	of	 fruit	 release	and	duration	of	 the	dispersing	phase,	but	 is	
mostly	concerned	with	the	hydrodynamics	of	passive	propagule	dis‐
persal	by	marine	currents.	To	account	for	small‐scale	heterogenei‐
ties	in	the	quality	and	spatial	distribution	of	suitable	sites	across	the	
Mediterranean	 Sea,	 we	 define	 an	 ecologically	motivated	measure	
of	 connectivity	 in	which	 successful	 dispersal	 events	 are	weighted	
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according	to	the	suitability	scores	of	both	release	(source)	and	set‐
tling	 (sink)	 sites.	 Suitability‐weighted	 connectivity	 (s‐connectivity,	
from	here	on	out)	between	two	sites	A and B in year y	 is	thus	de‐
fined	as	CAB

s(y)	=	sA nAB(y)	sB.	 In	this	way,	not	only	species‐specific	
dispersal	patterns	but	also	local	suitability	conditions	are	effectively	
taken	into	consideration	and	integrated	in	a	comprehensive	measure	
of	functional	connectivity.	For	this	reason,	s‐connectivity	can	repre‐
sent	an	informative	tool	to	evaluate	the	ecological	value	of	marine	
sites,	at	least	from	the	perspective	of	the	potential	connectivity	of	
the	species	being	studied.

For	the	sake	of	spatial	robustness,	instead	of	analysing	individ‐
ual	sites	at	the	fine	scale	of	the	P. oceanica	suitability	map	(1/240°),	
we	focus	on	the	marine	sectors	defined	by	the	coarser	resolution	of	
the	physical	reanalysis	of	the	circulation	fields	(1/16°).	Specifically,	
a	suitable	marine	sector	is	defined	as	a	cell	of	the	circulation	model	
that	 includes	at	 least	one	suitable	site.	Each	suitable	sector	may	
thus	 include	 from	one	 to	 (240/16)2	=	225	suitable	sites.	By	con‐
struction,	then,	despite	the	release	of	a	uniform	number	of	parti‐
cles	at	the	fine	spatial	scale	of	the	suitability	map,	the	number	ni 
of	Lagrangian	 trajectories	starting	at	each	marine	sector	 i	varies	
over	 space,	 reflecting	 the	uneven	 spatial	 distribution	of	 suitable	
sites	in	the	seascape.	In	fact,	upwards	of	three	thousand	particles	
are	released	daily	from	fully	suitable	sectors,	for	an	excess	of	400	
thousand	 particles/sector/year.	 By	 contrast,	 marine	 sectors	 for	
which ni	is	below	a	given	threshold	(set	here	to	1,000	particles	per	
year)	are	excluded	from	further	analysis	to	improve	robustness.	A	
set	of	nm	≈	8,000	suitable	marine	sectors	is	identified	in	this	way,	
spanning	the	Mediterranean	shorelines	(Figure	1c).	The	pairwise	s‐
connectivity	score	between	any	two	sectors	(say	i and j)	in	a	given	
year	(say	y)	is	defined	as.

These	scores	can	be	suitably	organized	in	a	time‐varying	s‐con‐
nectivity	matrix	Cs(y)	=	[Cij

s(y)],	which	in	turn	can	be	characterized	as	
a	directed	weighted	graph,	with	nodes	and	edges	being,	respectively,	
marine	sectors	and	time‐varying	s‐connectivity	scores.

2.3 | Connectivity metrics

In	the	theory	of	complex	networks,	two	simple	yet	powerful	met‐
rics	of	connectivity	are	the	indegree	and	the	outdegree	of	network	
nodes,	 defined	 for	weighted	 graphs	 as	 the	 sum	of	 the	 incoming	
and	outgoing	 links'	weights,	 respectively	 (Newman,	2010).	Thus,	
in	 the	 context	 of	 P. oceanica	 dispersal,	 indegree	 and	 outdegree	
measure	the	tendency	of	the	sites	within	a	marine	sector	to	func‐
tion	as	potential	sinks	or	sources	for	P. oceanica	 fruits,	 that	 is	 to	
be	 successful	 at	 receiving/sending	 propagules	 from/to	 suitable	
sites	 lying	 in	 other	 sectors.	 In	 ecological	 applications,	 another	
important	 metric	 based	 on	 connectivity	 scores	 is	 self‐retention	
(e.g.	Melià	 et	 al.,	 2016).	 For	 the	 problem	 at	 hand,	 self‐retention	
quantifies	 how	 many	 P. oceanica	 fruits	 both	 are	 released	 and	
settle	within	 a	 given	marine	 sector	 (say	 i),	 with	 the	 release	 and	

settling	 sites	 being	 possibly	 different,	 but	 both	 lying	 in	 sector	 i. 
Technically,	the	diagonal	elements	Cii

s(y)	of	the	s‐connectivity ma‐
trix	thus	represent	the	local	self‐retention	(SR)	of	each	marine	sec‐
tor	(SRi(y)	=	Cii

s(y)),	while	indegree	(ID)	and	outdegree	(OD)	can	be	
easily	evaluated	as	the	column	or	the	row	sums	of	the	s‐connectiv‐
ity	matrix,	that	is	IDi(y)	=	∑j≠i C

s
ji(y)	and	ODi(y)	=	∑j≠i C

s
ij(y),	with	the	

condition j ≠ i	being	imposed	to	avoid	multiple	counting	of	self‐re‐
tention.	 Because	 of	 the	 time‐varying	 nature	 of	 the	 s‐connectiv‐
ity	matrix	(as	determined	by	the	temporal	variability	of	circulation	
fields),	self‐retention,	indegree	and	outdegree	are	all	time‐varying	
quantities	too.

2.4 | Identification of s‐connectivity hotspots

The	metrics	described	above	can	be	used	to	 identify	the	hotspots	
of	s‐connectivity	 for	P. oceanica	 across	 the	Mediterranean	Sea.	To	
do	so,	we	follow	the	methodological	framework	proposed	by	Melià	
et	al.	(2016)	to	assign	each	marine	sector	a	synthetic	s‐connectivity 
score	 recapitulating	 its	 capacity	 to	 simultaneously	 act	 as	 retainer,	
sink	and	source.

First	off,	 the	across‐year	mean	 (an	 indicator	of	sheer	 intensity)	
and	 coefficient	 of	 variation	 (standard	 deviation‐to‐mean	 ratio,	 an	
indicator	 of	 temporal	 variability)	 are	 evaluated	 for	 each	 s‐connec‐
tivity	metric	and	marine	sector.	In	this	way,	six	different	indicators	
are	produced	for	each	suitable	marine	sector	i:	SRi

Ave	and	SRi
CV	for	

self‐retention,	IDi
Ave and IDi

CV	for	indegree	and	ODi
Ave and ODi

CV	for	
outdegree,	with	the	superscripts	Ave	and	CV	indicating	average	and	
coefficient	of	variation,	respectively.

Then,	 for	 each	metric,	 two	 separate	 rankings	 of	marine	 sec‐
tors	are	produced,	respectively,	according	to	either	decreasing	in‐
tensity	or	increasing	variability.	To	avoid	spurious	results,	sectors	
with	an	average	 intensity	score	of	zero	 (which	 indicates	that	 the	
local	values	of	 the	s‐connectivity metric are null over the whole 
simulation	 time	 span)	 are	 listed	 as	 last	 in	 the	 variability	 ranking.	
For	a	given	metric,	two	percentile	scores	can	thus	be	assigned	to	
each	 sector:	 the	 first	 defined	 as	 the	 percentage	 of	 sectors	 that	
have	intensity	equal	to	or	lower	than	the	one	being	considered	and	
the	second	as	the	percentage	of	sectors	that	have	equal	or	higher	
variability.	 Therefore,	 the	 sector	 endowed	 with	 highest	 across‐
year	mean	will	receive	an	intensity	score	of	100	and	the	one	with	
the	lowest	a	score	of	zero;	conversely,	the	sector	with	lowest	co‐
efficient	of	variation	will	receive	a	variability	score	of	100	and	the	
one	with	the	highest	a	score	of	zero.	This	procedure	leads	to	the	
definition	of	 six	percentile	 scores	 for	each	 sector	 (say	 i):	 pSRi

Ave 
and	pSRi

CV	for	self‐retention,	pIDi
Ave	and	pIDi

CV	for	indegree	and	
pODi

Ave	and	pODi
CV	for	outdegree.

Afterwards,	for	each	sector	 i,	we	introduce	summary	percen‐
tile	 scores	 for	 self‐retention,	 indegree	 and	 outdegree.	 They	 are	
defined	conservatively	as	the	minimum	between	the	two	relevant	
percentile	scores	pertaining	to	the	intensity	and	variability	of	each	
metric,	 that	 is	 pSRi	 =	 min	 (pSRi

Ave,	 pSRi
CV),	 pIDi	 =	 min	 (pIDi

Ave,	
pIDi

CV)	and	pODi	=	min	(pODi
Ave,	pODi

CV).	A	synthetic	percentile	
s‐connectivity	score	pCSi	is	then	assigned	to	each	of	the	n

m marine 

Cs
ij
(y)=ΣA∈iΣB∈jC

s

AB
(y)=ΣA∈iΣB∈jsAnAB(y)sB.



174  |     MARI et Al.

sectors	by	taking	the	minimum	(again,	conservatively)	among	the	
three	summary	scores	for	self‐retention,	indegree	and	outdegree,	
that	is	pCSi	=	min	(pSRi,	pIDi,	pODi).	This	final	percentile	value	can	
thus	be	interpreted	as	an	overall	s‐connectivity	score,	and	sectors	
where	pCS	is	highest	can	be	considered	hotspots	of	s‐connectiv‐
ity	for	P. oceanica	 in	the	Mediterranean	Sea	and	possible	priority	
candidates	 for	 species	 protection.	We	 stress	 again	 that	 the	 ag‐
gregation	procedure	used	to	evaluate	pCS	reflects	a	conservative	
strategy	 by	 which	 hotspots	 are	marine	 sectors	 identified	 based	
on	their	ability	to	outperform	others	in	the	s‐connectivity metric/
indicator	in	which	they	are	weakest.

Finally,	the	top‐k s‐connectivity	hotspots	(with	k	being	the	num‐
ber	of	 target	 hotspots)	 are	 identified	 as	 the	k	 sectors	whose	 syn‐
thetic	percentile	s‐connectivity	score	exceeds	 the	 (nm	−	k)th	order	
statistic	of	the	score	distribution.

The	 final	 results	 of	 the	 hotspot	 identification	 procedure	 do	
evidently	 depend	 upon	 the	 spatial	 scale	 of	 analysis,	 which	 in	 the	
problem	at	hand	is	defined	by	the	size	of	marine	sectors.	Sensitivity	
analysis	can	be	used	 to	check	whether	 the	procedure	 is	 robust	 to	
variations	in	spatial	scales,	namely	to	changing	the	way	local	(self‐re‐
tention)	versus	in/outbound	(in/outdegree)	connections	are	defined	
(details	in	Appendix	S1).	Other	approaches	to	investigate	connectiv‐
ity	within	a	network	of	seagrass	populations,	thus	also	possibly	iden‐
tifying	connectivity	hotspots,	have	been	explored	in	the	literature,	
namely	based	on	tools	proposed	in	the	context	of	complex	network	
theory	(Grech	et	al.,	2018).	A	discussion	of	such	approaches	is	also	
available	in	Appendix	S1.

2.5 | Evaluation of s‐connectivity temporal 
variability

To	 evaluate	 temporal	 variability	 in	 s‐connectivity	 and	 to	 assess	
whether	there	may	exist	temporal	trends,	linear	regression	is	per‐
formed	on	the	local	(sector‐specific),	30‐year‐long	time	series	of	
the	 three	metrics	 introduced	above,	 that	 is	 self‐retention,	 inde‐
gree	and	outdegree.	A	linear	trend	is	detected	(via	ordinary	least	
square	techniques;	Draper	&	Smith,	1998)	if	the	95%	confidence	
interval	for	the	slope	of	the	regression	line	does	not	contain	zero.	
While	a	 time	span	of	30	years	may	not	be	considered	 long	with	
respect	 to	 the	generation	time	of	P. oceanica	meadows,	 it	 is	 the	
longest	 currently	 allowed	 for	 the	 evaluation	 of	 current‐driven	
connectivity	in	the	Mediterranean,	as	it	corresponds	to	the	length	
of	the	state‐of‐the‐art	reanalysis	of	the	physical	parameters	 (in‐
cluding	circulation	fields)	of	the	sea.	Within	this	temporal	window,	
relatively	conservative	methods	to	detect	trends	or	correlations	

have	been	applied,	as	only	linear	patterns	have	been	included	in	
the	analysis,	while	more	general	tests	(e.g.	Mann–Kendall	and	de‐
rivatives	for	trend	detection)	have	not	been	considered.

Temporal	trends	in	spatially	averaged	s‐connectivity	are	also	in‐
vestigated	both	at	 the	scale	of	 the	whole	Mediterranean	Sea	and	
for	restricted	sets	of	sectors	identified	as	P. oceanica connectivity 
hotspots.	 Additionally,	 correlation	 patterns	 are	 sought	 between	
average	self‐retention,	 indegree	and	outdegree	values	and	 lagged	
time	series	of	 standard	measures	of	meteorological	variability	 for	
the	 Mediterranean	 basin,	 namely	 the	 Mediterranean	 Oscillation	
Index	 (MOI;	 Conte,	 Giuffrida,	 &	 Tedesco,	 1989),	 in	 its	 two	 vari‐
ants	 (MOI1,	Algiers–Cairo,	and	MOI2,	Gibraltar–Tel	Aviv),	and	the	
Western	Mediterranean	Oscillation	Index	(WeMOI;	Martin‐Vide	&	
Lopez‐Bustins,	2006).	All	details	are	available	in	Appendix	S1.

3  | RESULTS

3.1 | Spatio‐temporal patterns of Posidonia oceanica 
s‐connectivity

Posidonia oceanica	dispersal	patterns	(Figure	2)	and	average	dispersal	
distances	(Figure	3)	vary	conspicuously	among	different	regions	of	the	
Mediterranean	Sea	and	fluctuate	widely	over	time	in	the	period	1987–
2016.	As	a	result,	the	s‐connectivity	scores	Cs

ij	(y)	turn	out	to	be	quite	
heterogeneous	as	well,	as	shown	in	Movie	M1,	available	as	support‐
ing	 information.	Despite	 the	 apparent	 spatio‐temporal	 variability	 of	
s‐connectivity	patterns,	some	general	features	emerge:	(a)	along‐coast	
transport	represents	a	prevailing	and	persistent	means	of	dispersal	for	
P. oceanica;	(b)	crossing	of	relatively	short	sea	stretches	is	quite	com‐
mon,	yet	fairly	erratic;	(c)	large	islands	and	archipelagos	may	serve	as	
stepping	stones	to	cross	wider	sea	stretches	over	different	reproduc‐
tion	seasons;	 (d)	some	sea	stretches	are	rarely	 (if	at	all)	 successfully	
crossed	by	dispersing	P. oceanica	fruits;	(e)	the	region	centred	on	the	
Strait	of	Sicily	(see	Figure	1a	for	geographical	designations),	that	is	the	
area	comprised	between	the	southern	coasts	of	Sardinia	and	Sicily,	to	
the	north,	and	the	coasts	of	Tunisia	and	Western	Libya,	to	the	south,	
is	characterized	by	remarkable	intercontinental	s‐connectivity;	and	(f)	
the	Aegean	Sea	forms	a	relatively	disconnected	subsystem.

3.2 | Connectivity metrics and s‐connectivity 
hotspots for Posidonia oceanica

Across‐year	s‐connectivity	 indicators	 (mean	values	and	coefficients	
of	variation	of	self‐retention,	indegree	and	outdegree	for	each	marine	
sector;	see	Figures	S1	and	S2	in	Appendix	S2)	represent	the	basis	to	

F I G U R E  2  Examples	of	time‐varying	Posidonia oceanica	dispersal	kernels.	In	each	panel,	colours	code	the	relative	frequency	of	successful	
dispersal	events	linking	the	selected	marine	sector	(corresponding	to	the	labelling	of	the	black	circles	in	the	top	inset)	with	other	suitable	
sectors	lying	at	a	given	distance	during	a	specific	dispersal	season.	The	nine	sample	sectors	(a–i)	have	been	selected	so	as	to	span	over	
different	spatio‐temporal	scales	of	dispersal,	that	is	encompassing	sectors	characterized	by	relatively	short/long	dispersal	distance	(across‐
year	average	of	mean	dispersal	distance	approximately	half/double	the	across‐sector	mean	value)	and	low/high	temporal	variability	(across‐
year	coefficient	of	variation	of	mean	dispersal	distance	approximately	half/double	the	across‐sector	mean	value).	The	values	of	the	across‐
year	average	(Ave)	and	coefficient	of	variation	(CV)	of	mean	dispersal	distance	for	the	nine	sample	sectors	are	reported	on	top	of	the	panels
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build	the	percentile	scores	for	self‐retention,	indegree	and	outdegree	
intensity	and	variability	(Figure	S3	in	Appendix	S2),	which	are	then	ag‐
gregated	to	form	the	summary	percentile	scores	for	each	of	the	three	
s‐connectivity	metrics	(Figure	S4	in	Appendix	S2)	and,	finally,	the	syn‐
thetic	percentile	s‐connectivity	score,	pCS	(Figure	4a).	The	ordered	
sample	distributions	of	the	summary	scores	for	self‐retention,	inde‐
gree	and	outdegree	and	of	pCS	are	shown	in	Figure	S5	in	Appendix	
S2.	Contrasting	local	suitability	(Figure	1a)	to	pCS	reveals	that	many	
sectors	(e.g.	in	the	Ligurian	Sea)	are	classified	as	highly	suitable,	but	
do	not	stand	out	in	terms	of	s‐connectivity,	evidently	because	of	sub‐
optimal	current‐driven	dispersal;	conversely,	many	others	(e.g.	along	
the	coasts	of	Tunisia	and	Libya,	between	the	Gulf	of	Gabès	and	the	
Gulf	of	Sidra)	are	characterized	by	average	suitability,	but	score	high	
in	terms	of	pCS,	evidently	because	of	excellent	oceanographic	con‐
nectivity	making	up	for	suboptimal	environmental	conditions.	These	
observations	are	generalized	in	Figure	S6	(Appendix	S2),	which	shows	
that	the	correlations	between	pCS	and	local	suitability,	and	between	
pCS	and	the	various	s‐connectivity	metrics,	are	typically	quite	noisy.

The	 top‐100	 and	 top‐500	 hotspots	 of	 s‐connectivity are 
displayed	 in	 Figure	 4b.	 The	 top‐100	 P. oceanica s‐connectivity 
hotspots,	 in	 particular,	 appear	 to	 be	 localized	 along	 the	 Spanish	
coastline	in	the	Balearic	Sea,	on	the	western	coast	of	Sardinia,	in	
the	Northern	Tyrrhenian	Sea,	along	the	coasts	of	Tunisia	and	Libya,	
in	the	North‐Eastern	Adriatic	Sea	(mostly	in	Croatia),	in	the	Ionian	
Sea,	 in	 the	 Aegean	 Sea	 and	 along	 the	 Egyptian	 coastline.	 The	
identification	of	P. oceanica s‐connectivity	hotspots	 seems	 to	be	
quite	robust	with	respect	to	the	spatial	scale	of	analysis,	as	shown	
in	Figure	S7	 in	Appendix	S2.	 In	 fact,	modifying	 the	definition	of	
local	 versus	 in/outbound	 connections	 by	 introducing	 a	 buffer	
zone	around	each	suitable	marine	sector	does	not	fundamentally	
change	 the	 selection	 of	 s‐connectivity	 hotspots.	 Interestingly,	
some	 regions	endowed	with	 a	high	hotspot	density	 (specifically,	
the	 Gulf	 of	 Gabès	 and	 the	 North‐Eastern	 Adriatic	 Sea)	 are	 also	
selected	 as	 central	 for	 s‐connectivity	 by	 some	 relevant	 metrics	
of	node	importance	proposed	in	the	context	of	complex	network	
theory	(Figure	S8	in	Appendix	S2).

F I G U R E  3  Across‐year	evaluation	of	mean	dispersal	distances	for	Posidonia oceanica	fruits	in	the	Mediterranean	Sea.	(a)	Time‐averaged	
mean	dispersal	distance	(colour‐coded)	for	the	period	1987–2016.	(b)	Frequency	distribution	of	the	time‐averaged	mean	dispersal	distance	
in	the	suitable	marine	sectors.	The	mean	dispersal	distance	evaluated	over	all	suitable	sectors	is	~31	km.	(c)	Coefficient	of	variation	of	mean	
dispersal	distance	evaluated	over	time	(colour‐coded,	non‐dimensional).	(d)	Frequency	distribution	of	the	across‐year	variation	coefficient	of	
mean	dispersal	distance.	The	mean	coefficient	of	variation	evaluated	over	all	suitable	sectors	is	~0.54.	Sectors	characterized	by	zero	mean	
dispersal	distance	(pure	retainers,	shown	as	black	dots	in	panel	c),	for	which	the	coefficient	of	variation	of	mean	dispersal	distance	over	time	
cannot	be	computed,	have	been	omitted	from	the	histogram.	Note	that	unsuccessful	dispersal	events	(fruits	that	are	transported	by	marine	
currents	to	unsuitable	sites	at	the	end	of	their	dispersing	phase)	are	not	included	in	the	evaluation	of	mean	dispersal	distances
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3.3 | Temporal trends in s‐connectivity at the 
local scale

Temporal	 trends	 in	 local	 s‐connectivity	 metrics	 are	 shown	 in	
Figure	5.	As	 far	 as	 self‐retention	 is	 concerned,	 the	marine	 sectors	
where	this	metric	has	significantly	(p	<	.05)	increased	over	time	seem	
to	be	clustered	in	space	(e.g.	in	the	Adriatic,	Ionian	and	Aegean	Seas).	
Conversely,	sectors	characterized	by	decreased	self‐retention	appear	
to	be	quite	evenly	distributed	along	the	shores	of	the	Mediterranean	
Sea,	 along	 both	 the	 European	 and	 the	 African	 sides.	 As	 for	 inde‐
gree,	 declining	 scores	 tend	 to	 cluster	 along	 the	 French	 coastline,	
in	Sardinia	(west	and	east	coasts),	along	the	coast	of	Tunisia,	in	the	
Southern	Tyrrhenian	Sea,	in	the	Strait	of	Messina	region	and	the	east	
coast	of	Sicily,	in	the	North‐Eastern	Adriatic	Sea	and	in	the	Aegean	
and	Levantine	Seas.	Increasing	indegree	scores	are	instead	recorded	
in	Corsica	and	Sardinia	(north–south	coasts),	along	the	northern	and	
southern	coasts	of	Sicily,	on	the	shores	of	Libya	and	Egypt,	and	in	the	
Ionian	and	Aegean	Seas.	Concerning	outdegree,	negative	trends	are	
detected	in	clusters	along	the	coasts	of	Spain	and	France,	in	Corsica	
and	Sardinia,	in	Tunisia	and	Libya,	along	both	the	Tyrrhenian	and	the	
Adriatic	coast	of	Italy,	in	the	North‐Eastern	Adriatic	Sea	and	in	the	
Ionian,	Aegean	and	Levantine	Seas.	By	contrast,	positive	 trends	 in	
outdegree	appear	to	be	quite	scattered,	with	clustered	occurrences	
in	the	Strait	of	Messina	region,	in	the	Northern	Adriatic	Sea,	along	
the	coast	of	Libya	and	in	the	Aegean	Sea.

The	 occurrences	 of	 statistically	 significant	 (p	 <	 .05)	 negative	
linear	trends	outnumber	the	occurrences	of	positive	ones	for	both	
self‐retention	 and	 indegree	 (Table	 1).	 Interestingly,	 the	 s‐connec‐
tivity	hotspots	identified	in	Figure	4	are	characterized	by	relatively	
fewer	 occurrences	 of	 increased	 self‐retention	 and	more	 instances	
of	decreased	self‐retention	compared	to	the	whole	Mediterranean	

Sea.	By	contrast,	positive	indegree	trends	are	more	prevalent	among	
s‐connectivity	hotspots	than	in	the	whole	Mediterranean	Sea,	while	
negative	indegree	trends	are	less	prevalent	among	hotspots	than	in	
the	whole	basin.	Outdegree	trends	appear	to	be	less	variable	when	
evaluated	over	the	whole	Mediterranean	Sea	or	restricted	to	s‐con‐
nectivity	hotspots,	yet	statistically	significant	trends	(either	positive	
or	negative)	in	outdegree	time	series	are	more	frequently	observed	
in s‐connectivity	hotspots.

3.4 | Basin‐scale s‐connectivity trends and the 
role of meteorological fluctuations

At	the	whole‐basin	scale,	the	values	of	self‐retention	and	in/outde‐
gree	averaged	across	all	suitable	marine	sectors	in	the	Mediterranean	
Sea	seem	to	have	been	fairly	erratic	during	the	period	1987–2016	
(Figure	 S9	 in	 Appendix	 S2).	 Statistically	 significant	 trends	 can	 be	
identified	(p	>	.05)	in	s‐connectivity	hotspots:	indegree	connectivity	
shows	a	positive	trend	in	both	the	top‐500	and	the	top‐100	sectors,	
while	outdegree	connectivity	shows	a	negative	and	statistically	sig‐
nificant	trend	in	the	top‐500	sectors.

Significant	correlations	 (p	<	 .05)	between	average	s‐connectiv‐
ity	patterns	and	meteorological	variability	indicators	(Figure	S10	in	
Appendix	 S2)	 are	 found	 for	 several	 combinations	of	 lag	 and	 time‐
window	length,	both	at	the	scale	of	the	whole	Mediterranean	and	in	
s‐connectivity	hotspots	(Figures	S11–S13	in	Appendix	S2).

4  | DISCUSSION

In	this	work,	we	have	performed	a	basin‐wide,	multi‐decadal	connec‐
tivity	assessment	for	P. oceanica,	an	iconic	primary	producer	species	

F I G U R E  4  Hotspots	of	 
s‐connectivity	for	Posidonia oceanica 
in	the	Mediterranean	Sea.	(a)	Synthetic	
percentile	s‐connectivity	score,	evaluated	
for	each	suitable	marine	sector	as	the	
minimum	among	its	percentile	scores	for	
intensity	and	variability	of	self‐retention,	
indegree	and	outdegree	(Figure	S4	in	
Appendix	S2).	(b)	Top‐k s‐connectivity 
hotspots,	with	k = 100 or k	=	500.	The	
top‐500	sectors	do	obviously	include	the	
top‐100	as	well
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endemic	to	the	Mediterranean	Sea	that	plays	a	pivotal	role	as	both	
habitat	 former	 and	 ecosystem	 service	 provider.	 Accurate	 assess‐
ment	of	connectivity	among	populations	is	crucial	to	determine	pos‐
sible	drivers	of	population	resilience	 (Jahnke	et	al.,	2017;	Kendrick	
et	al.,	2017).	Here,	connectivity	patterns	have	been	evaluated	over	
a	 30‐year‐long	 time	 span	 by	 using	 an	 ecologically	 motivated	 and	
species‐specific	measure,	s‐connectivity,	that	accounts	not	only	for	
the	 amount	 of	 propagules	 potentially	 exchanged	 between	marine	
sectors	 (estimated	 through	 computationally	 intensive	 biophysical	
Lagrangian	 simulations),	 as	 customary,	 but	 also	 for	 environmental	

conditions	possibly	influencing	local	suitability	for	the	species	under	
study.

Our	 definition	 of	 s‐connectivity	 should	 provide	 a	 reasonable	
trade‐off	between	the	results	that	would	be	obtained	by	looking	
at	either	local	suitability	or	current‐driven	connectivity	alone.	This	
is	in	fact	where	our	contribution	diverges,	the	most	from	previous	
studies	on	seagrass	connectivity	(e.g.	Grech	et	al.,	2018;	Grech	et	
al.,	 2016;	 Jahnke	 et	 al.,	 2017;	 Jahnke	 et	 al.,	 2018).	 For	 instance,	
in	 the	work	 by	 Jahnke	 et	 al.	 (2017),	 habitat	 suitability	was	 used	
to	identify	the	initial	positions	of	dispersing	P. oceanica	fruits,	but	
all	metrics	of	potential	connectivity	were	based	on	current‐driven	
dispersal	alone.	In	that	case,	and	in	a	related	contribution	(Jahnke	
et	al.,	2018)	focusing	on	a	different	species	 (the	eelgrass	Zostera 
marina),	potential	connectivity	was	contrasted	to	realized	connec‐
tivity,	as	quantified	by	genetic	analyses.	Management	implications	
were	discussed	in	terms	of	the	identification	of	either	sites	char‐
acterized	by	high	 levels	of	potential	and	 realized	connectivity	as	
targets	for	conservation	(Jahnke	et	al.,	2017)	or	barriers	to	disper‐
sal	creating	genetically	diverse	population	clusters	(Jahnke	et	al.,	
2018).	Grech	et	al.	(2016),	instead,	studied	current‐driven	disper‐
sal	to/from	sites	of	seagrass	presence	in	the	central	Great	Barrier	

F I G U R E  5  Directions	of	change	in	
temporal	trends	of	local	s‐connectivity 
metrics.	(a)	Self‐retention.	(b)	Indegree.	(c)	
Outdegree.	Shown	are	the	marine	sectors	
for	which	a	statistically	significant	(p	<	.05)	
linear	negative	(yellow)	or	positive	
(blue)	trend	is	detected	over	the	period	
1987–2016
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TA B L E  1  Temporal	trends	in	local	time	series	of	s‐connectivity 
metrics

 

All sectors Top 500 Top 100

(+) (−) (+) (−) (+) (−)

Self‐retention 2.2 6.1 1.6 8.4 0 15

Indegree 4.6 5.4 10.8 5.0 20 0

Outdegree 4.8 4.8 6.2 7.0 6 6

Note: Per	cent	occurrence	of	statistically	significant	(p	<	.05)	positive	(+)	
or	negative	(−)	linear	trends	over	the	period	1987–2016.
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Reef,	Australia,	 to	evaluate	 the	potential	of	seagrass	dispersal	 in	
the	 area.	Based	on	 the	 results	 of	 Lagrangian	 simulations,	 differ‐
ent	 metrics	 of	 network	 connectivity	 (node‐degree	 distribution,	
self‐retention	 and	 outdegree)	 and	 node	 centrality	 (betweenness	
and	PageRank)	were	used	to	identify	seagrass	meadows	acting	as	
retainers,	sources	or	stepping	stones	for	dispersal,	and	that	could	
serve	as	priority	candidates	for	conservation	(Grech	et	al.,	2018).	
We	believe	 that	our	attempt	 to	 integrate	habitat	 suitability	 (also	
a	 proxy	 for	 the	 actual	 distribution	 of	 the	 species	 being	 studied)	
directly	 into	 the	evaluation	of	 connectivity	metrics	might	be	es‐
pecially	 promising	 when	 the	 size	 of	 the	 study	 area	 (the	 whole	
Mediterranean	 Sea	 basin,	 in	 our	 case)	 makes	 it	 impractical	 (or	
simply	 not	 possible)	 to	 compare	 potential	 connectivity	 patterns,	
obtained	 by	 biophysical	 modelling	 of	 current‐driven	 dispersal,	
against	 realized	 connectivity	 patterns,	 estimated,	 for	 example,	
through	genetic	analyses.	Our	network‐based	approach	could	also	
serve	as	an	effective	starting	point	 for	 the	detection	of	commu‐
nities	within	the	time‐varying	graphs	describing	the	dispersal	pat‐
terns	 of	 P. oceanica	 (Newman,	 2010),	 which	 in	 turn	 could	 assist	
in	 the	definition	of	separated	management	units,	 that	 is	clusters	
of	local	seagrass	meadows	that	should	be	managed	separately	to	
ensure	their	 long‐term	persistence	(Grech	et	al.,	2018;	Jahnke	et	
al.,	2018).

The	 results	 of	 our	 assessment	 suggest	 that	 spatio‐temporal	
variability	 is	an	 important	component	of	P. oceanica s‐connectivity 
(Figures	2	and	3,	Movie	M1).	Clearly,	such	variability	makes	the	iden‐
tification	of	connections	that	are	both	sufficiently	strong	and	time‐
persistent	to	be	ecologically	relevant	a	completely	non‐trivial	task.	
This	difficulty	has	been	overcome	by	applying	a	recently	proposed	
methodological	 framework	 that	 allows	 to	 determine	 connectivity	
hotspots	based	on	their	potential	to	simultaneously	function	as	ef‐
fective	retainers,	sinks	and/or	sources	for	the	dispersing	agents	of	
the	target	species	(Melià	et	al.,	2016).	This	approach	accounts	for	the	
different	functional	roles	of	dispersal,	is	based	on	easily	interpreted	
connectivity	metrics,	relies	on	a	simple	and	conservative	aggregation	
scheme	and	allows	to	effectively	take	into	consideration	both	spatial	
and	 temporal	 variability	 in	dispersal,	 thus	 representing	a	balanced	
framework	to	quantitatively	discuss	spatial	conservation	strategies	
at	a	basin	scale.	According	to	this	identification	procedure,	hotspots	
of	s‐connectivity	for	P. oceanica	(Figure	4)	appear	to	be	unevenly	dis‐
tributed	in	all	of	the	four	principal	sub‐basins	of	the	Mediterranean	
Sea,	mainly	along	the	Spanish	coastline	 in	the	Balearic	Sea,	on	the	
western	coast	of	Sardinia,	in	the	Northern	Tyrrhenian	Sea	(western	
Mediterranean	region),	along	the	coasts	of	Tunisia	and	Libya	and	in	
the	Ionian	Sea	(Central	Mediterranean	region),	in	the	North‐Eastern	
Adriatic	Sea	 (Adriatic	region)	and	 in	the	Aegean	Sea	and	along	the	
Egyptian	 coastline	 (Eastern	 Mediterranean	 region).	 The	 localiza‐
tion	 of	 P. oceanica s‐connectivity	 hotspots,	 which	 could	 serve	 as	
candidates	for	protection,	undoubtedly	 is	one	of	 the	most	 import‐
ant	outcomes	of	the	present	work	with	regard	to	the	potential	 im‐
pact	on	the	prioritization	of	conservation	efforts.	In	this	respect,	it	
is	 interesting	to	note	that	the	highest	ranked	sectors	 (e.g.	 top‐100	
hotspots)	are	consistently	surrounded	by	sectors	also	endowed	with	

high	 s‐connectivity	 (e.g.	 top‐500	hotspots),	which	 is	 suggestive	of	
the	fact	that	s‐connectivity	analysis	is	robust	enough	to	be	relevant	
for	policymaking.

By	 contrast,	 it	 is	 crucial	 to	 remark	 that	 the	 results	 of	 our	
hotspot	identification	procedure	do	not	necessarily	provide	a	com‐
plete	picture	of	P. oceanica	connectivity	in	the	Mediterranean	Sea.	
As	a	matter	of	fact,	although	a	wide	spectrum	of	functions	related	
to	 the	 roles	 that	 a	 local	 population	 can	 play	 in	 the	 context	 of	 a	
larger	metapopulation	has	been	considered,	in	terms	of	both	sheer	
intensity	 and	 temporal	 variability,	 other	 factors	might	 as	well	 be	
at	play.	For	instance,	indegree	and	outdegree	s‐connectivity have 
been	evaluated	 irrespective	of	 the	distances	between	donor	and	
recipient	marine	sectors.	However,	the	average	distance	at	which	
successful	dispersal	events	are	predicted	 to	occur	by	Lagrangian	
simulations	may	vary	 remarkably	over	 space–time,	 reflecting	 the	
fact	that	marine	sectors	in	different	parts	of	the	basin	can	be	en‐
dowed	with	completely	different	spatio‐temporal	dispersal	kernels	
(Figures	2	and	3).	This	variability	in	dispersal	is	obviously	to	be	ex‐
pected	in	a	domain	as	large	and	complex	as	the	Mediterranean	Sea.	
Note	that	it	may	even	represent	a	lower	estimate	of	the	actual	het‐
erogeneity,	because	the	relatively	coarse	resolution	of	the	ocean‐
ographic	 reanalysis	 is	 expected	 to	 dampen	 small‐scale	 (subgrid)	
variations.	 Information	 about	 dispersal	 distances	 might	 be	 used	
to	 orient	 conservation	 priorities.	 In	 fact,	 a	 prevalence	 of	 short‐
range	 dispersal	 may	 signal	 the	 presence	 of	 hydrodynamical	 bar‐
riers,	while	 the	potential	 for	 long‐distance	dispersal	may	 identify	
marine	sectors	that	favour	effective	gene	flow	between	different	
local	populations.	For	instance,	no	marine	sectors	along	the	south‐
ern	 coast	 of	 Sicily	 are	 identified	 among	 the	 top‐500	 P. oceanica 
hotspots,	yet	sizeable	portions	of	that	coastline	are	characterized	
by	 remarkably	 long	 (albeit	quite	 intermittent)	outgoing	dispersal,	
with	 potential	 implications	 for	 both	 cross‐continental	 dispersal	
(say,	between	Italy	and	Tunisia)	and	propagule	exchange	between	
P. oceanica	 populations	 inhabiting	 the	western/eastern	 basins	 of	
the	Mediterranean	Sea.	Long‐distance	connectivity	could	also	be	
realized	 over	 multiple	 generations	 via	 stepping‐stone	 dispersal.	
However,	the	study	of	this	type	of	intergenerational	dynamics	will	
require	 the	development	of	an	 integrative	modelling	approach	 in	
which	the	basin‐wide	metapopulation	dynamics	of	P. oceanica can 
effectively	be	explored	by	coupling	the	dispersal	means	provided	
by	marine	currents	with	 local‐scale	demographic	processes,	such	
as	shoot	survival,	vegetative	growth	and	sexual	reproduction.

All	these	considerations	highlight	the	importance	of	cross‐val‐
idating	 measures	 of	 potential	 connectivity,	 albeit	 corrected	 for	
local	suitability	conditions	like	in	the	present	study,	with	measures	
of	realized	connectivity,	as	obtained	through	analysis	of	effective	
gene	 flow.	 In	 the	case	of	P. oceanica,	 in	 fact,	 the	 former	 is	often	
found	to	be	possibly	quite	overestimated	with	respect	to	the	latter	
(Jahnke	et	al.,	2017;	Serra	et	al.,	2010),	which	in	turn	is	thought	to	
be	relatively	low	overall	(e.g.	Arnaud‐Haond	et	al.,	2014;	Procaccini	
et	al.,	2001).	Comparing	the	findings	presented	in	published	stud‐
ies	 of	 genetic	 connectivity	 for	P. oceanica	 in	 the	Mediterranean	
Sea	 with	 our	 assessment	 of	 basin‐wide	 potential	 connectivity	
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may	not	be	a	trivial	task.	Some	of	those	studies	were	in	fact	con‐
ducted	over	relatively	small	spatial	domains,	spanning	from	single	
meadow	 (e.g.	Migliaccio,	Martino,	 Silvestre,	 &	 Procaccini,	 2005)	
to	regional	scales	(e.g.	Jahnke	et	al.,	2017;	Procaccini	et	al.,	2001).	
Mediterranean‐wide	analyses	of	P. oceanica	genetic	connectivity	
exist	(Arnaud‐Haond	et	al.,	2007;	Rozenfeld	et	al.,	2008;	Serra	et	
al.,	2010),	but	in	all	those	cases	the	number	of	sampled	meadows	
was	 understandably	 limited	 to	 a	 few	 dozen	 at	most.	 In	 general,	
whenever	 genetic	 connectivity	 was	 evaluated	 at	 a	 whole‐basin	
scale,	the	Strait	of	Sicily	was	identified	as	a	contact	zone	between	
the	 genetically	 partitioned	 seagrass	 populations	 inhabiting	 the	
western	and	eastern	basins	of	the	Mediterranean	Sea.	This	region	
(the	 coast	 of	 Tunisia,	 in	 particular)	 is	 also	 highlighted	 as	 one	 of	
the	richest	in	s‐connectivity	hotspots	by	our	modelling	approach	
(Figure	4),	 as	well	 as	one	endowed	with	 relatively	 long	potential	
dispersal	distances	(see	again	Figure	3).

The	multi‐decadal	temporal	span	of	this	study	has	allowed	to	as‐
certain	the	existence	of	recent	trends	 in	P. oceanica s‐connectivity 
across	the	Mediterranean	Sea	(Figure	5).	Statistically	significant	tem‐
poral	 trends	 in	 self‐retention,	 indegree	and	outdegree	 seem	 to	be	
quite	infrequent	among	all	suitable	sectors	(they	have	been	detected	
in	less	than	6%	of	marine	sectors),	but	relatively	more	frequent	in	s‐
connectivity	hotspots	(with	frequencies	ranging	up	to	20%;	Table	1).	
Here,	 contrasting	 directions	 of	 change	 are	 actually	 found:	 for	 in‐
stance,	decreasing	self‐retention	and	increasing	in/outdegree	are	all	
more	 frequently	 observed	 in	 the	 top‐100	 s‐connectivity	 hotspots	
than	 in	 non‐hotspot	 sectors,	 possibly	 a	 sign	 that	 somewhat	 small	
changes	in	circulation	patterns	around	key	strategic	sites	may	have	
important	consequences	for	P. oceanica	dispersal	dynamics	at	large	
spatial	scales.	Also,	while	basin‐averaged	connectivity	values	do	not	
show	any	statistically	significant	trends,	in/outdegree	in,	for	exam‐
ple,	the	top‐500	s‐connectivity	hotspots	do	(Figure	S9	in	Appendix	
S2).	All	these	findings	suggest	that	the	role	played	by	s‐connectiv‐
ity	hotspots	 in	structuring	P. oceanica	dispersal	dynamics	might	be	
changing	over	time,	with	implications	for	the	future	of	its	large‐scale	
spatio‐temporal	 dynamics.	 Furthermore,	 the	 observation	 that	me‐
teorological	fluctuations	may	also	influence	s‐connectivity	patterns	
(Figures	S11–S13	in	Appendix	S2),	together	with	the	prediction	that	
the	Mediterranean	basin	will	be	one	of	 the	regions,	most	affected	
by	global	climate	change	(Lejeusne	et	al.,	2010),	suggests	that	deci‐
sions	regarding	marine	protection	and	maritime	spatial	planning	 in	
general	should	also	aim	to	enforce	resilience	against	climate	change	
impacts	(McLeod,	Salm,	Green,	&	Almany,	2009).	In	this	respect,	re‐
liable	oceanographic	projections	forced	with	future	climate	scenar‐
ios	(Coleman	et	al.,	2017)	would	represent	an	invaluable	instrument	
to	 anticipate	 changes	 to	 future	 connectivity	 patterns	 within	 the	
Mediterranean	Sea.

Like	all	modelling	studies,	ours	is	not	devoid	of	limitations.	One	
such	source	of	possible	inaccuracies	in	our	analysis	is	perhaps	the	
use	 of	 a	 static	 suitability	 map	 to	 both	 initialize	 Lagrangian	 sim‐
ulations	 and	evaluate	 s‐connectivity	 scores.	As	 a	matter	of	 fact,	
P. oceanica	meadows	have	declined	rapidly	in	several	areas	of	the	
Mediterranean	basin,	possibly	also	as	a	result	of	decreased	habitat	

suitability	 in	response	to	the	 localized	effects	of	climate	change,	
water	quality	degradation,	coastal	modification	and	other	sources	
of	 human	 pressure	 (Chefaoui,	 Duarte,	 &	 Serrão,	 2018;	 de	 los	
Santos	et	al.,	2019;	Marbà	et	al.,	2014;	Telesca	et	al.,	2015).	In	this	
respect,	 airborne	 and	 satellite	 imagery	 could	 provide	 a	 depend‐
able,	deployable	and	cost‐effective	 tool	 to	produce	updated	dis‐
tribution	maps	for	P. oceanica,	as	testified	by	the	growing	number	
of	related	applications	(Borfecchia	et	al.,	2013;	Fornes	et	al.,	2006;	
Matta	et	al.,	2014;	Pasqualini	et	al.,	2005;	Traganos	et	al.,	2018).	
Although	 most	 of	 these	 studies	 refer	 to	 relatively	 small	 areas	
within	the	Mediterranean	Sea,	 the	most	recent	one	 (Traganos	et	
al.,	2018)	proposes	a	workflow	for	regional‐scale	mapping	of	sea‐
grasses	powered	by	remote	sensing,	machine	learning	and	cloud‐
based	 technologies	 that	 could	 be	 potentially	 scaled	 up	 to	 even	
larger	 (possibly	global)	 spatial	 scales.	 Indeed,	Earth	observations	
(both	 remote	 and	 in	 situ),	 species	distribution	modelling	 (Elith	&	
Leathwick,	2009;	see	Chefaoui,	Duarte,	&	Serrão,	2017;	Chefaoui	
et	al.,	2018	for	recent	applications	of	niche	modelling	to	P. ocean‐
ica)	and	ecological	modelling	should	be	considered	complementary	
pillars	for	the	elaboration	of	future	large‐scale	conservation	pro‐
grammes	(Pasetto	et	al.,	2018).

We	finally	remark	that	conservation	planning	may	require	to	look	
beyond	 purely	 ecological	 considerations.	 From	 a	 socio‐economic	
point	 of	 view,	 the	 complex	 boundary	 conditions	 imposed	 by	 the	
heavily	human‐impacted	coastal	ecosystems	of	the	Mediterranean	
Sea,	further	challenged	by	the	“Blue	Growth”	framework,	imply	that	
not	all	the	locations	that	are	potential	candidates	for	protection	are	
equally	suitable	to	devote	portions	of	their	seascape	to	conservation	
programmes.	 In	 fact,	 the	Mediterranean	Sea	 is	 an	area	of	 interest	
for	a	series	of	activities,	ranging	from	maritime	traffic	to	industrial	
fishing	or	tourism,	for	human	populations	of	different	nationalities	
and	cultures—all	of	which	makes	the	problem	of	setting	priorities	for	
regional	 conservation	planning	a	highly	non‐trivial	 task	 (Micheli	et	
al.,	2013).	This	caveat	notwithstanding,	we	believe	that	the	present	
study	may	 represent	 a	 step	 forward	 in	 the	 application	 of	 a	 quan‐
titative,	 scalable	 and	 replicable	methodological	 framework	 for	 the	
prioritization	of	conservation	actions,	with	the	overarching	goal	of	
saving	more	with	less.
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