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Abstract

We study the relationship between the two-agent implementation problem and

the concept of interim effi ciency of Holmström and Myerson (1983) in Bayesian

environments with private values and independent types. We present a general

property, called closure under interim utility equivalence, and show it is suffi -

cient for the implementation of social choice functions. This condition, when

combined with another property, called interim inseparability, is also suffi cient
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1 Introduction

The theory of implementation investigates the goals a designer can attain when they

depend on the information possessed by various agents. The Nash implementation

problem of the designer entails devising a mechanism in which agents’ incentives

lead to Nash equilibrium allocations associated with the goals set by the designer

(Maskin, 1999). When such a mechanism exists, the designer’s goals are (fully) Nash

implementable. This paper studies the two-agent implementation problem in a setting

with incomplete information, in which agents possess exclusive information. In such

environments, the Nash implementation has a natural analog, referred to as Bayesian

implementation. In Bayesian environments, a social choice function (SCF) f is a

function from states to allocations, whereas a social choice set (SCS) F is a collection

of SCFs.

With the exception of Mookherjee and Reichelstein (1990) and Dutta and Sen

(1994), all studies on Bayesian implementation assume there are more than two agents

(e.g., see Palfrey and Srivastava, 1989b; Jackson, 1991). Whereas Mookherjee and

Reichelstein (1990) propose a general procedure on how to modify an incentive com-

patible revelation mechanism to Bayesian implement an SCS, Dutta and Sen (1994)

provide a suffi cient and almost necessary condition for two-agent Bayesian imple-

mentation. Conversely, this paper is concerned with the relationship between the

two-agent Bayesian implementation problem and the concept of interim effi ciency of

Holmström and Myerson (1983).

When agents are asymmetrically informed, an (interim) incentive compatibility

condition is necessary for Bayesian implementation. An SCF f is incentive compatible

when truth telling is a Bayesian equilibrium of the direct mechanism associated with

f . While incentive compatibility is suffi cient to ensure the existence of desirable

equilibria, more restrictions are required on SCFs to rule out undesirable equilibria.

The notion of interim incentive effi ciency of Holmström and Myerson (1983) in-

spires the main restriction imposed on SCSs in this paper. That is, an SCF f is

interim effi cient if there is no other SCF f̂ that would make every type of every agent

as well off as f does, and would make at least one type strictly better off; that is, the

SCF is interim effi cient if it is welfare undominated. In other words, interim effi ciency

is a natural analog of Pareto effi ciency when agents have private information. An SCF
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is interim incentive effi cient if it is incentive compatible and interim effi cient.

This paper proposes a suffi cient condition, called closure under interim utility

equivalence. An SCS F satisfies this condition if each SCF f in F is interim incentive

effi cient, and whenever an incentive compatible SCF f ′ makes every possible type of

every agent at least as well off as does f in F (in the interim stage), then f ′ must be

an element of F . When F is an SCF, closure requires f ′ = F . Additionally, when

F is an SCF, closure implies that the interim utility vector of F is unique for every

agent under the set of all incentive compatible allocation rules.

Hitherto, no study uses the property of interim effi ciency for exploring the Bayesian

implementation of SCSs. While a few papers on mechanism design explore the prop-

erty of interim effi ciency but are limited either to a few applications or a specific

environment.1

We show that every SCF satisfying closure is Bayesian implementable in envi-

ronments with private values and independent types. Interestingly, this characteri-

zation result provides an understanding of what can be implemented (e.g., in non-

transferable utility settings) when the designer considers not only incentive compati-

bility but also full implementation. Our findings are different from those of previous

studies. Palfrey and Srivastava (1989a, 1991) show that, in private value models, the

multiple equilibrium problem can be avoided if agents do not play weakly dominated

strategies in equilibrium. Ollár and Penta (2017) address the same issue and also con-

sider common knowledge assumptions by studying full implementation via transfer

schemes under general restrictions on agents’beliefs.

When an SCF f of interest is interim incentive effi cient but does not satisfy

closure, it may be natural to turn to the implementation of a second best and try to

implement an SCS that consists of allocation rules that are interim incentive effi cient

and welfare equivalent to f for every possible type of every agent. We provide a

characterization result for this second best. In addition to closure, this result relies

on another auxiliary condition, called interim inseparability. Generally, F is interim

1For instance, Gresik (1996) and Wilson (1985) focus on bilateral trade applications, particularly

double auctions. Laussel and Palfrey (2003) and Ledyard and Palfrey (1994, 1999a, 1999b, 2002)

study the applications to public good mechanisms. Ledyard and Palfrey (2007) investigate interim

effi ciency in private value environments, in which agents’utility functions are both quasi-linear in a

private good and linear in a one-dimensional private value type parameter.
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inseparable if f ′ makes every possible type of every agent as well off as does f when

these allocation rules are both in F . This result then yields a characterization that

applies to essentially single-valued SCSs (at the interim stage).

The remainder of the paper is organized as follows. Section 2 presents the basic

notation and model. Section 3 presents the characterization result for SCFs, whereas

Section 4 focuses on SCSs. Section 5 concludes the paper. The Appendix presents

the proofs not included in the main text.

2 Notation and definitions

The set of agents is denoted by I = {1, 2} and the set of (pure) decisions by D.
The set of lotteries over D is denoted by ∆(D). Each agent i privately observes a

parameter θi that determines her/his preferences. We refer to θi as agent i’s type.

The set of possible types for agent i is assumed to be finite and is denoted by Θi. A

state is any pair of types θ = (θ1, θ2) ∈ Θ1×Θ2 ≡ Θ. For each agent i, we use Θ−i to

express the set of possible types of agent j 6= i and, thus, a state is a profile (θi, θ−i)

where θi ∈ Θi and θ−i ∈ Θ−i. The same notational convention applies to any profile

of objects.

An SCF or allocation rule is a function x : Θ→ ∆(D) from states to lotteries over

D. The set of all allocation rules is denoted by X = {x | x : Θ → ∆(D)}. Further,
an SCS F is any (non-empty) subset of X.

Each agent i is assumed to be an expected utility maximizer, whose (Bernoulli)

utility function is ui (x, θ) in state θ ∈ Θ. We focus on the case in which each

agent’s preference depends only on her/his type, known as private values. In this

case, agent i’s utility function, ui (x, θ), can be denoted by ui (d, θi) in state θ ∈ Θ.

The probability density over the possible realizations of θ ∈ Θ is denoted by q (·). We
assume that q (·) has full support, that is, q (θ) > 0 for all θ ∈ Θ.2 For each type θi of

agent i, the conditional probability of θ−i ∈ Θ−i is the posterior belief of type θi and

is denoted by q (θ−i|θi). We assume types to be stochastically independent. That is,
2An alternative informational setting is that of nonexclusive information (see, e.g., Postlewaite

and Schmeidler, 1986; Palfrey and Srivastava, 1986). In this setting, each agents’own information

is redundant if other individuals pool their information.
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q(θ) = q1(θ1)×q2(θ2), where, for each agent i ∈ I, qi is a probability distribution over
Θi.

Given allocation rule x ∈ X, the (interim) expected utility of agent i of type θi is
defined by:

Ux
i (θi) =

∑
θ−i∈Θ−i

q (θ−i|θi) · vi (x(θ−i, θi), θi) ,

where vi (x(θ−i, θi), θi) is the expected utility of lottery x(θ−i, θi), computed using the

utility function ui (x, θi).

An environment is a list 〈I,D, q, (ui,Θi)i∈I〉 in which each element is assumed
to be common knowledge among agents. Agent i knows her/his own type θi but is

unsure about θ−i.

A mechanism is a pair Γ = (M, g), whereM = M1×M2 is the message space and

g : M → ∆(D) is the outcome function. A (pure) strategy for agent i is a function

si : Θi → Mi and the set of all strategies for agent i is Si = {si : Θi →Mi}. A
strategy profile is a list s ≡ (s1, s2) of strategies, one for each agent. The space of

all strategy profiles is S = S1 × S2. Given strategy profile s, we denote by g (s) the

outcome generated by s, where the outcome in state θ is denoted by g (s (θ)). For

exposition, we only focus below on pure strategies; most concepts and results can be

extended to cover the case of mixed strategies (as discussed in Section 5).

Given a mechanism Γ, a Bayesian (Nash) equilibrium of Γ is a strategy profile s,

so that for each agent i ∈ I and each type θi ∈ Θi, it holds that:

U
g(s)
i (θi) ≥ U

g(s′i,s−i)
i (θi) for all s′i ∈ Si.

Let us denote the set of all Bayesian equilibria of mechanism Γ by B(Γ).

A mechanism Γ implements F in Bayesian equilibria if

{g (s) |s ∈ B(Γ)} = F .

If there exists a mechanism Γ that implements F in Bayesian equilibria, F is said to

be Bayesian implementable.

A necessary condition for Bayesian implementation is incentive compatibility, de-

fined as follows.

Definition 1. F is (Bayesian) incentive compatible if, for all f ∈ F , all i ∈ I, and

5



all θi ∈ Θi,

U f
i (θi) ≥ U f

i

(
θ̂i, θi

)
, for all θ̂i ∈ Θi,

where U f
i

(
θ̂i, θi

)
is the (interim) expected utility of type θi when the agent reports

θ̂i, that is:

U f
i

(
θ̂i, θi

)
=

∑
θ−i∈Θ−i

q(θ−i | θi) · vi
(
f(θ−i, θ̂i), θi

)
.

We denote U f
i (θi) ≡ U f

i (θi, θi).

The proof of the necessity of this condition for implementation in Bayesian equi-

libria has been provided, for instance, by Dasgupta et al. (1979) and Jackson (1991).

The intuition behind the condition is straightforward: an SCF is incentive compatible

if truthful revelation is the best response for each agent whenever the other agents

also reveal their true types.3

3 Implementation of SCFs

Since agents’types are determined at the interim stage, our notion of effi ciency is that

of interim effi ciency, based on Holmoström and Myerson (1983). The key is identifying

the appropriate notion of interim effi ciency, which we call closure under interim utility

equivalence. Before stating this condition, we need the following additional notation.

Let XIC be the set of all incentive compatible allocation rules, that is:

XIC ≡ {x ∈ X | x is incentive compatible}.

An SCF f̂ welfare dominates f if f̂ makes the expected utility of every possible type

of every agent at least as large as f does and makes the expected utility of some types

of some agents strictly larger. That is, f̂ welfare dominates f if U f̂
i (θi) ≥ U f

i (θi) for

all θi ∈ Θi and all i ∈ I, and U f̂
i (θi) > U f

i (θi) for some θi ∈ Θi and some i ∈ I.

An SCF f is interim incentive effi cient if f is incentive compatible and no allocation

rule in XIC welfare dominates it. That is, f is interim incentive effi cient if f ∈ XIC

and there is no f̂ ∈ XIC such that U f̂
i (θi) ≥ U f

i (θi) for all θi ∈ Θi and all i ∈ I and
3See d’Aspremont and Gérard-Varet (1979, 1982) for a more indepth discussion on incentive

compatibility.
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U f̂
i (θi) > U f

i (θi) for some θi ∈ Θi and some i ∈ I. Therefore, we posit the following
definition.

Definition 2. F satisfies closure under interim utility equivalence, or simply closure,

if every f ∈ F is interim incentive effi cient and, for all f ∈ F and all x ∈ XIC , it

holds that:

Ux
i (θi) = U f

i (θi) for all i ∈ I and all θi ∈ Θi =⇒ x ∈ F .

This condition is composed of two parts. The first requires no incentive compatible

allocation rule can welfare dominate f ∈ F . The second requires that, if an incentive
compatible allocation rule x ∈ XIC and an SCF f ∈ F are equally good for every

possible type of every agent, then x is also in F . When F is an SCF, closure requires

x = F . Additionally, when F is an SCF, closure implies that the interim utility vector

of F is unique for every agent under the set of all incentive compatible allocation

rules. Therefore, our first result is that every SCF satisfying closure is Bayesian

implementable.

Theorem 1. If f satisfies closure under interim utility equivalence, then it is Bayesian

implementable.

Proof. See the Appendix.

Remark 1. From the proof of Theorem 1, it is clear it holds for any finite number

of agents.

The proof of Theorem 1 consists of augmenting the direct revelation mechanism

associated with f and specifying outcomes so that f is fully implemented in Bayesian

equilibria if it satisfies closure. While a detailed proof of the theorem is given in the

Appendix, we briefly describe it here. When agent i announces type θi in the direct

revelation mechanism associated with f , s/he expects to face a lottery whose outcome

is f(θ−i, θi) with probability qi(θ−i|θi). By using a random device, we can construct

a lottery `i (f, θi) yielding outcome f(θ−i, θi) with probability qi(θ−i|θi). Since values
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are independent and private, agent i will be indifferent between lottery `i (f, θi) and

the one obtained by participating in the direct revelation mechanism– provided that

the other agent is truthful. The devised mechanism uses other components of agents’

message spaces, in addition to type announcements, to guarantee each agent i can

always obtain `i (f, θi), regardless what the other agent reports. Due to this feature,

each Bayesian equilibrium produces an interim expected utility at least as great as

that produced by f . The result follows by the assumption that f satisfies closure.

More importantly, Theorem 1 shows what can be implemented (e.g., in non-

transferable utility settings) when the designer considers not only incentive com-

patibility but also full implementation. This is different from the solution provided

by Palfrey and Srivastava (1989a, 1991), who show that, in private value models the

multiple equilibrium problem can be avoided if agents do not play weakly dominated

strategies in equilibrium.

In the following, we briefly discuss the implications of the above result.

Example 1 (Information design). Let 〈I,D, q, (ui,Θi)i∈I〉 be an environment such
that the ex-post sum of utilities

v1(x, θ1) + v2(x, θ2)

has a unique maximizer in all states θ ∈ Θ. Under this assumption, the maximizer is

a pure decision.4 We can define f by setting:

f(θ) = arg max
x∈D

[u1(x, θ1) + u2(x, θ2)],

for each θ ∈ Θ.

As we assume the existence of a unique maximizer for the ex-post sum of utilities,

f satisfies closure if it is incentive compatible. However, the incentive compatibility of

f depends on whether the designer can affect agents’prior beliefs so that f becomes

incentive compatible. If the designer succeeds in this information design exercise, f

is Bayesian implementable according to Theorem 1.

4Indeed, if lottery x ∈ ∆(D) maximizes the ex-post sum of utilities, all decisions in the support

of x must also maximize this sum. Since we require the maximizer to be unique, x is a degenerated

lottery.
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To show that the designer can succeed in this task, let us further specify Example

1 by considering two cases– a voting environment and a public good environment.

Example 2 (Veto rule). A committee of two agents has to select a job applicant

from a set of three candidates, D = {a, b, c}. In each state θ ∈ Θ, each committee

member has a strict preference ranking over D. Therefore, each state θ ∈ Θ can

be identified by the pair of strict preferences (�θ1,�θ2). We assume Θ includes all

possible strict preference profiles, that is, for any pair of strict preferences (�1,�2),

there exists θ ∈ Θ so that (�1,�2) = (�θ1,�θ2) (unrestricted domain).

To complete the model, we need to fix agents’utility functions. Assume that, for

any state θ, agent 1’s utility function assigns utility of 3 to the preferred candidate,

1 to the middle candidate, and 0 to the least preferred candidate. Agent 2’s utility

function assigns utility of 1 to the preferred candidate, 1
2
to the middle candidate,

and -3 to the least preferred candidate.

The hiring process proceeds as follows. First, agent 2 vetoes the worst candidate

d ∈ D. Second, agent 1 selects one candidate from D − {d}. Let rki (θ) be the

candidate that committee member i ranks kth in state θ. If both committee members

act truthfully, the hiring process implements f defined by:

f(θ) = arg max
x∈{r12(θ),r22(θ)}

u1(x, θ1),

for each θ ∈ Θ. However, this rule is manipulable ex-post.5

Suppose that each state is equally likely. Under this assumption, f is incentive

compatible. Agent 1 has no reason to lie. Moreover, regardless which candidate agent

2 vetoes, agent 1 would select each of the remaining candidates with probability 1
2
.

This implies lying is not profitable (on average) for agent 2 either.

Since f is incentive compatible, to show f is implementable according to Theorem

1, it suffi ces to verify that f(θ) uniquely maximizes the ex-post sum of utilities in

each state θ ∈ Θ. As such, it suffi ces to note that the candidate maximizing the

5Indeed, there are cases in which agent 2 would not veto her/his worst candidate if s/he knew

agent 1’s ranking. As such, let θ be so that the ranking of agent 1 is a �θ1 b �θ1 c and that of agent
2 is b �θ2 a �θ2 c. When the hiring procedure is followed, agent 2 vetoes c, meaning that candidate
a would be hired. However, if agent 2 knew agent 1’s ranking, s/he vetoes a because agent 2 would

know that agent 1 would never select candidate c. In this case, agent 2’s best candidate is hired.
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ex-post sum in each state θ is the top candidate for agent 1 if s/he is not the worst

candidate for agent 2; otherwise, s/he is the second best candidate for agent 1.

Example 3 (Facility location). Let D = {1, . . . , k} ⊆ Z+ be the set of locations to

build a public facility. There are two groups, with types Θ1 = Θ2 = {1, . . . , k}. Type
θi = h of group i means h is the most preferred location. We assume that preferences

are single-peaked, that is, for each group i ∈ {1, 2} and each location d ∈ D,

ui(d, θi) = −|θi − d| for all θi ∈ Θi.

The goal of the designer is to build the public facility in the best location of the

group nearest to location 1. This goal is obviously strategy-proof and, thus, incentive

compatible. However, there are other locations that yield exactly the same ex-post

sum of utilities. This is because the ex-post sum u1(x, θ1) + u2(x, θ2) is constant for

all locations d between peaks θ1 and θ2. Therefore, the goal of the designer does not

necessarily satisfy closure, although it is incentive compatible.

As such, assume there exists a third group with known type θ3 = 1 (see Remark

1). The utility function of this group is u3(d, 1) = −|1− d|. After the introduction of
the new group, the goal of the designer can be expressed as follows: for all θ ∈ Θ ≡
Θ1 ×Θ2 × {θ3},

f(θ) = median{θ1, θ2, θ3}.

It is well-known this SCF is strategy-proof and, hence, incentive compatible.

To show f is Bayesian implementable, we only need to show f (θ) is the unique

maximizer of the ex-post sum of utilities in each state θ ∈ Θ. To this end, we fix any

θ ∈ Θ. Assume, to the contrary, that there exists another location d 6= f (θ) that

maximizes the ex-post sum of utilities, that is:

3∑
i=1

ui(d, θi) =

3∑
i=1

ui(f (θ) , θi). (1)

We proceed according to whether d < f (θ) or not.

Assume d < f (θ). This implies 1 = θ3 ≤ d < f (θ). Without loss of generality,

we assume f (θ) = θ2. Then, it holds that 1 = θ3 ≤ d < f (θ) = θ2 ≤ θ1. Since agents

have single-peaked preferences, it follows from (1) that

− (θ1 − d)− (θ2 − d) + (θ3 − d) = − (θ1 − θ2) + (θ3 − θ2) ,
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which simplifies to d = θ2, which is a contradiction.

Assume d > f (θ). This implies 1 = θ3 ≤ f (θ) < d. Without loss of generality, we

assume f (θ) = θ2. Then, it holds that 1 = θ3 ≤ f (θ) = θ2 < d. We thus distinguish

two cases.

Assume θ1 ≥ d. Then, we have 1 = θ3 ≤ f (θ) = θ2 < d ≤ θ1. It follows from (1)

that:

− (θ1 − d) + (θ2 − d) + (θ3 − d) = − (θ1 − θ2) + (θ3 − θ2) ,

which simplifies to d = θ2, which is a contradiction.

Assume θ1 < d. In this case, it holds that 1 = θ3 ≤ f (θ) = θ2 ≤ θ1 < d. It follows

from (1) that:

(θ1 − d) + (θ2 − d) + (θ3 − d) = − (θ1 − θ2) + (θ3 − θ2) ,

which simplifies to 3d = 2θ1 + θ2. Since θ2 ≤ θ1 < d, it follows that 3d > 2θ1 + θ2,

which is a contradiction. Thus, f satisfies closure.

Example 4 (Bilateral trading). Let us consider a bilateral trading problem in

which agent 1 has an indivisible object that agent 2 wants to buy. The valuation

of agent i is denoted by vi, drawn from a set Vi ⊆ R+ according to the distribution

Fi. Both agents are risk neutral. A trading rule or selling mechanism is a pair (p, t),

where p : V1 × V2 → [0, 1]2 is the allocation rule and t : V1 × V2 → R2 is the payment

rule. If v1 and v2 are the valuations reported by agents, pi(v1, v2) is the probability

the object is transferred to agent i, and ti(v1, v2) is the expected payment of agent i.

In the following, we show it is generically impossible to apply Theorem 1 to bi-

lateral trading environments. Let ` be a lottery that yields t ∈ R+ monetary units

with probability 1
2
and −t monetary units with probability 1

2
, and (p, t) any interim

incentive effi cient trading rule. We define a new trading mechanism (p, t′) by setting

t′(v1, v2) = t(v1, v2) + ` for each pair of valuations (v1, v2) ∈ V1 × V2.6 (p, t′) is an

incentive compatible trading mechanism. Since E(`) = 0 by construction, it follows

that every type of every agent is indifferent between (p, t′) and (p, t). However, since

(p, t′) 6= (p, t), the second part of closure is violated. In the next subsection, we

propose a solution to this problem.

6t(v1, v2) + ` is a compound lottery, where the outcomes of t(v1, v2) and ` are added.
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4 Implementation of SCSs

Let us turn briefly to the problem of implementing an SCS, that is, of ensuring

all SCFs f ∈ F and only these are obtained as Bayesian equilibria. We consider

SCSs because there exist cases in which Theorem 1 cannot be applied. To this end,

assume that f is not fully implementable according to Theorem 1, although it is

interim incentive effi cient (see Example 4). In cases such as this one, it is natural

to turn to the second best solution. One appealing resolution here is to enlarge the

objective of implementation by fully implementing all allocation rules that are welfare

equivalent to f . Therefore, besides closure, we require F to satisfy the following

auxiliary condition.

Definition 3. F is interim inseparable if U f
i (θi) = U f̂

i (θi) holds for all i ∈ I, all

θi ∈ Θi and all f, f̂ ∈ F .

In other words, F is interim inseparable when agents wish to fully implement f

and agree to fully implement any allocation rule f̂ that makes every possible type of

every agent as well off as f does (at the interim stage). The characterization result

can be stated as follows.

Theorem 2. If F satisfies closure under interim utility equivalence and interim

inseparability, then it is Bayesian implementable.

Proof. See the Appendix.

Remark 2. It is obvious from the proof of Theorem 2 that it holds for any finite

number of agents.

Let us briefly discuss two implications of Theorem 2.

Example 5 (Borda’s rule). A committee of two agents has to select one candidate

from D = {d1, d2, . . . , dk}. Let k ≥ 3. At each state θ ∈ Θ, each committee member

has a strict preference ranking over D. Therefore, each θ ∈ Θ can be identified by

a pair of strict preferences (�θ1,�θ2). We assume that Θ includes all possible strict

preference profiles, that is, for any pair of strict preferences (�1,�2), there exists

θ ∈ Θ so that (�1,�2) = (�θ1,�θ2) (unrestricted domain).
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Suppose each state θ ∈ Θ is equally likely. Furthermore, for any state θ ∈ Θ and

any agent i, assume that the utility representation of the ranking �θi is a one-to-one
assignment of numbers 1, 2, ..., k to the elements of D. In this setting, rank ri(d`, θi)

of candidate d` ∈ D for type θi of agent i is given by:

ri(d`, θi) = (k + 1)− ui(d`, θi).

The set of all Borda winners in state θ ∈ Θ, denoted by B(θ), is defined by

B(θ) = arg min
d∈D

[r1(d, θ1) + r2(d, θ2)] .

Nothing guarantees the Borda winner is a ‘fair’outcome. As such, an outcome

best for one agent and worst for the other can be a Borda winner.7 Thus, let us define

the set of ‘fair Borda winners’by:

FB(θ) = arg min
d∈B(θ)

[max {r1(d, θ1), r2(d, θ2)}] ,

for each θ ∈ Θ. The goal of the designer is to implement f that selects a uniform

distribution, defined over the set of fair Borda winners, that is:

f(θ) ∼ U (FB(θ)) .

This SCF is incentive compatible. Intuitively, if an agent lies, then s/he will lose

equally often as s/he wins, as every type of the other agent is equally likely. On

average, lying does not pay off. Moreover, this SCF is on the interim effi ciency

frontier, as f(θ) maximizes the sum of utilities at each state θ ∈ Θ. However, there

are other selections of Borda winners that yield exactly the same interim expected

utilities for all types of committee members. Theorem 2 helps in situations such as

this one guaranteeing that an SCS F that contains f and any other allocation rule

f ′ ∈ F so that (1) f ′ is incentive compatible, (2) supp(f ′(θ)) ⊆ B(θ) for all θ ∈ Θ

(f ′ makes a selection of Borda winners) and (3) Ui(f ′, θi) = Ui(f, θi) for both i ∈ I
and all θi ∈ Θi (interim inseparability) is Bayesian implementable.8 Although the

7In this case, B(θ) = D.
8Note that supp(f ′(θ)) consists of the pure decisions that have non-zero probability according to

lottery f ′ (θ).
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allocation rules in F are not necessarily fair ex-post, they are all fair on average or in

expectation.9

Example 6 (Optimal selling mechanism). A seller s has one indivisible object

to be sold to buyer 1 or buyer 2. The valuation of buyer i is denoted by vi and drawn

from a finite set Vi ≡ Θi ⊆ R+ according to distribution Fi. Buyers valuations are

private and independent. Both the seller and buyers are risk neutral.

A trading rule is a pair (p, t), where p : V1×V2 → [0, 1]2 is the allocation rule and t :

V1×V2 → R2 is the payment rule. For any pair of valuations v = (v1, v2), we interpret

pi(v) as the probability with which agent i obtains the object, and ti(v) is the expected

payment of agent i. The goal of the seller is to find an individually rational and

incentive compatible trading rule that maximizes expected revenue E[t1 (v) + t2 (v)].

This problem has been solved by Skreta (2007) by generalizing the method of Myerson

(1981). Let us denote the revenue maximizing trading rule by (p∗, t∗).10

Note (p∗, t∗) is not necessarily on the interim effi ciency frontier of buyers. The

reason is that each buyer would be better off by slightly decreasing her/his payment

without reducing the welfare of the other buyer. To ensure we are at the interim

effi ciency frontier, we consider the seller as a player, that is I = {s, 1, 2}. In this way,
if a buyer pays less, s/he decreases the welfare of the seller. Let us assume that the

reservation price, vs, of the seller is common knowledge among the agents. That is,

let Θs = {vs}. Recall that Theorem 2 holds for any number of agents (see Remark

2). Additionally, if trading rule (p, t) yields an interim expected utility equal to that

generated by the revenue maximizing trading rule (p∗, t∗), for each type of each agent,

trading rule (p, t) is individually rational (at the interim stage) and expected revenue

maximizing. Then, let us define F by:11

F =
{

(p, t) | (p, t) is IC and U (p,t)
i (θi) = U

(p∗,t∗)
i (θi) for all θi ∈ Θi and all i ∈ I

}
.

F is Bayesian implementable according to Theorem 2 by construction. It is worth

noting that all possible outcomes are expected revenue maximizing.

9If one committee member benefits in one state, then the other committee member must benefit

in another, that is, not the same committee member benefits always.
10For details, we refer the reader to Skreta (2007).
11IC means incentive compatible.
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Remark 3. In practice, we do not need to know F either in Example 5 or Exam-

ple 6. To better understand this, let us focus on Example 6. Let us consider the

revenue maximizing trading rule (p∗, t∗) of Skreta (2007). Consider the mechanism

constructed in the proof of Theorem 1. Assume that the seller is an agent in I. In

this case, any trading rule that arises as a Bayesian equilibrium of the mechanism

yields an interim expected utility at least as high as that for (p∗, t∗) for every type of

every agent in I. Note the interim expected utility of the seller cannot be higher than

that for (p∗, t∗); otherwise, this trading rule is not a revenue maximizing one. There-

fore, whatever is the equilibrium outcome of the mechanism, it will achieve revenue

maximization, although we do not know the set F .

5 Concluding remarks

The focus of this paper is on Bayesian implementation in pure strategies. However,

characterization results extend to the case of mixed strategies. For instance, assume

the hypotheses of Theorem 1 are met and let us consider the mechanism constructed

in its proof. First, note that a pure strategy equilibrium that coincides with f is

still an equilibrium, although mixed strategies are allowed. Second, assume that a

(non-degenerate) mixed strategy profile σ = (σ1, σ2) is a Bayesian equilibrium. It

follows that every message in the support of σi (θi) yields the same interim expected

utility for every type θi of agent i. By the proposed mechanism, this interim expected

utility is at least as high as that produced by the lottery `i (f, θi). The proof goes

through since f satisfies closure.

The assumption of private values with independent types is central to our analysis,

allowing us to construct a mechanism where agent i of type θi can obtain the lottery

`i (f, θi) that makes her/him at least as well off (at the interim stage) as the lottery

in the direct revelation mechanism, regardless what the other agent −i is doing.
Although the construction in the proof of Theorem 1 is not always feasible when

values are common and/or types are correlated, a similar construction can be provided

when the SCF can be virtually simulated. Generally, f can be virtually simulated if

one can find, for each agent i, an "incentive compatible set of lotteries" that gives

to agent i a level of expected utility that coincides with that s/he can obtain by
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participating in the direct revelation mechanism associated with f under truthful

behavior. More formally, for any agent i and any SCF f , let `i (f) denote a (non-

empty) subset of ∆ (D). We say that the set `i (f) virtually simulates the SCF f if,

for every θi ∈ Θi, there is a lottery `
f
i (θi) ∈ `i (f) so that (1) U f

i (θi) = U
`fi (θi)
i (θi) and

(2) U `fi (θi)
i (θi) ≥ U

`fi (θ′i)
i (θi) for every θ′i ∈ Θi, where for all θ̄i ∈ Θi:

U
`fi (θ̄i)
i (θi) =

∑
θ−i∈Θ−i

q (θ−i|θi) · vi
(
`fi (θ̄i), (θ−i, θi)

)
, for all θi ∈ Θi.

If, for each agent i, `i (f) virtually simulates f , we say that f is virtually simulated

by (`1 (f) , `2 (f)).

It can be shown that an SCF is Bayesian implementable in any environment if it

satisfies closure and can be virtually simulated.12 This follows from exactly the same

arguments used for private values and independent types when lottery `i (f, θi) is

replaced with lottery `fi (θi). It will be interesting to know the classes of environments

under which a given SCF can be virtually simulated. This topic will be addressed in

future research.

Appendix

Notation: For any x ∈ X, i ∈ I, and θi ∈ Θi, we define lottery `i(x, θi) as follows:

the outcome is x(θ−i, θi) with probability q (θ−i|θi) for all θ−i ∈ Θ−i. In a private

value environment with independent types, if x is incentive compatible, then agent

i of type θi weakly prefers `i(x, θi) to `i(x, θ′i) for all θ
′
i ∈ Θi. A deception for agent

i ∈ I is a mapping αi : Θi → Θi. Let Ai be the set of all deceptions for agent i and

A = A1 × A2, with α as a typical profile of deceptions. For any α ∈ A, any x ∈ X,
and any θ, the lottery delivered by (x ◦ α) is (x ◦ α) (θ).

Proof of Theorem 1

Assume that f satisfies closure. Consider Γ = (M1 ×M2, g), whereMi = Θi×{0, 1}×
Z+, that is, each agent is asked to report a type, an element of the set {0, 1} and a
12Note that any two lotteries, `i (f, θi) and `−i (f, θ−i), must have common elements in their

support. At least f(θi, θ−i) must be in the support of both. However, this does not need to hold for

`fi (θi) and `
f
−i (θ−i), meaning there are more degrees of freedom in designing the mechanism.
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non-negative integer zi.13 The outcome function g : M1 ×M2 → ∆(D) is defined by

the following rules:

Rule 1. If mi = (θi, 0, z
i) for both i ∈ I, then g(m) = f(θ1, θ2).

Rule 2. If m−i = (θ−i, 0, z
−i) and mi = (θi, 1, z

i), then g(m) = `i(f, θi).

Rule 3. In all other cases, an integer game is played: identify the agent who announces

the highest integer (if there is a tie, pick agent 1). Let agent i be the winner. Then,

the lottery implemented is g (m) = `i(f, θi).

Let us first show that f can be supported as a Bayesian equilibrium of the mech-

anism. Let s = (s1, s2) be a strategy profile so that agent i of type θi ∈ Θi announces

si(θi) = (θi, 0, z
i). If this profile is played, Rule 1 applies, and g (s) = f . Note that

agent i of type θi is indifferent between f and `i (f, θi) by construction of the lottery

`i (f, θi). Agent i of type θi does not want to change only her/his type announce-

ment by incentive compatibility– the new message profile would still fall under Rule

1. Assume that agent i of type θi changes the second component of her/his message

into 1. In this case, Rule 2 applies and produces the lottery `i (f, αi (θi)). Since f

is incentive compatible, type θi weakly prefers `i (f, θi) to `i (f, αi (θi)). Therefore,

`i (f, α
i (θi)) is no better than f for type θi of agent i. Since the choice of type θi and

of agent i are arbitrary, we conclude that s ∈ B(Γ) and its outcome is f .

Conversely, take any s ∈ B(Γ). We show that g (s) = f to conclude the proof.

Fix any type θi of agent i. Assume that type θi deviates by changing si (θi) to

mi = (θi, 1, z
i). Therefore, the lottery selected by the outcome function is `i(f, θi)–

provided that type θi adjusts zi so that s/he becomes the winner of the integer game

if Rule 3 applies (as there are finitely many states). As s ∈ B(Γ), type θi weakly

prefers the lottery obtained under message si (θi) to lottery `i(f, θi).

Since the choice of type θi of agent i and of agent i are arbitrary, the lottery

obtained under message si (θi) is preferred to lottery `i(f, θi) for every possible type

θi of every agent i; that is, U
g(s)
i (θi) ≥ U f

i (θi) for all i ∈ I and all θi ∈ Θi. Since f is

interim incentive effi cient, f cannot be welfare dominated by g (s), and so U g(s)
i (θi) =

13Z+ is the set of non-negative integers.
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U f
i (θi) for all i ∈ I and all θi ∈ Θi. By the definition of Bayesian equilibrium, the

allocation rule g (s) ∈ XIC . As both g (s) and f are elements of XIC and as f satisfies

closure, g (s) = f , as we sought.

Proof of Theorem 2

Assume that the hypotheses of Theorem 2 are met. Consider Γ = (M1 ×M2, g),

where Mi = Θi × F × {0, 1} × Z+, that is, each agent is asked to report a type, an

element of F , an element of the set {0, 1} and a non-negative integer zi. The outcome
function g : M1 ×M2 → ∆(D) is defined by the following rules:

Rule 1. If mi = (θi, f, 0, z
i) for both i ∈ I, then g(m) = f(θ1, θ2).

Rule 2. For both i ∈ I, if m−i = (θ−i, f
−i, 0, z−i) and mi = (θi, f

i, 1, zi), then

g(m) = `i(f
−i, θi).

Rule 3. In all other cases, an integer game is played: identify the agent who announces

the highest integer (if there is a tie, pick agent 1). Let agent i be the winner. Then,

the implemented lottery is g (m) = `i(f
i, θi).

Let us first show that each f ∈ F can be supported as a Bayesian equilibrium

of the mechanism. To this end, we fix any f ∈ F . Let s = (s1, s2) be a strategy

profile so that type θi ∈ Θi announces si(θi) = (θi, f, 0, z
i). If this profile is played,

Rule 1 applies, and g (s) = f . Moreover, type θi does not want to change the third

component of her/his message into 1. In this case, Rule 2 applies and produces the

lottery `i (f, αi (θi)), where αi (θi) is her/his new type announcement. As f is incentive

compatible by assumption and we are in an environment with private values and

independent types, type θi weakly prefers `i (f, θi) to `i (f, αi (θi)). Moreover, agent i

of type θi is indifferent between f and `i (f, θi) by construction of the lottery `i (f, θi).

This implies that `i (f, αi (θi)) is no better than f for any type θi of agent i. Therefore,

the proposed strategy profile s is in B(Γ) and its outcome is f .

Conversely, take any s ∈ B(Γ). We show that g (s) = f for some f ∈ F .
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We fix any θi. Assume that type θi deviates by changing si (θi) into mi =

(θi, f, 1, z
i). Therefore, the lottery selected by g is either `i(f−i, θi) if Rule 2 ap-

plies or `i(f, θi) if Rule 3 applies– provided that type θi adjusts zi by which s/he

becomes the winner of the integer game. Since f−i, f ∈ F , U f
i (θi) = U f−i

i (θi) for all

i ∈ I and all θi ∈ Θi, by the interim inseparability of F , and so `i(f−i, θi) and `i(f, θi)

are equally good for type θi. As s ∈ B(Γ), type θi weakly prefers the lottery obtained

under message si (θi) to the lottery `i(f, θi). As f is interim incentive effi cient, f

cannot be welfare dominated by g (s), and so U g(s)
i (θi) = U f

i (θi).

As the choice of type θi is arbitrary, we have that U
g(s)
i (θi) = U f

i (θi) for all i ∈
I and all θi ∈ Θi. As F satisfies closure, it follows from g (s) ∈ XIC that g (s) ∈ F ,
as we sought.
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