
                                            [Cardiogenetics 2020; 10:8860]                                                                [page 1]

Sudden cardiac death in young
athletes: Literature review of
molecular basis
Cristina Mazzaccara,1,2 Bruno Mirra,1,2
Ferdinando Barretta,1,2 
Barbara Lombardo,1,2 Olga Scudiero,1,2
Giulia Frisso1,2 
1Department of Molecular Medicine and
Medical Biotechnology, University of
Naples Federico II; 2CEINGE Advanced
Biotechnologies, Naples, Italy

Abstract 
Intense athletic training and competi-

tion can rarely result in sudden cardiac
death (SCD). Despite the introduction of
pre-participation cardiovascular screening,
especially among young competitive ath-
letes, sport-related SCD remains a debated
issue among medical personnel, sports com-
munities and laypersons alike, and gener-
ates significant media attention. The most
frequent cause of SCD is a hidden inherited
cardiomyopathy, the athletes may not even
be aware of. Predictive medicine, by
searching the presence of pathogenic alter-
ations in cardiac genes, may be an integra-
tive tool, besides the conventional ones
used in cardiology (mainly electro and
echocardiogram), to reach a definitive diag-
nosis in athletes showing signs/symptoms,
even borderline, of inherited cardiomyopa-
thy/channelopathy, and in athletes present-
ing family history of SCD and/or of heredi-
tary cardiac disease. In this review, we
revised the molecular basis of the major car-
diac diseases associated to sudden cardiac
death and the clinical molecular biology
approach that can be used to perform risk
assessment at DNA level of sudden cardiac
death, contributing to the early implementa-
tion of adequate therapy. Alterations can
occur in ion channel genes, in genes encod-
ing desmosomal and junctional proteins,
sarcomeric and Z-disc proteins, proteins for
the cytoskeleton and the nuclear envelope.
The advent of next generation sequencing
(NGS) technology has provided the means
to search for mutations in all these genes, at
the same time. Therefore, this molecular
approach should be the preferred methodol-
ogy for the aforementioned purpose.

Introduction
Regular physical activity is a powerful

tool for improving health and helps to pre-

vent many disorders, including cardiovas-
cular risk factors, obesity, depression, anxi-
ety, musculoskeletal problems and stress.1-3

Numerous epidemiological studies have
shown an association between moderate
aerobic exercise and decreased risk of coro-
nary heart disease,4-6 reduced risk of ven-
tricular fibrillation in patients affected by a
first myocardial infarction,7,8 as well as a
reduction of overall death and cardiovascu-
lar mortality in cardiac patients subjected to
adequate training programs.9,10 Furthermore
the use of biochemical and haematological
tests to evaluate risk factors in athlete is of
relevance and interest at the amateur, com-
petitive and elite level.11

However, for a small number of indi-
viduals physical exercise can increase the
risk of sudden cardiac death (SCD).12,13 In
particular, vigorous activity can transiently
increase the risk of SCD in asymptomatic
young athletes carrying genetic mutations
predisposing to arrhythmic diseases.14,15

Sudden cardiac death is the most fre-
quent medical cause of sudden death in ath-
letes. Estimates vary widely based on the
analyzed population, sports-associated SCD
represents about 6% of the overall SCD bur-
den.16,17 In Europe and North America the
incidence of SCD is 2 athletes of 100,000
per year.18 In the Veneto region of Northern
Italy, where >110,000 athletes were evaluat-
ed over a 21-year follow-up period, the inci-
dence of SCD was 2.6/100,000 person-
years in male athletes and 1.1/100,000 per-
son-years in their female counterparts.13

The incidence varied by sex, the risk of
SCD being higher in men than in women.15

Some athlete subgroups, specifically
African Americans, male basketball and
football players, appear to be at higher risk
in the United States, whereas male soccer
players had a higher incidence of SCD than
other athletes in Europe.18,19 This observa-
tion suggests that individuals participating
in sports of high dynamic and low isometric
intensity are at higher risk of death. 

Few studies report prevalence of sports-
related sudden death in the general popula-
tion. Of note, paper of Marijon et al.
showed that only 6% of sports-related sud-
den death in the general population occur in
young competitive athletes, the remaining
involving amateur athletes.20

Though SCD is rare, its occurrence in
athletes who are often young and presum-
ably healthy has a large emotional and
social impact on the surrounding communi-
ty. Therefore, considerable effort has been
made to better understand the causes of
SCD in athletes and to discover optimal
strategies for prevention.

To this aim, the clinical molecular biol-
ogy laboratory has acquired an increasingly

relevant role for the early identification of
molecular alterations that can be causative
or con-causative of SCD in athletes.21 It is
important to identify the specific DNA
defect associated with a clinically manifest
heart disease in an athlete, and, above all, to
recognize the possible individual predispo-
sition to develop a latent heart disease,
before the disease can manifest itself with
the fatal event of SCD. 

In this review we will discuss genetic
causes of sudden cardiac death in athletes,
with particular emphasis on challenges in
molecular diagnostics of inherited cardiac
disease, like channelopathy and cardiomy-
opathy.

Cardiac diseases in young athletes
Cardiac diseases associated with SCD

differ in young vs older athletes, the SCD
cause being elusive even after autopsy in
young subjects. Guidelines of the European
Society of Cardiology (ESC) encouraged
molecular autopsy22 in addition to the stan-
dard autopsy, as it may allow the post-
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mortem diagnosis of cardiac chan-
nelopathies, which explain 15–25% of sud-
den arrhythmic deaths. The most common
causes of sport-related SCD in adolescents
and young adults are inherited cardiomy-
opathies,18,23-31 a clinically heterogeneous
group of heart muscle disorders, character-
ized by the presence of abnormal myocar-
dial structure and/or function, in the
absence of ischemic heart disease or abnor-
mal loading conditions.32

Arrhythmogenic cardiomyopathy
(ACM) has been reported to account for
approximately 25% in Italy, whereas it
accounts for only 6% of cases in the
USA.13,25,33,34 By contrast, hypertrophic car-
diomyopathy (HCM) is one of the leading
causes of SCD among athletes in the USA,
where it has been reported to accounting for
more than 30% of fatal cases,9,22,28 while in
European studies HCM is reported to cause
less than 10% of SCDs.29 These divergences
are attributable to the heterogeneity of rela-
tive frequencies in various countries, to the
different diagnostic and autopsy procedures
used18 and probably they are mainly due to
the different protocols of sports activity pre-
participation screening. Electrocardio -
graphy (ECG) screening is a common prac-
tice in most European countries and is com-
pulsory in Italy and Israeli,18,35 but it is not
routinely performed in the USA. The ECG
inclusion into the athlete screening protocol
improves efficacy to identify asympto matic
athletes who have a potentially lethal car-
diomyopathy, ECG findings being abnor-
mal in 90% of HCM patients,36 and protect
them from the risk of SCD through restric-
tion from competitive sports.

However, as reported in recent litera-
ture21,27,37,38 the most common cardiomy-
opathies related to SCD, are the inherited
ion channel diseases, followed by ACM,
HCM and dilated cardiomyopathy (DCM).

Genetic basis of cardiac diseases
in athletes 

In the last two decades the knowledge
of molecular basis of cardiomyopathies
has progressively increased: actually
mutations in more than 200 genes are
associated to cardiomyopathies, such as
sarcomeric and cytoskeleton genes (par-
ticularly related to HCM and DCM),
desmosomal genes (involved in ACM),
ion channel genes (channelopathies).39-49

Mutations are mainly inherited in an auto-
somal dominant pattern, although X-
linked, autosomal recessive, or matrilineal
inheritance may also occur in a minority
of cases.32,50

Inherited cardiomyopathies are char-
acterized by both allelic heterogeneity,
which occurs when mutations within the
same gene can produce different pheno-
types, and genetic heterogeneity, occur-
ring when mutations within different
genes produce the same phenotype. 

For example, SCN5A gene mutations
are associated with distinct chan-
nelopathies, such as long QT syndrome,
Brugada syndrome, and also to HCM or
DCM.51 Instead, DCM may be caused by
mutations in sarcomeric, cytoskeletal, gap
junction and even ion channel genes.
Variable penetrance and incomplete
expression are common in all cardiomy-
opathies, even among related subjects
sharing the same pathogenic allele,52,53 and
may reflect the action of modifier genes,
epigenetic changes, environmental fac-
tors, or other factors such as age, gender,
ethnicity or physical activity. To establish
the diagnosis of inherited cardiomyopa-
thy, the elucidation of family history and
comprehensive assessment of pedigree is
the foremost necessity, but it may not be
sufficient. Electrocardio graphy, echocar-
diography and cardiac magnetic resonance
imaging may not reveal subclinic anoma-
lies present in asymptomatic subjects har-
bouring mutations.54 Thus, genetic test in
the proband and cascade family screening
is a valuable tool to exactly diagnose an
inherited cardiomyopathy and to identify
family members at disease-risk in preclin-
ical stage.55 Furthermore, bioinformatics
approach and functional studies can help
to predict the pathogenicity of new vari-
ants found during genetic screening.56,57

In this regard, ESC and American
Heart Association (AHA)/American
College of Cardiology (ACC) guidelines58-

61 recommend molecular testing to
improve the diagnosis and management of
patients and at-risk family members.

By these considerations, in 2013 the
new cardiomyopathy classification system
MOGE(S)32,62,63 has become necessary.
MOGE(S) can assist in the diagnosis and
management of each cardiomyopathy
patient, classified following five
attributes: Morpho-functional characteris-
tic (M); Organ involvement (O); Genetic
or familial inheritance pattern (G);
Etiological description (E) of genetic
defect or nongenetic underlying cause;
and functional Status (S), using the
ACC/AHA stage (A to D) and the New
York Heart Association (I to IV) function-
al classes. The “S” notation is especially
useful when mutation carriers are healthy,
or if they demonstrate imaging-verified
early abnormalities suggestive of car-
diomyopathy.

Cardiac channelopathies
Cardiac channelopathies are rare inher-

ited primary electrical disorders, without
evidence of structural cardiomyopathy,
resulting from dysfunction of cardiac ion
channels. This alteration impairs cardiac
action potential or intracellular calcium
handling and results in electrical instabili-
ty,50 leading to life-threatening cardiac
arrhythmias, including ventricular tachycar-
dia or fibrillation (VT/VF) predisposing to
SCD. Channelopathies are usually transmit-
ted as an autosomal dominant trait and
show variable clinical penetrance and
expressivity. The main clinical features
include syncope and SCD; however, most
patients remain asymptomatic throughout
life and symptoms may be triggered by
physical activity (light, moderate and
heavy), sexual activity, emotions and sleep.
Early diagnosis of genetic carriers is war-
ranted, being the SCD in apparently healthy
young people the potential presenting
symptom; therefore, genetic testing has
been progressively introduced in clinical
practice.

The most frequent inherited cardiac
channelopathies are long QT syndrome
(LQTS), Brugada syndrome (BrS), and cat-
echolaminergic polymorphic ventricular
tachycardia (CPVT). Other rare inherited
arrhythmogenic diseases are short QT syn-
drome (SQTS), sick sinus syndrome (SSS),
familial progressive cardiac conduction
defect (PCCD), Haïssaguerre syndrome or
early repolarization syndrome.47-49 To date,
more than 40 genes are implicated in cardiac
channelopathies47,64 (Appendix Table 1): the
most common genes encode the cardiac
sodium and potassium voltage-gated chan-
nels (NaV1.5, KV7.1 and KV11.1), the L-type
calcium channel (CaV1.2), the cardiac recep-
tor of ryanodine (RyR2). Mutations in these
genes may cause loss or gain of channel
function, although mixed effects on ion
channels are also reported.65-67

LQTS is a cardiac channelopathy, char-
acterized by abnormally prolonged QT
interval.68-71 To the best of our knowledge,
pathogenic variants associated with LQTS
have been identified in the following genes:
AKAP9, ANK2, CACNA1C, CALM1,
CALM2, CALM3, CAV3, KCNE2, KCNH2,
KCNJ2, KCNJ5, RYR2, SCN1B, SCN4B,
SCN5A and SNTA1, showing an autosomal-
dominant inheritance; TRDN, resulting in
an autosomal-recessive pattern, and
KCNQ1 and KCNE1 with both autosomal-
dominant and -recessive hereditary72

(Appendix Table 1). In particular, the three
major LQTS-susceptibility genes are
KCNQ1, KCNH2 and SCN5A, encoding the
α-subunit of the voltage-dependent KV7.1,
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KV11.1 and Nav1.5 channels, respectively.73-

75 Generally, gain of function mutations of
sodium channel or loss of function muta-
tions of potassium channels prolong cardiac
action potential, producing a prolonged
repolarization in cardiac cells and pro-
longed QT interval on the ECG. These three
genes, together, explain up to 75% of LQTS
clinical diagnosed patients, while the
remaining genes contribute up to an addi-
tional 5-10% of LQTS cases.72,76,77 Of note,
subjects carrying mutations in KCNQ1
gene are at high risk to develop VT/VF dur-
ing physical activity. 

About 20-25% of Brugada patients
carry loss of function mutations in the
SCN5A gene. In addition, CACNA1C,
SCN10A, CACNB2, ABCC9 genes, among
about 30 other associated genes, are each
responsible for just over 5% of positive-
genotype patients, while the remaining
genes are very rare72,78,79 (Appendix Table
1). Overall, known susceptibility BrS genes
explain about 40% of cases, indicating that
about 60% of BrS patients remain geneti-
cally unresolved. Furthermore, genome-
wide association studies (GWAS) have
demonstrated that common genetic variants
increase susceptibility to Brugada syn-
drome, suggesting a polygenic way of
inheritance, also.80

Physical activity, increasing parasym-
pathetic tone and body temperatures, may
precipitate fatal arrhythmias in BrS asymp-
tomatic subjects.

CPVT is a rare channelopathy with both
autosomal-dominant and, less commonly,
autosomal-recessive inheritance,81,82 show-
ing polymorphic ventricular tachyarrhyth-
mia, which can lead to syncope or SCD
under physical stress or emotional condi-
tions. Clinical symptoms and higher risk of
cardiac events occur in youth particularly in
males.83,84 CPVT is, generally, caused by
gain of function mutations in RYR2 gene,
coding the ionic channel for the release of
calcium from the sarcoplasmic reticulum,
which plays a crucial role in regulating
intracellular calcium concentrations. RYR2
gene is mutated in about 60% of CPTV
patients, while only a small percentage of
subjects carry mutations in other genes
(Appendix Table 1).85-88

SQTS is a very rare cardiac channelopa-
thy, characterized by peculiarly short QT
intervals and increased susceptibility to
develop atrial and ventricular tachyarrhyth-
mia, which may arise later on physical
activity.89 The main symptom is the cardiac
arrest (up to 40%).90 Mutations (generally
of the gain of function type) in KCNQ1,
KCNH2, KCNJ2, CACNA1C, CACNB2,
CACNA2D1, SCN5A and SLC4A3 genes
are involved in disease (Table 1), although

the diagnostic sensibility of genetic test for
SQTS is low (15-25%).89,91-93

Globally, the diagnostic sensibility of
genetic test for channelopathies is variable,
ranging from 70-85% in LQTS to 15-25%
in SQTS; therefore, genetic screening in
genes known to cause cardiac chan-
nelopathies might result unsuccessful in
around 15-30% of patients with LQTS, 40%
of patients with CPVT, and 60-85% of
patients with BrS or SQTS. 

In the last decade it has become evident
that hereditary channelopathies can also be
caused by mutations in genes encoding car-
diac ion channels regulatory proteins, such
as transcription factors and proteins
involved in the expression, intracellular
transport and subsequent subcellular local-
izations of ion channels.94 For example,
pathogenic variants in Calsequestrin
(CASQ2), encoding the calsequestrin 2 pro-
tein, and calmodulin genes (CALM1,
CALM2 and CALM3) are involved in the
intracellular calcium homeostasis and are
associated with LQTS and/or CPVT.95-98 Of
note, CASQ2 mutations trigger SCD with a
frequency higher than RYR2 mutations.99

Mutations in genes encoding other ion-
channel associated proteins, such as cave-
olin (CAV3), ankyrins (ANK3, ANK2), syn-
trophin (SNTA1), and yotiao (AKAP-9) are
now implicated in the genesis of the cardiac
channelopathies, although they affect only a
very small proportion of arrhythmic
patients.94,100-107

Arrhythmogenic ventricular car-
diomyopathy 

Arrhythmogenic ventricular cardiomy-
opathy is an inherited heart muscle disease,
showing typically ECG abnormalities and
ventricular arrhythmias.108

ACM is characterized by a progressive
loss of myocytes and fibro-fatty replace-
ment; biventricular involvement is often
observed in later stages. 

ACM is reported to cause 0,08-3,6% of
SCDs/year;109 however patients with known
genotype are characterized by mortality
<1%, as reported in recent literature.110

Mutations in desmosomal genes are
found in about 50-60% of ACM patients,
defining desmosomes as major factors in
ACM pathogenesis.111-113 Desmosomes are
intercellular junctions that provide strong
adhesion between cells and link, intracellu-
larly, to the intermediate cytoskeleton fila-
ment. They are found in tissue that experi-
ence intense mechanical stress, such as car-
diac muscle tissue and epidermis. The link-
age between the intermediate filaments and

the desmosomal adhesion molecules is
mediated by desmoplakin and the armadillo
proteins plakoglobin and plakophilin. Thus,
desmosomes contain desmoplakin,
plakoglobin and at least one isoform each of
plakophilin and the desmosomal cadherins
desmocollin and desmoglein. A number of
other accessory proteins are associated with
desmosomes. Desmosomal genes related to
ACM (Appendix Table 1) include PKP2,
DSG2, DSC2, JUP and DSP, encoding
plakophilin-2, desmoglein, desmocollin,
plakoglobin, desmoplakin, respectively.
PKP2 is the most frequently mutated gene
in ACM patients, associated with about 30-
40% of cases.114,115 Plakophilins exhibit dual
localization, in the desmosomes as well as
in the nucleus, where they can trigger
fibroadipocytic replacement of cardiac
myocytes by suppression of Wnt/beta-
catenin pathway.116

Of note, mutations in desmosomal
genes are founded in about 5% of DCM
cases, suggesting that there are little differ-
ences, in some cases, between ACM and
DCM.108,117

Mutations in αT-catenin (CTNNA3) and
N-cadherin (CDH2) are also associated
with ACM.118,119 Both proteins are present in
the area composita at the cardiac intercalat-
ed discs. Alpha-T-catenin binds
plakophilins contributing to the formation
of the area composita, which strengthens
cell-cell adhesion in contractile cardiomy-
ocytes. This involvement shows that the
pathogenesis of ACM extends beyond
desmosomes. Area composite is a mixed-
type junctional structure composed of both
desmosomal and adherents junctional pro-
teins. Physiologically, important interac-
tions exist between the cardiac desmosome
and gap and adherents junctions, with the
resulting integrity of the intercalated disc
and its important role in both mechanical
and electrical cellular stability dependent on
adequate functioning of all three subunits.

Rare mutations in TMEM43, transmem-
brane protein 43, located in nucleus inner
membrane, are associated with severe ACM
phenotypes,120 high penetrance and high
SCD risk.111,121,122 This gene contains a
response element for PPARγ (an adipogenic
transcription factor), which may explain the
fibrofatty replacement of the myocardium, a
characteristic pathological finding in
ACM.123

Hypertrophic cardiomyopathy
Hypertrophic Cardiomyopathy is a

myocardial disease, characterized by thick-
ening of the interventricular septum and left
ventricular wall, in the absence of clinically
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important abnormal loading conditions or
primary valve disease. The most specific
histological features include myocyte
hypertrophy and disarray, as well as intersti-
tial fibrosis.

HCM is the most common cause of sud-
den death,25 particularly in adolescents and
young adults, and the most common cause
of SCD in athletes, in the United States.25,124

Nonsustained ventricular tachycardia, syn-
cope, family history of sudden cardiac
death, and severe cardiac hypertrophy are
the major risk factors for sudden cardiac
death.125 Furthermore, the presence of
underlying but undiagnosed HCM in ath-
letes is among the main causes of SCD,
with the majority (60%) of cases occurring
during exercise.27

Hypertrophic Cardiomyopathy is a
genetic disease, generally transmitted as
autosomal dominant trait and characterized
by marked genetic heterogeneity.61,126

Mutations in about 100 different genes have
been described associated to HCM; howev-
er, mutations in eight sarcomeric genes are
responsible for approximately 60-70% of
cases of HMC.61,126 Typically, the most
commonly genes involved in HCM are
MYBPC3 (myosin-binding protein C3),
MYH7 (myosin heavy chain 7), TNNT2
(cardiac troponin T), TNNI (cardiac tro-
ponin I), ACTC1 (actin alpha cardiac mus-
cle 1), TPM1 (tropomyosin 1), MYL2
(myosin light chain 2), MYL3 (myosin light
chain 3); other six sarcomeric genes are
involved in less than 10% of cases41,127,128

(Appendix Table 1). Most sarcomere muta-
tions result in a single amino acid substitu-
tion, with the exception of mutations in the
MYBPC3 gene, which are most frequently
frameshift mutations, and create a prema-
ture-termination codon. Allelic balance
between mutant and wild-type sarcomere
proteins is variable and mutation-specific,
reflecting differential stability or efficiency
of sarcomere incorporation of mutated pro-
tein compared to the wild-type. 

About 5% of HCM patients carry multi-
ple sarcomeric mutations: these patients
present with more severe disease at an ear-
lier age.128-131 As a result, more extensive
genetic evaluation may be warranted in
probands presenting with early or severe
disease. 

More rarely (less than 1% of cases)
HCM patients present mutations in genes
encoding Z-disc or calcium-handling pro-
teins. The sarcomeric Z-disc defines the lat-
eral borders of the sarcomere and is impor-
tant not only for mechanical stability and
force transmission but also for signalling,
mechanosensation, mechanotransduction,
apoptosis and cell survival. It is composed
of numerous proteins, such as titin, myopal-

ladin, nebulette, obscurin, actinin,
telethonin. However, mutations in Z-disc
genes give rise to heterogenous diseases
encompassing various cardiomyopathies
such as DCM, HCM, ACM.132,133

Although the utilization of next-genera-
tion sequencing methods has increased the
spectrum of the putative HCM related
genes, recent studies have suggested that
mutations in non sarcomeric genes are very
rare cause of HCM.134,135

Dilated cardiomyopathy
Dilated cardiomyopathy, characterized

by left ventricular enlargement and systolic
dysfunction, is a heterogeneous heart dis-
ease leading to progressive systolic heart
failure and sudden cardiac death. When
DCM occurs, in the absence of an identifi-
able cause, the disease is referred to as idio-
pathic DCM (IDCM). Familial DCM
(FDCM) demonstrates marked genetic het-
erogeneity and age-dependent penetrance,
with disease developing in childhood, ado-
lescence and middle age, but rarely in the
elderly. More than 40 genes have been iden-
tified in association with non-syndromic
FDCM, the majority demonstrating autoso-
mal dominant inheritance.136 They encode
cytoskeletal, sarcomeric, nuclear proteins
and act through different pathogenetic
mechanisms, such as disruption of sarcom-
ere-cytoskeletal interactions or myocyte
architecture; amyloid deposition; abnormal-
ities of desmosomal, calcium handling, ion
channel function; alterations of mitochon-
drial energy dynamics or nuclear mem-
brane-cytoskeletal integrity. 

TTN gene, encoding the titin protein, is
the most frequently mutated gene in DCM
patients (up to 25% of cases, Appendix
Table 1).137,138 Titin is an elastic protein,
which passively stretched during the dias-
tole and then returns to its initial state.
However, it is also a biomolecular scaffold
and mediates multiple protein interactions
and intracellular signalling cascades, which
may exert regulatory functions on muscular
activity. The TTN mutations are generally
nonsense, splice variants or deletion/inser-
tions mutations, producing a truncated pro-
tein. Also mutations in genes encoding for
sarcomeric thin and thick filaments
(MYPBC3, MYH7, TNNT2, TNNI3, ACTC1,
TPM1, MYL2, MYL3),32,139 and other pro-
teins interacting with titin [myomesin 1
(MYOM1), cardiac ankyrin repeat protein 1
(ANKRD1) and telethonin (TCAP)] have
been found in up to 5-10% of DCM
patients137,140-144 indicating that a complex
network of proteins organized around the
central scaffold titin may be defective in

DCM.145 About 10% of DCM patients,146,147

show mutations in LMNA gene.148 Lamins A
and C are intermediate filament nuclear
envelope proteins, encoded by the LMNA
gene, implicated in DNA replication, cell-
cycle regulation, chromatin organization,
differentiation maintenance, nuclear stabili-
ty, pore positioning, gene expression and
signal transduction. Through alternative
splicing, a single transcript generates four
products, collectively known as lamin A/C.
Lamin A/C is associated with the LInker of
Nucleoskeleton and Cytoskeleton (LINC)
bridge complex, which links the nucleus to
the actin cytoskeleton. The major compo-
nents of the LINC complex are: lamin A/C
(LMNA), emerin (EMD), nesprins-1 (SYNE-
1) and nesprins-2 (SYNE-2) and SUN-
domain containing proteins (SUN1/2).146

Mutations in all these genes are involved in
DCM as well as in rare cases of ACM.148-151

Other cytoskeletal proteins involved in
DCM are desmin (DES), dystrophin
(DMD), alpha-dystroglycan (DAG1), dys-
trobrevin (DTNA), sarcoglycan (SGCD),
syntrophin (SNTA1), phospholamban
(PLN), caveolin (CAV3). 

Desminopathy is one of the most com-
mon intermediate filament human disorders
associated with mutations in desmin and
alphaB-crystallin proteins. Desmin links
desmosomes with the Z disk, helping to
connect myofibrils together. This allows the
formation of a continuous cytoskeletal net-
work that maintains a spatial relationship
between the contractile apparatus and other
structural elements of the cell, providing
maintenance of cellular integrity, force
transmission and mechanochemical signal-
ing. Desminopathy-associated diseases may
be associated with DCM, ACM151,152 and
restrictive cardiomyopathy.153

Among the rare DCM genes, SCN5A,
FLNC and PLN genes, deserve particular
attention. FLNC codes the Filamin C pro-
tein, an actin cross-linking molecule, which
contributes to the sarcomeric architecture;
PLN gene encodes phospholamban protein,
a key regulator of the sarcoplasmic reticu-
lum Ca2+ATPase pump (SERCA2a), which,
in turn, is responsible for the calcium home-
ostasis.154-156

DCM patients carrying mutations in
SCN5A, FLNC or PLN genes, as well as in
LMNA, had a prominent arrhythmogenic
phenotype and a higher risk for life-threat-
ening ventricular arrhythmias and SCD.
Therefore, early identification of patients
carrying mutations in these genes is partic-
ular imperative.108

The great genetic heterogeneity associ-
ated to DCM demonstrates a central rele-
vance for cytoskeletal integrity and biome-
chanical coupling of elastic and contractile

                             Review

Non
-co

mmerc
ial

 us
e o

nly



elements. Mutations in cytoskeletal proteins
critically diminish force generation and
interfere with mechanical transduction with-
in the contractile apparatus of the myocardi-
um, thereby ultimately leading to impaired
systolic function.157 In addition, cytoskeletal
alterations can affect ion channel anchoring
and trafficking, causing an imbalance in car-
diac ionic homeostasis with subsequent
action potential and conduction alterations
that will trigger arrhythmogenesis.158,159

High-throughput sequencing
technology: Next Generation
Sequencing (NGS)

The correct molecular diagnostic frame-
work of inherited cardiomyopathies is often
very complex, because of high clinical and
genetic heterogeneity (Figure 1).160

The sequencing with the traditional
techniques such as Sanger sequencing of a
lot number of genes requires long execution
times and involves a lower diagnostic and
analytical sensitivity. These limitations
have been overcome by the development of
highly productive nucleic acid sequencing
techniques (“Next Generation Sequencing”,
NGS).161 These methods allow the analysis
of a large number of nucleotides, from a
single exon or gene, up to the analysis of
gene panels, or of the whole exome or
genome,127,162 accurately and at extremely
competitive costs compared to traditional
methods.

The analysis of gene panels by NGS
sequencing represents the ideal analytical

approach to identify DNA mutations associ-
ated with genetically heterogeneous
pathologies, such as cardiomyopathies and
channelopathies. This approach not only
allows to analyze a large number of genes
simultaneously in several patients, but,
through the identification of further variants
associated with the disease phenotype,
allows to obtain information also on possi-
ble additional genetic factors that can act as
phenotype modifiers or predict the patient’s
prognosis. Recent evidence supports the
importance of a sensible molecular analysis
also in athletes showing a reasonable index
of suspicion for an inherited cardiomyopa-
thy or channelopathy, in order to early iden-
tify or prevent serious complications, up to
the risk of sudden death.54,163,164 The use of
genetic test by NGS methodologies could
be taken as a useful implementation in the
path of cardiological prevention for ath-
letes, when the pre-participation screening
shows a family history of SCD, cardiomy-
opathy/channelopathy or, symptoms and/or
instrumental signs, even borderline, of car-
diac dysfunction. The integrated diagnostic
path may result in an exhaustive precise
characterization of the underlying cardiac
inherited disease.

Conclusions
Subjects practicing routine sports,

both at a competitive and amateur level,
have a lifestyle characterized by a vigor-
ous and continuous physical effort.
However, sudden cardiac death, often due

to hidden cardiovascular disease, can sud-
denly affect even high-value athletes.
SCD related to the practice of sports
accounts for about 6% of the total SCDs17,
both in competitive and amateur young
athletes.25 In fact, athletes, also asymp-
tomatic, may be at risk of SCD while
they’re training or competing, due to car-
diovascular defects they may not even be
aware of. To date, pre-participation car-
diovascular screening of athletes is a life-
saving and cost-effective strategy in ath-
letes in whom SCD can be caused by heart
muscle diseases and is recommended by
both the AHA and ESC. The AHA recom-
mends screening competitive athletes by
means of family/personal history and
physical examination.165 In Italy, a manda-
tory state-sponsored screening program
exists for all competitive athletes, includ-
ing symptoms evaluation, family history,
physical examination and 12-lead ECG.
This protocol was acknowledged by the
ESC to propose for a common European
conduct.166

A recent study by the Institute of
Sports Medicine of Italian National
Olympic Committee (CONI), conducted
on more than 2,300 athletes who had taken
part in the Olympic Games from 2004
(Athens) to 2014 (Sochi), confirms the
opportunity to subject athletes to pre-par-
ticipation cardiovascular screening and
other examinations when necessary.167

About 0,2% of these athletes were found
to have inherited cardiomyopathies, and
globally about 4% showed cardiovascular
abnormalities (coronary heart disease,
high blood pressure, heart rhythm disor-
ders) all equally asymptomatic.

The main aim of this review is to pro-
vide genetic support to prevent sudden
cardiac death in young athletes, a highly
visible tragedy that generates significant
media attention and discussion among
medical personnel, sports communities
and laypersons alike. We think that genet-
ic cardiomyopathy testing in athletes may
be an integrative tool to reach a definitive
diagnosis when the pre-participation
screening shows personal symptoms (i.e.
syncope, arrhythmias) or instrumental
signs of heart dysfunction, even border-
line, suggesting the presence of an inherit-
ed cardiomyopathy/ channelopathy.168

Moreover, the genetic test may also be
indicated in athletes with a family history
of SCD or when a his/her family member
is affected by cardiomyopathy/chan-
nelopathy and carries a disease-causing
mutation. In this setting, the identification
of athletes carrying a pathogenic mutation
allows to detect individuals at risk in the
pre-clinical or asymptomatic phase.

                                                                                                                             Review

Figure 1. Schematic representation of cardiomyopathies and genes involved in Sudden
Cardiac Death, can reflect our work and be used as a cover image. Diagram shows the
overlap between the genes associated with Channelopathies, Dilated Cardiomyopathy
(DCM), Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Cardiomyopathy
(ACM).
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