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Abstract: We investigated the possibility of improving the performance of polysulfone (PSf) membranes
to be used in carbon dioxide capture devices by blending PSf with a commercial polyethylene imine,
Lupasol G20, previously modified with benzoyl chloride (mG20). Additive amount ranged between
2 and 20 wt %. Membranes based on these blends were prepared by phase inversion precipitation and
exhibited different morphologies with respect to neat PSf. Surface roughness, water contact angles,
and water uptake increased with mG20 content. Mass transfer coefficient was also increased for both
N2 and CO2; however, this effect was more evident for carbon dioxide. Carbon dioxide absorption
performance of composite membranes was evaluated for potassium hydroxide solution in a flat sheet
membrane contactor (FSMC) in cross flow module at different liquid flow rates. We found that, at the
lowest flow rate, membranes exhibit a very similar behaviour to neat PSf; nevertheless, significant
differences can be found at higher flow rates. In particular, the membranes with 2 and 5 wt % additive
behave more efficiently than neat PSf. In contrast, 10 and 20 wt % additive content has an adverse
effect on CO2 capture when compared with neat PSf. In the former case, a combination of additive
chemical affinity to CO2 and membrane porosity can be claimed; in the latter case, the remarkably
higher wettability and water uptake could determine membrane clogging and consequent loss of
efficiency in the capture device.

Keywords: carbon dioxide capture; polyethylene imine; polysulfone; artificial stomata

1. Introduction

Since the late nineteenth century, rapid economic growth has provoked a huge increase in energy
production and consumption. Given that energy has largely depended on the use of fossil fuels, their
abundant use has turned into a big concern due their adverse effects on environment, in particular,
carbon dioxide emission. CO2 emissions contribute to 60% of global warming as well as the greenhouse
(GHG) effect [1]. According to the Emission Database for Global Atmospheric Research, global
emissions from carbon dioxide have been increasing, rising by approximately 50% in only two decades.
In 2016, carbon dioxide concentration reached the record value of 402 ppm [2], which has led to an
increase of global surface temperature of about 0.8 ◦C. The intergovernmental Panel on Climate Change
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(IPCC) Fifth Assessment Report, issued in 2013, indicated that the temperature rise should be kept
below 2 ◦C relative to pre-industrial levels to prevent the worst effects of climate change; this has
inevitably encouraged a strict control of carbon dioxide emissions. To reduce CO2 concentration in the
environment, several approaches are possible: promoting energy conservation, increasing the use of
low carbon fuels (hydrogen, natural gas, or nuclear power), deploying renewable energy (solar, wind,
hydropower, and bio-energy), and eventually capturing and storing carbon dioxide itself. The last
approach could allow the subsequent use of the captured gas as a carbon source; nevertheless, this
implies that the carbon dioxide must first be captured at atmospheric pressure and stored efficiently.
Current processes are based on physical or chemical solvents as well as membrane technology; recently,
new hybrid processes have been developed, which combine advanced membrane techniques with an
effective CO2 absorption process in one device, called a contactor [3–5]. In these compact systems,
an advanced gas membrane, which helps the mass exchange process by increasing the surface area
for phase contact, is present between the gas and an absorbing aqueous solution [3,6]. This approach
is inspired by natural photosynthesis, in which leaves, by means of stomata, are able to efficiently
capture carbon dioxide. In the case of membrane contactors, pores act as stomata. This system offers
additional advantages: it is not necessary to disperse one phase into another due to the large contact
surface between the phases. It is also a small modular system, which can be easily assembled and
integrated in other devices. The system is not sensitive to flooding, channeling, or back-mixing; it can
also be operated in a wide range of flow rates.

Recently, we reported a biomimetic contactor designed as artificial stomata [7]. This device takes
advantage of a polysulfone membrane in combination with a potassium hydroxide solution. Different
membrane contactors, with morphologies ranging from spongy-like to open microvoids, were prepared
by phase inversion precipitation and different membrane preparation parameters. The highest CO2

absorption flux (i.e., 67.5 mmol/m2 s) was found in the case of a fingerlike macrovoids membrane,
in which CO2 absorption was even higher than in natural stomata (40 µmol/m2 s). This is also the
highest value reported for an artificial system.

Amines and aminic compounds have found wide applications as CO2 removing agents due to the
reversible reaction between aminic groups (basic) and CO2 (acidic). Amine carriers can be divided
into unhindered and hindered. In the former case, CO2 transport occurs via a zwitterion formation,
which is subsequently quickly deprotonated by another amine group, producing a carbamate ion
and a protonated amine. Under this mechanism, 0.5 mol carbon dioxide can be loaded per amine
group [7,8]. On the other hand, when hindered amines are considered, the presence of a bulky group
directly linked to the amine determines carbamate instability. Therefore, carbon dioxide is carried
as a carbonate group in the presence of water and the maximum loading in this case is one CO2

molecule per amine group. Moreover, in the case of hindered amines, the overall reaction rate is
higher [9]. For this reason, hindered amines are considered good carriers in carbon dioxide-facilitated
transport membranes. Amine carriers have been reported both as mobile and fixed-site: the second
option could be preferable since mobile carriers are not covalently linked to the polymeric membrane
and can produce a leakage phenomenon in a relatively easy way [10]. Recently, nanocomposite
membranes based on polyvinylamine (PVAm)/piperazine glycinate (PG) for CO2 removal were
reported [11], which showed high CO2/N2 selectivity and good CO2 permeance. Zi Tong et al. [10]
investigated several sterically hindered polyvinylamines with different degrees of steric hindrance
and found significant improvement in CO2 permeance and CO2/N2 selectivity in comparison with
unhindered polyvinylamine.

In this paper, our aim is to increase the performance of the polysulfone membrane contactor by
blending commercial PSf with a commercial, hyperbranched polyethylene imine, specifically, Lupasol
G20. The presence of the basic nitrogen atoms should increase the membrane affinity for carbon dioxide,
thus improving its capture and permeability with respect to PSf. On the other hand, Lupasol G20 is a
water-soluble polymer; this could prevent membrane preparation from a water coagulation bath as
previously described for neat PSf as well as membrane stability in contact with the storing aqueous
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solution. For this reason, before blending with PSf, Lupasol G20 was partially chemically modified
by means of benzoyl chloride. Additionally, chemical modification of Lupasol G20 is expected to
preferably occur on the unhindered amines, converting them to hindered ones. The loading capability
of the modified Lupasol is expected to improve as a consequence of this reaction. Subsequent blending
of the modified Lupasol with PSf was performed in small amount (i.e., between 2 and 20 wt % with
respect to PSf), and the characteristics of the blended membranes were compared to neat PSf membrane.

2. Materials and Methods

2.1. Materials

Polysulfone (PSf, MW 35000 Da) in transparent pellet form, benzoyl chloride (99% purity),
1-methyl-2-pyrrolidone (NMP, ACS) were purchased by Sigma-Aldrich (Madrid, Spain) and used
without any further purification. Lupasol G20 Polyethylenimine (MW 1300 Da, charge cationic density
16 meq/g TS, N:C ratio = 1/2) was kindly provided by BASF (Tarragona, Spain). Its structure is
reported in Figure 1. Distilled water was used as coagulation bath in membrane preparation. Hollytex
non-woven made of polyester with density 34 g/m2 was acquired in STEM and used as support in the
CO2 module. Extra pure potassium hydroxide in pellets (Scharlab, Barcelona, Spain) was dissolved in
deionized water to prepare absorptive solutions.
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2.1.1. Additive Preparation

Lupasol G20 was chemically modified, in order to reduce its water solubility, as schematized for
the secondary amine groups in Scheme 1.
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Scheme 1. Reaction between Lupasol G20 and benzoyl chloride.

5.97 g (0.042 mol) of benzoyl chloride were added dropwise to 10 g of Lupasol G20
(ratio chloride/cationic groups = 0.25). The reaction was performed at 25 ◦C under magnetic stirring
for two hours; the reaction product was washed several times with distilled water under stirring and
finally decanted, yielding mG20, an oily product which was vacuum dried at room temperature for
24 h. 1H NMR (CD3OD, TMS, δ, ppm): 6.8–7.9 (m, Ar), 2.2–4.2 (m, N–CH2–CH2–N).

2.1.2. Membrane Preparation

As seen in Table 1, all membranes were prepared by phase inversion precipitation process in
ambient conditions. Specific amount of polymer was dissolved in N-Methylpyrrolidone (NMP) to



Polymers 2019, 11, 1662 4 of 15

obtain 20 g of solution in which mass ratio between total polymer content and solution was maintained
constant at 20 wt %. Resulting mixtures were stirred for 48 h and left overnight for degasification and
sonicated for 30 min before the membrane preparation. Solutions were cast on a glass support by using
casting knife (knife thickness = 250 µm), and immediately immersed into a coagulation bath containing
a non-solvent, where the membranes precipitated as a result of the exchange between solvent (NMP)
and non-solvent (water). Prepared flat sheet membranes were taken out from coagulation bath, washed
with distilled water, and left overnight to dry in air.

2.2. Membranes Characterization

1H NMR spectra of mG20 in deuterated methanol (CD3OD) were recorded at 400 MHz on a
Varian Gemini 400 spectrometer (Varian Inc., Palo Alto, CA, USA). A pulse delay time of 5 s was used.
The solvent peak was taken as the reference, and the chemical shifts were given in parts per million
from TMS (Tetramethylsilane) with the appropriate shift conversions.

The membranes morphology was characterized by Environmental Scanning Electronic Microscopy
using a FEI Quanta 600 (ThermoFisher Scientific, Waltham, MA, USA). The samples were cryofractured
into liquid nitrogen and then fixed on the support suitable for the cross-section analysis. For detection
of potassium carbonate, a back scattered electron detector (BSED) was employed.

Images obtained from ESEM were analyzed with ImageJ and IFME software [12] to obtain
information about membrane thickness and pore size with 20–30 measurements per sample.

The overall membrane porosity (ε), defined as the volume of the pores divided by the total volume
of the membrane, was determined from the bulk and the polymer density using a method based on
the density measurements according to the following equation:

ε =

(
1−
ρm

ρp

)
100% (1)

where ρp corresponds to the polymeric material density, which is a weighted average of polusulfone
(1.24 g/cm3) and lupasol (1.08 g/cm3) density, and ρm to the membrane density. ρm is calculated by
determining the relationship between mass and volume of 1 cm2 of membrane.

The membrane surface morphology and roughness were determined by Atomic Force Microscopy
(AFM) and images obtained were analyzed with WsxM software [13]. The membrane surface roughness
parameters of the membranes were expressed in terms of root mean square of the Z (Rq).

Water contact angle of the membranes was determined by Dataphysics PCA 15EC. A 3 µL droplet
of Milli-q water was placed on the surface of the membrane and the contact angle was calculated
from a digital image by SCA software (DataPhysics, Fildertstadt, Germany) included in the apparatus.
Contact angle values were taken as the average of three measurements.

Water uptake tests were performed on previously dried membranes (size: 1.5×3 cm2). The membranes
were dried at 60 ◦C for 72 h, weighed, soaked in deionized water for 24 h at room temperature,
and reweighed. The water uptake (WU) was calculated as:

WU(%) =
Wwet −Wdry

Wdry
× 100 (2)

The glass transition temperature of neat PSf membrane and blended membranes was determined
by Differential Scanning Calorimetry by means of a Mettler DSC-821e, calibrated using an in standard
(heat flow calibration) and an In-Pb-Zn standard (T calibration). Samples of approximately 5 mg were
tested in aluminium pans with a pierced lid in N2 atmosphere with a gas flow of 50 mL/min. Tests
were performed in dynamic mode at a heating or a cooling rate of 10 ◦C/minute in cycle: the first
heating was from 0 to 200 ◦C, followed by cooling to 0 ◦C; the second heating was to 200 ◦C. Tg was
determined as the inflection point in the heat flow signal step from the second heating scan.
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Gas permeation tests were carried out using a self-made, stainless-steel, dead-end apparatus
containing a membrane to measure the carbon dioxide permeance. The effective membrane area in the
module was 12.6 cm2. Figure 2 shows a schematic representation of the system used in the process.
Pure CO2 or N2 was injected into the module. Permeated gas flow was measured at 1, 2, and 3 bar,
respectively, using a precision gas mass flow controller (Alicat Scientific MC-500SCCM-D, Tucson,
AZ, USA).
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Finally, a mass transfer coefficient k (mol/s·m2
·bar) was calculated following the equation:

k =
n

A·∆P
(3)

where n stays for mass transfer (mol/s), A is membrane area (m2), and ∆P driving force pressure
gradient (bar).

The solubility of CO2 into mG20 additive was studied by measurements of the pressure decay
using the system described in Figure 2, with a small modification: the gas flow meter was removed,
allowing the membrane-containing module to be closed tightly. Analyzed material was placed in the
module and the valve 2 was open to introduce carbon dioxide into the system. When the pressure
reached 200 kPa, the valve (2) was closed and pressure decrease was measured. The solubility was
calculated according to Equation (4):

n =

(
pi − p f

)
V

RT
(4)

where n is the adsorbed moles of CO2, pi and pf are the initial and final pressures (Pa), respectively,
V is gas volume of gas (m3), R is gas constant (8.314 J/K/mol), and T (K) is temperature. The solubility
coefficient, SCO2, expressed in (m3 (STP)/m3 polymer atm) units, which are commonly used when
referring to the solubility of gases, is calculated, respectively, by:

SCO2 =
VCO2m(STP)
Vmpestablished

(5)

where VCO2m (STP)(m3) is the volume of CO2 corresponding to nCO2 at STP conditions (1.013 × 105 Pa,
273.15 K), Vm is the analyzed material volume [m3] and pestablished (atm) is the pressure measured at
equilibrium conditions. CO2 absorption test was performed in which prepared membranes (9 cm2)
were placed in a home-made module as reported in [7] and used for CO2 absorption test conducted in
a gas–liquid membrane contactor. A volume of 200 mL of 0.64 KOH solution was employed as liquid
absorbent in contact with the bottom surface of the flat sheet membrane. The liquid absorbent was
tested within a range of 35–228 mL/min and the experiments were performed for 1 h with continuous
stirring. Bottom surface of the membrane was in contact with absorbent solution while the top surface
was exposed to air by holes in the top side of the module. All experiments were carried out in
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room conditions (25 ◦C and 1.013 × 105 Pa), and each one was repeated three times to verify the
reproducibility. After 1 h, samples were collected and examined for CO2 content.

To determine the absorbed CO2 amount, carbon dioxide ion selective electrode (Thermo Scientific
connected with Thermo Scientific Orion Dual Star pH/ISE Benchtop meter) was used. Diluted sample
(1 mL sample + 45 Milli-q water) was mixed with CO2 buffer (5 mL) to adjust the pH to the electrode
working pH at 4.8–5.2. The apparatus was set to auto read mode and the CO2 concentration in sample
was measured. The stable value of CO2 flux (mol/m2

·s) in the membrane contactor was calculated
according to the following:

JCO2 =
Qi·MCO2

A
·1000 (6)

where Qi is the absorbent flow rate (m3/s), MCO2 is CO2 concentration in the absorbent (mol/L) obtained
from the measurements, and A is the area of the flat sheet membrane (m2).

3. Results and Discussion

As previously stated, commercial Poly (ethylene imine) (PEI), Lupasol G-20, can be a suitable
candidate for improving CO2 sorption in PSf-based contactors when blended with Polysulfone, thanks
to its high content of basic nitrogen. Nevertheless, it is highly soluble in water and this prevents its use
in membrane preparation by phase inversion in DMF/water as well as in the final CO2 capture device,
which contains a basic aqueous solution in contact with the membrane. For this reason, Lupasol G-20
was chemically modified with benzoyl chloride as described in the experimental section to reduce
water solubility. As a consequence of this reaction, the number of hindered amines should be increased,
improving the carrier capability of this additive.

1H NMR of modified Lupasol (mG20) in deuterated methanol, as seen in Figure S1 in supplementary
material, showed two groups of broad, partially overlapped signals in the regions 6.8–7.9 (aromatic
protons) and 2.2–4.2 (ethylenic protons adjacent to nitrogen atoms), which confirmed that the reaction
successfully occurred. According to Lupasol G20 initial composition, the ratio N:C is 1:2; therefore,
each ethylene group approximately corresponds to one nitrogen atom. From the integration of
the aforementioned signals, we achieved a rough estimation of the number of aromatic groups
versus ethylene groups, that is, the aromatic groups/nitrogen atoms content, which resulted in 19%.
The amount of benzoyl chloride for the reaction was 25% with respect to the cationic charge density of
Lupasol G20; accordingly it can be concluded that chemical modification of Lupasol G20 occurred to a
good extent. The achieved degree of modification was sufficient to reduce polymer solubility in water:
mG20 was obtained after precipitation and washing in water.

Afterwards, mG20 was blended with PSf in different amounts, namely 2, 5, 10, and 20 wt %,
as seen in Table 1, by dissolving both polymers in N-methylpyrrolidone (20 wt % polymer/solvent) as
described in the experimental section. Next, polymeric solutions were casted and immersed into a
coagulation bath containing water, finally yielding flat sheet membranes (L2–L20), whose morphology
was characterized by means of environmental scanning electron microscope (ESEM).

Table 1. Composition and morphological characteristics of the investigated membranes.

Membrane mG20 Content (wt. %) Thickness (µm) Porosity (%)

L0 0 123 ± 4 74.3
L2 2 139 ± 3 79.0
L5 5 151 ± 6 81.8
L10 10 162 ± 2 75.8
L20 20 196 ± 3 69.2

Membrane thicknesses were determined by ESEM micrographs by means of ImageJ and IFME
softwares, and are reported in Table 1. Porosity was calculated from the densities. Additionally,
the pore size distribution was also determined by ESEM images and further analysis with the previously
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mentioned software; the obtained histograms are included in Figure 3. As can be seen in Figure 3a,
in the case of L0, 90% of pores are homogeneously distributed at 3–11 µm, while in blended membranes,
80% of measured pores lie in the range 8–15 µm, i.e., the pore diameter increases when mG20 content
is increased, though the number of pores decreases. For instance, while in case of the L2 membrane,
70% of pores diameter gave a value of 5 µm, in the L20 membrane, 70% of pores ranges were between
9 and 13 µm, and huge pores, with a diameter above 30 µm, were observed.
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Figure 4a shows that the neat PSf membrane (L0) exhibits a finger-like structure on top of a spongy
bulk matrix. A very similar morphology can be found for L2. On the other hand, when mG20 additive
amount was increased, membrane morphology progressively changed: as seen in Figure 4c, in L5,
finger-like pores decreased but a considerable amount of voids remained evident; L10 shows an
evident spongy layer with a much denser layer, as seen in Figure 4d. In the case of L20, morphology
is definitely denser, with some residual porosity on the top side, as seen in Figure 4e. This change
is also shown by the trend observed for porosity values, which are related to the void contents,
as explained in the experimental part. They initially increased with increasing mG20 content, reaching
the highest value for L5; subsequently, they decreased, with a minimum for L20. This confirms
that membrane morphology becomes denser at higher mG20 contents. Membrane morphology is
predominantly affected by the precipitation rate during the phase inversion process. Fast precipitation
is determined by fast penetration of the non-solvent into the polymeric solution and leads to highly
asymmetric structures, with fingerlike macrovoids; slower coagulant penetration, and consequently
slower precipitation, produce sponge-like and more symmetrical structures. Thus, the more affine
polymer and the coagulant are, the slower precipitation will be, and the more symmetrical structures
can be expected. In our case, mG20 additive is a relatively hydrophilic, polar polymer; when blended
with PSf, it contributes to a decrease in the precipitation rate of the polymeric solution. This effect is
more evident in L20, which contains the highest mG20 amount and exhibits the densest structure and
the lowest porosity of the whole series. At low mG20 content, the effect of this component seems to be
a very limited change of the solution thermodynamic stability, with consequent similar precipitation
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rates, and final membrane morphologies which strongly resemble the one of pure PSf; on the other
hand, when mG20 amount increases, then the solution thermodynamic stability seems to be enhanced,
leading to slower precipitation rates and resulting in final morphologies remarkably different with
respect to neat PSf. In addition, it should be taken into account that the presence of an additive not
only modifies the thermodynamic stability of the polymeric solution but can also alter its viscosity,
which can determine a change in the phase inversion process.Polymers 2019, 11, x FOR PEER REVIEW 8 of 16 
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The obtained membranes are to be used in a device wherein the bottom surface is in direct contact
with an aqueous absorbent solution. Therefore, PSf-mG20 membranes were characterized in terms
of surface morphology, water contact angle, and water uptake to establish whether blending with
mG20 could eventually affect their wettability with respect to neat PSf. Figure 5a–e report the AFM
topographic image pattern of bottom side of L0–L20 membranes; Table 2 reports their RMS roughness
as well as the values of the water contact angle and water uptake.

As seen in Table 2, blending with mG20 determines an increase of RMS roughness of bottom side,
i.e., the higher mG20 amount, the rougher the bottom membrane surface. As for membrane wettability,
water contact angle decreases with an increase of mG20 content, as can be expected based on its higher
hydrophilicity with respect to PSf; moreover, this effect is more evident on the bottom of the membrane,
which suggests that mG20 could be more concentrated on this side.

Table 2. RMS roughness of bottom side, water contact angle (CA) and Water Uptake (WU) of
PSf-mG20 membranes.

Membrane RMS Roughness (nm) Top CA (◦) Bottom CA (◦) WU (%)

L0 7.5 87 ± 3 86 ± 4 0.40 ± 0.05
L2 6.1 83 ± 1 72 ± 4 6.0 ± 0.6
L5 8.2 79 ± 2 73 ± 3 45 ± 5

L10 10.5 77 ± 2 70 ± 1 142 ± 20
L20 15.8 77 ± 1 65 ± 1 274 ± 17
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To determine the distribution of mG20 additive in PSf membrane, we checked Raman absorption
across their section between 200 and 2500 cm−1 at different depths, starting from the top side moving
towards the bottom side. Figure 6 shows Raman spectra of recorded on the top of L20 membrane,
of neat mG20 additive and L0 (neat PSf) membrane, respectively. The only band which can be attributed
exclusively to the additive and it is not overlapped with other PSf bands is that at 1030 cm−1, as seen in
Figure 6a, attributed to the C–N stretching of secondary and tertiary aliphatic amines [14]. This band
can be guessed as a shoulder also in the Raman spectra of L20 membrane, as seen in Figure 6b, which
contains the highest amount of additive. As seen in Figure S2 in Supplementary Material, mG20 seems
to be present throughout the whole membrane cross-section since the shoulder at 1030 cm−1 can be
observed in the spectra of top, center, and bottom of the membrane. Unfortunately, when the Raman
spectra of L10 membrane were observed, as seen in Figure S3 in the Supplementary Material, this band
was not visible, probably due to the lower amount of mG20 in this sample. The same was also found
in the case of L2 and L5 membranes. Therefore, we could not check the actual distribution of mG20 in
L2–L10 membranes.

We also studied water uptake (WU) of L0–L20 membranes. As shown in Table 2, the presence of
mG20 additive remarkably increases water uptake of these systems with respect to neat PSf; however,
only 2 wt % additive determines 6% WU in comparison with 0.4% of neat PSf (L0). Finally, L20
membrane, with the highest mG20 content, exhibits two orders of magnitude higher WU than L0.
This effect can be attributed to the high hydrophilicity of mG20 additive and could compromise the
dimensional stability and performance of the membranes, thus representing a drawback in the use
of these composite membranes in the final CO2 capture device. Penetration of the liquid into the
membrane pores negatively affects absorption flux since, in this case, gas diffusivity in the liquid phase
is far lower than in the gaseous phase.
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Absorption performance of composite membranes was evaluated for potassium hydroxide
solution in a flat sheet membrane contactor (FSMC) in a cross flow module at different liquid flow
rates. Results are shown in Figure 5 as carbon dioxide flux versus absorbent flow rate.

Results show that, at the lowest absorbent flow rate (35 mL/min), performances of the membranes
are very similar as regards CO2 flux, as seen in Figure 7. In the mass transfer process between gaseous
and liquid streams through a porous membrane, resistance can be split into three terms: liquid
side, gas side, and membrane mass transfer resistances [15]. The effect of gas side resistance can be
neglected because we used ambient air as the CO2 source, thus gas concentration was constant in
all our experiments. At low liquid flow rate, the resistance term related to the liquid side mainly
affects the total mass transfer resistance. This determines very similar gas absorption flux at low
liquid absorbent flow rate, as shown in Figure 7. Nevertheless, on increasing absorbent flow rate
(120–228 mL/min), remarkable differences can be found, which can be attributed to the different mG20
additive content; in particular, the behavior of the membranes with lower additive amount (L2 and L5)
was more efficient than neat PSf, with L5 having the best performance. On the other hand, the presence
of higher amounts of mG20, namely 10 and 20 wt %, seems to be detrimental to CO2 capture when
compared with neat PSf.

With an increase in the liquid flow rate, the liquid side mass transfer resistance is reduced and
eventually, above a certain flow rate, the mass flux is predominantly influenced by the membrane
resistance. When this occurs, the plot of absorption flux versus liquid flow rate levels off. In our case,
this situation is clearly shown by the L5 and L20 membranes; however, we will try to explain the
behavior of the whole series in terms of membrane mass transfer resistance. L0–L20 membranes differ
as far as chemical composition and morphology are concerned: therefore, different factors should be
taken into account. First, the presence of mG20 additive determines a remarkable increase of CO2

solubility into the polymeric membrane. CO2 solubility into neat PSf membrane was determined as
4.79 ± 0.01 m3 STP/m3 atm [7]; in contrast, this value rose to 21.3 m3 STP/m3 atm for neat mG20 additive.
On the other hand, the presence of the additive strongly affects membrane morphology, reducing
porosity, and void contents, and is thus detrimental to CO2 diffusivity. Another factor, previously
mentioned, is the strong increase in wettability and water uptake deriving from mG20 addition, which,
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in turn, can help the penetration of the liquid phase into the membrane, provoking membrane clogging,
and negatively affecting gas diffusivity. Another point that could have some influence on membrane
performance is the plasticizing effect of mG20 on PSf; for neat PSf (L0) membrane, a glass transition
temperature of 184 ◦C was found, while this value reduced to 173 ◦C for the L20 membrane. Glass
transition is strictly related to the polymer free volume, which also has a role in gas transport through
polymeric membranes [16,17]
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Permeation in glassy polymers has been modeled in terms of diffusion solution. The dual mode
sorption model [18,19] assumes that a polymer consists of a continuous chain matrix and microvoids
frozen in the matrix. These voids are caused by the unrelaxed volume of polymers in the glassy
state. Therefore, the dual mode sorption model makes reference to two terms: the former based on
Henry’s law of solubility, i.e., dissolution of the permeant in the continuous chain matrix; the latter is a
Langmuir-type term related to permeant sorption in microvoids. Therefore, in our case, it is reasonable
to suppose that the addition of mG20 determines two contrasting effects. On the one hand, increased
amounts of the additive enhance CO2 solubility into the polymeric matrix; nevertheless, this also
provokes a decrease in microvoids content, as shown by ESEM analysis. Importantly, mG20 greatly
increases water uptake and therefore

KOH solution penetration from the bottom side of the contactor, with consequent membrane pores
clogging. L5 membrane shows the best performance in the whole series, suggesting that this additive
amount (5 wt %) represents the best compromise between these two opposite effects. It was reported
that total pore volume and specific surface of nanoporous shale decreased after CO2 adsorption,
and that this phenomenon can be interpreted in terms of physisorption, associative chemisorption,
and dissociative chemisorption [20]. The first is related to the adsorption of carbon dioxide molecules
in the organic pores that produces a variation in the shale surface energy, which, in turn, produces a
swelling phenomenon; as a consequence, the pore volume decreases, pores are blocked and CO2 is
trapped inside the structure. This phenomenon has been modelled and was found to be relevant in
the case of pressure higher than 0.5 MPa [21]; however, in our case, experiments were performed at
CO2 atmospheric pressure. An interesting parallel experiment could be performed with associative
chemisorption of carbon dioxide at shale mineral surfaces or pores: in conditions of high pressure
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and temperature, CO2 and H2O can react with minerals, thus generating new products, such as
carbonates, which can cover the pore walls and cause geochemical and morphological changes to the
shale. Consequently, the pore may be blocked and the pore volume decreases. In our case, penetration
of absorber KOH solution into the blended membrane was expected to induce the precipitation of
K2CO3 that could block membrane pores in a similar way. As a matter of example, Figure 8a,b show the
bottom surface and cross-section ESEM micrographs taken with BSED of L2 membrane, respectively,
after four experiments in the flat sheet membrane contactor. In contrast, Figure 8c shows the results of
energy dispersive X-ray analysis (EDX) of the white spots observed in the shown micrographs.
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Figure 8. ESEM micrographs with BSED of L2 membrane after four experiments in a flat sheet
membrane contactor: (a) bottom surface; (b) cross-section; (c) X-ray analysis (EDX) analysis of the
white spots seen in the micrographs.

Figure 8a,b demonstrate the presence of white crystals both on the bottom surface of the membrane
in direct contact with KOH solution and on the bottom side of the membrane cross section. As seen in
Figure 8c, EDX analysis revealed that these crystals could be formed by potassium carbonate. Therefore,
these results suggest that, even in the case of L2 membrane, the penetration of KOH solution from
the contactor into the membrane can induce K2CO3 precipitation that may eventually block the pores.
This effect is expected to be more pronounced in blended membranes with much higher water uptake
and, consequently, more efficient penetration of KOH solution, i.e., L10 and L20, and could drastically
reduce membrane performances.

Permeability tests were performed to calculate the mass transfer coefficients, k, for the L0–L20
membranes series. K was calculated from CO2 as well as from N2 permeation to verify the role of
chemical composition in the gas permeability of these membranes.

Figure 9 reports the mass transfer coefficient k calculated from CO2 and N2 permeation through
L0–L20 membranes.

Figure 9 shows that k has an increasing trend with increasing amount of mG20: the addition of
just 2 wt % mG20 determines an order of magnitude higher mass transfer coefficient for both CO2 and
N2 permeation, despite the similar morphology of L0 and L2 membranes. Nevertheless, the effect of
mG20 is much more pronounced for carbon dioxide than for nitrogen, when the full composition range
is examined. In addition, the N2 mass transfer coefficient is always lower than CO2 mass transfer
coefficient for L2–L20 systems despite having practically the same value in L0 which contains no
additive. This suggests that the permeation of these gases does not only depend on the ratio between
the pores of the membranes and molecular size of gases, but also on the chemical composition, that is,
it is not exclusively governed by physical parameters. Results suggest that carbon dioxide permeation
was enhanced thanks to its favorable interaction with the amines contained in mG20, provided that,
for instance, the Van der Waals radius of nitrogen is 1.95 Å, while that of carbon dioxide is 5.331 Å in
the direction of the oxygen atoms and 3.033 Å in the normal direction [21,22].
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Therefore, the addition to PSf membranes of relatively low amounts of a high molecular weight
additive such as mG20, which contains a big amount of basic amine groups, is effective in improving
CO2 permeability in the gas phase.

4. Conclusions

We tested the use of a high molecular weight additive, mG20, obtained by chemical modification of
a commercial Polyethylenimine, to improve the performance of PSf membranes in membrane contactors
for CO2 capture due to the presence of basic nitrogen atoms. The amount of blended mG20 was in the
range of 2–20%. We found that the presence of the polymeric additive determined a change in the
membrane morphology: porosity was increased up to 5 wt % mG20, but decreased upon further mG20
addition, giving denser membranes. Blending with the hydrophilic additive produced membranes
with rougher surfaces, higher water contact angles and water uptake, as expected. The presence
of mG20 also improved the mass transfer coefficient for both N2 and CO2, but the effect was much
more marked for the latter, revealing an increase in carbon dioxide permeability as a consequence
of blending with the additive. On the other hand, when the application of these membranes in the
final CO2 capture device is considered, we found that, when mG20 amount was higher than 5 wt %,
increased water uptake and eventual K2CO3 precipitation provoked membrane pores clogging and
negatively affected CO2 permeability. This effect was more evident when higher liquid flow rates were
used in the contactor.

In conclusion, the performance of PSf membranes in carbon dioxide capture device can be greatly
improved by blending with mG20 amount as low as 5 wt % since this composition represents the best
compromise between higher membrane affinity for CO2, induced by the presence of basic nitrogen
atoms and the changes in morphology, wettability, and water uptake, which are detrimental at higher
additive amounts. The study of durability and consequent performance variation of these composite
membranes is currently under study and will be the subject of a forthcoming paper.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/10/1662/s1,
Figure S1: 1H NMR spectrum in CD3OD of mG20; Figure S2: Raman spectra between 200 and 1500 cm−1

performed across the section of L20; Figure S3: Raman spectra between 200 and 1800 cm−1 of: (a) neat mG20;
(b) L10, top surface; (c) L10, bottom surface.
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