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Lactate: Fueling the fire starter
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Abstract

It is becoming increasingly appreciated that intermediates of metabolic pathways,

besides their anabolic and catabolic functions, can act as signaling molecules and

influence the outcome of immune responses. Although lactate was previously

considered as a waste product of glucose metabolism, accumulating evidence has

highlighted its pivotal role in regulating diverse biological processes, including

immune cell polarization, differentiation and effector functions. In addition, lac-

tate is a key player in modulating tumor immune surveillance. Hence, targeting

lactate-induced signaling pathways is a promising tool to reduce inflammation, to

prevent autoimmunity and to restore anti-tumor immune response.

This article is characterized under:

Biological Mechanisms > Metabolism

KEYWORD S

immunity, inflammation, lactate, metabolism, tumor

1 | INTRODUCTION

Lactate, produced at the end of glycolysis, is a metabolite described for the first time at the beginning of the 20th century
(Corbet & Feron, 2017; Figure 1). Its physiological concentration is in the range of 1.5–3 mM in blood and tissues. How-
ever, lactate levels can increase to 10 mM in several inflammatory conditions and to a concentration of 30–40 mM in
tumors (Colegio et al., 2014; Haas et al., 2015; Hirschhaeuser, Sattler, & Mueller-Klieser, 2011). Elevated amounts of
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lactate are produced as a consequence of increased glycolysis in proliferating cells (Warburg effect) via lactate dehydroge-
nase (LDH), an enzyme that also regenerates NAD+ from the reduced form of nicotinamide adenine dinucleotide
(NADH), allowing a steady flow of glycolysis (Bonuccelli et al., 2010; Warburg, 1956). Lactate is present in solution either
as lactic acid at low pH or as a salt (i.e., sodium lactate) at higher pH, with a pKa of 3.83 (Haas et al., 2015). During hyp-
oxia (i.e., inflammation and cancer) lactate accumulates as a result of increased cell turnover and glycolytic engagement
subsequent to the increased hypoxia-inducible factor (HIF)-1α response to low oxygen tension (Corcoran & O'Neill, 2016;
Lee et al., 2015; Semenza, Roth, Fang, & Wang, 1994). Hypoxic conditions result in prolyl hydroxylase domain (PHD) inhi-
bition and an attenuation of HIF-1α hydroxylation and proteasomal degradation. HIF-1α accumulates, translocates to the
nucleus, and increases transcription of glycolytic genes. HIF-1α activates pyruvate dehydrogenase kinase-1 which phos-
phorylates and inactivates pyruvate dehydrogenase (PDH) (Kim, Tchernyshyov, Semenza, & Dang, 2006). PDH is nor-
mally responsible for the oxidation of pyruvate to acetyl-CoA for mitochondrial oxidation and its inactivation limits the
oxidative disposal of pyruvate favoring the diversion of the glycolytic flux to lactate. Inactivation of PDH by HIF-1α is well
known in exercise metabolism characterized by high glycolytic flux and lactate production (Brooks, 1986, 2009). During
high-intensity intermittent physical exercise, muscle can cope with glycolytic stress by shuttling lactate among tissues and
using it as carbon source for energy production. For instance, lactate is a major gluconeogenic precursor acting as a shuttle
in both muscle and liver (Cori & Cori, 1946). Indeed, lactate flux is metabolically beneficial through supplying carbons to
gluconeogenesis during exercise (Brooks, 2009, 2018). In cancer and chronic inflammation, the persistent stimulation of
glycolysis for the necessity of carbon sources is maladaptive and leads to an unbalanced shuttle mechanism between the
tissues (Brooks, 2018). Lactate has also been shown to be important for normal brain physiology, through the astrocyte-
neuron lactate shuttle. In this model, described in 1994, the neurotransmitter glutamate released in the synapse, triggers
glucose uptake and therefore lactate production by astrocytes; lactate so produced is then utilized by neurons as a source
of energy (Magistretti & Allaman, 2018; Pellerin & Magistretti, 1994).

2 | LACTATE TRANSPORT

Lactate uptake and release requires the presence of transporters on the cell plasma membrane. Four members of the sol-
ute carrier 16a family of 12-membrane pass, proton-linked monocarboxylic acid symporters (i.e., monocarboxylic trans-
porter 1 [MCT1, SLC16A1], MCT2 [SLC16A7], MCT3 [SLC16A8], and MCT4 [SLC16A3]), and two sodium-coupled
lactate cotransporters (SLC5A12, SLC5A8) have been studied in more detail (Table 1, Figure 2; Halestrap & Price, 1999;

FIGURE 1 The history of lactate. Lactic acid was isolated for the first time by the chemist Carl Wilhelm Scheele in 1780 from sour

milk. Indeed, the name lactate originates from the Latin word lac, which means milk. In 1808, Jöns Jacob Berzelius discovered that lactic

acid (L-lactate) is produced in muscles during exercise. In 1856, the role of Lactobacillus in the synthesis of lactate was discovered by Pasteur

(1861) and only 20 years later in 1873 lactate molecular structure was resolved by Johannes Wislicenus (Nalbandian & Takeda, 2016). In

1923, Otto Warburg observed that cancer cells were characterized by accelerated glycolysis and excessive lactate generation even under fully

oxygenated conditions (Warburg, 1956). His discovery was subsequently named the “Warburg Effect” by Efraim Racker in 1972. In 1946

lactate was identified as a major gluconeogenic precursor acting as shuttle in both muscle and liver (Cori & Cori, 1946). Later in 1954, LDH,

the enzyme responsible for lactate production was found elevated in cancer (Hill & Levi, 1954) and in 1994 lactate was identified as major

carbon source in the brain facilitating the interconnections between astrocytes and neurons (Pellerin & Magistretti, 1994). MCTs were firstly

described as lactate transporters (Halestrap & Price, 1999) and MCT1 was later identified as target for tumor suppression (Sonveaux et al.,

2008). Recent studies have emerged describing lactate as immune modulator in inflammatory disorders and as key carbon fuel for some

tumors (Colegio et al., 2014; Faubert et al., 2017; Haas et al., 2015; Hui et al., 2017; Pucino et al., 2019)
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TABLE 1 Lactate transporters

Transporter Function High affinity substrates Cell expression

SLC16A1/
MCT1

H+-coupled electroneutral
transporter

Lactate, pyruvate, ketone bodies Epithelial cells, macrophages, CD8+
lymphocytes, cancer cells

SLC16A7/
MCT2

H+-coupled electroneutral
transporter

Pyruvate, lactate, ketone bodies Epithelial cells, cancer cells

SLC16A8/
MCT3

H+-coupled electroneutral
transporter

Lactate Epithelial cells (highly expressed in the retina)

SLC16A3/
MCT4

H+-coupled electroneutral
transporter

Lactate, pyruvate, ketone bodies Epithelial cells, fibroblasts, macrophages,
cancer cells

SLC5A8/
SMCT1

Na+-coupled
electroneutral
transporter

Lactate, pyruvate, propionate, butyrate,
nicotinate, and short-chain fatty acids

Epithelial cells (mainly kidney, intestine,
brain)

SLC5A12/
SMCT2

Na+-coupled
electroneutral
transporter

Lactate, pyruvate, propionate, butyrate,
nicotinate, and short-chain fatty acids

Epithelial cells (mainly kidney, intestine,
brain), CD4+ lymphocytes

FIGURE 2 Lactate modulates immune cell functions in immune-mediated inflammatory disorders and cancer. Immune cells “sense”
high concentration of lactate which accumulates at the site of inflammation or tumor as result of accelerated metabolism of immune,

stromal, or cancer cells. Lactate is taken up through specific transporters expressed on the cell membrane and modulates immune responses,

including activation, differentiation, proliferation, migration, and cytokine production. These events promote the establishment of a chronic

inflammatory process in IMIDs and induce tumor growth and metastatic spread in cancer
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Pucino, Cucchi, & Mauro, 2018; Srinivas et al., 2005). These channels share conserved sequence motifs but display differ-
ent affinity for lactate and other monocarboxylates (Doherty & Cleveland, 2013; Hirschhaeuser et al., 2011). The trans-
port depends on pH, intra- and extracellular lactate concentration as well as other substrates such as pyruvate, butyrate,
etc. (Doherty & Cleveland, 2013; Hirschhaeuser et al., 2011).

MCTs have been identified in all eukaryotic organisms and catalyze the proton-linked transport of a wide variety of
substrates (Perez-Escuredo, Dadhich, et al., 2016) such as pyruvate, lactate and ketone bodies (acetoacetate and D-
β-hydroxybutyrate), across the plasma membrane (Halestrap & Meredith, 2004; Halestrap & Price, 1999). Other identi-
fied MCTs are MCT5-9, which show high affinity for other substrates such as thyroid hormones, ketone bodies,
bumetanide and small aminoacids (Halestrap & Meredith, 2004; Hugo et al., 2012; Murakami et al., 2005; Suhre et al.,
2011; Visser, van Mullem, Jansen, & Visser, 2011). The substrates and functions of the other MCT family members are
still under investigation.

MCTs are expressed in a wide range of tissues (such as brain, skeletal muscle, heart, bowel, and liver) and display
many physiological functions. In particular, they play a pivotal role in the control of glucose metabolism, and in the
regulation of many biological functions including spermatogenesis, pancreatic β cell activity, thyroid hormone metabo-
lism and drug transport (Perez-Escuredo, Van Hee, et al., 2016).

MCTs are important regulators of intracellular lactate and pH; in particular lactate is one of the main substrates of
MCT1–4. Indeed, highly glycolytic cells (i.e., during inflammation or tumors) utilize MCT transporters to export or
import lactate (Bonen, 2001; Halestrap & Meredith, 2004; Huang et al., 2017; Sonveaux et al., 2008; Van Hee, Perez-
Escuredo, Cacace, Copetti, & Sonveaux, 2015).

All MCTs are capable of facilitating either import or export of lactate with substrate gradient being the main factor
driving directionality. However, several studies have identified MCT4 to be responsible for its export in to the extracel-
lular space while MCT1 regulates lactate import across the plasma membrane in the majority of the tissues where lac-
tate is produced. Here, lactate can be used as a substrate to fuel other metabolic pathways (Faubert et al., 2017;
Halestrap, 2012; Halestrap & Meredith, 2004; Perez-Escuredo, Dadhich, et al., 2016).

In many cancer cells with an oxidative metabolic fingerprint, MCT1 is the most expressed MCT isoform
(Kennedy & Dewhirst, 2010; Sonveaux et al., 2008). However, in glycolytic cancer cells or white muscle fibers and astro-
cytes, MCT4 is expressed at higher level than MCT1 (Baltazar et al., 2014; Sonveaux et al., 2008; Ullah, Davies, &
Halestrap, 2006). This different MCTs expression allows the shuttling of this metabolite between cells and tissues with
different metabolic behaviors. Such phenomenon has been described in the skeletal muscle where glycolytic/white
fibers export lactate through MCT4 and oxidative/red fibers import lactate through MCT1 to fuel the tricarboxylic acid
cycle (TCA) (Juel & Halestrap, 1999). A similar mechanism has been reported in cancer where lactate is exchanged
between glycolytic/hypoxic and oxidative/oxygenated malignant cells (Sonveaux et al., 2008). In the brain, glycolytic
oligodendrocytes and astrocytes export lactate through MCT1 and MCT4 to fuel oxidative neurons expressing MCT2
(Brooks, 2009; Funfschilling et al., 2012; Pellerin & Magistretti, 2012; Saab, Tzvetanova, & Nave, 2013). MCT2 and
MCT4 show a high intracellular expression suggesting a possible role in mediating monocarboxylate transport across
the membranes of intracellular vesicles or organelles (Afonso et al., 2015; Baltazar et al., 2014). In contrast to MCTs,
which function as H+-coupled electroneutral transporters, sodium-coupled monocarboxylate transporters (SMCTs)
function as Na+-coupled transporters with a substrate ratio Na+/monocarboxylate ≥2. Two members of the SMCT fam-
ily have been identified, the high-affinity transporter SMCT1 (SLC5A8) and the low-affinity SMCT2 (SLC5A12)
(Rodriguez et al., 2002; Srinivas et al., 2005). The SLC5A8 gene was originally identified in the kidney (Rodriguez et al.,
2002) and subsequently detected in the intestine, salivary gland, thyroid gland, brain, and retina (Ganapathy et al.,
2008). In these tissues, SLC5A8 mediates the transport of monocarboxylic acids such as lactate, pyruvate, propionate,
butyrate, nicotinate, and short-chain fatty acids similar to MCTs with a high affinity (Gopal et al., 2005; Morris &
Felmlee, 2008).

SLC5A12 is expressed in the kidney, small intestine, and skeletal muscle and to a lesser level in brain and retina.
SLC5A12 substrate specificity is similar to that of SLC5A8. However, the affinity of SLC5A12 for monocarboxylate sub-
strates is lower than SLC5A8 (Srinivas et al., 2005).

Notably, the localization of these transporters is different at the tissue level suggesting different functions. In the
kidney, SLC5A8 is expressed in the apical membrane of tubular epithelial cells in the S2–S3 proximal tubule segments
where it is involved in renal reabsorption of lactate and pyruvate (Barac-Nieto, Murer, & Kinne, 1980; Ganapathy et al.,
2008; Gopal, Miyauchi, et al., 2007; Yanase, Takebe, Nio-Kobayashi, Takahashi-Iwanaga, & Iwanaga, 2008). Indeed,
SLC5A8-knockout mice exhibit increased urinary excretion of lactate (Frank et al., 2008). By contrast, renal SLC5A12 is
highly expressed in the initial part of the proximal tubules and decreases toward the S3 segment. Thus, the proximal
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convoluted tubules provide low and high affinity transporters in the upper and lower proximal tubules, respectively
(Gopal, Umapathy, et al., 2007).

In the brain, SLC5A8 mediates cellular uptake of lactate and ketone bodies by neurons (Martin et al., 2006), while
SLC5A12 is specifically expressed by astrocytes. Besides the physiological functions, SLC5A8 has been reported as
tumor-suppressing molecule; its expression is in fact decreased in several tumors such as human colon cancer, papillary
thyroid carcinomas, pancreatic cancer, prostate tumor, acute myeloid leukemia, and glioma formation (Ganapathy
et al., 2008; Li et al., 2003; Park et al., 2008).

In the bowel, SLC5A8 is expressed in the lumen-facing apical membrane of colonic and intestinal epithelial cells,
while SLC5A12 is expressed primarily in the small intestinal tract (Gopal, Miyauchi, et al., 2007; Teramae et al., 2010).

The different tissue localization may indicate a distinct role of these transporters in regulating cell functions with
important therapeutic implications.

3 | LACTATE MODULATES IMMUNE CELL FUNCTIONS

It is becoming particularly attractive the concept that metabolites can act as immunomodulatory molecules regulating
several immune cell functions (Figure 2; Haas et al., 2016). For instance, lactic acid has been reported to suppress the
proliferation and cytokine production of human cytotoxic T lymphocytes (Fischer et al., 2007) via a mechanism that
involves T cell receptor-triggered phosphorylation of JNK, c-Jun and p38, which is implicated in interferon-γ (IFN-γ)
production (Mendler et al., 2012). In this context, our group has reported that lactic acid is able to modulate CD8+ but
not CD4+ T cell responses (Haas et al., 2015; Pucino, Bombardieri, Pitzalis, & Mauro, 2017), whereas sodium lactate
regulates CD4+ T cell migration and cytokine production without affecting CD8+ T cells.

It is well recognized that T cells display different metabolic requirements; with cytotoxic and effector T cells being
more dependent on glycolysis for proliferation and cytokine production (Macintyre et al., 2014), while regulatory T cells
(Tregs) rely more on oxidative phosphorylation (Gerriets et al., 2015; Michalek et al., 2011). Recently, Angelin et al.
(2017) showed that the Treg transcription factor forkhead box P3 (FOXP3) is able to reprogram the metabolism of
Tregs, allowing them to cope with low-glucose and high-lactate microenvironments, therefore escaping the anti-tumor
immune surveillance. This elegant study demonstrates that Tregs can withstand sustained exposure to elevated levels of
lactate, whereas effector T cells are impaired. This is due to lactate-mediated reduction of NAD+ availability that is cru-
cial for effector T cells for their functions. Indeed cytotoxic and effector T cells reduce NAD+ to NADH via
glyceraldehyde-3-phosphate dehydrogenase and require constant NAD+ recycling through LDH to sustain glycolysis. In
conditions where extracellular lactate is abundant (i.e., during chronic inflammation) this metabolite is re-converted to
pyruvate (reversed LDH reaction) with generation of NADH and impairment of glycolytic flux (Leite et al., 2011; Pucino
et al., 2019). Reduced glycolysis is particularly detrimental for effector and cytotoxic T cells, as it affects the ability to
produce IFN-γ (Chang et al., 2013) as well as their migratory capabilities (Haas et al., 2015; Pucino et al., 2019). On the
other side, Tregs are less affected by reduced NAD+/glycolysis. In addition, FOXP3 is also able to regulate the direction
of the LDH reaction in favor of the oxidation of lactate to pyruvate, leading to a decreased production of lactate by Tregs
(as compared to conventional T cells) (Angelin et al., 2017). This is mechanistically related to FOXP3-mediated suppres-
sion of the transcription factor Myc which in turn increases pyruvate dehydrogenase activity enhancing oxidative phos-
phorylation and NAD+ regeneration (Angelin et al., 2017).

LDH is required for CD4+ T cells to sustain aerobic glycolysis and for the production of IFN-γ, enabling a proper dif-
ferentiation to T helper 1 (Th1) cells (Peng et al., 2011). Genetic deletion of LDH isoform A (LDHA) in CD4+ T cells sig-
nificantly reduced glucose consumption with a shift toward an oxidative metabolism, and decreased IFN-γ expression.
Moreover, the deletion of LDHA caused a reduction in the available pool of acetyl-coenzyme A (acetyl-CoA), which is
important for histone acetylation. These data demonstrate that LDHA regulates INF-γ production in Th1 cells, through
an epigenetic mechanism of histone acetylation coupled with cellular metabolism (Peng et al., 2011).

Lactate has been shown to regulate immune responses during infections. Indeed, lactate serves as a key metabolite
responsible for glycolysis-mediated retinoic-acid-inducible gene I (RIG-I)-like receptors (RLRs), which is implicated in
type 1 IFN production and viral clearance. Specifically, lactate induces an inhibitory signal by directly binding to mito-
chondrial antiviral-signaling (MAVS) protein and preventing MAVS aggregation. Notably, lactate restoration reverses
increased IFN production caused by lactate deficiency. LDHA inactivation and subsequent lactate reduction, using
pharmacological and genetic approaches, increases type I IFN production and protects mice from viral infection
(W. Zhang et al., 2019).
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4 | LACTATE: A KEY PLAYER IN CANCER

The tumor-associated microenvironment consists of malignant cells, several immune cells, non-cancer stromal cells,
fibroblasts as well as increased angiogenesis and lymphangiogenesis (Galdiero, Varricchi, Loffredo, Mantovani, & Mar-
one, 2018; Hanahan & Weinberg, 2011; Varricchi et al., 2018). A typical feature of the tumor microenvironment is its
reduced pH to levels of ~6.5 (Corbet & Feron, 2017). Lactate is the main metabolite responsible for this acidosis as a
consequence of high cellular glycolytic rate. Here lactate, transported through specific carriers expressed on the cell
membrane of cancer and immune cells, and shuttling from cancer cells to the extracellular space, rewires intracellular
metabolic pathways and suppresses immune responses enhancing tumor growth (Figure 2; Liu et al., 2019). Lactate is
in fact an energy substrate for cancer cells in conditions of glucose deprivation. For instance, lactate is a carbon fuel
molecule for the TCA cycle in some tumors such as the human non-small-cell lung cancers (NSCLCs), contributing to
biomass synthesis for tumor growth (Faubert et al., 2017). Infusing human NSCLCs patients with 13C-lactate has indeed
revealed extensive labeling of TCA cycle metabolites. Deleting MCT1 from tumor cells suppressed lactate-dependent
metabolite labeling in mice. In addition, lactate contribution to the TCA cycle was predominant in comparison to glu-
cose (Faubert et al., 2017). These data were further confirmed in the same year by Hui et al. who identified lactate as
carbon fuel for TCA cycle, both in normal and cancerous tissues. This study showed that the infusion of 13C-lactate, in
fed and fasted mice, induced extensive labeling of TCA cycle metabolites in all tissues, and in lung and pancreatic
tumors the contribution of circulating lactate to the activity of TCA cycle was greater than that of glucose. In addition,
lactate promotes glutamate uptake and catabolism by increasing the expression of glutamine transporter ASCT2 and
glutaminase 1 in cancer cells (Perez-Escuredo, Dadhich, et al., 2016). These findings demonstrate that lactate is a main
carbon supplier of the TCA cycle both in normal tissues and cancer, and that glycolysis and the TCA cycle are
uncoupled at the level of lactate, allowing the independent regulation of the two processes (Hui et al., 2017).

The effects of lactate are not only due to its ability to feed metabolic pathways, but also to its ability to trigger a sig-
naling pathway via its receptor G protein-coupled receptor 81 (GPR81); a surface lactate receptor involved in the regula-
tion of lipolysis (Lafontan & Langin, 2009) and in cancer cell survival (Roland et al., 2014). In this context, Feng et al.
(2017) showed that lactate can regulate the expression of PD-L1 in human lung cancer cells via GPR81. PD-L1 is the
ligand of PD1, a receptor expressed on the membrane of activated T cells, responsible for reduced proliferation and
effector function of T cells, and a major target for cancer immunotherapy. The authors showed that lactate, via GPR81,
upregulates the expression of PD-L1 at a transcriptional level leading to suppression of the T cells effector functions in
co-culture experiments (Feng et al., 2017).

Lactate influences macrophage functions in the context of tumor environment. Tumor-associated macrophages
(TAMs) “sense” metabolic changes typical of the tumor microenvironment via the expression of MCTs. Cancer
cells produce high amount of lactate, which is extruded in the intercellular space via MCT4. Released lactate is
then taken up by tumor-associated macrophages via MCT1, promoting in turn macrophage polarization toward a
TAM (M2) phenotype with high expression of arginase 1 (Arg1), vascular endothelial growth factor (VEGF) pro-
duction and subsequently tumor growth (Colegio et al., 2014; Figure 2). The authors found that lactate-induced
VEGF and Arg1 expression was dependent on HIF-1α, as HIF-1α-deficient macrophages were not able to
upregulate both VEGF and Arg1 upon lactate stimulation (Colegio et al., 2014). Notably, TNF-α secretion by
human monocytes was found to be suppressed in the presence of high lactate concentration and reduced pH in
tumor microenvironment (Mendler et al., 2012). Neutralizing tumor acidity with bicarbonate monotherapy was
able to impair the growth of some cancer types (Pilon-Thomas et al., 2016). Similarly, another study demonstrated
that lactate plays an important role in the communication between TAM and cancer cells undergoing epithelial-to-
mesenchymal transition (Su et al., 2014).

Recently, it has been reported that lactate modulates the expression of macrophage-specific vascular ATPase subunit
ATP6V0d2, whose levels are regulated by transcription factor EB. The authors found increased mammalian target of
rapamycin (mTOR) activation upon lactate stimulation suggesting that lactate could modulate ATP6V0d2 expression
via this pathway (Liu et al., 2019). However, further investigation is needed to establish a key role of mTOR in lactate-
mediated ATP6V0d2 expression. Interestingly, Atp6v0d2−/− mice were susceptible to tumor growth, with enhanced
HIF-2α-mediated VEGF production in macrophages that display a pro-tumorigenic phenotype. These findings were also
confirmed in humans. Indeed, in a cohort of patients with lung adenocarcinoma, expression of ATP6V0d2 and HIF-2α
was positively and negatively correlated with survival, respectively (Liu et al., 2019). The latter finding suggests a critical
role of the macrophage lactate/ATP6V0d2/HIF-2α axis in maintaining tumor growth in human patients. Furthermore,
lactate can directly modulate angiogenesis allowing tumor growth. The lactate-signaling pathway was reported to drive
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HIF-1/VEGF activation independently of hypoxia in endothelial cells. MCT1 blockade was shown to have anti-
angiogenic effects together with reduced tumor growth in a model of colon cancer xenograft involving the co-injection
of human umbilical vein endothelial cells HUVECs (Vegran, Boidot, Michiels, Sonveaux, & Feron, 2011). Lactate has
also an established role in the biology of cancer-associated fibroblasts (CAFs) that are the major cellular stromal compo-
nent of many solid tumors.

Ippolito et al. (2019) recently found that lactate uptake alters the NAD+/NADH ratio in the prostate cancer cells,
which leads to increased mitochondrial mass and activity via an intracellular mechanism involving SIRT1-dependent
peroxisome proliferator-activated receptor γ coactivator-1 activation. The high exploitation of mitochondria results in
tricarboxylic acid cycle deregulation, accumulation of oncometabolites and reactive oxygen species (ROS) generation.
Additionally, using both in vitro and in vivo prostate cancer models the authors found that cancer cells hijack CAF-
derived functional mitochondria through the formation of cellular bridges.

In pancreatic cancer, lactate has been reported to promote posttranscriptional modifications that can contribute to
tumor growth (Bhagat et al., 2019). Indeed, lactate produced by cancer cells increases the production of alpha-
ketoglutarate (aKG) within mesenchymal stem cells (MSCs). In turn, aKG-mediated activation of the demethylase TET
is responsible for decreased cytosine methylation and increased hydroxymethylation during de novo differentiation of
MSCs to CAF. Notably, the co-injection of neoplastic cells with TET-deficient MSCs inhibited tumor growth in vivo pro-
posing a new anti-cancer therapeutic option (Bhagat et al., 2019).

4.1 | MCTs: Expression in cancer

MCT1 expression has been reported in a variety of human malignancies including head and neck, lung, stomach, colon,
prostate and cervix cancers, as well as gliomas (Afonso et al., 2015; Kennedy & Dewhirst, 2010; Miranda-Goncalves
et al., 2013; Pinheiro et al., 2012; Sonveaux et al., 2008). MCT1 has also been proposed to be the most important isoform
responsible for lactate transport across the plasma membrane in breast and bladder cancer, NSCLCs and ovarian carci-
nomas (Afonso et al., 2015).

MCT4 is also widely distributed in different cancer types. Its expression has indeed been reported in breast, colon,
bladder and prostate cancers, as well as in cancers of the gynecologic tract and gliomas (Afonso et al., 2015; Miranda-
Goncalves et al., 2013; Pinheiro et al., 2012).

Pertega-Gomes and Baltazar (2014) reported a correlation between the expression of MCT1, MCT2 and MCT4, and
the different stages of prostate cancer progression (Pertega-Gomes & Baltazar, 2014). In another study focused at
NSCLC, Eilertsen et al. (2014) described MCT1 as a prognostic and survival biomarker. In the same vein, the co-
expression of GLUT1 and MCT1 and of GLUT1 and MCT4 was found to be a negative prognostic factor associated with
poor disease-specific survival.

Besides MCTs, proton-sensing GPRs such as T cell death-associated gene 8 have also been shown to be important
for the modulation of T cells in an acidic tumor environment and during inflammation suggesting that an interaction
between MCTs and other sensing molecules is necessary to facilitate a proper shuttling activity (Ishii, Kihara, & Shi-
mizu, 2005; Pilon-Thomas et al., 2016). In line with this, it has been reported that intracellular carbonic anhydrase CAII
can act as proton antennae facilitating proton-driven lactate flux through MCTs in Xenopus oocytes. The knockdown of
CAII with siRNA reduced MCT1-mediated lactate transport in MCF-7 breast cancer cells revealing a new potential
therapeutic strategy (Noor et al., 2018).

5 | LACTATE SUSTAINS CHRONIC INFLAMMATION IN IMMUNE-
MEDIATED INFLAMMATORY DISORDERS

While in tumor cells lactate plays a key role in suppressing T cell effector functions, in the inflammatory context lac-
tate activates a “stop migration” signal in T cells leading to their accumulation at the inflammatory site (Figure 2).
These events are mediated by sodium lactate and lactic acid uptake through the transporters SLC5A12 and SLC16A1,
which are selectively expressed on the surface of CD4+ and CD8+ T cells, respectively (Haas et al., 2015). Interest-
ingly, the inhibition of T cell migration is regulated via lactate interference with the glycolytic pathway (Droge, Roth,
Altmann, & Mihm, 1987; Haas et al., 2015; Pucino et al., 2019). Indeed, CD4+ T cells, in the presence of sodium lac-
tate, display a downregulation of several glycolytic enzymes and glucose flux (Haas et al., 2015; Pucino et al., 2019).
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Lactate can also modulate cytokine production. For instance, tumor derived lactate has been shown to enhance the
IL-23/IL-17 pathway acting as a pro-inflammatory signal (Shime et al., 2008; Yabu et al., 2011). Subsequently, it was
found by our group that sodium lactate can directly modulate IL-17 production by driving the plastic differentiation
of CD4+ T cells in a Th17 subset in the inflamed tissue (Haas et al., 2015; Pucino et al., 2019). These findings have an
important impact on the understanding of the role of lactate in the context of immune-mediated inflammatory disor-
ders (IMIDs, i.e., rheumatoid arthritis [RA]) where lactate may act as an inflammatory signal leading to the inhibi-
tion of CD4+ T cell migratory capability and to their differentiation in a Th17 subset thus sustaining the chronic
inflammatory process (Figure 2). In addition, SLC5A12 has been found to correlate with the inflammatory score and
T cell infiltration in RA synovial tissue, suggesting its possible role in the pathogenesis of this disease (Haas et al.,
2015; Pucino et al., 2019).

Accumulation of lactate in the synovial fluid of RA patients is the result of the high metabolic demand of synovial
cells (Garcia-Carbonell et al., 2016). Even though there is not a clear correlation between lactate concentration in the
synovial fluid and the disease activity, some authors found that synovial lactate level could be a reliable indicator of dif-
ferentiating inflammatory arthritis (Gobelet & Gerster, 1984). Similarly, LDH isoenzymes were found to be higher in
serum and synovial fluid of RA compared to osteoarthritis (OA) patients (Pejovic, Stankovic, & Mitrovic, 1992) and
LDH activity was found to be increased in RA synovial tissues compared to healthy controls (Lindy, Uitto, Turto,
Rokkanen, & Vainio, 1971).

The abundance of lactate in inflammatory sites, as result of the hypoxic environment, is responsible, at least in part,
for the hypoxic-induced signaling. Notably, lactate signaling and subsequent biologic responses appear to be function-
ally uncoupled from HIF-1α-induced metabolic reprogramming, by employing NDRG family member 3 (NDRG3) as a
critical link (Lee et al., 2015). The authors found that the NDRG3 protein is degraded in a PHD2/VHL-dependent man-
ner in normoxia, similarly to HIF-1α, but is protected from degradation by binding to lactate that accumulates under
hypoxia. Indeed NDRG3 levels increase upon lactate stimulation irrespective of HIF-1α. In addition, suppression of lac-
tate production with either a LDHA pharmacologic inhibitor or LDHA silencing (siRNA) specifically inhibited the
NDRG3 protein accumulation in a dose-dependent manner. These events were reversed by the addition of lactate to the
culture medium without affecting HIF-1α protein levels. Moreover, NDRG3 promotes the switch toward a Th17 pheno-
type while it inhibits regulatory T cell differentiation (Shi et al., 2011). This might explain a possible mechanism
through which lactate can modulate the balance between Th17 and Treg cells during hypoxia.

Opposite to T cells where it acts as a pro-inflammatory molecule, on mast cells lactate has been reported to exhibit
an anti-inflammatory effect. Indeed, IL-33-mediated mast cell inflammatory cytokine production is inhibited upon lac-
tate treatment (Abebayehu et al., 2016). These effects of lactate on mast cell activation were dependent on acidic pH
and the MCT1 carrier. More recently, the same group reported that lactate inhibited lipopolysaccharide (LPS)-induced
cytokine and chemokine production by mast cells in vitro (Caslin et al., 2019). These events were linked to HIF-1α-
dependent miR-155 suppression. Indeed, HIF-1α siRNA transfection in bone marrow-derived mast cells prevented
lactate-mediated miR-155-5 suppression. Interestingly, lactate effects were mimicked by glycolytic inhibitors and
reversed by increasing ATP availability (Abebayehu et al., 2016; Caslin et al., 2019).

The role that lactate may play in modulating macrophages in the context of IMIDs is controversial. It has been
reported that LPS-induced inflammatory responses in macrophages is reduced in the presence of lactate in a
GPR81-independent manner (Errea et al., 2016). While another study showed that lactate promoted macrophage activa-
tion upon TLR2 and TLR4 stimulations via MCT4, which regulates lactate export through the cell membrane. This was
supported by observations that MCT4 knockdown attenuated the expression of pro-inflammatory mediators in murine
macrophages (Tan et al., 2015). This evidence indicates that lactate can modulate macrophage functions and fate engag-
ing different signaling pathways. It would be interesting to investigate how these observations can differ in macro-
phages from healthy versus pathological conditions.

In this context, lactate-derived lactylation of histone lysine residues has been recently identified as a new epigenetic
modification that directly stimulates gene transcription from chromatin both in mouse and human. Using M1 macro-
phages that have been exposed to bacteria, the authors showed that histone lactylation has different temporal dynamics
from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic
genes that are involved in wound healing, including Arg1. These findings highlight a homeostatic role for lactate during
infections (D. Zhang et al., 2019).

Taken together these data support a role for lactate in the modulation of immune cell functions during inflamma-
tion. While the role of lactate in macrophage-directed inflammation is still being debated, lactate behaves as a pro-
inflammatory molecule on T cells, leading to the production of cytokines necessary for the differentiation of specific T
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cell subsets and regulating their ability to migrate. Targeting lactate transporters, LDH, and HIF-1α may represent a
novel therapeutic intervention in IMIDs elicited by pro-inflammatory T cells.

6 | THERAPEUTIC STRATEGIES TARGETING LACTATE SIGNALING
PATHWAY

Different approaches modulating lactate signaling pathway, such as MCTs and LDH inhibitors, have been demon-
strated to be successful both in vitro and in vivo. The blockade of the lactate transporter MCT1 has shown to reduce
the proliferation of breast cancer cells co-expressing MCT1 and MCT4 (Hong et al., 2016), and decrease HIF-1α-
induced angiogenesis in cervix squamous carcinoma (Sonveaux et al., 2008, 2012). In addition, MCTs inhibition
with α-cyano-4-hydroxycinnamic acid was reported to reduce lactate-mediated inhibition of inflammatory gene
expression and NF-kappaB activity in human macrophages, indicating that lactate transport through
monocarboxylate transporters is required for macrophage effector functions (Samuvel, Sundararaj, Nareika, Lopes-
Virella, & Huang, 2009).

In this context, AZD3965 (MCT-1 inhibitor) has shown to be safe in a Phase 1 clinical study in the United Kingdom
where it has been tested in solid tumor and B cell lymphoma patients (Curtis et al., 2017).

LDH has also been reported to be increased in tumor cells (Fantin, St-Pierre, & Leder, 2006; Husain, Huang,
Seth, & Sukhatme, 2013). Knocking down LDHA by short hairpin RNAs determined a reduced ability of tumor cells
to proliferate under hypoxic conditions. This event was combined with increased mitochondrial respiration and
decreased mitochondrial membrane potential. The tumorigenicity of the LDHA-deficient cells was strongly reduced,
and this phenotype was reversed by supplementation with the human LDHA (Fantin et al., 2006). LDHA-depleted
tumors display a decreased frequency of myeloid-derived suppressor cells (MDSCs) and natural killer cells improved
cytolytic function. The addition of exogenous lactate increased the frequency of MDSCs generated from murine
bone marrow cells and inhibited cytolytic function of both human and murine NK cells in vitro, supporting the role
of lactate in tumor immune surveillance escape (Husain et al., 2013). This evidence was also supported by Brand
et al. (2016) showing that lactate leads to tumor immune escape by inhibiting the function and survival of T and NK
cells. In the same context, another study has shown that tumor-infiltrating liver-resident NK cells display signs of
mitochondrial stress, which are recapitulated in vitro by treating liver-resident NK cells with lactate. Lactate-
mediated apoptosis and mitochondrial dysfunction in these cells was reverted by blocking mitochondrial ROS accu-
mulation (Harmon et al., 2019).

Due to the emerging role of lactate in the field of inflammation and autoimmunity, lactate transporters are gaining
much attention as novel therapeutic targets even in these contexts. In this regard, it has been found that MCT4 is
upregulated by RA synovial fibroblast (RASFs) compared to OA SF (Fujii et al., 2015). Silencing of MCT4-inhibited pro-
liferation of RASFs in vitro and reduced the severity of arthritis in a mouse model of collagen-induced arthritis in vivo
(Fujii et al., 2015). Similarly, MCT4 is required for macrophage activation upon TLR2 and TLR4 stimulations as con-
firmed by reduced expression of pro-inflammatory molecules, such as TNF-α and IL-6, in MCT4 knockdown macro-
phages. In addition, these events were accompanied by intracellular accumulation of lactate and decreased glycolysis
(Tan et al., 2015).

In addition, the blockade of SLC5A12 (with shRNA or antibody) restored T cell functions in vitro as well as amelio-
rated disease severity in vivo in mouse models of peritonitis and arthritis (Haas et al., 2015; Pucino et al., 2019)
suggesting a novel therapeutic target to reduce inflammation in IMIDs.

7 | CONCLUDING REMARKS

The mechanisms regulating the crosstalk between metabolism and the immune system have been investigated in some
depth in the last few years (Buck, Sowell, Kaech, & Pearce, 2017; Geltink, Kyle, & Pearce, 2018). In this context, lactate
has emerged as an important signaling and immunomodulatory molecule, able to promote inflammatory responses and
suppress anti-tumor response. The discovery of lactate transporters on the surface of immune cells has opened novel
and important perspectives for the understanding of the pathogenesis of inflammatory disorders and tumors. Targeting
these molecules might prove crucial in the modulation of immune cell functions to achieve beneficial therapeutic
effects.
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