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Abstract
Background/objectives The amylose-amylopectin ratio influences starch properties. A higher amylose content is associated
with slower starch digestion thus reducing the postprandial plasma glucose response and improving the overall postprandial
metabolism. So far, limited evidence is available on the metabolic effect of wheat-based foods rich in amylose. This
randomised controlled study investigated the acute metabolic effects of amylose-rich wheat-based rusks in overweight
subjects focusing on potential mechanisms.
Subjects/methods Ten overweight subjects consumed in random order two test meals differing only in the carbohydrate
source: rusks prepared with amylose-rich wheat flour (ARR) or conventional wheat flour (control). Blood samples were
taken at fasting and over 4 h after the meal. Satiety and intestinal fermentation were evaluated by VAS and H2-breath test,
respectively.
Results ARR reduced plasma glucose response during the first two hours after the meal and the desire to eat, and increased
breath hydrogen concentration at 4 h (p < 0.05 for all). Moreover, according to computational models, the ARR slightly
reduced intestinal glucose absorption in the first hour after the meal and increased the overall postprandial insulin sensitivity.
Conclusions Rusks made with amylose-rich flour could be useful for improving postprandial glucose metabolism and reduce
the desire to eat, thus possibly contributing to the prevention and treatment of overweight/obesity, impaired glucose
tolerance or diabetes.

Introduction

Carbohydrates content of the meal is considered the main
dietary factor influencing postprandial glucose homo-
eostasis [1–4]. The available evidence indicates that

increased plasma glucose and insulin levels in the post-
prandial period are risk factors for adverse cardiovascular
events and type 2 diabetes also in non-diabetic individuals
[5–7]. However, a large reduction of carbohydrates in the
habitual diet is neither easy to be accomplished nor
recommended, since in a normocaloric diet it would require
an increase of protein and/or fat intake with potential
untoward consequences on health.

Against this background, it is important to take into
account that not only the amount but also the type of car-
bohydrate foods in the habitual diet may influence post-
prandial glucose metabolism [8–10]. According to the
International Scientific Consensus Summit from the Inter-
national Carbohydrate Quality Consortium [7], different
carbohydrate sources may modulate their impact on post-
prandial metabolism depending on their characteristics (i.e.
carbohydrates accessibility, type and amount of fibre, rate of
digestion).

Undoubtedly, starch is the largest source of carbohy-
drates in the diet worldwide, and it is mainly derived by
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cereals and cereal products [11]. Starch is composed by two
different types of glucose polymers: amylopectin and
amylose, present in a 3:1 ratio in most cereals foods. The
relative amounts of amylose and amylopectin influence the
properties of starch and its functionality, due to their dif-
ferent chemical structure—i.e. amylose is essentially linear,
whereas amylopectin is highly branched. In particular,
starches with higher amount of amylopectin are rapidly
digested by α-amylases present in the human duodenum
because the branched structure provides multiple sites for
enzymatic hydrolysis; on the contrary, high-amylose star-
ches undergo a slower digestion for the tendency of amy-
lose chains to re-associate (during retrogradation) in double
helices structures that are less accessible to the α-amylases
[12]. For these reasons amylose-rich starch is expected to
lower plasma glucose concentrations in the postprandial
glucose.

Indeed, an accumulating body of evidence shows that
amylose-rich cereals consumption may reduce postprandial
glucose and insulin concentrations [13–20]. However, the
mechanisms underlying these effects have been poorly
explored.

In addition, to the best of our knowledge, only one study
[20] has been carried out with wheat-based products that
represent a relevant source of starch in the human diet.

During the last decade, several technical approaches have
been applied to produce high-amylose wheat varieties [21,
22]. In particular, mutant wheat lines that present an
increased amylose content have been developed. These
lines could be used for the preparation of foodstuffs that
might have a lower impact on postprandial glucose response
[21–23].

Therefore, the aim of this study was to evaluate with a
pilot experiment whether the consumption of amylose-rich
wheat- based rusks could induce a better postprandial
metabolic response than a conventional wheat-based rusks
in a group of non-diabetic subjects with a slightly increased
cardiometabolic risk. In addition, potential mechanisms
underlying the metabolic effect of amylose-rich starch have
been explored.

Methods

Participants

Ten non-diabetic volunteers (three men and seven women),
aged 46 ± 12 years, with overweight or moderate obesity
(BMI 30 ± 5 kg/m2) were included in the study. Their main
fasting biochemical parameters were: plasma glucose 100 ±
9 mg/dl, total cholesterol 172 ± 30 mg/dl, HDL-cholesterol
50 ± 14 mg/dl) and triglycerides 77 ± 22 mg/dl. Exclusion
criteria included: established diabetes, dyslipidemia (fasting
triglycerides ≥400 mg/dl; fasting cholesterol >270 mg/dl),
history of cardiovascular or peripheral vascular diseases,
renal or liver diseases, anaemia (Hb < 12 g /dl), any other
chronic disease, use of drugs that influence glucose and
lipid metabolism.

The study protocol was approved by the “Federico II”
University Ethics Committee and registered at Clin-
icalTrials.gov, number NCT02702934. The present study
was conducted according to the guidelines laid down in the
Declaration of Helsinki. All participants gave their written
informed consent to participate in the study.

Table 1 Composition of the test meals

Rusks Wheat-bran
powder

Fatless ham Tomato
salad

EVO oil Lactose-
free
skimmed
milk

Orange
juice

Water Sum

CRR ARR CRR ARR CRR ARR CRR ARR CRR ARR CRR ARR CRR ARR CRR ARR CRR ARR

Amount (g/ml) 117 130 20 — 40 40 250 250 27 28 100 100 90 100 150 150 — —

Energy (kcal) 438 459 45 — 62 62 49 49 243 252 32 32 28 36 — — 897 890

Available CHOa (g) 81 81 5 — — — 7 7 — — 5 5 7 8 — — 105 101

Sugars (g) 2 3 1 — — — 7 7 — — 5 5 7 8 — — 23 23

Resistant starchb (g) — 7 — — — — — — — — — — — — — — — 7

Dietary fibre (g) 9 18 9 — — — 2 2 — — — — — — — — 20 20

Protein (g) 15 18 4 — 11 11 3 3 — — 3 3 0 1 — — 36 36

Fat (g) 6 7 1 — 2 2 1 1 27 28 0 0 — — — — 37 38

SFA (g) 1 1 0 — 1 1 0 0 4 4 0 0 — — — — 6 6

ARR test meal with amylose-rich wheat rusks, CHO carbohydrates, CRR test meal with conventional refined-wheat rusks (control meal); EVO
extra-virgin olive, SFA saturated fatty acids
aAvailable CHO= sugar plus digestible starch
bResistant starch was assessed in the flour by AOAC 2002.02
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Study design

The study had a randomised crossover design with each
subject studied on 2 occasions at least 1 week apart. The
randomisation was performed by coin toss. The participants
were asked to standardise their dinner and avoid foods rich
in dietary fibre (i.e. legumes and wholegrain foods) the day
prior to each experiment. Furthermore, they were asked to
avoid alcohol or probiotic-containing foods and to retain
from intense physical exercise in the previous day.

On the two experimental days, the volunteers were invi-
ted to the research centre after an overnight fast (10–12 h).
An i.v. cannula (BD Saf-T-intima, Becton Dickinson) was
inserted into an antecubital vein to be used for blood sam-
pling at fasting and over 4 h after the test meals consump-
tion. All participants were interviewed for a dietary 24h-
recall and a Visual Analogue Scale (VAS) [24] to assess
subjective appetite sensations (hunger, satiety, desire to eat
and prospective of food intake) at fasting and 30, 60, 90,
120,150, 180, 240 min after the test meal consumption. Each
subjective appetite sensation was measured using 10 cm
VAS with the most positive and the most negative rating at
each end of the line. At each time point the participants were
given a small notebook containing VAS for each sensation.
Participants were instructed to mark on the line the corre-
sponding grade of the sensation they felt.

Moreover, hydrogen was measured in exhaled breath as a
marker of colonic fermentation using a handheld Gastro+
Gastrolyzer® (Bedfont Scientific Ltd.) [25] at fasting and 60,
120,150, 180, 240min after the test meal consumption. Par-
ticipants were instructed to breath in deeply, hold their breath
for 10 s and then exhale at a steady pace into the cardboard
mouthpiece of the device until their lungs felt empty.

Test meal composition

The two test meals were designed to have the same energy
and macronutrient composition; in particular, they had the
same amount of available carbohydrate and dietary fibre
(Table 1). They differed only for the carbohydrate source:
rusks prepared with amylose-rich wheat flour or conven-
tional wheat flour. The conventional refined-wheat rusks
(CRR) were commercially available rusks (Barilla G&R F.
lli. SpA, Parma, Italy) and were used in the control meal.
The amylose-rich wheat rusks (ARR) were prepared using a
flour from a mutant wheat genotype with an elevated
amylose content (>50%; Botticella et al. in preparation). In
this genotype the three homoeoalleles coding the Starch
Branching Enzymes IIa (SBEIIa) have been silenced by a
Targeting Induced Local Lesions IN Genomes (TILLING)
approach [26]. The flour was provided by the University of
Tuscia, Italy, and the wheat rusks were kindly manufactured
by Barilla (Barilla G&R F.lli. SpA, Parma, Italy) for the

study (more details can be found in supplementary table 1
and supplementary table 2, and supplementary figure 4).

Since the ARR had a higher amount of dietary fibre (18 g
vs. 9 g, ARR and control, respectively; Table 1), 20 g of
pure wheat-bran powder (Albios Giuliani, Italy) was added
to the control meal in order to achieve the same amount of
dietary fibre in the two test meals, thus avoiding any pos-
sible interference of dietary fibre [27]. The other foodstuffs
included in the test meals are reported in Table 1.

The two test meals were prepared in the metabolic
kitchen by a dietitian and were consumed in 15–20 min.

Blood sampling and laboratory methods

Blood was sampled at fasting and at different time points in
the postprandial period according to the specific parameter
to be measured: glucose and insulin (30, 60, 90, 120, 180
and 240 min), triglyceride and FFA (60, 120,180 and
240 min) and GLP-1 and ghrelin (15, 30, 60, 90, 120, 150
and 180 min).

Blood drawn in EDTA- or EDTA and aprotinin tubes
was centrifuged, and plasma was stored at −80 °C until the
analyses. Glucose, FFA and triglyceride concentrations
were assayed by enzymatic colorimetric methods (ABX
Diagnostics, Montpellier, France; Roche Diagnostics,
Milan, Italy) on a ABX Pentra 400 (HORIBA Medical,
Montpellier, France). Insulin concentrations were measured
by an enzyme-linked immunosorbent assay (ELISA; DIA-
source ImmunoAssays S.A., Nivelles, Belgium) on Triturus
Analyzer (Diagnostics Grifols, S.A., Barcelona, Spain).
Active GLP-1 was assayed by a nonradioactive, highly
specific sandwich ELISA method (Merck-Millipore,
Darmstadt, Germany) that had 100% cross-reactivity with
active isoforms of GLP-1 (7–36 amide and 7–37 glycine
extended), but no reactivity with inactive isoforms (9–36
amide and 9–37 glycine extended), GLP-2 or glucagon [28].

Human total ghrelin (both intact and des-octanoyl forms)
was assayed by a highly specific sandwich ELISA method
(Merck-Millipore, Darmstadt, Germany) with 100% cross-
reactivity with des-octanoyl human ghrelin, 80% human
ghrelin (active) and 70% canine ghrelin (active). The intra-
and interassay coefficient of variation for the GLP-1 assay
was <5% and for ghrelin assays was <10%. All analyses
were performed by personnel blinded to the sequence of the
test meals.

Calculations and statistical analyses

Results are presented as means ± SEM, unless otherwise
stated. Variables not normally distributed were analysed
after logarithmic transformation or expressed as absolute
increment/decrement, calculated by subtracting the fasting
value from that of each time point of the curve. Postprandial
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responses were evaluated as the area under the curve above/
below the fasting value (incremental/decremental) area
under the curve (iAUC) calculated with the trapezoidal
method.

Insulin sensitivity index (ISI) was calculated as the ISI-
comp parameter, according to the method by Matsuda et al.
[29].

Intestinal glucose absorption during the meal test was
calculated through a mathematical model validated in a non-
diabetic population [30]. In brief, the increase of post-
prandial circulating glucose (dglu) over time (dt) is the
result of gain from gut glucose absorption (ABS) and
endogenous glucose production (EGP), and loss because of
glucose uptake (Rd), predominantly by skeletal muscle.
Thus, changes in glucose concentration over time can be
expressed as:

dglu=dt ¼ 1=VG� BW� EGP��Rdð Þ þ ABSð Þ ðaÞ
where BW is the body weight and VG is the oral glucose

distribution volume, and with initial conditions glu(0)=
fasting glucose concentration, ABS(0)= 0, EGP(0)= Rd
(0). Since EGP and Rd are calculated through specific for-
mulas [30], and glucose concentration changes during the
meal test are measured, by equation (a) ABS is finally
estimated.

Another mathematical model was exploited to assess the
FFA kinetics, and calculate some specific parameters [31].
In our representation of FFA kinetics, it is assumed that
insulin enters a compartment remote from plasma, where it
exerts an inhibitory effect on FFA production. The corre-
sponding compartmental variable is a delayed profile of
insulin. Starting from basal production at basal insulin, FFA
production decreases with slope SFFA for suprabasal
increases in remote insulin, up to a value beyond which
FFA production becomes constant. Thus, SFFA provides a
measure of the lipolysis inhibition due to suprabasal insulin
variations, which represents the sensitivity of FFA inhibi-
tion to increasing insulin.

Fig. 1 Plasma glucose (a) and insulin (b) response after the two test
meals. White square: conventional refined-wheat rusks (CRR; control);
black square: amylose-rich wheat rusks (ARR). First 2h-iAUC and last
2h-iAUC represent the incremental area under the curve above the

baseline value for plasma glucose and insulin concentrations evaluated
during the first two hours or the last two hours after the meal. Mean ±
SEM. * p < 0.05 vs. control (paired sample t-test)
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Differences between the two test meals were evaluated
by paired sample t-test. Statistical analysis was performed
according to standard methods using the Statistical Package
for Social Sciences software version 21.0 (SPSS, Chicago,
IL, USA).

Results

Fasting parameters

No differences were observed between the two experi-
mental days in relation to fasting plasma concentrations of
glucose (ARR: 101 ± 9 mg/dl vs. control: 101 ± 8, p: 0.931),
insulin (ARR: 15 ± 2 μl/ml vs. control: 17 ± 1 μl/ml,
p:0.246), triglycerides (ARR: 73 ± 7 mg/dl vs. control: 81 ±
7 mg/dl, p:0.085), FFA (ARR: 0.49 ± 0.2 mEq/L vs. control:
0.51 ± 0.2 mEq/L, p: 0.723), GLP-1 (ARR: 5.22 ± 1 pmol/L
vs. control: 5.01 ± 2 pmol/L, p:0.737), ghrelin (ARR: 494 ±
74 pg/ml vs. control: 419 ± 113 pg/ml, p:0.196) and for
breath hydrogen excretion (ARR: 16 ± 5 ppm vs. control:
19 ± 4ppm, p:0.481).

Metabolic response to the test meal

After the ARR-test meal, plasma glucose response was
significantly lower (−43%) during the first 2 h as compared
with the control meal: first 2h-iAUC were 23 ± 8 mg/dl/2 h
vs.40 ± 11 mg/dl/2 h, ARR and control, respectively; p:
0.045 (Fig. 1a). Conversely, in the late period after the meal,
plasma glucose concentrations were similar for the ARR
and the control meal: last 2h-iAUC were 11 ± 7 mg/dl•2 h
vs.8 ± 5 mg/dl•2 h, ARR and control, respectively; p: 0.588
(Fig. 1a).

Plasma insulin concentrations were constantly lower
after the ARR-test meal than after the control meal; how-
ever, differences between the two test meals did not reach
the conventional level of statistical significance both for the
early (first 2h-iAUC, ARR: 90 ± 14 μl/ml/2 h vs. CRR: 103
± 16 μl/ml/2 h; p: 0.189) and the late response (first 2h-
iAUC, ARR: 57 ± 11 μl/ml/2 h vs. CRR: 68 ± 17 μl/ml/2 h;
p: 0.236) (Fig. 1b).

In order to evaluate the mechanisms underlying the
metabolic effects, we utilised computational models that
allow to calculate both the intestinal glucose absorption rate
and the insulin sensitivity, calculated as insulin sensitivity
index (ISI) after the meal.

Results from the computational models are shown in
Table 2.

The overall postprandial glucose absorption, calculated
as 4h-iAUC, was not different between the two test meals;
however, the iAUC of glucose absorption was significantly
reduced during the first hour after the ARR meal as com-
pared with the control meal (23 ± 1 g/h vs. 27 ± 2 g/h,
respectively; p: 0.048).

As for insulin sensitivity index (ISI), it was significantly
higher (+18%) after the ARR meal than after the control
meal (4.0 ± 0.6 vs. 3.4 ± 0.4, respectively; p: 0.041).

Plasma FFA concentrations fell after both meals; how-
ever, the ARR-test meal induced a significantly smaller
reduction of plasma FFA concentrations at 120, 180 and
240 min (Fig. 2a). This finding was further substantiated by
the FFA inhibition index (SFFA) that was significantly lower
after the ARR meal than after the control meal (Table 2).

No significant differences were found for plasma trigly-
ceride and GLP-1 concentrations after the two test meals
(Supplementary figure 1 and 2, respectively).

Intestinal fermentation

The intestinal fermentation was evaluated by the hydrogen
excretion during the breath test. No significant differences
were observed between the two test meals during the early
phase of the postprandial period; however, hydrogen
excretion was significantly higher at 240 min after the ARR-
test meal as compared with the control meal (Fig. 2b).

Appetite

After the ARR-test meal, the participants reported a sig-
nificant reduction of the desire to eat that persisted during
the 4 h (Fig. 3). No difference were observed for the other
subjective appetite sensations (hunger, satiety and pro-
spective of food intake; data not shown).

Table 2 Dynamic indices of glucose absorption rate, insulin sensitivity index and FFA inhibition during the two test meals

Parameters Test meal with conventional rusks Test meal with amylose-rich rusks

Glucose absorption (g/4 h) 86 ± 5 89 ± 5

ISIcomp ((mg/dL)2/(μU/mL)2)-1/2 3.4 ± 0.4 4.0 ± 0.6*

FFA inhibition (ml/microU/4 h) 3.7 ± 1.3 0.7 ± 0.5*

Data are expressed as mean ± SEM

* p < 0.05 vs. control (paired sample t-test)
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In addition, no statistically significant differences were
detected between the two test meals in relation to ghrelin
concentrations (Supplementary figure 3).

Discussion

The main and most relevant finding of this study is that the
acute consumption of amylose-rich rusks (ARR; amylose
>50%), within the context of a standard meal, significantly
reduces glucose response in the first two hours after the
meal compared to conventional refined rusks.

It is noteworthy that the composition of the two test meals
was similar in terms of the amount of available carbohy-
drates and dietary fibre. This allows to interpret all differ-
ences in postprandial metabolic parameters as the
consequence of the proportion of amylose and amylopectin
in the wheat flour utilised for the preparation of the two types
of rusks tested in this study, since it was the only nutritional
parameter that was different between the two meal.

A lower postprandial plasma glucose response has been
reported previously in studies carried out with food pre-
pared with barley [13, 14], rice [15, 16], corn [16–19], and,
in a preliminary aspect, also with amylose-rich wheat [20],
supporting the potential role of high-amylose cereals in
plasma glucose control.

Our study confirms and extends the results of previous
studies providing relevant information on the mechanisms
underlying the improvement of postprandial plasma glucose
response to foods based on amylose-rich starch.

The results of our study indicate that ARR may benefi-
cially influence the postprandial plasma glucose response
likely through a slower digestion rate of the starch mole-
cules that may limit also insulin requirement. As a matter of
fact, although 4 h-glucose absorption was not different
between the two meals, the significant reduction of the
iAUC of glucose absorption during the first hour after the
meal confirms this hypothesis.

In this study the insulin response was constantly lower
after the ARR meal, but differences did not reach the

Fig. 2 Plasma FFA response (a)
and breath hydrogen excretion
(b) after the two test meals.
White square: conventional
refined-wheat rusks (CRR;
control); black square: amylose-
rich wheat rusks (ARR). Plasma
FFA concentrations are
presented as Mean ± SEM.
Breath hydrogen excretion is
presented as mean increment/
decrement from fasting value for
the single time point ± SEM. * p
< 0.05 vs. control (paired sample
t-test)

C. Vetrani et al.



conventional level of statistical significance. This finding is
in line with previous studies where no significant effect of
amylose-rich products was observed on postprandial insulin
concentrations. However, some studies carried out with
foods containing higher amounts of amylose (60–70%)
were able to show a significant reduction of insulin con-
centrations [17–19]. Lower plasma insulin concentrations
after the ARR meal may explain the impaired suppression
of FFA response after the ARR meal. In fact, it is known
that insulin is the most potent hormonal inhibitor of lipo-
lysis; thus, even a small insulin reduction may have trig-
gered the lower FFA inhibition and the smaller postprandial
FFA reduction observed in our study after the consumption
of ARR meal.

This mechanism may have counteracted the FFA-
reducing effect of an increased intestinal fermentation;
however, given the acute nature of this study, it is plausible
that the observation time was too short to allow a major
metabolic effect of SCFA production to became apparent.

Computational models based on the ratio between
plasma insulin and glucose concentrations indicate that in
our study also postprandial insulin sensitivity was increased
after the ARR meal.

In this study, insulin sensitivity was evaluated as ISI
index that has not been validated for mixed meal tests.
However, although the results may not be completely
accurate on this aspect, ISI index is widely used to assess
insulin sensitivity in clinical trials, also after mixed meals
[32–35].

The increase in insulin sensitivity, calculated as ISI index
over 4 h, might be due to the reduction of glucotoxicity as a
consequence of the lower postprandial glucose concentra-
tions after the ARR meal. Moreover, it may also be due to
the intestinal fermentation, at least in the later period after
the meal consumption, as showed by the increment of
hydrogen excretion during the breath test at 4 h after the
meal. In fact, an increased amylose content in starch

promotes the production of resistant starch that skips
intestinal digestion and absorption, and undergoes fermen-
tation by colonic microbiota. The fermentation products of
resistant starch include not only gases (methane, hydrogen,
carbon dioxide), but also short chain fatty acids (SCFAs:
acetate, propionate, butyrate) that can beneficially influence
insulin sensitivity as well as glucose and lipid metabolism
[36, 37].

Finally, we observed a significant effect of the ARR on
the desire to eat; this suggests that ARR may influence
appetite and reduce the energy intake, thus representing a
potential useful tool for body weight reduction/main-
tenance. However, this finding was not confirmed by the
other subjective parameters relevant for the satiety process
(hunger, satiety and prospective of food intake); moreover,
it was not corroborated by the results on ghrelin and GLP-1
since their postprandial concentrations did not differ
between the two test meals.

One limitation of our study is represented by the small
sample size; in fact, it was calculated to detect a mean
reduction of about 30% of the glucose response, but it could
be not sufficient to observe changes in other parameters
evaluated in this study and, in particular, differences in
plasma hormonal responses (insulin, GLP-1 and ghrelin).

The strengths of our study are the well-controlled study
design, the balanced composition of the test meal, and the
optimal compliance of the participants.

In conclusion, the results of the present study show that
the consumption of amylose-rich rusks improves post-
prandial glucose metabolism, increases insulin sensitivity
and intestinal fermentation. Therefore, products made with
amylose-rich flour could be useful for the prevention and
treatment of overweight/obesity, impaired glucose tolerance
or diabetes.

Further studies are needed to clarify the effects of
amylose-rich products and their mechanisms of action in the
long term. Meanwhile, this study adds new information on

Fig. 3 Desire to eat after the two
test meals. White square:
conventional refined-wheat
rusks (CRR; control); black
square: amylose-rich wheat
rusks (ARR). Data are presented
as mean decrement from fasting
value for the single time point ±
SEM. * p < 0.05 vs. control
(paired sample t-test)
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the potential benefits of the amylose/amylopectin ratio
modification.
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