
Fast Compliance Checking in an OWL2 Fragment∗

Piero A. Bonatti
Università degli studi di Napoli Federico II

piero.bonatti@unina.it

Abstract
We illustrate a formalization of data usage policies
in a fragment of OWL2. It can be used to encode a
company’s data protection policy, as well as data
subjects’ consent to data processing, and part of
the GDPR (the forthcoming European Data Protec-
tion Regulation). Then a company’s policy can be
checked for compliance with data subjects’ consent
and with part of the GDPR by means of subsump-
tion queries. We provide a complete and tractable
structural subsumption algorithm for compliance
checking and prove the intractability of a natural
generalization of the policy language.

1 Introduction
This work stems from the EU H2020 project XYZ1, where
semantic technologies are used to help companies in comply-
ing with the new European General Data Protection Regula-
tion (GDPR).2 In this project, data usage policies are encoded
using a fragment of OWL2-DL and the main policy-related
reasoning tasks are reduced to subsumption and concept con-
sistency checking. Such tasks include - among others:

• permission checking: given an operation request, decide
whether it is permitted;

• compliance checking: does a policy P1 fulfil all the re-
strictions requested by policy P2? (Policy comparison);

• policy validation: e.g. is the policy contradictory? Does
a policy update strengthen or relax the previous policy?

Compliance checking is the predominant task in this project:
the data usage policies of the industrial partners must be com-
pared both with a (partial) formalization of the GDPR itself,
and with the consent to the usage of personal data granted by
each of the data subjects whose data are collected and pro-
cessed by the company (that is called data controller in the
GDPR). The number of data subjects (and their policies) can

∗This research is funded by the European Unions Horizon
2020 research and innovation programme under grant agreement
N. 〈anonymized for blind review〉.

1Anonymized for blind review
2http://data.consilium.europa.eu/doc/

document/ST-5419-2016-INIT/en/pdf

be as large as the number of customers of a major communi-
cation service provider. Moreover, in the absence of explicit
consent, some data cannot be stored, even temporarily; so
some of the project’s use cases consist in checking storage
permissions against a stream of incoming data points, at the
rate of hundreds of thousands per minute. Then one of the
crucial project tasks is the development of scalable reasoning
procedures for reasoning in the policy fragment of OWL 2.

In this paper we illustrate this fragment and introduce a
structural subsumption algorithm that is a promising starting
point for scalable compliance checking. Sec. 2 recalls the ba-
sics of Description Logics (DL) needed in this work. In Sec. 3
we illustrate the encoding of data usage policies in OWL2.
In Sec. 4 we describe the structural subsumption algorithm
for the policy language, and a policy consistency checking
method. We prove correctness and completeness of these al-
gorithms and their tractability. Moreover, we prove the in-
tractability of a slight generalization of the policy fragment.
The paper is concluded by a discussion of the results, a com-
parison with related work, and a description of ongoing and
future work. Some proofs have been moved to Appendix A
to enhance readability.

2 Preliminaries on Description Logics
Here we report the basics needed for our work and refer the
reader to [Baader et al., 2003] for further details. The DL lan-
guages of our interest are built from countably infinite sets of
concept names (NC), role names (NR), concrete feature names
(NF), and concrete predicates (NP). An interpretation I is a
structure I = (∆I , ·I) where ∆I is a set, and the interpre-
tation function ·I is such that (i) AI ⊆ ∆I for all A ∈ NC;
(ii) RI ⊆ ∆I ×∆I for all R ∈ NR; (iii) fI ⊆ ∆I ×∆D for
all f ∈ NF.3 The semantics of an n-ary predicate p ∈ NP is
a set of tuples pD ⊆ (∆D)n. In this paper we use ∆D = N
and unary concrete predicates in`,u , where `, u ∈ N, such
that inD`,u = [`, u]. To enhance readability we will abbrevi-
ate in`,u(f) to [`, u](f). Informally, [`, u](f) means that the
value of feature f belongs to the interval [`, u].

Figure 1 shows some DL operators and their semantics,
that extends ·I to compound DL expressions. The last four

3∆D denotes the domain of the predicates in NP. We are assum-
ing – for brevity – that there is one concrete domain. However, our
framework can be immediately extended to multiple domains.



Name Syntax Semantics

bottom ⊥ ⊥I = ∅
intersection C uD (C uD)I = CI ∩DI

union C tD (C tD)I = CI ∪DI

restriction ∃R.C {d ∈ ∆I | ∃(d, e) ∈ RI : e ∈ CI}
complement ¬C (¬D)I = ∆I \ CI

concrete
constraints

p(f1, .., fn) {x∈∆I | ∃~v∈(∆D)n. (x, vi) ∈ fIi
(1 ≤ i ≤ n) and ~v ∈ pD}

GCI C v D CI ⊆ DI

disjointness disj(C,D) CI ∩DI = ∅
func func(R) RI is a partial function
range range(R,C) RI ⊆ ∆I × CI

Figure 1: Syntax and semantics of some DL constructs and axioms.

lines illustrate some DL axioms; GCI stands for “general
concept inclusion”. An interpretation I satisfies an axiom α
(equivalently, I is a model of α) if I satisfies the correspond-
ing semantic condition in Fig. 1.

A knowledge base K is a finite set of DL axioms. An in-
terpretation I is a model of K (I |= K) if I satisfies all the
axioms in K. We say that “K entails an axiom α” – in sym-
bols, K |= α – if all models of K satisfy α.

A pointed interpretation is a pair (I, d) where d ∈ ∆I . We
say (I, d) satisfies a concept C (in symbols, (I, d) |= C) iff
d ∈ CI .

3 Encoding Usage Policies in OWL2-DL
A logic-based policy language has been chosen because poli-
cies are knowledge. Policies encode declarative constraints
on a system’s behavior, that depend on metadata about sub-
jects (e.g. users), objects (e.g. system resources), actions (op-
erations), and an environment. Such metadata models – pos-
sibly in “semantic” terms – all the categories and attributes
of the above entities that are relevant to make decisions about
permissions. Moreover, like knowledge and unlike programs,
every single policy is meant to be used for multiple, semanti-
cally related tasks, such as those listed in Sec. 1.

Then, knowledge representation (KR) languages are ideal
policy representation languages. Indeed, both rule languages
and description logics (DL) have already been used as pol-
icy languages, a non-exhaustive list is [Woo and Lam, 1993;
Uszok et al., 2003; Kagal et al., 2003; Bonatti et al., 2010].
As noted in [Bonatti, 2010], the advantage of rule languages
is that they can express n-ary authorization conditions for
arbitrary n, while encoding such conditions for n > 2 is
challenging in DL. The advantage of DL is that all the main
policy-reasoning tasks are decidable (and tractable if poli-
cies can be expressed with OWL 2 profiles), while compli-
ance checking is undecidable in rule languages, or at least in-
tractable, in the absence of recursion. So a DL-based policy
language is a natural choice in a project where policy com-
parison is the predominant task.

In abstract terms, a policy is a set of tuples called autho-
rizations. In traditional access control, authorizations are
triples 〈s, o, a〉 whose intuitive meaning is: “subject s can
do action a on object o” [Bonatti et al., 2002]. In privacy and

data usage policies, o is a piece of data (typically encoding
information about a data subject) and tuples contain further
elements such as the purpose of the operation, the recipients
of the results, the duration of storage, and so on.

Authorizations are encoded in OWL 2 by reifying them,
i.e. representing tuples as individuals whose attributes are the
tuple’s elements. For example, if S,O,A ∈ NC, I is an inter-
pretation, and SI = {s}, OI = {o}, AI = {a}, then all the
instances of the following concept in I encode 〈s, o, a〉:4

∃subj.S u ∃obj.O u ∃act.A . (1)

In order to make the above concept represent only the autho-
rizations in the cross product of classes S,O, and A, we gen-
erally make the roles that encode tuple elements functional.
This is probably the easiest way to prevent some likely-to-
happen modelling errors.

Example 1 Suppose that role subj is not functional. If the
informal policy: “staff members can read confidential files”
were encoded in the natural way, with the concept:

∃subj.Staff u ∃obj.Confidential u ∃act.Read , (2)

then the formalized policy may authorize also visitors to read
confidential files, even if classes Staff and Visitor were
disjoint. In particular, (2) may have an instance x with two
values for subj: a staff member s and a visitor v. If this is
not considered as an error, then the only sensible approach is
taking x as the representation of the two tuples with either s or
v as a subject, and with the same object and action as x. But
then (2) would authorize visitor v to read confidential files.
Instances like x cause problems also in modelling the policy
difference operator [Bonatti et al., 2002], because deletion
of authorizations for visitors (like 〈v, o, a〉) may delete also
some of the authorizations for staff members (e.g. 〈s, o, a〉,
that is reified by the same individual as 〈v, o, a〉).
Some authorization attributes are optional, e.g. there may be
no storage if the results of data processing are not saved in a
persistent memory. Then the corresponding roles are partial
functions, in general. There are a few exceptions to function-
ality. Some tuple elements are actually sets, e.g. a single au-
thorization may be associated to any number of obligations,
as in “s can execute a on o if explicit consent is obtained from
the data subjects and s signes a non-disclosure agreement”.

The attributes of authorizations (like data categories, pur-
poses, etc.) range over concepts defined in simple tax-
onomies, derived from P3P (the Platform for Privacy Pref-
erences)5 and ODRL (the Open Digital Right Language).6
Currently, such taxonomies are encoded with simple inclu-
sions A v B and disjointness constraints disj(A,B), where
A,B are concept names.7 Only one attribute (dur, for stor-
age duration) is a concrete feature, that can be restricted to
integer intervals [l, u] with concrete constraints [l, u](dur).

4In this paper we use the DL syntax because it is way more com-
pact than any syntax for OWL 2.

5http://www.w3.org/TR/P3P11
6https://www.w3.org/TR/odrl/
7In a complementary paper we show how to support general EL

concept inclusions by integrating the structural subsumption algo-
rithm presented here with ELK.



Let a “simple policy concept” P be an extension of (1)
with additional conjuncts for purpose, storage duration (op-
tional), obligations (non functional), etc. A single, simple
policy concept P cannot express different usage restrictions
for different categories of entities. So we will consider full
policy concepts, that are unions of simple policy concepts.
For example, the full policy concept P1 t P2, where

P1 = ∃subj.Staff u ∃obj.PII u ∃act.Read ,
P2 = ∃subj.Other u ∃obj.Anonymous u ∃act.Read .

represents the policy: “Staff can read personally identifiable
information, while third parties can read anonymized data”.

The main reasoning tasks are policy comparisons, that is,
subsumption checks P1 v P2 over full policy concepts Pi.

Based on the above discussion, we are now ready to specify
a fragment of OWL 2 called PL (policy logic) that covers –
and slightly generalizes – the language outlined above.
Definition 1 (Policy logic PL) A PL knowledge baseK is a
set of axioms of the following kinds:
• func(R) where R is a role name or a concrete feature;
• range(S,A) where S is a role and A a concept name;
• A v B where A,B are concept names;
• disj(A,B) where A,B are concept names.

A simple PL concept has the form:
A1 u . . . uAn u E1 u . . . u Em u C1 u . . . u Ct (3)

where each Ai is either a concept name or ⊥, each Ej is
an existential restriction ∃R.C such that R is a role and C
a simple PL concept, and each Ck is a concrete constraint
[l, u](f). A (full) PL concept is a unionD1t. . .tDn of sim-
ple PL concepts. PL’s subsumption queries are expressions
C v D where C,D are (full) PL concepts.
Example 2 The policy “Location data can be stored for at
most 1 year in a server of the data controller located in
France” can be formalized with the following concept:
∃storage.

(
[0, 365](dur) u ∃loc.(DCServer u FR)

)
. (4)

The knowledge base contains the following kinds of ax-
ioms: (i) func(R) for each role/feature R, (ii) range restric-
tions like range(loc, AnyLoc), for each role, and (iii) inclu-
sions between concept names, like DCServer v AnyLoc and
FR v AnyLoc, that define the vocabularies. The above policy
can be regarded either as a data controller’s usage policy, or
as a data subject’s consent to data processing. The complete
policy/consent includes also the subject, the purpose, the re-
cipients, and the obligations (if any).

The GDPR requires the data of European citizens to remain
in the EU, or in countries that adopt similar data protection
regulations. This restriction can be encoded as follows:

(∃storage.∃loc.EU) t (∃storage.∃loc.EULike). (5)
This transfer restriction is satisfied by a policy P if (5) sub-
sumes P . For example, policy (4) can be proved to be com-
pliant with GDPR’s transfer restrictions provided that the vo-
cabulary contains an inclusion FR v EU. The vocabulary con-
tains also a term referring to what the GDPR calls “third
countries”, i.e. any country that does not belong to the EU
and does not provide sufficient data protection regulations.
The three classes of countries are declared to be disjoint with
axioms like disj(EULike, ThirdCountries).

4 Compliance Checking and its Complexity
In this section we introduce a structural subsumption algo-
rithm for deciding whether K |= C v D, for all given PL
KB K and all PL subsumptions C v D. We start by intro-
ducing an auxiliary algorithm for elementary subsumptions,
that are PL subsumptions C v D where both C and D are
simple, and C v D is interval safe, that is, for all constraints
[`, u](f) and [`′, u′](f ′) occurring in C and D, respectively,
either [`, u] ⊆ [`′, u′], or [`, u] ∩ [`′, u′] = ∅.

The structural subsumption algorithm (Algorithm 1, here-
after STS) takes as input a PL KB K and an elementary PL
subsumption C v D, where C is normalized w.r.t. K using
the rewrite rules in Table 1. There, v∗ denotes the reflexive
and transitive closure of {(A,B) | (A v B) ∈ K}. By a
straightforward case analysis we obtain Proposition 1:

Algorithm 1: STS(K, C v D)

Input: K and an elementary C v D where C is normalized
Output: true if K |= C v D, false otherwise

Note: By C = C′ u C′′ we mean that either C = C′

or C′ is a conjunct of C (possibly not the 1st)
begin1

if C = ⊥ then return true2
if D = A, C = A′ uC′ and A′ v∗ A then return true3
if D = [l, u](f) and C = [l′, u′](f) u C′ and l ≤ l′ and4
u′ ≤ u then return true
if D = ∃R.D′, C = (∃R.C′) u C′′ and5
STS(K, C′ v D′) then return true
if D = D′ uD′′, STS(K,O, C v D′), and6
STS(K,O, C v D′′) then return true
else return false7

end8

Proposition 1 The rewrite rules in Table 1 preserve concept
equivalence w.r.t. K, i.e. if C ; C ′ then K |= C ≡ C ′.
In order to prove that STS is complete w.r.t. elementary sub-
sumptions we need a canonical counterexample to invalid
subsumptions.

Definition 2 Let C 6= ⊥ be a simple PL concept normalized
w.r.t. K. A canonical model of C is a pointed interpretation
(I, d) defined as follows, by recursion on the nesting level of
existential restrictions. Hereafter we call a subconcept of C
“top level” if it does not occur within the scope of ∃.

a. If C =
(dn

i=1Ai

)
u
(dt

j=1 Cj

)
(i.e. C has no existen-

tial restrictions), then let I = 〈{d}, ·I〉 where
• AI = {d} if for some i = 1, . . . , n, Ai v∗ A;
• if Cj = [l, u](f), add (d, u) to fI (1 ≤ j ≤ t);
• all the other predicates are empty.

b. If the top-level existential restrictions of C are ∃Ri, Di

(i = 1, . . . ,m), then let (Ii, di) be a canonical model
of Di, for each i = 1, . . . ,m. Assume w.l.o.g. that all
such models are mutually disjoint and do not contain d
(if necessary, their elements can be replaced). Define an
auxiliary interpretation J :
• ∆J = {d, d1, . . . , dm};



1) ⊥ uD ; ⊥
2) ∃R.⊥; ⊥
3) [l, u](f) ; ⊥ if l > u
4) (∃R.D) u (∃R.D′) uD′′ ; ∃R.(D uD′) uD′′ if func(R) ∈ K
5) [l1, u1](f) u [l2, u2](f) uD ; [max(l1, l2),min(u1, u2)](f) uD if func(f) ∈ K
6) ∃R.D uD′ ; ∃R.(D uA) uD′ if range(R,A) ∈ K and A not a conjunct of D
7) A1 uA2 uD ; ⊥ if A1 v∗ A′1, A2 v∗ A′2, and disj(A′1, A

′
2) ∈ K

Table 1: Normalization rules w.r.t. K. Intersections are treated as sets (the ordering of conjuncts and their repetitions are irrelevant).

• for all concept names A such that for some top-
level Ai in C, Ai v∗ A, let AJ = {d}; all other
concept names are empty;

• for each top-level constraint [l, u](f) in C, add
(d, u) to fJ ;

• for each top-level restriction ∃Ri.Di in C, add a
pair (d, di) to RIi ;

• there are no other pairs in roles and features.
Finally let I be the union of J and all Ii, that is

∆I = ∆J ∪
⋃

i ∆Ii

AI = AJ ∪
⋃

iA
Ii (A ∈ NC)

RI = RJ ∪
⋃

iR
Ii (R ∈ NR ∪ NF) .

The canonical model is (I, d).
Note that each C has a unique canonical model up to isomor-
phism. The canonical model actually satisfies K and C:
Lemma 1 If C is a simple PL concept normalized w.r.t. K,
and C 6= ⊥, then the canonical model (I, d) of C enjoys the
following properties:

a. I |= K;
b. (I, d) |= C.

Moreover, the canonical model of C characterizes all the
valid elementary subsumptions whose left-hand side is C:
Lemma 2 IfC v D is elementary, andC is normalized w.r.t.
K, then K |= C v D iff (I, d) |= D, where (I, d) is the
canonical model of C.
Basically, STS decides whether (I, d) |= D.
Lemma 3 IfC v D is elementary,C 6= ⊥, andC is normal-
ized w.r.t. K, then STS(K, C v D) = true iff (I, d) |= D,
where (I, d) is the canonical model of C.
The correctness and completeness of STS easily follow:
Theorem 2 If C v D is elementary and C is normalized
w.r.t. K, then STS(K, C v D) = true iff K |= C v D.
Proof. There are two possiblities. If C = ⊥, then clearly
K |= C v D and STS(K, C v D) = true (line 2 of STS),
so the theorem holds. If C 6= ⊥, then theorem follows imme-
diately from lemmas 2 and 3.
Now, through Lemma 2, subsumption checks over full PL
concepts can be reduced to elementary subsumptions.
Theorem 3 For all interval-safe PL subsumption queries
σ =

(
C1 t . . . t Cm v D1 t . . . t Dn

)
such that each

Ci is normalized w.r.t. K, the entailment K |= σ holds iff for
all i ∈ [1,m] there exists j ∈ [1, n] such that K |= Ci v Dj .

Proof. By simple logical inferences, these two facts hold:
(i) K |= σ iff K |= Ci v

⊔n
j=1Dj holds for all i ∈ [1,m],

(ii) if K |= Ci v Dj holds for some j ∈ [1, n], then K |=
Ci v

⊔n
j=1Dj . So we are only left to show the converse of

(ii): assuming that K 6|= Ci v Dj for all j ∈ [1, n], we shall
prove that K 6|= Ci v

⊔n
j=1Dj .

By assumption and Lemma 2, the canonical model (I, d)
of Ci is such that (I, d) |= ¬Dj for all j ∈ [1, n]. Therefore
(I, d) |= ¬

⊔n
j=1Dj . Then K 6|= Ci v

⊔n
j=1Dj follows by

noting that (I, d) satisfies both K and Ci by Lemma 1.

Theorem 3 directly yields an obvious polynomial-time algo-
rithm for checking PL subsumptions: it suffices to check that
for each Ci there exists Dj such that K |= Ci v Dj . So:

Theorem 4 Interval-safe PL subsumption queries can be
answered in polynomial time.

Proof. Let σ be a PL query of the form illustrated in Theo-
rem 3. By that theorem, after normalizing theCi, it suffices to
call STS(K, Ci v Dj) at most m× n times. Each such calls
scans Ci for each subconcept ofDj , searching for a matching
concept. Matching may require to visit the hierarchy v∗, so
the cost of each call isO(|Dj |·|Ci|·|K|) = O(|σ|2·|K|). Then
the overall cost of a naive implementation – excluding nor-
malization – is O(|σ|4 · |K|). Normalization is O(|σ|2 · |K|),
due to the cost of checking pairwise disjointness of concept
names, so it is dominated by the cost of STS’s runs.

We are left to discuss the interval-safety prerequisite needed
by Theorem 3.8 It can be satisfied as follows, with a prelimi-
nary interval normalization phase of the query C v D.

For each [`, u](f) in C, let x1 < x2 < · · · < xr be the
integers that occur as interval endpoints in D and belong to
[`, u]. Let x0 = ` and xr+1 = u and replace [`, u](f) with
the equivalent concept

r⊔
i=0

(
[xi, xi](f) t [xi + 1, xi+1 − 1](f)

)
t [xr+1, xr+1](f). (6)

Then use distributivity of u over t and the equivalence
∃R.(C1 t C2) ≡ ∃R.C1 t ∃R.C2 to move all occurrences
of t to the top level. Denote the result of this interval nor-
malization phase with C∗. Readers may easily verify that

Proposition 5 For all PL subsumption queries C v D, C∗
is equivalent to C and C∗ v D is an interval-safe PL sub-
sumption query.

8Theorem 2 can also be proved without assuming interval safety.
The proof will be given in a forthcoming journal version.



Clearly, interval normalization may inflate C exponentially,
due to the application of distributivity. We have to rely on the
structure of policies to get a polynomial time bound: simple
(t-free) policies have at most one, functional concrete fea-
ture (dur) so no combinatorial explosion occurs during pre-
normalization. Accordingly—and more generally—the fol-
lowing proposition holds:
Proposition 6 PL subsumption queries C1 t . . .tCm v D
can be answered in polynomial time if there exists a constant
c that bounds the number of concrete feature occurrences in
each Ci.

Note that C may contain any number of interval constraints,
as m grows, because the bound applies to each Ci individu-
ally. This may seem unsatisfactory at a first glance. Unfor-
tunately, no general polynomial-time algorithms exist (unless
P=NP) because unrestricted PL subsumption queries are in-
herently difficult due to the interplay of interval constraints
and t:
Theorem 7 Subsumption checking in PL is coNP-complete.
The result holds even if the knowledge base is empty.

We conclude this section by pointing out that the normal-
ization rules in Table 1 can be used as a policy validation
method, to check that a full PL concept is satisfiable.
Proposition 8 Let K be a PL knowledge base.

1. A PL concept C = C1 t . . . t Cn is unsatisfiable w.r.t.
K iff Ci ; ⊥ for all i ∈ [1, n].

2. PL concept satisfiability w.r.t.K can be checked in poly-
nomial time.

Proof. Point 1 follows immediately from Prop. 1 and
Lemma 1. It is easy to see that normalization takes poly-
nomial time, so Point 2 holds.

5 Discussion and Future Work
The encoding of usage policies in OWL 2 – using the tractable
fragment of the description logic PL introduced in this paper
– is simple enough to reduce compliance checking to tractable
structural subsumption tests. Such tests can be computed in
polynomial time w.r.t. the size of the ontology and the size of
the policies involved (i.e. company policies and formalized
consent). For a fixed company policy and fixed vocabular-
ies, the complexity of verifying whether the company policy
complies with the explicit consent released by data subjects
grows linearly with the size of formalized consent, so we ex-
pect compliance checking to scale well to large numbers of
data subjects and articulated consent expressions. Tractabil-
ity depends on the fact that policies have a bounded number
of concrete features; otherwise, PL subsumption is coNP-
complete.

We are planning – as part of the activities of the XYZ
project – to implement and optimize the structural subsump-
tion algorithm and perform scalability tests. The compliance
checking task is well-suited for parallelization (e.g. the com-
pliance tests with respect to different consent policies are
all mutually independent and can be carried out in parallel).
For this purpose we will leverage the Big Data Europe in-
frastructure adopted by XYZ. We are also going to integrate

the structural subsumption algorithm with ELK, a specialized
reasoner for the tractable profile OWL2-EL. In this way, the
vocabularies of data categories, purposes, locations, etc. can
be expressed with OWL2-EL, instead of the limited axioms
over concept names allowed in PL knowledge bases.

The real-time checking of storage consent for data streams,
mentioned in the introduction, most likely requires further op-
timization. We foresee knowledge compilation techniques as
a promising approach. Their feasibility can only be verified
experimentally, and will be the subject of further work.

The previous encodings of policies in KR languages, such
as [Uszok et al., 2003; Kagal et al., 2003; Bonatti et al.,
2010], focus on access control and trust management, rather
than data usage control. Consequently, those languages lack
the terms for expressing privacy-related and usage-related
concepts. A more critical drawback is that the main reasoning
task in those papers is permission checking; policy compar-
ison (which is central to our work) is not considered. Both
Rei and Protune [Kagal et al., 2003; Bonatti et al., 2010] sup-
port logic program rules. As we already mentioned, if rules
are recursive then policy comparison is generally undecid-
able, otherwise it is NP-hard. The comparison of PL poli-
cies, instead, is tractable (Proposition 6). Similarly, KAoS
[Uszok et al., 2003] is based on a DL that, in general, is not
tractable. Actually, KAoS policies use role-value maps that
in general make reasoning undecidable (see [Baader et al.,
2003], Chap. 5); the authors do not discuss how to avoid this
issue.

Our tractability and intractability results do not follow di-
rectly from any previous work. The most expressive language
enjoying a complete structural subsumption algorithm – to
the best of our knowledge – is the description logic underly-
ing CLASSIC [Borgida and Patel-Schneider, 1994], that sup-
ports neither concept unions (t) nor qualified existential re-
strictions (∃R.C). If unions were added, then subsumption
checking would immediately become coNP-hard (unless con-
crete domains were restricted) for the same reasons why unre-
stricted subsumption checking is coNP-hard in PL (cf. The-
orem 7). On the other hand, CLASSIC additonally supports
qualified universal restrictions (that strictly generalize PL’s
range restrictions), number restrictions, and role-value maps,
therefore it is not comparable to PL.
PL partially intersects the EL familiy of tractable DL, too.

In particular, EL++ supports ⊥ (hence it can express disj),
u, qualified existential restrictions and concrete domains. It
is known that role range restrictions can be added without
affecting tractability [Baader et al., 2008], and that union
can be supported in queries. However, it has been proved
that functional roles make EL EXP-complete [Baader et al.,
2005], and – to the best of our knowledge – no tractable spe-
cial cases are known. Therefore, PL is incomparable with
the known tractable logics in the EL family. Moreover, our
coNP-completeness result is not entailed by the intractability
result for EL with functional roles.

A Proofs
Proof of Lemma 1 By induction on the maximum nesting
level ` of C’s existential restrictions.



If ` = 0 (i.e. there are no existential restrictions) then
(I, d) |= C by construction (cf. Def. 2.a). Disjointness
axioms are satisfied, otherwise normalization would make
C = ⊥ (contradicting the hypotheses). Inclusion axioms are
satisfied due to the first and third bullets of Def. 2.a. More-
over, I trivially satisfies all the functionality and range asser-
tions in K since all roles are empty. It follows that the lemma
holds for the base case.

Now suppose that ` > 0. By induction hypothesis (I.H),
we have that all the submodels (Ii, di) used in Def. 2.b satisfy
both Di and K. Then it is immediate to see that (I, d) |= C
by construction. We are only left to prove that I satisfies all
axioms α in K.

If α = func(R), then rewrite rules 4) and 5) make sure that
C contains at most one existential restriction for R, so J sat-
isfies α. Since all Ii satisfy α by I.H. (induction hypothesis),
I satisfies α, too.

If α = range(R,A), then rule 6) makes sure that for
each top-level ∃Ri.Di in C, Di ≡ D′i u A. Then, by I.H.,
(Ii, di) |= A.

If α = disj(A,B), and α were not true in J , then rule 7)
would make C = ⊥ (a contradiction); the other parts of I,
i.e. (Ii, di), satisfy α by I.H.

Finally, inclusions are satisfied by construction, cf. the sec-
ond bullet of Def. 2.b. It follows that I satisfies α.

Proof of Lemma 2 (Only If part) Assume that K |= C v
D. By Lemma 1.a, I |= K, so CI ⊆ DI . Moreover, by
Lemma 1.b, d ∈ CI ⊆ DI . Therefore (I, d) |= D.

(If part) Assume that (I, d) |= D. We are going to prove
that K |= C v D by structural induction on D.

If D = A (a concept name), then d ∈ AI . Then, by con-
struction of I, C = Ai u C ′ (up to top-level subconcept re-
ordering), and Ai v∗ A. These two facts, respectively, imply
|= C v Ai and K |= Ai v A, hence K |= C v D.

If D = D1 u D2, then by I.H. K |= Di (i = 1, 2), hence
K |= C v D.

If D = ∃R.D1, then for some di ∈ ∆I , (d, di) ∈ RI

and (Ii, di) |= D1, where (Ii, di) (by construction of I) is
the canonical model of a top-level restriction ∃R.C1 in C. It
follows (using the I.H.) that |= C v ∃R.C1 and K |= C1 v
D1, hence K |= C v D.

If D = [`, u](f), then for some u′ ∈ [`, u], (d, u′) ∈ fI .
By construction of I, C must contain a top-level constraint
[`′, u′](f), and by interval safety (as C v D is elementary),
[`′, u′] ⊆ [`, u]. Then |= C v D.

Proof of Lemma 3 By structural induction on D. If D = A
(a concept name), then STS(K, C v D) = true iff C has
a top-level subconcept Ai such that Ai v∗ A. By def. of I,
this holds iff d ∈ AI , that is, (I, d) |= D. This proves the
base case.

If D = D1 u D2, then the lemma follows easily from the
induction hypothesis.

IfD = ∃R.D1, then STS(K, C v D) = true iff (i)C has
a top-level subconcept ∃R.C1, and (ii) STS(K, C1 v D1) =
true. Moreover, by def. of I,(I, d) |= D iff (i) holds and
(ii’) (Ii, di) |= D1, where (Ii, di) is the canonical model of
C1. By I.H., (ii) is equivalent to (ii’), so the lemma holds.

If D = [`, u](f), then STS(K, C v D) = true iff
C has a top-level subconcept [`′, u′](f) such that [`′, u′] ⊆
[`, u]. This implies (by def. of I) that (d, u′) ∈ fI and
u′ ∈ [`, u], that is, (I, d) |= D. Conversely, if (d, u′) ∈ fI
and u′ ∈ [`, u], then C must have a top-level subconcept
[`′, u′](f) such that also `′ ∈ [`, u] (by interval safety, that
holds by the hypothesis that C v D is elementary). Then
STS(K, C v D) = true.

Proof of Theorem 7 Hardness is proved by reducing 3SAT
to the complement of subsumption. Let S be a given set of
clauses ci = Li1 ∨ Li2 ∨ Li3 (1 ≤ i ≤ n) where each
Lij is a literal. We are going to use the propositional sym-
bols p1, . . . , pm occurring in S as feature names in PL con-
cepts, and define a subsumption C v D that is valid iff S is
unsatisfiable. Let C =

(
[0, 1](p1) u . . . u [0, 1](pm)

)
and

D =
⊔n

i=1

(
L̃i1 u L̃i2 u L̃i3

)
, where each L̃ij encodes the

complement of Lij as follows:

L̃ij =

{
[0, 0](pk) if Lij = pk ,

[1, 1](pk) if Lij = ¬pk .

The correspondence between the propositional interpretations
I of S and the interpretations J of C v D is the following.

Given I and an arbitrary element d, define J = 〈{d}, ·J 〉
such that (d, 0) ∈ pJi iff I(pi) = false , and (d, 1) ∈ pJi
otherwise. By construction, (J , d) |= C, and I |= S iff
(J , d) |= ¬D. Consequently, if S is satisfiable, then C v D
is not valid.

Conversely, if C v D is not valid, then there exist J and
d ∈ ∆J such that (J , d) |= C u ¬D. Define a propositional
interpretation I of S by setting I(p) = true iff (d, 1) ∈ pJi .
By construction (and since d does not satisfy D), I |= S,
which proves that if C v D is not valid, then S is satisfiable.

We conclude that the above reduction is correct. Moreover,
it can be clearly computed in LOGSPACE. This proves that
subsumption is coNP-hard even if the KB is empty.

Membership in coNP can be proved by showing that the
complement of subsumption is in NP. Given a query C v D,
it suffices to choose nondeterministically one of the disjuncts
Ci in the left hand side of the query, and replace each con-
straint [`, u](f) occurring in Ci with a nondeterministically
chosen disjunct from (6). Call C ′i the resulting concept and
note that it is one of the disjuncts in C∗. Therefore, K 6|=
C v D iff for some nondeterministic choice, K 6|= C ′i v D.
The latter subsumption test can be evaluated in deterministic
polynomial time with STS, so the complement of PL sub-
sumption is in NP.



References
[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-

orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In IJCAI-05,
pages 364–369. Professional Book Center, 2005.

[Baader et al., 2008] Franz Baader, Carsten Lutz, and Sebas-
tian Brandt. Pushing the EL envelope further. In Kendall
Clark and Peter F. Patel-Schneider, editors, Proceedings
of the Fourth OWLED Workshop on OWL: Experiences
and Directions, Washington, DC, USA, 1-2 April 2008.,
volume 496 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[Bonatti et al., 2002] P. Bonatti, S. De Capitani di Vimercati,
and P. Samarati. An algebra for composing access control
policies. ACM Transactions on Information and System
Security, 5, 2002.

[Bonatti et al., 2010] Piero A. Bonatti, Juri Luca De Coi,
Daniel Olmedilla, and Luigi Sauro. A rule-based trust
negotiation system. IEEE Trans. Knowl. Data Eng.,
22(11):1507–1520, 2010.

[Bonatti, 2010] Piero A. Bonatti. Datalog for security,
privacy and trust. In Oege de Moor, Georg Gottlob,
Tim Furche, and Andrew Jon Sellers, editors, Datalog
Reloaded - First International Workshop, Datalog 2010,
Oxford, UK, March 16-19, 2010. Revised Selected Papers,
volume 6702 of Lecture Notes in Computer Science, pages
21–36. Springer, 2010.

[Borgida and Patel-Schneider, 1994] Alexander Borgida and
Peter F. Patel-Schneider. A semantics and complete algo-
rithm for subsumption in the CLASSIC description logic.
J. Artif. Intell. Res., 1:277–308, 1994.

[Kagal et al., 2003] Lalana Kagal, Timothy W. Finin, and
Anupam Joshi. A policy language for a pervasive comput-
ing environment. In 4th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY),
pages 63–, Lake Como, Italy, June 2003. IEEE Computer
Society.

[Uszok et al., 2003] Andrzej Uszok, Jeffrey M. Bradshaw,
Renia Jeffers, Niranjan Suri, Patrick J. Hayes, Maggie R.
Breedy, Larry Bunch, Matt Johnson, Shriniwas Kulkarni,
and James Lott. KAoS policy and domain services: To-
wards a description-logic approach to policy representa-
tion, deconfliction, and enforcement. In 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 93–96, Lake Como, Italy, June
2003. IEEE Computer Society.

[Woo and Lam, 1993] Thomas Y. C. Woo and Simon S.
Lam. Authorizations in distributed systems: A new ap-
proach. Journal of Computer Security, 2(2-3):107–136,
1993.


