
Journal of Computational and Applied Mathematics 198 (2007) 98–115
www.elsevier.com/locate/cam

Computation of the inverse Laplace transform based on a
collocation method which uses only real values

S. Cuomoa, L. D’Amorea,∗, A. Murlia, M. Rizzardib

aUniversity of Naples, “Federico II”, Complesso Universitario M. S. Angelo, via Cintia, 80126 Naples, Italy
bUniversity of Naples “Parthenope”, Via A. De Gasperi, 80133 Naples, Italy

Received 11 November 2005

Abstract

We develop a numerical algorithm for inverting a Laplace transform (LT), based on Laguerre polynomial series expansion of the
inverse function under the assumption that the LT is known on the real axis only. The method belongs to the class of Collocation
methods (C-methods), and is applicable when the LT function is regular at infinity. Difficulties associated with these problems are due
to their intrinsic ill-posedness. The main contribution of this paper is to provide computable estimates of truncation, discretization,
conditioning and roundoff errors introduced by numerical computations. Moreover, we introduce the pseudoaccuracy which will be
used by the numerical algorithm in order to provide uniform scaled accuracy of the computed approximation for any x with respect
to e�x . These estimates are then employed to dynamically truncate the series expansion. In other words, the number of the terms of
the series acts like the regularization parameter which provides the trade-off between errors.

With the aim to validate the reliability and usability of the algorithm experiments were carried out on several test functions.
© 2005 Elsevier B.V. All rights reserved.

MSC: 65F22; 65G10; 65R32

Keywords: Laplace transform real inversion; Collocation methods; Error analysis; Numerical algorithm

1. Introduction

Given the Laplace transform

F(z) =
∫ ∞

0
e−zxf (x) dx, Re(z) > �0, (1)

where F(z) is computable on the real axis only and �0 is the abscissa of convergence of F(z), we focus on the numerical
approximation of f, a real-valued function on the non-negative real line and regular at zero, for any real value of x�0.

When F(z) is known for real values of z only, the inverse problem (1) is usually known as the real inversion problem.
The difficulties associated with this inverse problem are due to its intrinsic ill-posedness, and the derivation of error

estimates is the first step towards the development of a reliable inversion algorithm.

∗ Corresponding author.
E-mail addresses: salvatore.cuomo@dma.unina.it (S. Cuomo), luisa.damore@dma.unina.it (L. D’Amore), almerico.murli@dma.unina.it

(A. Murli), mariarosaria.rizzardi@uniparthenope.it (M. Rizzardi).

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.11.017

http://www.elsevier.com/locate/cam
mailto:salvatore.cuomo@dma.unina.it
mailto:luisa.damore@dma.unina.it
mailto:almerico.murli@dma.unina.it
mailto:mariarosaria.rizzardi@uniparthenope.it

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 99

Starting from [8], where the authors generalized and formally characterized the Collocation methods (C-methods)
for numerical inversion of the Laplace transform, we describe and analyze a numerical algorithm based on the Laguerre
expansion of f (x):

f (x) = e�x
∞∑

k=0

cke−bxLk(2bx), (2)

where Lk(2bx) is the Laguerre polynomial of degree k, while � and b are parameters of the series.
In this paper we first provide a detailed error analysis, then we introduce computable estimates of truncation,

discretization and roundoff errors which are employed to determine the number of the terms of the series. This parameter
acts like a regularization parameter providing the trade-off between errors introduced by the numerical approximation
of (2).

The paper is organized as follows: in Section 2 we give preliminary definitions and assumption concerning C-
methods; then Section 3 reports theoretical analysis of truncation, discretization and roundoff errors; in Section 4
we derive computable error estimates, and finally, conclusions are provided in Section 5 together with numerical
experiments on exact data, perturbed data and on an application test case.

2. Outline of C-methods

We give preliminary assumptions concerning the Laplace transform, and review the main steps of a C-method [8].
The domain of applicability of this algorithm is the class S� where

Definition 2.1. Let S� denotes the class of all functions whose analytic continuation, F(z), can be assumed in the form

F(z) = z−�G(z), (3)

for some fixed � > 0, where G is analytic at infinity.

Definition 2.2. Let

z = 2b

1 − w
+ � − b (� > �0, b > 0) (4)

be the Möbius transformation between the z-plane and the w-plane.
We define a transformation H : S� → S� such that

H : h ∈ S� → H(h(w)) =
(

2 · b

1 − w

)�

h(w) ∈ S�. (5)

Applying H to Laplace transform F, we define the function

�(w) = H(F(z)) =
(

2 · b

1 − w

)�

F

(
2 · b

1 − w
+ � − b

)
. (6)

We consider a C-method, in which f (x) is approximated by

f̃N (x) = e�x
N−1∑
k=0

c̃ke−bxL
(�−1)

k (2bx), (7)

where L
(�−1)

k is the generalized Laguerre polynomial of order � and degree k, obtained by truncating the infinite series
expansion and approximating the coefficients ck by c̃k as described at the end of this section in Algorithm 1. In the
following we assume � = 1.

A C-method [8] consists essentially of the three main steps described in Algorithm 1.

100 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

Algorithm 1. C-method

Step 1: Evaluation of the function �(w) = H(F(w)) at

wk = cos

(
2k + 1

N

�

2

)
, k = 0, . . . , N − 1,

the N zeros of the Chebyschev polynomial of first kind of degree N ;
Step 2: Computation of the coefficients of the polynomial lN−1 ∈ �N that interpolates �(w) at wk:

lN−1(w) =
N−1∑
k=0

c̃kw
k .

Step 3: Computation of the approximation f̃N (x):

f̃N (x) = e�x
N−1∑
k=0

c̃ke−bxLk(2bx)

of the original inverse Laplace transform f (x).

3. Error analysis and pseudoaccuracy

The major challenge of the design of numerical algorithms for inverting the Laplace transform is the computation
of the inverse Laplace transform with a uniform accuracy for any given value of x. Difficulties are primarily due to the
exponential factor e�x in (2) as well as in (7), which degrades the accuracy of the computed approximation f

comp
N (x)

as x grows. In order to address this problem, as in [2,4] in the following we refer to the pseudoaccuracy which provides
a uniform accuracy scaled with respect to e�x .

Definition 3.1. Let

fN(x) = e�x
N−1∑
k=0

cke−bxLk(2bx). (8)

The function

�trunc(x, �, b, N) = 1

e�x

[
e�x

∞∑
k=N

e−bxckLk(2bx)

]
=

∞∑
k=N

e−bxckLk(2bx) (9)

is referred to as the truncation error with respect to the pseudoaccuracy.

Definition 3.2. The function

�discr(x, �, b, N) = 1

e�x

[
e�x

N−1∑
k=0

e−bx(ck − c̃k)Lk(2bx)

]
=

N−1∑
k=0

e−bx(ck − c̃k)Lk(2bx) (10)

is referred to as the discretization error with respect to the pseudoaccuracy.

In the following the quantity:

�td(x, �, b, N) = �trunc + �discr

is used to indicate the pseudoaccuracy with respect to the discretization and truncation errors.

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 101

Beyond truncation and discretization errors, the numerical computation of f̃N (x) involves roundoff errors. Here we
give some definitions concerning how the C-method works in a finite precision arithmetic system.

Let

f̂N (x) = e�x
N−1∑
k=0

ĉke−bxLk(2bx), (11)

where {ĉk}k=0,...,N−1 are the computed values of coefficients {c̃k}k=0,...,N−1.

Definition 3.3. The function

�cond(x, �, b, N) = 1

e�x
e�x

[
N−1∑
k=0

e−bx(c̃k − ĉk)Lk(2bx)

]
=

N−1∑
k=0

e−bx(c̃k − ĉk)Lk(2bx) (12)

is referred to as the conditioning error with respect to the pseudoaccuracy.

Finally, let

f
comp
N (x) = f l(f̂N (x)) = f l

(
e�x

N−1∑
k=0

ĉke−bxLk(2bx)

)
, (13)

the evaluation of f̂N (x) in finite precision arithmetic.

Definition 3.4. The function

�round(x, �, b, N) = 1

e�x
[f̂N (x) − f l(f̂N (x))], (14)

is referred to as the roundoff error with respect to the pseudo accuracy.

Finally, let

�app(x, �, b, N) = �trunc(x, �, b, N) + �discr(x, �, b, N) + �cond(x, �, b, N), (15)

be the approximation error with respect to the pseudoaccuracy. Then

f (x) = f
comp
N (x) + e�x(�app(x, �, b, N) + �round(x, �, b, N)). (16)

3.1. Truncation and discretization error estimate

The aim of this section is to give an upper bound of the truncation and discretization errors, which will be used to
provide a computable estimate.

Let

Rconv(�, b) =
√

b2 − �2

and following [7] it is

�td(x, �, b, N) = I (x, r, b) · DN(r, R) · L(x, b),

where

I (x, r, b) =
∫ 2�

0
exp

(
−4rbx Re

(
ei�

(rei� − 1)2

)) ∣∣∣∣∣ rei� + 1

rei� − 1

∣∣∣∣∣ d�. (17)

102 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

The parameter r is related to Rconv(�, b) through R(�, b)1

0 < R < Rconv(�, b), R < r < R +
√

R2 − 1.

Moreover,

DN(r, R) = �(r, R)
rN + r−N

(R + √
R2 − 1)N + (R − √

R2 − 1)N
, (18)

where

�(r, R) = 1

�

	(�)

1 − (1/2R)(r + (1/r))

and

	(�(w)) = max
w∈CR

|�(w)|,

where CR is the disk centered at the origin of complex plane with radius R. Finally,

L(x, b) = e−bx (19)

depends on b and x.
The following properties allow us to determine estimates of I (x, r, b) and DN(r, R).

Proposition 3.5. For a fixed x > 0 and b > 0,

lim
r→+∞ I (x, r, b) = 2�. (20)

Proof. Let x > 0 and b > 0 be fixed, and let {rn}n∈N be a sequence of numbers, such that

rn > 1 ∀n ∈ N and lim
n→∞ rn = +∞. (21)

It is sufficient to demonstrate that

lim
n→∞
n(�) = 1 uniformly for � ∈ [0, 2�]

and

∀n ∈ N,
n(�) = exp

{
−4xb · Re

[
rnei�

(rnei� − 1)2

]} ∣∣∣∣∣ rnei� − 1

rnei� + 1

∣∣∣∣∣ .

It holds that,

0�
∣∣∣∣∣ rnei�

(rnei� − 1)2

∣∣∣∣∣ � rn

r2
n cos(2�) − 2rn cos(�) + 1

. (22)

Then using (21) and (22), we have

lim
n→∞

∣∣∣∣∣ rnei�

(rnei� − 1)2

∣∣∣∣∣= 0.

Moreover from (21),

lim
n→∞

rnei� − 1

rnei� + 1
= 1 uniformly for � ∈ [0, 2�].

1 For simplicity of notation, in the rest of paper we indicate R(�, b) by R.

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 103

Thus,

lim
n→∞
n = 1 uniformly for [0, 2�]. �

The next Proposition gives a convergence result for DN(r, R).

Proposition 3.6. Let R > 1, then

lim
N→+∞ DN(r, R) = 0. (23)

Proof. We have

rN + r−N

(R + √
R2 − 1)N + (R − √

R2 − 1)N
�
(

r

R + √
R2 − 1

)N

+
(

1/r

R + √
R2 − 1

)N

.

It follows from (17) that

0�DN(r, R)��(r, R)

[(
r

R + √
R2 − 1

)N

+
(

1/r

R + √
R2 − 1

)N
]

. (24)

Moreover, since

0 <
r

R + √
R2 − 1

< 1 and 0 <
1/r

R + √
R2 − 1

< 1, (25)

we obtain

lim
N→∞ DN(r, R) = 0. �

The next Proposition gives upper and lower bounds for DN(r, R).

Proposition 3.7. If R > 1, then

1

2
� lim

N→+∞
DN(r, R)

�(r, R)(r/R + √
R2 − 1)N

�1.

Proof. It follows that

DN(r, R)

�(r, R)(r/R + √
R2 − 1)N

�
[

1 + 1

r2N

]
. (26)

Moreover,

DN(r, R)

�(r, R)(r/R + √
R2 − 1)N

� 1

2

[
1 + 1

r2N

]
. (27)

Finally, (26) and (27) show that

1

2
� lim

N→+∞
DN(r, R)

�(r, R)(r/R + √
R2 − 1)N

�1. �

The next theorem gives the estimate of truncation and discretization errors.

Theorem 3.8. If R > 1, for x, � and b fixed, it exists N̄ such that for all N > N̄ it holds

|�td(x, �, b, N)|�2��(r, R)

(
r

R + √
R2 − 1

)N

. (28)

104 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

Proof. Proposition 3.5 yields

|�td(x, �, b, N)|�2�DN(r, R).

Moreover, by Proposition 3.7, there exists N̄ such that for all N > N̄ , we have

|�td(x, �, b, N)|�2��(r, R)

(
r

R + √
R2 − 1

)N

. �

Finally, the following theorem provides the upper bound for truncation and discretization errors:

Theorem 3.9. Given x, �, and b, we have

|�td(x, �, b, N)|�
(

K∗ 1

RN

)
, (29)

where K∗ = |�(0)| is the absolute value of the first term, c̃0, of MacLaurin series expansion of �(w) and R = Rconv.

3.2. Conditioning and roundoff estimates

The aim of this section is to estimate the conditioning error.
The core of the C-method is step 2 where the coefficients ĉk are computed by solving the Vandermonde system

V T
N c̃ = � (30)

which is strongly illconditioned. Classical norm-wise results (cf. [5]) about roundoff errors introduced in the computa-
tion of coefficients ĉk can give a too pessimistic bound. Indeed, the standard bounds derived using the ∞-norm cannot
take into account the magnitude of each coefficient c̃k .

A componentwise error analysis could be more realistic. To this aim we first observe that we can solve (30) by using
the Bjorck–Pereira (BP) algorithm [1] which is composed of two main stages:

Stage I: % computation of ãj = ã
(n)
j (j = 0, . . . , n)

ã
(0)
j = �j (j = 0, . . . , n)

for k = 0 to n − 1

ã
(k+1)
j = ã

(k)
j − ã

(k)
j−1

wj − wj−k+1
(j = n, n − 1, . . . , k + 1)

endfor
Stage II: % computation of c̃j = c̃

(0)
j (j = 0, . . . , n)

c̃
(n)
j = ã

(n)
j (j = 0, . . . , n)

for k = n − 1 to 0 step −1
c̃
(k)
j = c̃

(k+1)
j − wk · c̃

(k+1)
j+1 (j = k, . . . , n − 1)

endfor
and for this algorithm in [9] a specific error analysis is carried out. In particular it holds

Theorem 3.10. Suppose that the BP algorithm is carried out on a finite floating point arithmetic system, where u is
the machine epsilon; the computed solution ĉk of (30) satisfies

|c̃k − ĉk|�u|M(0)
k ||c̃k| + o(u2), k = 0, . . . , N − 1, (31)

where |M(0)
k | is the forward error propagated at the kth step during the computation of the coefficients ĉk .

Theorem (3.10) gives an upper bound of the componentwise error for each c̃k by using the forward error analysis
applied to BP algorithm. In the sequel we refer to (31) as the computational bound.

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 105

By using the componentwise upper bound we prove the following result:

Theorem 3.11. Let u be the machine epsilon. Let �, x and b be fixed. Then, it holds

|�cond(x, �, b, N)|�Nu|�(0)| max
k=0,...,N−1

|M(0)
k |. (32)

Proof. By definition of �cond,

|�cond|�
N−1∑
k=0

|c̃k − ĉk| |e−bxLk(2bx)|.

As in [8],

|e−bxLk(2bx)|�1 x�0 and for all k. (33)

Then by using (31) and neglecting the term o(u2)

|�cond|�
N−1∑
k=0

|c̃k − ĉk|�u

N−1∑
k=0

|M(0)
k ||c̃k|.

Observing that

c̃k+1 < c̃k, k = 0, . . . , N − 1,

and

c̃0 = �(0)

we obtain

|�cond|�u

N−1∑
k=0

|M(0)
k ||c̃k|�Nu|�(0)| max

k=0,...,N−1
|M(0)

k |. �

Now we give some results about the roundoff error �round(x, �, b, N). In order to estimate �round we write (11) as a
scalar product,

f̂N (x) = 〈ĉ, gk(x)〉 =
N−1∑
k=0

ĉkgk(x), (34)

where gk(x) = e�xe−bxLk(2bx) and ĉ = (ĉ0, . . . , ĉN−1).

Remark 3.12. Given x, � and b, if f
comp
N (x) is the computed value of f̂N (x), then by using standard results about

roundoff error analysis of a scalar product carried out in a finite arithmetic precision system, with u as machine epsilon,
it holds

|eround(x, �, b, N)| = |f comp
N (x) − f̂N (x)|� Nu

1 − Nu
|f̂N (x)| (35)

that is the roundoff error bound in the computation of (11) grows linearly with N.

Theorem 3.13. Given x, � and b,

|�round(x, �, b, N)|� Nu

1 − Nu
N |�̂(0)|, (36)

where �̂(0) is the computed value of the first term of MacLaurin series expansion of �(w) and u is the machine epsilon.

106 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

Proof. By Remark 3.12 we have

|�round|� Nu

1 − Nu

∣∣∣∣∣
N−1∑
k=0

ĉke−bxLk(2bx)

∣∣∣∣∣ .

It follows, in view of (33) that

|�round|� Nu

1 − Nu

N−1∑
k=0

|ĉk|.

Observe

ĉk+1 < ĉk ∀ k = 0, . . . , N − 1

and setting ĉ0 be is the computed value of c̃0, it holds

ĉ0 = �̂(0).

Finally, we have that

|�round(x, �, b, N)|� Nu

1 − Nu
N |�̂(0)|. �

4. The global error estimate

The previous analysis tell us that while the truncation and discretization errors introduced in the Laguerre expansion
(2), given x, � and b, go to zero when N grows, the conditioning and roundoff errors increase. This means that the overall
accuracy of the solution depends on a suitable trade-off between truncation, discretization, roundoff and conditioning
errors. The parameter N should act like a regularization parameter and help determining a suitable balance between
various errors. With the aim of computing the optimal value of N, we first introduce and compute the global error
estimate, which gives the asymptotic behavior of the global error as N grows. Moreover, by minimizing the global error
estimate, the best attainable accuracy will be determined together with the corresponding value of N.

Definition 4.1. Let x be fixed. Let

Etd(�, b, N) = K∗ 1

RN

be the computable estimate of the truncation and discretization errors.

Definition 4.2. Given x, we introduce the computable estimate of the conditioning error

Econd(�, b, N) = Nu|�(0)| max
k=0,...,N−1

|Mk|.

By using Definitions 4.1, 4.2 and Theorems 3.9, it follows:

Definition 4.3. Given x, we define the global error estimate (GEE) function

GEE(N) = K∗ 1

RN
+ Nu|�(0)| max

k=0,...,N−1
|Mk|

= Etd(�, b, N) + Econd(�, b, N), (37)

where GEE(N) is a computable estimate of |�app(x, �, b, N)|.

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 107

105

100

10-5

10-10

10-15

10-20

10-25
0 10 20 30 40 50 60 70 80

N

Etd
Econd

GEE

Global Error Estimate

Fig. 1. GEE behavior versus N . The Laplace transform is F1(s) = s

(s2+1)2 , K = 1, R = 1.72, x = 1, � = 0.7, b = 1.75 (figure legend: circles (o)

refer to Etd points, stars (*) refer to Econd points, lines ‘-’ refers to GEE function).

Fig. 1 shows the GEE behavior: given x, � and b for a fixed value of N, GEE(N) gives the estimate of the errors
introduced by the algorithm. We observe that there is an optimal value of N, say N∗, such that for N �N∗ the function
GEE(N) decreases and for N �N∗, GEE(N) increases. Introduce

(t) = GEE(t) = K∗

Rt
+ t · ��, t ∈ R, (38)

where �� = u|�(0)| maxk|Mk|.

Theorem 4.4. The function
(t) is convex and achieves its minimum value at

t∗ = logR

K∗

��
, (39)

where K∗ = |�(0)| and �� = u|�(0)| maxk|Mk|.

Proof. Computing the first derivative of
(t) it follows that the function
′ has only one zero at t∗ ∈ (0, +∞) given
by (39). Moreover
′′(t) > 0, then
 is a convex function in (0, +∞) for t �0. �

Definition 4.5. Let x, � and b be fixed. We define the best attainable accuracy, �∗, of a C-method, and the associated
value N∗

�∗ = GEE(N∗) = min
N

GEE(N). (40)

108 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

1020

1015

1010

105

100

10-5

10-10

10-15

10-20

ac
cu

ra
cy

NTOL

ε∗

0 10 20 30 40 50 60 70 80 90 100
N

N*
Nopt

Global Error Estimate

Fig. 2. GEE behavior versus N . The Laplace transform is F1(s) = s

(s2+1)2 , K∗ = 1, R = 1.8, the minimum value of GEE is obtained at N∗ = 35

and �∗ = GEE(35) = O(10−11). If we set x = 1, � = 0.7 and TOL = 10−5 the corresponding N TOL is N TOL = 10−6. Observe that in this case,
Nopt = 20.

Our algorithm is designed to find the value Nopt �N∗ using the following scheme:

1. scale the input accuracy requirement tol as N TOL := tol
e�x

and start with a value of N such that: GEE(N − 1)�GEE(N);
2. N0 := N ;
3. repeat
4. N1 := N0 + 1;
5. evaluate GEE(N0) := Etd(N0) + Econd(N0);
6. evaluate GEE(N1) := Etd(N1) + Econd(N1);
7. if (GEE(N1)�GEE(N0))
8. FLAG := 3;
9. endif
10.N0 := N1;
11. until (GEE(N1)�N TOL or FLAG
= 3)
12. assume Nopt := N1;

In other words, for each value of x, once � and b have been fixed, the algorithm dynamically selects the optimal value
of N, Nopt, such that

GEE(N∗)�GEE(Nopt)� max{N TOL, �∗}. (41)

This means that, once x, � and b have been fixed, we have

|f (x) − f
comp
Nopt

(x)|
e�x

�
|f (x) − f̂Nopt (x)|

e�x
+

|f comp
Nopt

(x) − f̂Nopt (x)|
e�x

(42)

�GEE(�, b, Nopt) + (Noptu|�̂(0)|) ≈ max{N TOL, �∗}.
Eq. (42) gives the global error estimate, on which our algorithm is based, and allows us to compute the inverse Laplace
transform f

comp
N (x) within N TOL (Fig. 2).

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 109

5. Numerical results

5.1. The role of � and b parameters

Most numerical methods for inversion of the Laplace transform requires an upper bound of � > �0, the abscissa of
convergence of the Laplace transform to be inverted. We observe that

• if � − �0 is chosen too small unnecessary many terms of Laguerre series (2) are needed (slow convergence);
• if �−�0 is chosen too large then we cannot compute an accurate numerical approximation because of the exponential

growth factor.

A suitable choice is

� = �0 + 0.7

(see [4]). Regarding the parameter b, if zj is the singularity of the Laplace Transform F(z) closest to �0, we have

b

2
� min

�>�0
|� − zj |.

We let

b = 2.5(� − �0)

(see [4,6]).

5.2. Experiments

There are over 100 algorithms for numerical inversion of the Laplace transform [11], however, only few are devoted
to the real inversion and, to our knowledge, none of them is effectively available as mathematical software, i.e. none of
them can be used in practice for a numerical comparison. Indeed, usability and reliability of these inversion algorithms
strongly depends on the selection of suitable chosen optimal values of some input parameters, which heavily affect
numerical results. Often the obtained accuracy can still be improved by manually tuning the parameter values. Essah
and Delves [3] state “[. . .] every numerical algorithm which is not designed to be used in an automatic way but requires
to choose suitable parameters, cannot be compared [. . .]”. On the other hand, one of the main features of the proposed
algorithm is that it has been designed to work in an automatic way and to compute at run time suitable values of
the incidental parameters. To our knowledge there is no other real inversion algorithm which can be used in such a
transparent way to be compared with the proposed one.

Several experiments have been carried out on test functions shown in Table 1, here we report only few of them.
In order to validate the reliability and usability of the proposed algorithm, we assume the following model of

degradation on vector data F = (F (z1), . . . , F (zn)):

Pert F(i) = F(zi)(1 + noise(i)), i = 1, . . . , n,

where the vector noise = (noise(1), . . . , noise(n)), is a Gaussian noise, i.e. the coefficients noise(i) are independent
random values with a Gaussian distribution with zero mean and variance �, where

� = ‖noise‖2
2

‖F‖2
2

.

We provide three types of data test

(i) � = u, where u equals to the maximum accuracy of double precision (about 16 significant digits);
(ii) ��d tol, where d tol > u is a preassigned noise level;

(iii) an application test with noisy data.

Data test (i) shows numerical stability of the algorithm and its reliability in terms of the errors (conditioning,
truncation, discretization, and roundoff) estimates. Data test (ii) refers to the usability of the algorithm in presence of

110 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

Table 1
Database test functions

Test number Laplace transform Inverse Laplace function

1 z2−1
(z2+1)2 x cos(x)

2 1
(z+1)2 xe−x

3 1
z5 x4

4 1
z4

x3

6

5 z

(z2+1)2 0.5x sin(x)

6 z

(z+1)2 (1 − 4x)e−4x

7 z
((z2+4)(z2+1))

cos(x)−cos(3x)
3

8 1√
z2+1

J0(x) Bessel function

9 2
(z+2.5)2−4

e−2.5x sinh(2x)

10 z∗ sin(3)+2 cos(3)

z2+4
sin(2x + 3)

11 log(z2+a2

z2) 2
x
(1 − cos(ax))

12 (
√

(z2+1)−z)2
√

z2+1
J2(x) Bessel function

13 atan((2z)/(z2 − 3))
2 sin(x) cos(2x)

x

14 1
(1+0.5z)3 4x2e−2x

perturbed data, and finally, the application test (iii) has been chosen in order to illustrate the practical applicability of
our algorithm.

In order to give both a quantitative and a qualitative description of the numerical results, for each test we provide

• a table, containing information about x, Nopt, N TOL, FLAG, and errors;
• plot of errors, behavior versus N TOL;
• plot of the exact inverse function and the computed values f (xi).

Concerning data test (i) we consider the Laplace transform F1. In this case the noise level is that of roundoff errors.
Results are shown in Table 2. Fig. 3 shows the inverse function fexact and the computed approximation fcomp; Fig. 4
reports the errors versus N TOL.

For data test (ii) we consider test function F5 with noise level � = 10−4. Results are shown in Table 3. Fig. 5 shows
the inverse function fexact and the computed approximation fcomp; Fig. 6 shows the errors versus N TOL. Both for
data test (i) and (ii), the inverse function is computed first at x ∈ [0, 5], then at x ∈ [6, 16].

Finally, regarding the application test (iii), we consider the X-ray diffractometry, which is a type of non-destructive
testing [10]. In X-ray diffractometry, we search for the stress tensor �(xi) of a specimen, corresponding to a set of
scanning points xi , i = 1, . . . , m, with the help of X-ray measurements g(�i) where �i denote the set of m tip-angles
of the laboratory system. X-ray measurements are connected to the stress tensor by means of the Laplace Transform
integral operator, then we need to invert the data vector g(�i). We assume that data g are measured in a laboratory
with tip angles �i , i = 1, . . . , m giving to m scanning points xi = const/ cos(�i). The scanning points xi were chosen
non-uniformly in the interval [a, b] = [1, 3.5], which is typical for data from X-ray, as

xi = a/(cos(�i), �i = (i − 1)

(m − 1)
arcos(a/b), i = 1, . . . , m

for m = 11.

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 111

Table 2
Data test (i)—Function F1, � = 0.7, b = 1.75, TOL = 1.0e − 6

Nopt x N TOL trueabserr estabserr truerelerr estrelerr FLAG

31 0.0 1.0e−006 1.1e−018 1.3e−008 1.1e−018 1.3e−008 1
31 0.5 1.4e−006 1.3e−012 1.4e−007 2.9e−012 3.2e−007 1
32 1.0 2.0e−006 1.1e−011 2.9e−007 2.0e−011 5.3e−007 1
33 1.5 2.9e−006 1.1e−010 5.8e−007 1.0e−009 5.5e−006 1
33 2.0 4.1e−006 1.7e−010 1.2e−006 2.1e−010 1.4e−006 1
34 2.5 5.8e−006 8.2e−009 2.4e−006 4.1e−009 1.2e−006 1
35 3.0 8.2e−006 5.2e−007 9.8e−006 1.7e−007 3.3e−006 1
36 3.5 1.2e−005 9.5e−007 2.0e−005 2.9e−007 6.1e−006 1
36 4.0 1.6e−005 2.6e−006 4.0e−005 1.0e−006 1.5e−005 1
37 4.5 2.3e−005 1.8e−005 3.9e−005 1.8e−005 4.1e−005 1
37 5.0 3.3e−005 1.5e−005 7.9e−005 1.1e−005 5.6e−005 1
37 5.5 4.7e−005 1.3e−004 1.6e−004 3.4e−005 4.1e−005 1
37 6.0 6.7e−005 4.2e−005 3.2e−004 7.3e−006 5.6e−005 1
37 6.5 9.5e−005 6.1e−004 6.4e−004 9.6e−005 1.0e−005 1
37 7.0 1.3e−004 2.0e−004 1.3e−003 3.9e−005 2.5e−004 1
37 7.5 1.9e−004 2.4e−003 2.6e−003 9.1e−004 1.0e−004 1
37 8.0 2.7e−004 5.0e−004 5.3e−004 4.3e−004 4.5e−003 2

6

4

2

0

-2

-4

0 1 2 3 4 5 6 7 8
x

exact values
computed values

x cos (x)

Fig. 3. Data test (i) on Function F1. Inverse function f (x) = x ∗ cos(x).

Following [10] we consider the test function F14 with noise level � = 10−3. Results are shown in Table 4. Fig. 7
shows the inverse function fexact, and the computed approximation fcomp.

As input, besides the x-values, the algorithm only requires the parameter TOL. We run the algorithm by giving
TOL according to the noise level on vector data. In particular, for data set (i), we set TOL = 1.0e − 06. Looking at
Table 2 and at the error behavior shown in Fig. 4, the computed error estimates agree well with the scaled pseudo accuracy
N TOL. For data set (ii), we run the algorithm using as input accuracy TOL = 1.0e − 04. In this case, by looking at

112 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

10-6 10-5 10-4 10-3
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

true relative error
estimate relative error
true absolute error
estimate absolute error

Test 1

NTOL

E
rr

or
s

Fig. 4. Data test (i) on Function F1. Errors versus N TOL plot.

Table 3
Data test (ii)—Function F5, � = 0.7, b = 1.75, TOL = 1.0e − 4

Nopt x N TOL trueabserr estabserr truerelerr estrelerr FLAG

26 0.5 1.4e−004 1.8e−005 4.5e−005 1.5e−004 3.8e−004 1
27 1.0 2.0e−004 1.2e−004 6.5e−004 2.8e−004 3.5e−004 1
27 1.5 2.9e−004 3.0e−004 9.2e−004 4.1e−004 4.2e−004 1
28 2.0 4.1e−004 5.1e−004 5.3e−004 5.6e−004 6.5e−004 1
29 2.5 5.8e−004 6.4e−004 6.9e−004 7.5e−004 8.5e−004 1
30 3.0 8.2e−004 5.7e−004 6.7e−004 2.7e−003 3.3e−003 2
30 3.5 1.2e−003 2.5e−004 3.9e−004 4.1e−004 6.3e−004 1
31 4.0 1.6e−003 2.8e−004 5.5e−004 1.9e−004 3.6e−004 1
32 4.5 2.3e−003 6.1e−004 7.9e−004 4.2e−004 4.6e−004 1
33 5.0 3.3e−003 1.5e−003 1.8e−003 6.1e−004 7.7e−004 1
33 5.5 4.7e−003 1.7e−003 1.8e−003 8.9e−004 6.2e−004 1
34 6.0 6.7e−003 1.6e−003 2.3e−003 1.9e−003 2.7e−003 1
35 6.5 9.5e−003 2.5e−004 3.3e−003 1.4e−003 4.7e−003 1
36 7.0 1.3e−002 1.5e−004 4.6e−003 6.4e−005 7.0e−003 1
36 7.5 1.9e−002 1.7e−003 6.6e−003 4.7e−004 5.9e−003 1
37 8.0 2.7e−002 1.4e−003 7.5e−002 3.6e−004 1.9e−002 1

Table 3 and Fig. 6, it appears that as the data noise level � increases, the accuracy on the computed solution decreases
in a quite similar manner. Finally, for the application data set (iii), we set the input accuracy TOL = 1.e − 03. The
algorithm always yields at least three correct significant digits.

Observe that as x grows, N TOL grows too; when N TOL becomes greater or equal 1, the algorithm stops. In this case it
could help to try to run the algorithm with a smaller value of TOL (see in the Legend the FLAG indicator equals to 4).

The following legend is for the tables for the results of numerical experiments. All experiments were carried out
using double precision (16 significant digits).

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 113

4

3

2

1

0

-1

-2

0 1 2 3 4 5 6 7 8
x

exact values

computed values

x sin (x)/2

Fig. 5. Data test (ii) on Function F5. Inverse function f (x) = x∗sin(x)
2 .

10-4 10-3 10-2 10-110-5

10-4

10-3

10-2

10-1
true relative error
relative error estimate
true absolute error
absolute error estimate

Test 7 (noise data)

E
rr

or
s

NTOL

Fig. 6. Data test (ii) on Function F5. Errors versus N TOL.

Legend

Nopt number of terms computed by the algorithm
x evaluation points
N TOL pseudo-tolerance defined as

TOL*exp(sigma ∗ x)

114 S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115

Table 4
Data test (iii)—Function F14, � = 0.7, b = 1.75, TOL = 1.0e − 3

Nopt x N TOL trueabserr estabserr truerelerr estrelerr FLAG

27 1. 2.0e−003 2.3e−004 7.2e−004 4.3e−004 1.3e−004 1
27 1.0083 2.0e−003 2.4e−004 7.3e−004 4.3e−004 1.3e−004 1
27 1.0337 2.1e−003 2.4e−004 7.5e−004 4.5e−004 1.4e−004 1
27 1.0787 2.1e−003 2.6e−004 8.0e−004 4.7e−004 1.5e−004 1
27 1.1474 2.2e−003 2.7e−004 8.8e−004 5.1e−004 1.7e−004 1
27 1.2472 2.4e−003 3.0e−004 1.0e−004 5.7e−004 2.0e−004 1
28 1.3911 2.6e−003 3.2e−004 1.3e−004 6.7e−004 2.6e−004 1
28 1.6021 3.1e−003 3.4e−004 1.7e−004 8.2e−004 4.1e−004 1
28 1.9259 3.9e−003 3.4e−004 2.7e−004 1.1e−003 8.5e−003 1
29 2.4643 5.6e−003 2.9e−004 5.8e−004 1.7e−003 3.3e−003 1
31 3.5 1.2e−002 1.5e−004 2.5e−003 3.4e−003 5.6e−002 1

1 1.05 1.1 1.15 1.2 1.25 1.3

0.5

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54

0.545

x

4 x2 exp(-2 x) 4 x2 exp(-2 x)

Inverse Laplace

Computed value

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

function
Inverse Laplace

Computed value
function

Fig. 7. Data test (iii) on Function F14. Inverse function computed at xi ∈ [1, 1.3] on the LEFT and at xi ∈ [1.3, 3.5] on the RIGHT.

trueabserr absolute error of the computed solution defined as
|fexact − fcomp|

estabserr computed estimate of trueabserr.
truerelerr relative error of the computed solution defined as

|fexact − fcomp|/|fexact|
if fexact = 0 then truerelerr equals to trueabserr.

estrelerr computed estimate of truerelerr
FLAG on exit, a diagnostic

=1 the relative error estimate is given according to N TOL.
=2 the absolute error estimate is given according to N TOL.
=3 the tolerance seems to be too small and the algorithm

appears to be not convergent. Try with a greater value of TOL.
=4 Bad accuracy request. N TOL is greater than 1.

S. Cuomo et al. / Journal of Computational and Applied Mathematics 198 (2007) 98–115 115

6. Concluding remarks

We describe a numerical method for computation of the inverse Laplace transform f (x) in the real case based
on a C-method. A complete error analysis of the computational steps needed to determine an approximate solution
is presented. We also provide practical error estimates. These estimates are used for computing the best attainable
accuracy on f (x), defined by the minimum value of (the estimate of) the global error introduced on f (x) by the
numerical computations, together with the corresponding value of N. This allows us to develop a reliable, efficient
and automatic stopping rule for computing the number of terms of the Laguerre expansion. In order to validate the
reliability and usability of the proposed algorithm experiments were carried out on several test functions.

References

[1] A. Bjorck, V. Pereira, Solution of Vandermonde Systems of Equation, Math. Comput. 112 (24) (1970) 893–903.
[2] L. D’Amore, G. Laccetti, A. Murli, An implementation of a Fourier series method for the numerical inversion of the Laplace transform, ACM

Trans. Math. Software 25 (3) (1999) 279–305.
[3] W.A. Essah, L.M. Delves, On the numerical inversion of Laplace transform, Inverse Problems (4) (1988) 705–724.
[4] B.S. Garbow, G. Giunta, J. Lyness, A. Murli, Software implementation of Week’s method for the inverse Laplace transform problem, ACM

Trans. Math. Software 15 (1988) 163–170.
[5] W. Gautschi, How (un)stable are Vandermonde systems?, Lecture Notes in Pure and Appl. Math. 124 (1990) 193–210.
[6] G. Giunta, G. Laccetti, M.R. Rizzardi, More on the Weeks method for the numerical inversion of the Laplace transform, Numer. Math. 54 (2)

(1988) 192–200.
[7] G. Giunta, A. Murli, G. Smith, Error analysis of Rjabov algorithm for inverting a Laplace transform, Ricerche Mat—Naples XLIV (1) (1995)

207–219.
[8] G. Giunta, A. Murli, G. Smith, An analysis of bilinear transform-polynomial methods of inversion of Laplace transforms, Numer. Math. 69 (3)

(1995) 269–282.
[9] N. Higham, Stability of algorithms for solving confluent Vandermonde-like systems, SIAM J. Matrix Anal. Appl. 11 (1) (1990) 23–41.

[10] T. Schuster, A stable inversion scheme for the Laplace transform using arbitrarily distributed data scanning points, J. Inverse and Ill-Posed
Problems 11 (3) (2003) 263–287.

[11] P. Valko, J. Abate, Numerical Laplace inversion in rheological characterization, J. Non-Newtonian Fluid Mech. 116 (1) (2004) 395–406.

	Computation of the inverse Laplace transform based on a collocation method which uses only real values
	Introduction
	Outline of C-methods
	Error analysis and pseudoaccuracy
	Truncation and discretization error estimate
	Conditioning and roundoff estimates

	The global error estimate
	Numerical results
	The role of sigma and b parameters
	Experiments

	Concluding remarks
	References

