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Università di Napoli Federico II
{pab,luigi.sauro}@unina.it

April 25, 2018

Abstract

DLN is a recent nonmonotonic description logic, designed for satisfying inde-
pendently proposed knowledge engineering requirements, and for removing some
recurrent drawbacks of traditional nonmonotonic semantics. In this paper we study
the logical properties of DLN and illustrate some of the relationships between the
KLM postulates and the characteristic features ofDLN, including its novel way of
dealing with unresolved conflicts between defeasible axioms. Moreover, we fix a
problem affecting the original semantics ofDLN and accordingly adapt the reduc-
tion fromDLN inferences to classical inferences. Along the paper, we use various
versions of the KLM postulates to deepen the comparison with related work, and
illustrate the different tradeoffs between opposite requirements adopted by each
approach.

1 Introduction
Recently, in [5], a new nonmonotonic description logic called DLN has been intro-
duced with the goal of supporting ontology authoring by means of nonmonotonic rea-
soning. DLN aims at removing some recurrent drawbacks of traditional nonmonotonic
DLs1 such as: (i) inheritance blocking, that is a drawback of preferential semantics
and rational closure; (ii) undesired closed world assumption effects, that affect circum-
scription, typicality logic and some probabilistic logics; (iii) the inability to specify
whether roles shall range over normal/prototypical individuals or not, that affects most
nonmonotonic DLs. Moreover,DLN adopts a novel conflict resolution mechanism that
helps in detecting unresolved conflicts between mutually inconsistent defaults. Since
unresolved conflicts frequently correspond to missing knowledge, highlighting such
conflicts constitutes an important support to knowledge base debugging and valida-
tion. A further useful property of DLN is that it can be translated into classical DLs,
so that its implementations can rely on mature and well-optimized inference engines.

1Abbreviation for “description logics”.
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The translation can be computed in polynomial time and does not involve complex
constructs, so DLN preserves the tractability of the two major low-complexity fam-
ilies of DLs, that is EL and DL-lite, that correspond to the EL and QL profiles of
OWL2, respectively. The experiments in [5, 11] show unparalleled scalability prop-
erties over large knowledge bases, with more than 105 axioms. The relationships be-
tween the above features and the knowledge engineering requirements that have been
independently introduced in the fields of biomedical ontologies and declarative policy
languages have been extensively discussed in [5].

The number and complexity of the issues dealt with in [5] led us to postpone the
analysis of the logical properties of DLN. The main goal of this paper is precisely
studying the logical properties of its consequence relation, defeasible axioms and nor-
mal instances. Our analysis includes a comparison of DLN’s inferences with verbatim
and internalized versions of the KLM postulates [29]. For our purposes, these pos-
tulates are not necessarily desiderata, due to the loose correspondence between their
motivations and DLN’s goals and semantics. However, we regard them as a useful
technical tool for profiling and comparing the behavior of different logics, since the va-
lidity (or non-validity) of the postulates has been extensively investigated in the context
of most nonmonotonic logics.

As a second contribution, we fix a problem affecting the original version of DLN,
that does not fully satisfy an internalized version of the KLM postulate LLE (left logi-
cal equivalence) and fails to derive some natural equivalences. The refined semantics
improves also another foundational aspect: while the original definition of overriding
quantifies over the class of all interpretations, the refined version depends only on a
proper set of interpretations, thereby preventing any form of unrestricted comprehen-
sion [27]. We adapt the translation of DLN into classical description logic accordingly
and prove its correctness, fixing a minor error in [5].

Finally, we leverage on two features that make DLN an excellent playground for
analysing the interplay of the KLM postulates with other principles and requirements.
First, DLN’s syntax is relatively rich: it is a first-order language, where standard in-
dividuals can be denoted through suitable concept expressions. This feature makes it
possible to encode examples that cannot be modelled in several other nonmonotonic
DLs (nor in the original, propositional KLM framework). The second useful feature is
that the underlying monotonic semantics is relatively weak, in comparison with other
richer formalisms such as typicality logic; all logical properties follow from classical
logic and the elementary principle that all defaults should be applied unless they are
contradicted by a group of higher priority (possibly non-defeasible) axioms. This helps
in identifying what needs to be added to the aforementioned principle – that is the core
of default reasoning [37, 30] – if one desired to satisfy the KLM postulates in a default
description logic. Using these technical tools, we shall compare DLN with other simi-
lar DLs in terms of the different tradeoffs between opposite desiderata stemming from
the postulates, the above principle, and the emerging knowledge engineering require-
ments mentioned above.

In the next section, we recall some preliminaries on description logics, DLN, and
the KLM postulates, plus the basics of the two families of nonmonotonic DLs, that will
be used as term of comparison in discussing logical properties and different ways of
achieving them. In Section 3, we study the properties of the consequence relation of
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Name Syntax Semantics

inverse role R− {(d, e) | (e, d) ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

∃ restriction ∃R.C {d ∈ ∆I | ∃e ∈ ∆I .[(d, e) ∈ RI ∧ e ∈ CI ]}
∀ restriction ∀R.C {d ∈ ∆I | ∀e ∈ ∆I .[(d, e) ∈ RI → e ∈ CI ]}

Figure 1: Syntax and semantics of the constructs used in the examples.

DLN. Then a few sections analyze the logical behavior of expressions that are syn-
tactically similar to constructs of other logics. In particular, Section 4 illustrates the
behavior of defeasible inclusions by analogy with the defaults by Reiter and Lehmann.
Section 5 describes the properties of the concepts that denote standard instances, and
discusses internalized KLM postulates in relation to DLN’s characteristic features. In
Section 6 we refine the semantics of DLN to remove the aforementioned drawbacks.
Finally, Section 7 completes the review of related work and Section 8 summarizes the
results of the paper. The reader is assumed to be moderately familiar with nonmono-
tonic logics and description logics. Proofs have been moved to the appendix to improve
readability.

2 Preliminaries

2.1 Description Logics
In DLs, concepts are inductively defined with the help of a set of constructors, starting
with a set NC of concept names, a set NR of role names, and a set NI of individual names
(all countably infinite). We use the term predicate to refer to elements of NC ∪ NR.
MetavariablesA,B will range over concept names,C andD over (possibly compound)
concepts, R and S over roles, and a, b and d over individual names.

Expressive DLs support a large number of constructors; Figure 1 illustrates some
of them that will be used throughout the examples of this paper.2 Additionally, we shall
adopt the usual abbreviation: ∃R = ∃R.> .

The semantics of DLs is defined in terms of interpretations I = (∆I , ·I). The
domain ∆I is a non-empty set of individuals and the interpretation function ·I maps
each concept name A ∈ NC to a subset AI of ∆I , each role name R ∈ NR to a binary

2Note, however, that our framework applies also to richer DLs supporting fixpoint operators, full number
restrictions, complex role inclusions, and all of the other operators not occurring in Figure 1.
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relation RI on ∆I , and each individual name a ∈ NI to an individual aI ∈ ∆I . The
extension of ·I to inverse roles and some common compound concepts is inductively
defined as shown in the third column of Figure 1. An interpretation I is called a model
of a concept C if CI 6= ∅. If I is a model of C, we also say that C is satisfied by I.

A (general) TBox is a finite set of concept inclusions (CIs) C v D. As usual, we
use C ≡ D as an abbreviation for C v D and D v C. An ABox is a finite set of
concept assertions C(a) and role assertions R(a, b). An interpretation I satisfies (i) a
concept inclusion C v D if CI ⊆ DI , (ii) an assertion C(a) if aI ∈ CI , and (iii) an
assertion R(a, b) if (aI , bI) ∈ RI . Then, I is a (classical) model of a TBox T (resp.
an ABox A) if I satisfies all the members of T (resp. A).

In this paper we mention some important DLs that have been extensively studied in
the literature and constitute the foundation of semantic web standards. The logic ALC
is defined by the following grammar, where R ranges over role names:

C,D ::= A | > | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C ,

The logic EL supports only >, u, and ∃. Its extension EL⊥ supports also ⊥. The
logic EL++ further adds concrete domains and some expressive role inclusions (see
[2] for further details).

The logic DL-lite [18] supports inclusions shaped like C v D and C v ¬D,
where C and D range over concept names and unqualified existential restrictions such
as ∃R and ∃R− (where R ∈ NR). EL++ and DL-lite, respectively, constitute the
foundation of the OWL2 profiles OWL2-EL and OWL2-QL. Both play an important
role in applications; their inference problems are tractable (the same holds for some
extensions of DL-lite, see [1]).

Finally we mention the very expressive DL SROIQ that constitutes the foundation
of the full standard OWL2. Inference in this logic is 2NExpTime-complete [28].
SROIQ supports the universal role U that, in turn, can express boolean com-

binations of inclusions and assertions. For example, ¬(C v D) can be expressed
as > v ∃U.(C u ¬D), and (C1 v D1) ∨ (C2 v D2) can be expressed as > v(
∀U.(¬C1 tD1)

)
t
(
∀U.(¬C2 tD2)

)
.

Some boolean combinations can be expressed without U . For instance, with the
help of an auxiliary role, ¬(C v D) can be expressed as > v ∃aux .(C u ¬D).
Moreover, ({a} v {b}) ∨ ({a} v {c}) is equivalent to {a} v {b, c} and

¬(C(a)) ⇔ (¬C)(a) ,

C(a) ∨D(a) ⇔ (C tD)(a) .

Some boolean combinations of DL axioms occur in the KLM postulates and play a role
in some of our results.

2.2 The basics of DLN

Let DL be any classical description logic language and let DLN be the extension of
DLwith a new concept name NC for eachDL conceptC. The new concepts are called
normality concepts and denote the standard instances of C.
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A canonical DLN knowledge base (hereafter knowledge base, for simplicity) is
a disjoint union KB = S ∪ D where S is a finite set of DL inclusions and assertions
(called strong or classical axioms) andD is a finite set of defeasible inclusions (DIs, for
short) that are expressions C vn D where C is a DL concept and D a DLN concept.3

If δ = (C vn D), then pre(δ) and con(δ) denote C and D, respectively.
The informal meaning of C vn D, roughly speaking, is: “by default, standard

instances satisfy C v D, unless stated otherwise”, that is, unless some higher priority
(possibly strong) axioms entail that standard instances belong to C u ¬D; in that case,
C vn D is overridden. The standard instances of a conceptC are required to satisfy all
the DIs that are not overridden in C. Accordingly, we will call the set of DIs satisfied
by NC the prototype associated to C.

DIs are prioritized by a strict partial order≺. If δ1 ≺ δ2, then δ1 has higher priority
than δ2. DLN solves automatically only the conflicts that can be settled using ≺. Any
other conflict shall be resolved by the knowledge engineer (typically by adding specific
DIs). Two priority relations have been investigated so far. Both are based on specificity:
the specific default properties of a conceptC have higher priority than the more generic
properties of its superconcepts (i.e. those that subsume C). The priority relation used
in most of the examples of [5] collects those superconcepts with strong axioms only:

δ1 ≺ δ2 iff pre(δ1) vS pre(δ2) and pre(δ2) 6vS pre(δ1) .4 (1)

The second priority relation investigated in [5] is

δ1 ≺ δ2 iff rank(δ1 ) > rank(δ2 ), (2)

where rank(·) is shown in Algorithm 1 and corresponds to the ranking function of
rational closure adopted in [20, 22]. This relation uses also DIs to determine supercon-
cepts, so (roughly speaking) a DIC vn D – besides defining a default property forC –
gives the specific default properties ofC higher priority than those ofD. The advantage
of this priority relation is that it resolves more conflicts than (1); the main advantage of
(1) is predictability; e.g. the effects of adding default properties to an existing, classical
KB are more predictable, as the hierarchy used for determining specificity and resolv-
ing conflicts is the original, validated one, and is not affected by the new DIs (see also
the related discussion in [6, 7], that adopt (1)).

The expression KB |≈ α means that α is a DLN consequence of KB. Here we
do not report the model-theoretic definition of |≈ (an improved version will be given in
Sec. 6) and present only its reduction to classical reasoning. For allDLN subsumptions
and assertions α, KB |≈ α holds iff KBΣ |= α, where Σ is any set of normality
concepts that contains at least the normality concepts that explicitly occur inKB∪{α},
and KBΣ is a classical knowledge base obtained as follows (recall that KB = S ∪ D):

First, for all DIs δ ∈ D and all NC ∈ Σ, let:

δNC =
(
NC u pre(δ) v con(δ)

)
. (3)

3The definitions and results in [5] cover a wider class of knowledge bases, that here we call general,
where normality concepts are allowed to occur in S. The unrestricted use of normality concepts in strong
axioms may override their intended semantics, that should be primarily driven by defeasible inclusions, as
discussed in the note on usage below. A careful use of general knowledge bases, though, can be useful to
tune the logical properties of DLN, as discussed later in remarks 1 and 2.

4As usual, C vS D means that S |= C v D.

5



Algorithm 1: Ranking function
Input: Ontology KB = S ∪ D
Output: the function rank(·)

1 i := −1; E0 := {C v D | C vn D ∈ D} ;
2 repeat
3 i := i + 1;
4 Ei+1 := {C v D ∈ Ei | S ∪ Ei |= C v⊥};
5 forall C vn D s.t. C v D ∈ Ei \ Ei+1 do
6 assign rank(C vn D) := i;

7 until Ei+1 = Ei;
8 forall C vn D ∈ Ei+1 do assign rank(C vn D) :=∞ ;
9 return rank(·);

The informal meaning of δNC is: “NC’s instances satisfy δ”.
Second, let ↓≺δ be the operator that removes from axiom sets all the δNC

0 that do
not have higher priority than δ, protecting the strong axioms of KB:5

for all S ′ ⊇ S, S ′ ↓≺δ= S ∪ (S ′ \ {δNC
0 | NC ∈ Σ ∧ δ0 6≺ δ}) .

Third, let δ1, . . . , δ|D| be any linearization of (D,≺).6

Finally, let KBΣ = KBΣ
|D|, where the sequence KBΣ

i (i = 1, 2, . . . , |D|) is induc-
tively defined as follows:

KBΣ
0 = S ∪

{
NC v C | NC ∈ Σ

}
(4)

KBΣ
i = KBΣ

i−1 ∪
{
δNC
i | NC ∈ Σ, and

KBΣ
i−1 ↓≺δi ∪ {δNC

i } 6|= NC v ⊥
}

(5)

(note that KBi ⊆ KBi+1, i = 1, 2, . . . , |D|).
In other words, the above sequence starts with KB’s strong axioms extended with

the inclusions NC v C, then processes the DIs δi in non-increasing priority order. If
δi can be consistently added to C’s prototype, given all higher priority DIs selected so
far (which is verified by checking that NC 6v ⊥ in line (5)), then its translation δNC

i is
included in KBΣ (i.e. δi enters C’s prototype), otherwise δi is discarded, and we say
that δi is overridden in NC.

We conclude this section with two technical remarks. First, in order to answer a
given query α, it suffices to use the KBΣ obtained from the smallest possible Σ, that
contains only the normality concepts explicitly occurring inKB and α; however, larger
Σ may be optionally used to pre-compute the properties of frequently used normality
concepts, for optimization purposes (i.e. reusing the same KBΣ for many queries).
Second, choosing the linearization is not an issue, since they all yield the same result
(cf. [5, Remark 2]).

5This is essential for the correctness of KBΣ and corrects a minor error in [5].
6That is, {δ1, . . . , δ|D|} = D and for all i, j = 1, . . . , |D|, if δi ≺ δj then i < j.

6



A note on usage

DLN has two constructs for handling nonmonotonic inferences: defeasible inclusions
and normality concepts. Defeasible inclusions are meant to specify the default prop-
erties of the standard instances denoted by normality concepts; so DIs do not affect
the other predicates. For example, even if standard birds fly by default, still concept
Bird contains instances that do not fly. Concepts Bird and NBird are not induced to
be as similar as possible byDLN’s semantics, in order to avoid undesired closed-world
effects, cf. [5].7

Conversely, a normality concept NC is meant to be axiomatized by the strong
(monotonic) properties of C plus the default properties specified by DIs. So the cor-
rect way of asserting that standard birds fly by default is by means of the defeasible
inclusion NBird vn Flying and not through the strong inclusion NBird v Flying , as
the latter cannot be possibly overridden. This explains the rationale behind canonical
knowledge bases, that by definition prevent the usage of normality concepts in strong
axioms.

Since the effects of defeasible inclusions are confined to normality concepts, if
a query Q contains no such concepts, then it is about certain, valid knowledge; ac-
cordingly, Q is entailed by KB if and only it follows classically from the strong ax-
ioms of KB. On the contrary, if we are interested in inspecting the defeasible conse-
quences of KB, then Q should contain some normality concepts. For instance, in order
to check whether standard birds fly by default, Q should be NBird v Flying . Here
Bird vn Flying is not the correct query to pose, because even if a DI is a consequence
of KB, it can be overridden, and in this case it has no effect (a DI δ is entailed if for
all normality concepts NC, δ is either satisfied by the instances NC or overridden in
NC, cf. [5] and Section 6). This behavior of DIs is further discussed in Section 4.
Inferring DIs may turn out to be useful for other purposes related to optimization, such
as removing redundant DIs from a knowledge base.

Summarizing, in the typical examples of nonmonotonic reasoning occurring in the
literature, DIs occur only in the knowledge base, while strong inclusions involving
normality concepts occur only in queries.

Finally, a caveat on the intended meaning of normality concepts. Their name sug-
gests that they are meant to collect the typical or normal instances of a concept, while
their intended usage is actually more general, which is why we rather use the term
“standard instances”. To illustrate this idea, we anticipate one of the examples be-
low, namely, the default inheritance of drug contraindications. It has been proposed by
Rector not really because those contraindications normally hold, but rather because it
is less dangerous to infer more contraindications than missing some of them. In this
case, the properties of normality concepts are not determined by what we expect to
hold in the world, but rather by what we deem safer to assume. Another opportunistic
approach like this – where default properties are determined by what is more useful
to assume – will be illustrated in Example 7. This category of intended applications

7For example, Circumscription would minimize the concept Whale because whales are abnormal
mammals that live in the sea. Then Whale would contain only the individuals explicitly asserted to be
whales. In the absence of such individuals, Whale v ⊥ holds. If we only assert Whale(Moby), then
Whale ≡ {Moby} holds.
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departs from the goal of modelling what normally holds, that is the major motivation
behind the KLM postulates.

Examples

We start by illustrating DLN’s conflict handling approach, that has been motivated by
knowledge engineering requirements stemming from biomedical applications and from
the needs of semantic web policies. Most other logics silently neutralize the conflicts
between nonmonotonic axioms with equal or incomparable priorities by computing
the inferences that are invariant across all possible ways of resolving the conflict. A
knowledge engineer, using her domain knowledge, may want to solve the conflict in fa-
vor of some of its possible resolutions, by adding specific axioms; however, if the logic
silently neutralizes the conflict, then such missing knowledge may remain undetected
and unfixed. This approach may cause serious problems in the policy domain:

Example 1 Suppose that project coordinators are both administrative staff and re-
search staff. By default, administrative staff are allowed to sign payments, while re-
search staff are not. A conflict arises since both of these default policies apply to project
coordinators. Formally, KB can be formalized with:

Admin vn ∃has right.Sign (6)

Research vn ¬∃has right.Sign (7)
PrjCrd v Admin u Research (8)

Leaving the conflict unresolved may cause a variety of security problems. If project
coordinators should not sign payments, and the default policy is open (authorizations
are granted by default), then failing to infer ¬∃has right.Sign would improperly
authorize signatures. Conversely, if the authorization is to be granted and the policy
is closed, then failing to prove ∃has right.Sign causes a denial of service (the user
is unable to complete a legal operation). To prevent these problems, DLN makes the
conflict visible by inferring KB |≈ N PrjCrd v ⊥ (i.e. making PrjCrd’s prototype
inconsistent). Technically, this can be proved by checking that KBΣ |= N PrjCrd v
⊥, where Σ = {N PrjCrd}. Here KBΣ consists of (8), N PrjCrd v PrjCrd, and the
following translations of (6) and (7) (none of which overrides the other because none
is more specific under any of the two priorities):

N PrjCrd u Admin v ∃has right.Sign,
N PrjCrd u Research v ¬∃has right.Sign.

Now it is easy to see that N PrjCrd is indeed inconsistent in KBΣ. Given this warn-
ing, a knowledge engineer can easily add the missing information by asserting either
PrjCrd vn ∃has right.Sign or PrjCrd vn ¬∃has right.Sign.

The conflict handling mechanism ofDLN is useful also in other advocated applications
of nonmonotonic reasoning. One of them is the mitigation of risks due to human er-
rors. For example, contraindications may be associated to new drugs by default, unless
explicitly stated otherwise, to prevent the risk of forgetting some of them. However, if
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a drug belongs to two or more drug families, then multiple inheritance may cause un-
resolvable conflicts, that prevent the correct contraindications from being inherited. If
such conflicts were silently removed, then the missing contraindications might remain
unnoticed, while in DLN the potential loss of crucial information would be signaled
through a concept’s inconsistency, by analogy with the above example. This applica-
tion of nonmonotonic reasoning has been suggested in [36] and its encoding in DLN

has been discussed in [5, Appendix C].
We proceed with another application example from the semantic policy domain,

that shows DLN’s behavior on multiple exception levels.

Example 2 We are going to axiomatize the following natural language policy: “In
general, users cannot access confidential files; Staff can read confidential files; Black-
listed users are not granted any access. This directive cannot be overridden.” Note that
each of the above directives contradicts (and is supposed to override) its predecessor
in some particular case. Authorizations can be reified as objects with attributes subject
(the access requestor), target (the file to be accessed), and privilege (such as read and
write). Then the above policy can be encoded as follows:

Staff v User (9)
Blklst v Staff (10)

UserReqst vn ¬∃privilege (11)
StaffReqst vn ∃privilege.Read (12)

BlkReq v ¬∃privilege (13)

where BlkReq = ∃subj.Blklst, StaffReqst = ∃subj.Staff, and UserReqst =
∃subj.User. By (9), both of the specifity relations yield (12) ≺ (11), that is, (12) has
higher priority than (11) under priority (1) as well as (2). Let Σ = {NStaffReqst};
(12) overrides (11) in NStaffReqst so KBΣ consists of: (9), (10), (13), plus

NStaffReqst v StaffReqst

NStaffReqst u StaffReqst v ∃privilege.Read .

Consequently, KB |≈ NStaffReqst v ∃privilege.Read. Similarly, it can be veri-
fied that:

1. Normally, access requests involving confidential files are rejected, if they come
from generic users. Formally, KB |≈ NUserReqst v ¬∃privilege;

2. Blacklisted users cannot do anything by (13), so, in particular:
KB |≈ NBlkReq v ¬∃privilege.

Some application examples from the biomedical domain can be found in [5] (see Ex-
amples 3, 4, 10, 12, and the drug contraindication example in Appendix C). Like the
above examples, they are all correctly solved by DLN with both priority notions. The
examples inspired by applications hardly exhibit the complicated networks of depen-
dencies between conflicting defaults that occur in artificial examples. Nonetheless, we
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briefly discuss such examples, too, as a means of comparing DLN with other logics
such as [38, 22, 8].

In several cases, e.g. examples B.4 and B.5 in [38], DLN agrees with [38, 22, 8]
under both priority relations. Since these examples have similar features, here we
illustrate only B.4, as a representative case.

Example 3 (Juvenile offender) Let KB consist of axioms (14)–(18) where J, G, M,
P abbreviate JuvenileOffender, GuiltyOfCrime, IsMinor and ToBePunished,
respectively.

J v G (14)

J v M (15)

M u G vn ¬P (16)

M vn ¬P (17)

G vn P (18)

J v G (19)

J v M (20)

NJ v J (21)

NJ u M u G v ¬P (22)

NJ u M v ¬P (23)

On one hand, criminals have to be punished and, on the other hand, minors cannot
be punished. So, what about juvenile offenders? The defeasible inclusion (16) breaks
the tie in favor of their being underage, hence not punishable. By setting Σ = {NJ},
priorities (1) and (2) both return axioms (19)–(23) as KBΣ. Then, clearly, KBΣ |=
NJ v ¬P which is DLN’s analogue of the inferences of [38, 22, 8].

In other cases (e.g. example B.1 in [38])DLN finds the same conflicts as [38, 22, 8].
However, DLN’s semantics signals these conflicts to the knowledge engineer whereas
in [38, 22, 8] they are silently neutralized.

Example 4 (Double Diamond) Let KB be the following set of axioms:

A vn T (24)

A vn P (25)

T vn S (26)

P vn ¬S (27)

S vn R (28)

P vn Q (29)

Q vn ¬R (30)

DIs (26) and (27) have incomparable priority under (1) and (2). Consequently, it is easy
to see that NA v S and NA v ¬S are both implied by KBΣ and hence the knowledge
engineer is warned that NA is inconsistent. The same conflict is silently neutralized
in [22, 38, 8] (A’s instances are subsumed by neither S nor ¬S and no inconsistency
arises). Similarly for the incomparable DIs (28) and (30) and the related conflict.

The third category of examples (e.g. B.2 and B.3 in [38]) presents a more variegated
behavior. In particular, using priority (2), both [22] and DLN solve all conflicts and
infer the same consequences; [38] solves only some conflicts; [8] is not able to solve
any conflict and yet it does not raise any inconsistency warning; DLN with priority (1)
cannot solve the conflicts but raises an inconsistency warning. Here, for the sake of
simplicity, we discuss in detail a shorter example which has all relevant ingredients.
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Example 5 Let KB be the following defeasible knowledge base:

A vn B (31) A vn C (32) B vn ¬C (33)

According to priority (1) all DIs are incomparable. Therefore,DLN warns (by inferring
NA v ⊥) that the conflict between NA v C and NA v ¬C cannot be solved. Note that
[8] adopts priority (1), too, however according to circumscription, any interpretation
where A’s instances are either in ¬C u B or in C is a model, so A is satisfiable (the
conflict is silently neutralized). Under priority (2), instead, axiom (31) gives (31) itself
and (32) higher priority than (33). Consequently, NA v C prevails over NA v ¬C. In
this case, DLN and rational closure infer the same consequences.

There is a reason why the inferences ofDLN are so similar to those of [22] in the above
examples. We will show in the following sections that DLN and [22] satisfy similar
versions of a set of standard postulates (called KLM postulates) in all the examples
where the characteristic features of DLN do not come into play. This is why the above
examples show the different behavior of DLN only in the presence of unresolved con-
flicts. Further differences will emerge in Section 5.2 from the restriction of role values
to normal individuals – a feature that is not considered in the above examples and that
is not supported by [22].

2.3 The KLM postulates
In their seminal papers, Makinson [34] and Kraus, Lehmann, and Magidor [29, 32, 30]
study the consequence relations of nonmonotonic logics from an axiomatic perspective.
In order to develop a general framework, compatible with the variety of nonmonotonic
languages and semantics introduced in the literature, they abstract away the details of
nonmonotonic expressions and focus on the classical information that such expressions
deduce from the available classical description of the world.

For example, consider Reiter’s default theories [37]: they are pairs 〈D,W 〉 where
D is a set of default rules and W is a set of classical sentences. Every set of defaults D
is associated to the consequence relation CnD(·) that maps each possible W on the set
of classical sentences that can be derived from W using the default rules in D [34]. In
later works, an equivalent representation in terms of sequents is adopted. For instance,
CnD(·) can be equivalently represented as the set of all pairs of sentences (ω, φ) such
that ω is the conjunction of W ’s sentences, and φ ∈ CnD(W ). Such sequents are usu-
ally denoted by ω |∼ φ. Note that |∼ embodies the background knowledge represented
by D, hiding both its semantic contents and its syntactic representation.

Kraus, Lehmann, and Magidor argued that in order to reason about what normally
holds in the world, it is desirable to make nonmonotonic consequence relations closed
under certain properties, called KLM postulates, from the initials of their authors. The
verbatim instantiation of the original postulates, using DLN’s terminology, is illus-
trated in Table 1. Here, the background knowledge hidden in |∼ is made explicit by
the term KB, and each entailment of the form KB ∪ {α} |≈ β corresponds to the se-
quent α |∼ β, by analogy with the above example about default logic. Through this
correspondence, one gets precisely the original postulates. A consequence relation that
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Table 1: The KLM postulates in DLN

Name Rule schema Sound in DLN

REF
α ∈ KB
KB |≈ α X

CT
KB |≈ α KB ∪ {α} |≈ γ

KB |≈ γ X

CM
KB |≈ α KB |≈ γ
KB ∪ {α} |≈ γ X

LLE
KB ∪ {α} |≈ γ |= α ≡ β

KB ∪ {β} |≈ γ X

RW
KB |≈ α α |= γ
KB |≈ γ X

OR
KB ∪ {α} |≈ γ KB ∪ {β} |≈ γ

KB ∪ {α ∨ β} |≈ γ

RM
KB |≈ γ KB 6|≈ ¬α
KB ∪ {α} |≈ γ

KB is a canonical DLN knowledge base;

α and β range over DL assertions and (strong) concept and role inclusions;

γ ranges over DLN assertions and DLN concept/role inclusions;

nonstandard DL axioms α ∨ β, ¬β can be simulated, e.g. with the universal role;

|≈ denotes the nonmonotonic consequence relation of DLN and |= denotes classical inference.

satisfies the KLM postulates is called rational. It is called preferential if it satisfies all
rules but RM, and cumulative if it satisfies all rules but RM and OR.8

In their abstract analysis of nonmonotonic consequence relations, Kraus, Lehmann
and Magidor found it helpful to identify nonmonotonic theories with the set of sequents
ω |∼ φ that constitute their consequence relations, so as to make their arguments in-
dependent from any concrete syntax for defeasible information. Then, some authors
found it natural to turn these sequents (that originally were metalevel expressions that
describe the effects of a theory) into object-level expressions that are the theory itself,
whose semantics can be specified – say – by the KLM postulates and their model-
theoretic accounts, or by the rational closure construction. Some examples of this ap-
proach in DLs are [20, 21, 22, 19, 16]. This internalization operation transformed the
KLM postulates from a general analysis tool – applicable to any logic – into a specific
logic, just like default logic, autoepistemic logic or circumscription.

According to the above discussion, we shall use the metalevel version reported in
Table 1 as the analysis tool to study |≈, i.e. the consequence relation of DLN, and
compare it with those of Default, Autoepistemic, and Circumscribed DLs. This met-
alevel analysis will be refined and extended by using two internalized versions of the

8Kraus, Lehmann and Magidor study also further postulates, including one called LOOP that cannot be
derived from the postulates of a cumulative consequence relation. The study of these postulates in the context
of DLN lies beyond the scope of this paper and is left for further work.
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KLM postulates in order to clarify the meaning of DLN expressions such as C vn D
and NC v D, that syntactically resemble the internalized conditionals ω |∼ φ but
actually have different semantics. The internalized postulates help also in comparing
DLN with Lehmann’s default logic and with the description logics illustrated in the
following section.

2.4 Two families of DLs satisfying internalized KLM postulates
Along the following sections, we shall refer to two families of nonmonotonic DLs
that provide a natural reference point for comparison and illustrate different ways of
supporting internalized KLM postulates. These logics have been selected precisely
because they have been designed to satisfy such postulates (or most of them), unlike
circumscribed and autoepistemic DLs, just to name a few.

The first family is obtained by applying the rational closure construction or vari-
ants thereof toALC, using sequents C |∼ D as knowledge base axioms that informally
mean: “normally, the instances of C satisfy D” [20, 21, 22, 19, 16].9 The priority re-
lation over these axioms is given by the rank computed by Algorithm 1. The symbol
|∼ is part of the object-level language, and can be used both in knowledge bases and
in queries. Unlike DLN, there are no constructs for denoting the normal instances of
a concept. We shall refer to these logics as DLs based on Rational Closure. In these
logics role values cannot be restricted to normal individuals; equivalently, defeasible
assertions do not apply to role values. Recently, a dual logic where roles range on nor-
mal individuals but inclusions are classical has been studied in [14]. Most DLs based
on rational closure satisfy the following internalized version of the KLM postulates:

(REFRC ) C |∼ C (CTRC )
C |∼ D C uD |∼ E

C |∼ E

(LLERC )
C |∼ E |= C ≡ D

D |∼ E
(CMRC )

C |∼ D C |∼ E

C uD |∼ E

(RWRC )
C |∼ D |= D v E

C |∼ E
(ORRC )

C |∼ E D |∼ E

C tD |∼ E

(RMRC )
C |∼ E C 6|∼ ¬D

C uD |∼ E

The only exception is the relevant closure introduced in [19], that in order to prevent
inheritance blocking waives ORRC , CMRC , and RMRC .

The second family, that we call typicality DLs, feature concepts T (C) that denote
the typical instances of C; they are analogues of the normality concepts NC. The
underlying monotonic logic is essentially a preferential modal logic whose semantics
is based on a normality relation over individuals, that is illustrated below. Typical-
ity DLs have no ad hoc construct for defeasible inclusions; the analogue of C vn D
and C |∼ D is T (C) v D. So, strictly speaking, in typicality logics the inclusions
themselves are not defeasible; a statement like T (C) v D cannot be overridden. Non-
monotonicity is obtained by minimizing atypical individuals, by a metalevel construc-
tion similar to circumscription [24, 25]. Interestingly, the expressions T (C) v D are

9In some of these papers, the symbol |∼ is replaced by @∼. Note that differently from the classical KLM
framework, here C and D are concept expressions.
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also syntactically similar to DLN’s inclusions NC v D; their differences will be il-
lustrated in Section 5. The logic ALC + Tmin illustrated in [24] is preferential, while
those in [25] are rational, relative to the following internalized KLM postulates:

(REFT ) T (C) v C (CTT )
T (C) v D T (C uD) v E

T (C) v E

(LLET )
T (C) v E |= C ≡ D

T (D) v E
(CMT )

T (C) v D T (C) v E

T (C uD) v E

(RWT )
T (C) v D |= D v E

T (C) v E
(ORT )

T (C) v E T (D) v E

T (C tD) v E

(RMT )
T (C) v E T (C) 6v ¬D

T (C uD) v E

Many of the logical properties of typicality DLs are forced by their monotonic frag-
ments, such as ALC + T and ALC + TR. In each model I, the degree of typicality is
formalized with a partial order ≤I over individuals. The typical instances of a concept
C, denoted by T (C), are the≤I-minimal instances of C, that is, its most typical mem-
bers. Different typicality logics are obtained by tuning the properties of the relations
≤I . They are always assumed to satisfy a condition called smoothness that ensures that
each nonempty concept has at least one ≤I-minimal instance; in other words, if C is
consistent, then T (C) is consistent, too. Note that ≤I does not depend on C, that is, a
single, universal normality criterion is assumed. Informally speaking, this means that
if John is more typical than Mary as a parent, then he must also be more typical than
Mary as a driver, as a worker, as a tax payer, and so on. Some technical and practical
consequences of this strong assumption are discussed in the following sections, mostly
in Section 5.2.

3 DLN between cumulativity and rationality

In this section we prove that the entailment relation of DLN (that is |≈) is cumulative,
and that if normal instances are assumed to exist, then it becomes rational. In some
logics this assumption is hardwired in the underlying monotonic logic, while inDLN it
must be explicitly stated through suitable axioms. This is related to DLN’s strategy for
avoiding undesired closed-world effects; in particular, DLN does not assume that any
individual is normal by default, see [5] for an articulated discussion of this approach.

3.1 DLN is cumulative
Obviously, REF and RW always hold, becauseDLN is closed under classical inference.
Moreover:

Theorem 1 Rules CT, CM, and LLE are sound.

Since |≈ satisfies REF, CT, CM, LLE, and RW, it is a cumulative consequence relation.
The other rules, OR and RM, do not universally hold. In the next subsections we
analyze why and show that they actually hold under a simple additional condition.
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3.2 The RM rule
This postulate can be analyzed through an extremely simple example: given the knowl-
edge base

KB = {A vn B} ,

there is little doubt that all the standard instances of A should belong to B, that is,

KB |≈ NA v B . (34)

There should also be little doubt that the strong axiom A v ¬B overrides the DI in
KB, so that

KB ∪ {A v ¬B} 6|≈ NA v B . (35)

Given (34) and (35), RM can be satisfied only if

KB |≈ ¬(A v ¬B) . (36)

Now the question is: why should (36) hold? KB only says that the normal instances
of A are in B. Then, concluding that A is not included in ¬B is like assuming that at
least one of such instances exists.

The assumption that each consistent concept has at least one normal instance is
hardwired in the semantics of typicality logics, through smoothness.10 On the contrary,
DLN does not make this assumption, and for this reason RM does not always hold.
This is witnessed by the above example, since (36) does not hold in DLN. If normal
instances were assumed to exist, then DLN would satisfy RM, as well:

Theorem 2 Consider RM and the axiom γ occurring in it. Suppose that KB contains
an axiom ¬(NC v ⊥) (or equivalent formulations, cf. Sec. 2.1) for each NC occurring
in KB ∪ {γ} such that C is satisfiable w.r.t. KB. Then RM is sound.

Remark 1 Note that the knowledge base, in the above theorem, is not canonical; it is a
general knowledge base where normality concepts occur in the strong part. In general,
such unrestricted use of normality concepts may lead to undesirable inferences, by
overriding the intended meaning carried by defeasible inclusions – which is why we
focussed on the canonical approach, cf. the note on usage in Section 2.2. However,
if non-canonical axioms are carefully chosen, then non-canonical knowledge bases
may become a useful tool for specializing DLN and tuning the set of valid axioms
to application needs (more examples will be given in the following sections). This
approach does not have any major side-effects on the properties of DLN since they
all rely on the correctness of the translation KBΣ, which has been proved in [5] for
all general knowledge bases, not just canonical ones. The selective use of general
knowledge bases as a means to achieve more flexibility is an interesting topic for further
research.

The analysis of RM’s effects on inconsistent prototypes is illuminating, too. Consider
a standard case of unresolved conflict arising from multiple inheritance:

10Smoothness was first used in [29], where it was applied to possible worlds, though. Interestingly, a
similar assumption is made in [31] to satisfy the postulates for ∃.
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A1 vn B (37)
A2 vn ¬B (38)

C v A1 uA2 (39)

In the above KB, the prototype of C is inconsistent, i.e.

KB |≈ NC v ⊥ , (40)

due to the conflicting DIs (37) and (38). The natural way of resolving such conflicts is
specifying which alternative should hold for C, thereby overriding the other one. For
instance, in our example, one might specify that C v B and expect that

KB ∪ {C v B} 6|≈ NC v ⊥ (41)

because C v B clearly overrides (38). Now consider an instance of RM where α =
(C v B) and γ = (NC v ⊥). Given (40) and (41), that are the first premise and
the negation of the conclusion, in order to satisfy RM, it is necessary that the second
premise does not hold, that is,

KB |≈ ¬(C v B) , (42)

and again the question is: why should (42) hold? Differently from the previous exam-
ple, here KB entails that NC is empty, so the instances of C that belong to ¬B (that
must exist if (42) holds) are not typical instances of C. It follows that enforcing RM in
a logic like DLN, that highlights unresolved conflicts through inconsistent prototypes,
requires extending the effects of DIs from normal instances only to all individuals. We
leave it as an open question whether this is appropriate, and how it should be done.

3.3 The OR rule
Similarly to RM, the OR rule depends on the assumption that normal individuals exist.
To see this, we first illustrate a counterexample to OR. Let KB be the following set of
axioms:

A vn {c} (43)
A vn {d} (44)
c 6= d (45)

A v B (46)
B v ∃R (47)
B vn ∀R.(NA u C) (48)

and let

α = A v {c} ,
β = A v {d} ,

Note that α∨ β is equivalent to A v {c, d}, so it can be expressed in standard descrip-
tion logics. Here α cleary overrides (44) and β overrides (43) , so the prototype of A
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is consistent in both KB ∪ {α} and KB ∪ {β}:

KB ∪ {α} 6|≈ NA v ⊥ ,
KB ∪ {β} 6|≈ NA v ⊥ .

Since NA is nonempty, (48) is not overridden and we have:

KB ∪ {α} |≈ NB v ∀R.C ,
KB ∪ {β} |≈ NB v ∀R.C .

From these entailments, the OR rule derives KB∪{α∨β} |≈ NB v ∀R.C. However,
this does not hold in DLN. Axiom α ∨ β is too weak to override any of (43) and (44),
so their conflict remains unresolved and we have

KB ∪ {α ∨ β} |≈ NA v ⊥ .

As a consequence, (48) is overridden (as it would be inconsistent with (47)) and hence

KB ∪ {α ∨ β} 6|≈ NB v ∀R.C .

Note that this counterexample exploits an empty normality concept. This is not by
chance: similarly to RM, we can prove thatDLN satisfies OR when normal individuals
are guaranteed to exist.

Theorem 3 Consider OR and the axiom γ occurring in it. Suppose that KB contains
an axiom¬(NC v ⊥) (or equivalent formulations) for each NC occurring inKB∪{γ}
such that C is satisfiable w.r.t. KB. Then OR is sound.

Table 1 will be used to compare DLN with other nonmonotonic DLs in sections 7
and 8.

4 The logical properties of DIs
From a crudely syntactic point of view, a defeasible inclusion C vn D is similar to
its counterpart C |∼ D adopted by the DLs based on rational closure. So it may be
tempting to assume that DIs should satisfy the same logical properties, including the
KLM postulates. The corresponding internalized version is reported in Table 2.11

The semantics of DIs, however, is different: while the expressions C |∼ D are
rational sequents, that are required to belong to the knowledge base’s consequences,
DIs express only default assertions that may be overridden and have no effect. In
this respect, DIs are more similar to Reiter’s default rules [37] and Lehmann’s ver-
sion thereof [30]; in particular, in Lehmann’s terms, our DIs correspond to the default

11The intended meaning of these inference rules is that if KB entails (with |≈) the DIs in the premises,
then it should entail the conclusions. Non-defeasible premises are interpreted in the obvious way.
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Table 2: Analogues of the KLM postulates for DIs [5]

Name Rule schema Sound in DLN

REFn C vn C
X

CTn
C vn D C uD vn E

C vn E

CMn
C vn D C vn E
C uD vn E

LLEn
C vn E S |= C ≡ D

D vn E
partly

RWn
C vn D S |= D v E

C vn E

ORn
C vn E D vn E
C tD vn E

partly

RMn
C vn E C 6vn ¬D

C uD vn E

S is the strong part of the knowledge base
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expressions (ω : φ), not to the sequents ω |∼ φ that represent the consequences of de-
fault expressions. Default rules have the following characteristic behavior: either they
are overridden (and have no effect whatsoever, like tautologies) or they are applied; in
the latter case, defaults have a pretty classical behavior (e.g. Lehmann’s are equivalent
to material implications). Indeed, if this aspect were not properly taken into account
by distinguishing so-called “meaningful” (i.e. applied) defaults from overridden ones,
then even Lehmann’s account of default reasoning – which is built around the KLM
postulates – would not be strictly rational; see the discussion in [30, Sec. 5 and 6].

The analogue of these properties in DLN is cast into the semantics of DIs: δ is
satisfied if for all concepts NC, either δ is overridden in NC or the corresponding
classical inclusion δNC holds. In particular, if δ is overridden in every NC, then it is
satisfied even if it has no effects.

Said so, it comes to no surprise that almost none of the rules in Table 2 is uncondi-
tionally sound. For example, the conclusion of RWn is justified by its first premise; if
it were overridden, then the conclusion would not be supported. Moreover, the conclu-
sion is weaker than the premise, so it is not necessarily overridden when the premise
is. Rule CTn may even produce undesirable effects if it were forced in general (cf.
Theorem 8 and the following discussion in [5]).

However, as it should be expected, in line with the characteristic features of default
reasoning, when the premises are not overridden, then all of the rules in Table 2 are
sound [5, Theorem 9]. In particular, REFn is always sound.

Actually, under pretty mild assumptions, some rules are sound also when their
defeasible premises are overridden. Rule LLEn, for example, can be violated only
by using bizarre priority relations, that depend on syntactic details and give logically
equivalent DIs different priority. If the priority relation is not sensitive to syntactic
details, then LLEn holds [5, Theorem 10]. In [5, Theorem 8], it has also been proved
that ORn holds unconditionally under specificity, because this priority relation guaran-
tees that the conclusion is overridden whenever both premises are overridden, thereby
ensuring the rule’s soundness.

Given that DIs are like defaults, it is interesting to compareDLN’s consequence re-
lation with those of the other default logics; this will be done in detail in sections 7 and
8. We informally anticipate thatDLN (which is cumulative) lies somewhere in between
Default DLs (which are not cumulative) and Lehmann’s propositional default logic,
which is rational [30]. With the additional assumption that consistent concepts have
standard instances, the consequence relation ofDLN is rational, like that of Lehmann’s
default logic.

5 The logical properties of N

5.1 N and boolean operators
Normality concepts satisfy the following natural axiom schema:

NC v C (49)
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Table 3: Candidate axioms relating N with boolean operators

Name Axiom schema Sound in DLN

neg 1 N¬C v ¬NC X

neg 2 N¬C w ¬NC

and 1 NC uND v N(C uD)

and 2 NC uND w N(C uD)

or 1 NC tND v N(C tD)

or 2 NC tND w N(C tD)

C and D range over DL concepts

which is strong, that is, it cannot be overridden. More candidate axioms, relating nor-
mality concepts with the standard boolean operators, are listed in Table 3. However,
not all of them make sense.

Axiom neg 1 follows from schema (49) and its contrapositive:

N¬C v ¬C v ¬NC .

It is easy to see that neg 2 is undesirable, instead. The contrapositives of neg 2 and
(49) yield:

NC w ¬N¬C w ¬¬C ≡ C .

Together with (49) this would imply NC ≡ C, that is, there could be no exceptional
individuals, and there would be no difference between defeasible inclusions and strong
axioms.

The other axioms for u and t violate the goal of representing exceptions, too.
Many motivational examples in the literature contradict and 2 and or 1. Consider, for
instance, the semantic web policy where the authorizations for NStaff and those for
NBlacklisted are mutually inconsistent (by default, everything is permitted to staff
members while everything is strongly denied to blacklisted users). Then NStaff u
NBlacklisted is inconsistent, so and 2 would make the concept
N(Staff u Blacklisted) inconsistent, too. On the contrary, the expected behavior
is that the strong negative authorizations of blacklisted members override the default
authorizations granted to staff members, so N(Staff u Blacklisted) should be con-
sistent. Next, consider the instance of or 1 where C is Staff and D is User (recall
that Staff v User). Rule or 1 forces N(Staff t User) – whose instances should not
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have any access rights – to contain NStaff, whose instances do have read permission.
Neither and 2 nor or 1 are valid in DLN.

Axioms and 1 and or 2 are more controversial. They are valid in some logics, but
we believe that a flexible nonmonotonic logic should not always satisfy them, for the
reasons explained below.12

Example 6 (Drawbacks of and 1) Consider a country where the following situation
holds. Most students (denoted by concept S) are not older than 25. Most employees
(denoted by E) have a family income that exceeds e 1000 per month. Most working
students (S u E) are older than 25, being slowed down by their job, and their family
income is less than e 1000 per month. It is natural to assert that, by default, the in-
stances of NS are not older than 25, that the family income of the instances of NE is
at least e 1000, and that the instances of N(S u E) are older than 25 and their family
income is less than e 1000. Note that the default properties of N(S u E), in this case,
are incompatible with those of NS and NE, so this natural approach at encoding the
example is not compatible with and 1, that would force the instances of N(S u E) to
contain the members of NS uNE, that are younger than 25 and have a family income
grater than e 1000.13

Example 7 (Drawbacks of or 2) A knowledge engineer shall encode the results of a
marketing study in a knowledge base. Suppose that most people younger than 40 (de-
noted by concept Y ) would drive a sport car, most people between 40 and 60 (denoted
by M ) would drive an agile city car, and most people over 60 (denoted by E) would
drive a comfortable luxury car, while the rest of people would opt for a mid-sized car
with low fuel consumption. To make calculations simpler, assume that in each case the
majority amounts to 60% of the group, that people are equally distributed across the
three age ranges, and that the four categories of cars are mutually disjoint. It seems
natural to encode this knowledge by asserting that the instances of NY , NM , and NE
would choose by default a sport car, a city car or a luxury car, respectively. If we look
at all people, though, (i.e. Y tM tE), we see that mid-sized cars get the largest share
(40%, that is twice as large as any other choice, and ceteris paribus this ratio would
grow further if there were more than 3 user categories). Therefore, the knowledge en-
gineer may want to factorize common preferences and reduce the number of explicit
car choice assertions in KB by selecting mid-sized cars with low fuel consumption as
the default choice for the instances of N(Y tM tE). We believe that a flexible logic
should allow this approach. On the contrary, this is not permitted by or 2: two applica-
tions of this axiom force the instances of N(Y tM tE) to belong to NY tNM tNE,
and hence to conform to some of the typical choices of NY , NM , and NE (which
exclude mid-sized cars). Note that the majority of people indeed prefer a sport car or a
city car or a luxury car, but this disjunctive information may be of little use in attribut-
ing automatically a specific default choice to the generic instances of N(Y tM t E),
which explains the decision of our engineer. Choosing a mid-sized car by default, in

12Of course, some instances of and 1 and or 2 are not problematic, e.g. when C ≡ D.
13It is not hard to instantiate this scenario in such a way that NS uNE is nonempty, so that the inclusion

of this concept in N(S u E) manifests its undesirable effects.
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this case, is an instance of the use of nonmonotonic reasoning as an opportunistic stor-
age convention, aimed at reducing the size of the knowledge base, which is one of the
possible uses of nonmonotonic reasoning envisioned by McCarthy [35].

In typicality DLs, and 1 and or 2 are strong axioms, enforced by the underlying
monotonic logicALC+T. It is easy to see (cf. Appendix B) that they are valid because
the models of typicality logics adopt a single, concept-independent normality relation
(e.g. if John is more typical than Mary as a student, it must also be more typical than
Mary as an employee and as a working student). In DLN, instead, each concept may
be associated to an independent typicality criterion, which is the reason why and 1 and
or 2 do not hold and the above two examples can be naturally encoded.

Remark 2 Note that and 1 and or 2 could be enforced in DLN, if needed in some
application, by including them in the knowledge base. A similar knowledge base is not
canonical; it is a general knowledge base where normality concepts occur in the strong
part. As we pointed out in Remark 1, this can be an interesting method for specializing
DLN and tuning the set of its valid axioms when needed, so as to obtain maximum
flexibility.

5.2 Normality criteria and internalized KLM postulates
The inclusions NC v D are analogues of the expressions C |∼ D and T (C) v D
when they are used as queries.

Recall from Section 2.4 that the models I of typicality logics are based on a uni-
versal, concept-independent notion of normality ≤I , and that T (C)I is the set of ≤I-
minimal members of CI , It follows easily from this definition that the monotonic frag-
ment of typicality DLs satisfies the following inference rule:14

T (C) v D
T (C) ≡ T (C uD)

. (50)

This rule clearly implies that CTT and CMT are sound. Since it may seem unrealistic
to assume that the criterion for deciding what is a normal person is the same criterion
that establishes – say – what is a normal hacker, in DLN each concept may have its
own notion of what is more normal or standard. In technical terms, this implies that the
counterpart of (50) does not hold, that is, NC v D does not entail NC ≡ N(C uD)
(just as ifC andCuD were associated to different typicality orderings). Consequently,
DLN does not satisfy the analogues of CTT and CMT either, that is, rules CTN and
CMN in Table 4.

Example 8 Let KB be:

A vn E (51)
C v A (52)
C vn D (53)

C uD vn ∃R.¬E (54)
C uD vn ∀R.N(C uD) (55)

14Strictly speaking, the conclusion of (50) does not satisfy the syntactic restrictions that the papers on
typicality DLs pose on queries. Nonetheless, (50) is satisfied semantically; moreover, its conclusion can be
equivalently expressed as a query. In particular, T (C) ≡ T (C u D) is entailed by a knowledge base iff
(¬T (C) t T (C uD)) u (T (C) t ¬T (C uD))(a) – where a is a fresh constant – is entailed.
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Table 4: Candidate inference rules inspired by KLM postulates

Name Rule schema Sound in DLN

REFN
NC v C X

CTN
NC v D N(C uD) v E

NC v E partly

CMN NC v D NC v E
N(C uD) v E partly

LLEN
NC v E C ≡ D

ND v E

RWN NC v D D v E
NC v E X

ORN
NC v E ND v E

N(C tD) v E partly

RMN NC v E NC 6v ¬D
N(C uD) v E partly

C, D, and E range over DL concepts

23



The instances of N(C u D) satisfy the defeasible inclusions (54), (55), and (53), that
is,

KB |≈ N(C uD) v ∃R.¬E .
KB |≈ N(C uD) v ∀R.N(C uD) ,

KB |≈ N(C uD) v D .

On the contrary, the lower-priority DI (51) is overridden, because the role restrictions
of (54) and (55) imply that some instance x of N(C uD) satisfies ¬E, hence

KB 6|≈ N(C uD) v E . (56)

The instances of NC, instead, can consistently satisfy all the DIs in KB, using the
above x as a value of role R; it suffices to assume that x is not an instance of NC. As
explained above, there is no compelling reason for making x an instance of NC, if we
do not postulate that there exists a single, concept-independent normality criterion that
forces NC to be equal to N(C uD). Consequently, the following entailments hold:

KB |≈ NC v D , (57)
KB |≈ NC v E . (58)

Note that (56), (57) and (58) show that CMN is not satisfied in this example. There are
two possible ways of satisfying CMN here, that is, overriding (51) in NC (to remove
(58)) or inferring N(C u D) v E. The former solution overrides a larger set of de-
feasible inclusions, in contrast with the principle that as many defaults as consistently
possible should hold. Incidentally, this principle is embraced not only by Reiter’s de-
fault logic, but also by Lehmann’s approach to default reasoning based on the KLM
postulates, cf. the presumptive reading of defaults and in particular Example 6 in [30],
as well as Sec. 8 in the same paper. However, Lehmann’s framework is propositional,
so the above conflcit between maximal default application and CM could not be ob-
served. The second solution makes N(C uD) inconsistent although there is no unre-
solved conflict in KB. This solution would contrast with the principle that specificity
settles conflicting defaults, since the inconsistency of N(C uD) can only be supported
with (51), which is the least specific default in this example and should consequently
be overridden by the other DIs, as it happens in DLN.

A slight extension of the same example disproves CTN . ExtendKB with two more
axioms:

A v B (59)
B vn ¬E . (60)

Now, since axiom (51) is overridden in N(CuD), then (60) can be inherited and hence
N(C uD) v ¬E. On the contrary, (60) is overridden by (51) in NC, so NC 6v ¬E.
This shows that CTN does not hold. The above discussion on the consequences of
CMN in this example applies to CTN as well.

The only other logics where a similar example can be modelled are typicality DLs,
that can denote typical instances; this makes it possible to encode axiom (55). Typical-
ity DLs satisfy CTT and CMT by overriding the analogue of (51). As we pointed out
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before, this is obtained through the assumption that the normality criterion is concept
independent, which forces NC to collapse to N(C u D). Given the debatable conse-
quences of this assumption (cf. the drawbacks of and 1 and or 2), an interesting open
question is whether weaker assumptions suffice to enforce internalized CT and CM.

The next result shows that the occurrence of N in (55) is the only responsible for the fal-
sification of CTN and the dilemma of choosing between its unconditional application
and the principle that a default should be applied unless higher priority or strong ax-
ioms state otherwise. More precisely, the next theorem proves that if KB is N-free (i.e.
normality concepts are allowed only in queries), then the maximal default application
principle itself spontaneously enforces CTN , as well as two other postulates.15

Theorem 4 If KB is N-free, then CTN , ORN , and RMN are sound.

An interesting observation is that the occurrences of N in KB are essential to assert
that certain roles have normal values. So N-free DLN has the same expressiveness
limitation as the DLs based on rational closure illustrated in Sec. 2.4, namely, defea-
sible axioms do not apply to role values. Given that removing this restriction in DLN

affects some of the internalized postulates, an interesting open question is whether re-
moving the same limitation from [20, 21, 22, 19, 16] may similarly interfere with the
internalized postulates.

Differently from the above postulates, the soundness of CMN is affected not only
by the explicit occurrences of N, but also by the novel requirement that unresolved
conflicts yield inconsistent prototypes.

Example 9 Consider the simple N-free KB consisting of:

D v ¬E (61)
C vn D (62)
C vn E . (63)

Here the defeasible inclusions (62) and (63) together contradict the strong inclusion
(61), but they have the same priority and hence the conflict cannot be resolved in C,
therefore its prototype is inconsistent (NC v ⊥). On the contrary, the instances of
C uD, by definition, satisfy D (be they normal or not), so (63) is overridden and does
not belong to the prototype of C uD, which is consistent. This shows that CMN does
not hold. If it were applied, then N(C uD) would be made inconsistent, too, which is
difficult to justify: it is not clear why the strong facts N(C uD) v D and (61) should
not override (63) in the prototype of C uD.

There are no further reasons why CMN is not valid, as shown by the following theorem:

Theorem 5 If KB is N-free and NC is satisfiable w.r.t. KB, then CMN is sound.

15The counterexamples to ORN and RMN are similar to Example 8. They are discussed in the appendix.
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We leave two general questions open, namely, whether an overriding criterion that
does not silently remove unresolved conflicts can be harmonized with the internalized
version of CM, and whether this postulate should be restricted to consistent prototypes
only. The typicality logicALC+Tmin would deal with the above example by making
C inconsistent, that is, the conflict between T (C) v D and T (C) v E (the analogues
of (62) and (63)) is propagated from the prototype of C to all of C. In other words,
if there can be no prototypical instances, there can be no atypical instances, either,
while one would probably expect a clash between defeasible inclusions to affect typical
instances only.

We are left to discuss REFN , LLEN , and RWN . Rule REFN is nothing but axiom
(49), so it clearly holds without restrictions. Similarly, RWN is unconditionally sound:
it is a classical inference, andDLN is closed under classical reasoning. On the contrary,
LLEN is not sound, in general, although it should. In the “weak” semantics of DLN–
where distinct normality concepts are treated like different concept names – NC and
ND can be made artificially different (e.g. with axioms like > vn ∃R.(NC u¬ND)).
In the N-free fragment (where such axioms cannot be asserted) we have slightly better
properties:

Theorem 6 If KB is N-free, then LLEN is sound.

Still, C ≡ D does not imply NC ≡ ND (LLEN states only that NC and ND have
the same logical properties), although this would be a reasonable inference to have, in
order to enforce the natural principle that equivalents can be substituted for equivalents.
In the next section,DLN’s semantics is refined in order to satisfy the above equivalence
and make LLEN valid.

6 A refined semantics for DLN

Hereafter, DL refers to any classical description logic that corresponds to a fragment
of First Order Logic, such as SROIQ (the logic underlying OWL2).16

The new semantics is centred around a set of bounded interpretations that constitute
a sort of Kripke structure, used to define overriding and constrain the semantics of
normality concepts. We will see that, by the Löwenheim-Skolem theorem, this set of
interpretations is representative of all interpretations.

Let ∆ be an arbitrary but fixed infinite domain. A ∆-interpretation I = 〈∆I , ·I〉 is
any extension of a (classical) interpretation of DL such that ∆I ⊆ ∆ and NCI ⊆ CI ,
for all concepts C in DL. Given KB = S ∪ D, we say that I is a (S,∆)-premodel
iff (i) I is a classical model of S (I |= S), and (ii) NCI = NDI if CJ = DJ holds
for all ∆-interpretation J satisfying S. Premodels satisfy S and (49), as in the old
semantics [5]; additionally, they make NC and ND equivalent whenever C and D are
intensionally equivalent within the set of classical models of S bounded by ∆.

Recall that the set of normality concepts that satisfy a DI δ in a ∆-interpretation I
is:

sat(δ, I) = {NC | ∀x ∈ NCI , x 6∈ pre(δ)I or x ∈ con(δ)I} .
16Technically, we need DL to enjoy the Löwenheim-Skolem theorem.
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As in [5], δ is overridden in NC in the context of I (for short, δ is overridden in NC/I)
if δ makes the prototype of C necessarily inconsistent with the higher-priority axioms
that are satisfied and not overridden in the context of I (the definition of overriding
is recursive). The novelty is that by “necessarily”, we mean that δ is inconsistent
with those axioms in the set of all (S,∆)-premodels.17 The set of NC such that δ is
overridden in NC/I, denoted by ovdKB(δ, I), is thus defined as follows:

Definition 1 (Overriding, ovd) Let KB = S ∪ D and I be a ∆-interpretation. Then,
NC ∈ ovdKB(δ, I) (i.e. δ is overridden in NC/I) iff there exists no (S,∆)-premodel
J satisfying the following conditions:

1. NC ∈ sat(δ,J ) (NC satisfies δ in J );

2. NCJ 6= ∅ (NC is consistent);

3. for all δ′ ∈ D, if δ′ ≺ δ, then sat(δ′, I) \ ovdKB(δ′, I) ⊆ sat(δ′,J ) (in J ,
each normality concept satisfies at least all the non-overridden, higher-priority
δ′ that are satisfied in the context of I).

The subscript KB of ovd will be dropped whenever clear from context.
Now we are ready to define the semantics of DLN. A ∆-interpretation I satisfies

an axiom ε in the context ∆, in symbols I |≈∆ ε, if and only if:

1. ε is a concept inclusion, a role inclusion, or an assertion, and I |= ε ;

2. ε is a DI and, for all normality concept NC, NC ∈ sat(ε, I)∪ ovd(ε, I) (that is,
ε is satisfied by all normality concepts where it is not overridden).

Then a (S,∆)-premodel I is a ∆-model of KB = S ∪ D, in symbols I |≈∆ KB, iff,
for all δ ∈ D, I |≈∆ δ.

Finally, the notion of semantic consequence is defined as usual: an axiom ε is a
∆-consequence of KB, written KB |≈∆ ε, iff for all ∆-models I of KB, I |≈∆ ε.

The relativization to ∆ of the new semantics prevents any form of unrestricted
comprehension [27] in Definition 1 and in the definition of premodel. Relativization
introduces no ambiguity, as proved in the following theorem.

Theorem 7 Let ∆1 and ∆2 be two infinite sets. Then, KB |≈∆1
ε iff KB |≈∆2

ε.

Accordingly, we shall drop the subscript ∆ from now on. The translation of DLN

knowledge bases in classical DL needs one simple change: equation (4) should be
replaced with

KBΣ
0 = S ∪

{
NC v C | NC ∈ Σ

}
∪
{

NC ≡ ND | S |= C ≡ D, {NC,ND} ⊆ Σ
}
. (64)

The new translation is correct, as stated by the following theorem. The expression
DLΣ denotes the extension of DL with the normality concepts in Σ.

17Since the set of (S,∆)-premodels is an analogue of a Kripke structure, overriding can be regarded as
an implicit modal operator.
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Theorem 8 Let KB be a general DLN knowledge base, and let Σ be any finite set of
normality concepts containing at least all the NC that occur in KB. Let KBΣ denote
the new translation of KB where (4) is replaced by (64). For all subsumptions and
assertions α ∈ DLΣ,

KB |≈ α iff KBΣ |= α.

With this translation, all the complexity results of [5], all the results introduced in the
previous sections, and all the examples and counterexamples illustrated so far can be
immediately extended to the refined semantics.18 Moreover, the additional property
of premodels makes LLEN sound even if some normality concepts occur in the DIs,
because KB |≈ C ≡ D makes NC ≡ ND true in all premodels.

Theorem 9 For all canonical knowledge bases KB, LLEN is sound.

Therefore, under the refined semantics, the restriction of DLN to N-free knowledge
bases is almost rational with respect to the postulates in Table 4; the only difference
is that CMN applies only to consistent normality concepts, as discussed in the previ-
ous section. In general, CTN , CMN , ORN , and RMN are not valid, because DLN

does not adopt a unique, concept-independent normality citerion, cf. Example 8 and
Appendix C. The other postulates are unconditionally valid.

The examples illustrated in sections 2–5 are not affected by the change of seman-
tics, because they involve no pair of equivalent normality concepts. The following
example shows a case where the difference is visible, instead, and inferring the equiv-
alence of two normality concepts plays an important role.

Example 10 Let KB be the knowledge base consisting of:

A uB vn C , (65)
D vn ∃R.N(A uB) . (66)

The old semantics can infer both N(A u B) v C and N(B u A) v C. However, it
entails neither N(A u B) ≡ N(B u A) nor ND v ∃R.N(B u A), although it does
entail the similar inclusion ND v ∃R.N(A u B). On the contrary, both sentences are
correctly entailed by the new semantics.

7 Further related work
Nonmonotonic DLs have been obtained from virtually all nonmonotonic semantics
[17, 3, 4, 23, 33, 9, 24, 25, 20, 22]. They have been extensively compared to DLN

in terms of: conflict resolution and priority criteria; immunity to inheritance blocking
and closed-world effects; computational complexity. The results are summarized in [5,

18One of the reviewers asked to include in the paper the following rather obvious remarks. The intrinsic
complexity of deciding |≈ and the complexity of computing KBΣ are two different things. The results in
[5] concern the former; they have been proved using Theorem 8 with the smallest possible Σ, that contains
only the normality concepts occurring in KB and in α. If KBΣ had to be computed for arbitrary Σ, then
the computation time required for this purpose would obviously grow linearly with |Σ|.
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Table 1], and show thatDLN actually addresses successfully a number of issues related
to knowledge engineering needs.

Propositional Default logic, Autoepistemic logic, and Circumscription have been
given a proof-theoretic characterization by means of sequent calculi [10]. To the best
of our knowledge, this approach has never been extended to DLs. Tableaux methods
for some nonmonotonic DLs can be found, for example, in [26, 24].

Circumscribed DLs [9] are simply a syntactic variant of the traditional circum-
scription of first-order knowledge bases; so, using standard techniques similar to those
introduced in [29], one can see that their consequence relation is preferential, in the
metalevel sense captured by Table 1. Similarly, well-established arguments, similar
to those used in [34], can be used to prove that Default DLs and Autoepistemic DLs
[3, 4, 23] are not cumulative because their sceptical and credulous entailment relations
do not satisfy CM, and their credulous entailment does not satisfy CT, either. On the
other hand, Default and Autoepistemic DLs extend classical inference, so they satisfy
REF, LLE, and RW. These observation and the results of Section 3 provide a direct
comparison of the consequence relations of these DLs and DLN.

The studies of the DLs based on rational closure, lexicographic closure, and typ-
icality, such as [33, 24, 25, 20, 22], are centred around internalized versions of the
KLM postulates, instead. Differently from DLN, those logics use the same constructs
for asserting default properties and for expressing their consequences, so there is only
one internalized version of the postulates. Relative to the internalized postulates, the
typicality logic ALC + Tmin is preferential, while the other logics cited above are ra-
tional; the probabilistic logic based on lexicographic entailment, however, satisfies OR
relative to a nonstandard disjunction operator, cf. [33, Theorem 4.19].

Unfortunately, in these logics, the metalevel postulates have never been considered,
which reduces the opportunities for comparing their consequence relations with |≈.
Even if the aforementioned logics satisfy most or all of the internalized postulates,
this does not mean that the metalevel postulates are satisfied, as shown below, although
apparently the arguments provided by Kraus, Lehmann and Magidor in support of some
metalevel postulates should apply verbatim.

In the DLs based on rational and lexicographic closures, every classical (strong)
assertion C v D about the world can be encoded as a defeasible inclusion C u ¬D |∼
⊥. In this form, the inclusion cannot be possibly overridden by any other axiom, due
to the definition of rank, so it actually behaves as certain, non-defeasible information.
As a special case, using classical equivalences, every strong axiom B v ⊥ can be
equivalently expressed as B |∼ ⊥.

Now, Kraus, Lehmann and Magidor argue that given some defeasible background
knowledge KB and two strong sentences α and β, if both KB ∪ {α} and KB ∪ {β}
entail a strong sentence γ, then also KB ∪ {α ∨ γ} should entail γ (OR rule):

It is a valid principle of monotonic classical reasoning and does not
imply monotonicity, therefore we tend to accept it [...] If we think that “if
John attends the party then, normally, the evening will be great” and also
that “if Cathy attends the party then, normally, the evening will be great”
and hear that at least one of Cathy or John will attend the party, shouldn’t
we be tempted to join in? [29]

29



Concerning the first sentence of this argument, we remark en passant that we do not
see any compelling reasons for considering the maximization of the classical infer-
ences that do not yield monotonicity a more important goal than addressing knowledge
engineering needs. Still, whoever embraces the above motivations should be ready to
accept the following argument. Let KB be

A1 |∼ B1 , (67)
A2 |∼ B2 , (68)
C |∼ A1 uA2 . (69)

Moreover, let α and β, respectively, be B1 |∼ ⊥ and B2 |∼ ⊥, that are equivalent to
the strong inclusions B1 v ⊥ and B2 v ⊥. It is not hard to see that, according to the
rational closure defined in [20], both KB ∪ {α} and KB ∪ {β} entail C |∼ ⊥, that is
equivalent to the strong inclusion C v ⊥. Therefore, the argument in support of the
OR rule says that KB∪{α∨β} should entail that C is empty, as well. Note that α∨β
can be equivalently expressed using the universal role U as ∃U.B1 u ∃U.B2 |∼ ⊥.

However, rational closure yields a different result. The axiom α ∨ β is too weak to
entail the emptyness of any of A1 and A2, consequently C is given a higher rank than
A1 and A2, and due to inheritance blocking, KB ∪ {α ∨ β} does not entail that C is
empty, thereby violating the metalevel OR rule.19

Additionally, some typicality DLs do not satisfy the original, metalevel version
of RM; a counterexample can be found in Appendix F. Unfortunately, there is no
complete picture of which metalevel postulates are satisfied, although the similarities
between ALC + Tmin and circumscription make us conjecture that its consequence
relation is preferential in the metalevel sense. Then, the internalized and metalevel
properties of ALC + Tmin would perfectly match.

A few critical analyses of the KLM postulates and related properties can be found
in the literature on typicality logics. In [24, Sec. 7.2], internalized RM is shown to
be too strong in the context of the typicality logics extending ALC + T. In [12],
it is proved that several postulates related to rational consequence relations and their
representability in terms of ranked models cannot be simultaneously satisfied in the
context of Booth’s propositional typicality logic.

Recall that the DLs based on rational and lexicographic closures do not apply de-
feasible axioms to role values. This is probably due to the fact that the rational closure
defined for the propositional framework is applied to conditionals C |∼ D as if C and
D were propositional formulae. However, in first-order syntax, the intended meaning
of such expressions corresponds in fact to a sort of open conditional likeC(x) |∼ D(x).
Such conditionals have been considered by Lehmann and Magidor in a short TARK’90
paper [31]. They felt the need for additional postulates for introducing and eliminating
∃. This predicate version of the KLM theory has not been fully developed. Resuming
this line of work might be a key to overcoming the aforementioned limitation of the
DLs based on rational and lexicographic closures.

19Strictly speaking, the rational closure of DLs has been defined for ALC only, while the above example
makes use of the universal role, too. Nonetheless, this example is interesting because it shows one of the side
effects of extending the rational closure construction to richer DLs.
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Finally, we mention a preferential DL [15] that similarly to [25] adopts the syntax
based on defeasible inclusions, like the rational closure of DLs, but the semantics is
based on ranked interpretations like those of typicality logics. The emphasis is on
inductive and abductive reasoning, which are captured by two dual defeasible inclusion
operators, one of which is monotonic. The other operator is nonmonotonic and satisfies
all the internalized postulates.

8 Conclusions
The semantics of N is almost completely determined by the application of defeasible
inclusions and overriding. The underlying monotonic logic forces only the elementary
inclusions NC v C. In this respect, DLN is more similar to rational closure than
typicality logics, as the latter’s monotonic fragment gives the typicality operator several
nontrivial properties, such as (50) and the analogues of and 1 and or 2. Note that (50)
alone suffices to enforce CMT and CTT .

The application of defeasible inclusions and the overriding criterion of DLN (with
its new conflict handling approach) make |≈ a cumulative consequence relation. The
remaining rules, OR and RM, are sound under the additional assumption that consistent
concepts have at least one normal instance. Interestingly, in typicality logics, the exis-
tence of normal individuals is forced by the monotonic layer of the semantics, through
the smoothness property of the normality relation. Similarly, we plan to investigate
variants of DLN where the existence assumption is cast into the monotonic part of the
semantics. This should be done with some care, though: if too many individuals were
forced to be normal, then the undesirable closed-world assumption effects described in
[5], that affect typicality logics, might be introduced in DLN.

The above results provide an immediate comparison with the consequence relations
of Circumscribed DLs (that are preferential) and those of Default and Autoepistemic
DLs (that are not cumulative). Unfortunately, not much is known about the metalevel
postulates satisfied by the DLs based on typicality, rational closure, and lexicographic
closure (although the arguments put forward by Kraus, Lehmann and Magidor to sup-
port some of their postulates are general enough to apply in these contexts as well).
As of today, we only know that some typicality DLs and the rational closure of ALC
extended with the universal role U violate RM and OR, respectively (cf. Section 7 and
Appendix F), but this is not enough for an extended comparison at this level.

Next we studied the logical properties of N. With the goals of DLN in mind, we
argued that the boolean operators should not be unconditionally forced to commute
with N and that only the inclusion N¬C v ¬NC should always hold. Concerning the
internalized version of the KLM postulates listed in Table 4, the refined semantics of
DLN unconditionally satisfies REFN , LLEN , and RWN . Example 8, Example 9, and
Appendix C show that, in general, the other postulates of Table 4 conflict with either
the principle that as many defaults as consistently possible should be applied, or with
the principle that conflicts should be resolved in favor of higher priority axioms (with
strong inclusions as top priority axioms). Example 8 explains also that this clash be-
tween principles arises because DLN relativizes the notion of typicality, that is, it does
not assume that such notion is unique and concept-independent. Moreover, as shown
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in Example 9, CMN interferes with the novel conflict handling approach of DLN. In
particular, if NC is inconsistent, then CMN forces all concepts N(C u D) to be in-
consistent, too, thereby preventing any resolution of the conflicts in C’s prototype, no
matter which piece of strong information D is added to C (cf. Example 9). This obser-
vation raises two interesting questions: Should internalized cautious monotonicity hold
universally in a logic where unresolved conflicts yield inconsistent prototypes? What is
the right way of harmonizing the KLM postulates with the emerging knowledge engi-
neering needs? These issues could not be observed nor discussed in the original KLM
framework, because it adopted the traditional, silent conflict removal approach.

Typicality DLs preserve both the default application principle underlying default
logic and the analogue of Table 4 (with the possible exception of RM) by means
of strong axioms, based on the assumption that the notion of typicality is concept-
independent (cf. Section 5 and Appendix B). This assumption has some debatable
consequences (cf. example 6) and the authors of [25] plan to investigate logics with
multiple, relativized typicality relations. However, as argued in Appendix B, the inter-
nalized postulates are so closely related to the concept-independence assumption that
this objective is likely to be challenging. The issues related to the novel conflict res-
olution approach, instead, are not visible in typicality logics, because in general the
conflicts arising from multiple inheritance are silently removed.20

The DLs based on rational closure recalled in Section 2.4 satisfy the analogue of
Table 4 where each inclusion NC v D corresponds to a conditional C |∼ D. In this
case, the cost to be payed is the inability of applying defeasible axioms to role values
(so our counterexamples cannot be modelled). Of course, DLN could be restricted in
a similar way by allowing only N-free knowledge bases. It is interesting to note that,
with this restriction, the internalized postulates satisfied by the two frameworks become
almost identical. Using the refined semantics introduced in Sec. 6, the internalized
versions of the KLM axioms illustrated in Table 4 are all satisfied with the partial
exception of CMN , that is guaranteed to apply only to consistent concepts NC. As
discussed above, we leave it as an open question whether CMN should be applied
also to the inconsistent normality concepts produced by the novel conflict handling
approach of DLN.

We have also reported a second internalized version of the KLM axioms, cen-
tred around defeasible inclusions (cf. Table 2), that has been technically studied in
[5]. We enriched the illustration of these rules by highlighting their relationships with
Lehmann’s redefinition of default reasoning. Using the notation of [30], a DI C vn D
corresponds to a default (C : D). Since defeasible inclusions have the same role as
Reiter’s defaults as well as Lehmann’s, they have similar behavior: for all concepts
NE, a DI C vn D is either overridden in NE (and hence irrelevant) or it is applied;
in the latter case, it yields the same effects as the corresponding classical inclusion
NE u C v D. Accordingly, all the rules of Table 2 hold when their premises are not
overridden, analogously to Lehmann’s approach.

Summarizing the comparison of the above logics, the metalevel KLM postulates
are still partly unexplored, while their internalized versions are currently satisfied at a

20Only the inconsistency of C or a direct conflict such as {T (C) v A, T (C) v ¬A} can make T (C)
inconsistent.
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cost. In DLN– whose goals are not completely aligned with those of the KLM frame-
work – the dilemma is solved in favor of other desiderata, namely, full expressiveness
(i.e. supporting role restriction to normal instances), relativized typicality, and tight
correspondence between inconsistent prototypes and unresolved conflicts. It is not yet
clear to what extent the various incarnations of the KLM postulates can be harmonized
with the above desiderata, nor what the ideal tradeoff should be, for each of the possible
applications of nonmonotonic reasoning listed in [35]. The answer to these questions
probably lies in the study of first-order versions of the KLM theory supporting the
novel conflict handling approach.

Should the KLM postulates turn out to be inherently incompatible with some of
the other requirements, remarks 1 and 2 suggest an interesting direction for further re-
search, namely, designing a flexible logic whose inferences can be tuned to application
needs by including suitable axioms in the knowledge base.

Finally, note that the postulates studied here do not directly relate vn and N. Cur-
rently, the mutual relations between DIs and their effects on normality concepts can be
partially and indirectly evinced from the results applying to tables 2 and 4. A complete
account requires studying hybrid versions of the postulates, e.g. those obtained by tak-
ing the premises from Table 2 and the consequents from Table 4. This investigation,
that is needed to complete the analysis of DLN, will be the subject of future work.
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A Proofs for Section 3
Remark 3 All the proofs and results of this section hold identically under both the old
semantics [5] and the new semantics introduced in Section 6, since Theorem 8 is a
perfect replacement for the previous translation correctness result.

Theorem 1. Rules CT, CM, and LLE are sound.

Proof. Soundness of CT and CM. Let Σ be the set of normality concepts explicitly
occurring in KB ∪ {γ}. By the correctness of the classical translation ([5, Theorem 1]
and Theorem 8 for the old and new semantics, respectively), it suffices to prove

KBΣ ≡ (KB ∪ {α})Σ (70)

assuming that the first premise of CT and CM holds:

KB |≈ α . (71)

By (71) and [5, Theorem 21], S |= α. Since S is included in all KBΣ
i , it follows, by a

straightforward induction, that for all i = 0, 1, . . . , |D|,

(KB ∪ {α})Σ
i ≡ KB

Σ
i . (72)

This implies (70) by definition.
LLE. Similar: If |= α ≡ β, then for all i = 0, 1, . . . , |D|,

(KB ∪ {α})Σ
i ≡ (KB ∪ {β})Σ

i .

hence (KB ∪ {α})Σ ≡ (KB ∪ {β})Σ. The details are left to the reader.
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Theorem 2. Consider RM and the axiom γ occurring in it. Suppose that KB contains
an axiom ¬(NC v ⊥) (or equivalent formulations, cf. Sec. 2.1) for each NC occurring
in KB ∪ {γ} such that C is satisfiable w.r.t. KB. Then RM is sound.

Proof. Let Σ be the set of normality concepts occurring inKB∪{γ}. By the correctness
of the classical translation, it suffices to prove that

KBΣ ⊆ (KB ∪ {β})Σ (73)

under the theorem’s hypothesis and the assumption that the second premise of RM
(KB 6|≈ ¬β) holds, equivalently:

KBΣ 6|= ¬β . (74)

Suppose (73) does not hold (we shall derive a contradiction). Then there must be i > 0
and NC ∈ Σ such that

KBΣ
i−1 ↓≺δi ∪{δNC

i } 6|= NC v ⊥ (75)

(KBΣ
i−1 ↓≺δi) ∪ {β} ∪ {δNC

i } |= NC v ⊥ . (76)

By (75), we have two consequences: First, C must be satisfiable, otherwise NC v ⊥.
Second, δNC

i ∈ KBΣ, by construction of KBΣ. It follows, by (76), that KBΣ |=
¬β ∨ (NC v ⊥). Consequently, by the hypothesis, KBΣ |= ¬β, which contradicts
(74). This completes the soundness proof for RM.

Theorem 3. Consider OR and the axiom γ occurring in it. Suppose that KB contains
an axiom¬(NC v ⊥) (or equivalent formulations) for each NC occurring inKB∪{γ}
such that C is satisfiable w.r.t. KB. Then OR is sound.

Proof. The proof for OR and Theorem 2 are based on similar ideas. There are two
possibilities:

a) for all i > 0 and NC ∈ Σ, δNC
i ∈ (KB ∪ {α})Σ iff δNC

i ∈ (KB ∪ {β})Σ ;

b) there exists i > 0 and NC ∈ Σ such that δNC
i belongs to exactly one of (KB ∪

{α})Σ and (KB ∪ {β})Σ.

In case (a), it is not hard to see that (KB ∪ {α})Σ ≡ (KB ∪ {α ∨ β})Σ ∪ {α} and
(KB∪{β})Σ ≡ (KB∪{α∨β})Σ∪{β} (by induction on the steps of the translations).
The soundness of OR then follows from classical inferences (the details are left to the
reader).

Next we focus on case (b). Assume without loss of generality that i is the least
index that satisfies (b), and that δNC

i ∈ (KB ∪ {α})Σ \ (KB ∪ {β})Σ (the other case is
symmetric). Accordingly, by definition,

(KB ∪ {α})Σ
i−1 ↓≺δi ∪{δNC

i } 6|= NC v ⊥ (77)

(KB ∪ {β})Σ
i−1 ↓≺δi ∪{δNC

i } |= NC v ⊥ (78)
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(note that (77) implies that C is satisfiable, so KB contains an axiom equivalent to
¬(NC v ⊥)). Moreover, by the minimality of i, it can be proved that

(KB ∪ {α})Σ
i−1 ≡ (KB ∪ {α ∨ β})Σ

i−1 ∪ {α} (79)

(KB ∪ {β})Σ
i−1 ≡ (KB ∪ {α ∨ β})Σ

i−1 ∪ {β} . (80)

From (78) and (80) it follows that (KB ∪ {α ∨ β})Σ
i−1 ∪ {δNC

i } |= ¬β ∨ (NC v ⊥).
Morever, by (78) and (79), δNC

i ∈ (KB∪{α∨β})Σ. It follows that (KB∪{α∨β})Σ |=
¬β ∨ (NC v ⊥), and hence, by hypothesis, (KB ∪ {α ∨ β})Σ |= ¬β. Then, clearly,
(KB∪{α∨β})Σ |= α and KB∪{α∨β} |≈ α. By Theorem 1, the following instance
of CT is sound:

KB ∪ {α ∨ β} |≈ α KB ∪ {α ∨ β} ∪ {α} |≈ γ
KB ∪ {α ∨ β} |≈ γ .

We have already proved the first premise; the second premise is equivalent to the first
premise of OR; the conclusion is the same as OR’s. This proves the soundness of OR.

Theorem 1. Rules CT, CM, and LLE are sound.

Proof. Soundness of CT and CM. Let Σ be the set of normality concepts explicitly
occurring in KB ∪ {γ}. By the correctness of the classical translation ([5, Theorem 1]
and Theorem 8 for the old and new semantics, respectively), it suffices to prove

KBΣ ≡ (KB ∪ {α})Σ (81)

assuming that the first premise of CT and CM holds:

KB |≈ α . (82)

By (82) and [5, Theorem 21], S |= α. Since S is included in all KBΣ
i , it follows, by a

straightforward induction, that for all i = 0, 1, . . . , |D|,

(KB ∪ {α})Σ
i ≡ KB

Σ
i . (83)

This implies (81) by definition.
LLE. Similar: If |= α ≡ β, then for all i = 0, 1, . . . , |D|,

(KB ∪ {α})Σ
i ≡ (KB ∪ {β})Σ

i .

hence (KB ∪ {α})Σ ≡ (KB ∪ {β})Σ. The details are left to the reader.

B Details for Section 5.1
Here we briefly provide some details about the tight relationships between the logical
properties of T in typicality DLs and the assumption that the typicality relations ≤I
are concept-independent.
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We first recall how and 1 is satisfied thanks to this assumption. Recall that for all
interpretations I, and for all concepts C, T (C)I is the set of ≤I-minimal members of
CI , where ≤I is the unique typicality relation associated to I. Assume that x is an
instance of (T (C) u T (D))I . We must prove that, in accordance with axiom and 1,
x is also an instance of (T (C u D))I . Suppose not; we shall derive a contradiction.
Clearly, x ∈ (CuD)I , by assumption, so it must be the case that x is not a≤I-minimal
such member. Then there exists y <I x such that y ∈ (C uD)I . However, since this
implies that y ∈ CI and y <I x, it follows that x cannot be an instance of T (C)I

(which contradicts our initial assumption). Clearly, it is crucial for this argument that
the same typicality relation be used to define T (C)I and T (C uD)I .

The second step consists in verifying that without the concept-independence as-
sumption and 1 would not hold, indeed. For this purpose, assume that T (C), T (D),
and T (C uD) are defined with three different relations, that we denote with ≤IC , ≤ID,
and ≤ICuD, respectively. We construct a counterexample I where ∆I = {a, b}, a ≤IC
b, a ≤ID b, and b ≤ICuD a. It can be immediately verified that (T (C)uT (D))I = {a}
while (T (C u D))I = {b}, so and 1 is not satisfied. Note that all the orderings are
both modular and smooth, so this counterexample is compatible with all the standard
properties of the preferential and rational models of typicality.

With similar arguments, one can see that both or 2 and (50) strictly depend on
the concept-independence assumption; the details are straightforward, and left to the
reader. Moreover, if (50) does not hold, then the same happens to CMT and CTT ;
it can be shown with a direct analogue of Example 8. It follows that if one is deter-
mined to satisfy the six postulates REFT –RMT without the drawbacks of the concept-
independence assumption, then this assumption cannot be simply dropped; it must be
carefully weakened.

C Counterexamples for Section 5.2
Remark 4 All the examples of this section hold identically under both the old seman-
tics [5] and the new semantics introduced in Section 6 since Theorem 8 is a perfect
replacement for the previous translation correctness result.

Note that Example 8 applies to RMN , too. Rule RMN has the same puzzling
consequences as CMN and CTN that have been discussed in the example. The coun-
terexample to unrestricted ORN is based on similar ideas. KB is:

C vn ∃R.¬E (84)
C vn ∀R.N(C tD) (85)
C tD v A (86)

D vn ∃R.¬E (87)
D vn ∀R.N(C tD) (88)
A vn E (89)

The top-priority DIs (84)–(85) and (87)–(88) apply to N(C t D), and produce the
following consequences:

N(C tD) v ∃R.¬E
N(C tD) v ∀R.N(C tD) .
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These two inclusions (supported by strong axioms and top-priority DIs) are inconsis-
tent with N(C tD) v E and hence override (89) in N(C tD).

This does not happen with NC and ND. They can consistently satisfy all the DIs
of KB′, therefore (89) entails the following inclusions:

NC v E ND v E .

Consequently, ORN would infer N(C t D) v E, making N(C t D) unnecessarily
inconsistent. Alternative solutions are: unnecessarily overriding either the top-priority
axioms in N(C tD), or the DI (89) in NC and/or ND.

D Proofs for Section 5
Remark 5 All the proofs and results of this section hold identically under both the
old semantics [5] and the new semantics introduced in Section 6 since Theorem 8 is a
perfect replacement for the previous translation correctness result.

The proofs for Section 5 use an interesting lemma that needs the following notation:

NC ∼ ND iff for all DI δ ∈ KB, δ{NC} ∈ KB{NC} ⇔ δ{ND} ∈ KB{ND} ,

Informally speaking, NC ∼ ND means that C and D have the same prototype in KB.
Furthermore,

S[C/D]

denotes the result of substituting D for C in S. The lemma states that if C subsumes
D and NC is consistent with D, then C and D have the same prototype (NC ∼ ND).
This property is similar to RM, but in fact it can be used to prove the properties of all
the other rules in Table 4.

Lemma 1 If KB = S ∪ D is N-free and S |= D v C, then either NC ∼ ND or
KB{NC} |= NC v ¬D .

Proof. Suppose that NC 6∼ ND, and let i be the least index in the linearization of D
such that δ{NC}i ∈ KB{NC} 6⇔ δ

{ND}
i ∈ KB{ND}. We have to prove that KB{NC} |=

NC v ¬D. For Y = C,D, let X{NY } abbreviate S{NY }i−1 ↓≺δi ∪{δ
{NY }
i }, and recall

that δ{NY }i ∈ KB{NY } iff X{NY } 6|= NY v ⊥. By the minimality of i, and since (by
hypothesis) KB is N-free and S |= D v C, we have

X{ND} = X{NC}[NC/ND] \ {ND v C} ∪ {ND v D}
≡ X{NC}[NC/ND] ∪ {ND v D} . (90)

Claim 1:

X{ND} |= ND v ⊥ (91)
X{NC} 6|= NC v ⊥ (92)
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The claim is proved by contradiction: assume that X{NC} |= NC v ⊥; then also
X{NC} ∪ {NC v D} |= NC v ⊥; it follows by (90) and the fact that classical
inference is insensitive to renaming, that X{ND} |= ND v ⊥; but then δ{NC}i ∈
KB{NC} ⇔ δ

{ND}
i ∈ KB{ND} (a contradiction). This proves Claim 1.

Now, (91) and (90) imply

X{NC}[NC/ND] ∪ {ND v D} |= ND v ⊥

and hence, equivalently, X{NC}[NC/ND] |= ND v ¬D . By renaming ND back to
NC we get

X{NC} |= NC v ¬D .

Since X{NC} ⊆ KB{NC}, the Lemma immediately follows.

Since the following proofs use similar ideas, we provide full details only for CMN .

Theorem 4. If KB is N-free then CTN , ORN , and RMN are sound.

Proof. Proof for CTN . Assume that the premises of CTN hold, that is,KB |≈ NC v D
and KB |≈ N(C uD) v E. Equivalently,

KB{NC} |= NC v D , (93)

KB{N(CuD)} |= N(C uD) v E . (94)

We only have to prove that KB{NC} |= NC v E. By Lemma 1, either NC ∼ N(C u
D) or KB{NC} |= NC v ¬(C u D). The latter, by (93) and (49), implies that NC

is inconsistent; then clearly KB{NC} |= NC v E and the theorem holds. We are left
to prove it for the former case, that is, NC ∼ N(C u D), which implies (using the
hypothesis that KB is N-free):

KB{NC} =

= KB{N(CuD)}[N(C uD)/NC] \ {NC v C uD} ∪ {NC v C}
≡ KB{N(CuD)}[N(C uD)/NC] ∪ {NC v C} by (93) .

Since classical inference is monotonic and insensitive to renaming, it follows from the
above equivalence and (94) that KB{NC} |= NC v E. This completes the proof for
CTN .

Proof for ORN . Assume that the premises of ORN hold, equivalently:

KB{NC} |= NC v E , (95)

KB{ND} |= ND v E . (96)

We shall prove KB{N(CtD)} |= N(C tD) v E. By Lemma 1, applied to C v C tD
and D v C tD, there are four possibilities:

(i) NC ∼ N(C tD) and ND ∼ N(C tD);
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(ii) NC ∼ N(C tD) and KB{N(CtD)} |= N(C tD) v ¬D;

(iii) KB{N(CtD)} |= N(C tD) v ¬C and ND ∼ N(C tD);

(iv) KB{N(CtD)} |= N(C tD) v ¬C and KB{N(CtD)} |= N(C tD) v ¬D.

Proof for case (i). As before, NC ∼ N(C tD), implies:

KB{NC} ≡ KB{N(CtD)}[N(C tD)/NC] ∪ {NC v C} .

By this equivalence, (95), and renaming NC back to N(C tD):

KB{N(CtD)} ∪ {N(C tD) v C} |= N(C tD) v E . (97)

Symmetrically, by ND ∼ N(C tD), we have:

KB{N(CtD)} ∪ {N(C tD) v D} |= N(C tD) v E . (98)

By (97) and (98), KB{N(CtD)} ∪ {N(C t D) v C t D} |= N(C t D) v E; since
(N(C tD) v C tD) ∈ KB{N(CtD)}, the theorem holds in case (i).

Proof for case (ii). Since N(C tD) v C tD holds (by axiom schema (49)) and
KB{N(CtD)} |= N(C tD) v ¬D (by (ii)), we have

KB{N(CtD)} |= N(C tD) v C .

Moreover, by NC ∼ N(CtD), (97) holds, as in case (i). It follows thatKB{N(CtD)} |=
N(C tD) v E, which proves the theorem for case (ii).

Proof for case (iii). Symmetric to (ii).
Proof for case (iv). Recall that N(C tD) v C tD holds by axiom schema (49),

so (iv) implies that N(C t D) is inconsistent. As a consequence, KB{N(CtD)} |=
N(C t D) v E, so the theorem holds in case (iv), too. This completes the proof of
ORN ’s soundness.

Proof for RMN . Suppose the premises of RMN hold, equivalently:

KB{NC} |= NC v E , (99)

KB{NC} 6|= NC v ¬D . (100)

As before, (100), (49), and Lemma 1 (applied to the inclusion C u D v C) entail
NC ∼ N(C uD), which implies:

KB{N(CuD)} ≡ KB{NC}[NC/N(C uD)] ∪ {N(C uD) v C uD} .

This equivalence and (99) imply KB{N(CuD)} |= N(C uD) v E, therefore the con-
clusion of RMN holds.

Theorem 5. If KB is N-free and NC is satisfiable w.r.t. KB, then CMN is sound.

42



Proof. Assume the premises of CMN hold, therefore KB{NC} |= NC v D and
KB{NC} |= NC v E. By Lemma 1 (applied to the inclusion C u D v C), either
NC ∼ N(C uD) or KB{NC} |= NC v ¬(C uD). The latter, by the first assumption
and (49), implies that NC is inconsistent, contradicting the hypothesis. Then NC ∼
N(C uD). The rest of the proof is identical to the final part of RMN ’s proof.

Theorem 6. If KB is N-free, then LLEN is sound.

Proof. Suppose that LLEN ’s premises hold: KB |≈ NC v E and KB |≈ C ≡ D. By
[5, Theorem 21], the latter implies S |= C ≡ D, (S is the strong part of KB). By this
entailment and N-freedom:

KB{ND} = KB{NC}[NC/ND] \ {ND v C} ∪ {ND v D}
≡ KB{NC}[NC/ND] . (101)

The first assumption is equivalent toKB{NC} |= NC v E; then, by (101),KB{ND} |=
ND v E (since classical inferences are insensitive to renaming), which is equivalent
to LLEN ’s conclusion.

E Proofs for Section 6
Throughout this section we adopt the refined definitions introduced in Sec. 6.

Theorem 7. Let ∆1 and ∆2 be two infinite domains. Then, KB |≈∆1
ε iff KB |≈∆2

ε.

Proof. The thesis clearly holds if ∆1 and ∆2 have the same cardinality. So, w.l.o.g.
we assume that card(∆1) < card(∆2).

Claim 1: For each (S,∆1)-premodel I1 (resp. (S,∆2)-premodel I2) there exists
(S,∆2)-premodel I2 (resp. (S,∆1)-premodel I1) such that

• for each classical axiom α, I1 |= α iff I2 |= α;

• for each DI δ, sat(δ, I1) = sat(δ, I2) and ovd(δ, I1) = ovd(δ, I2).

Let I1 be a (S,∆1)-premodel. For the (upward) Löwenheim–Skolem theorem, there
exists an ∆2-interpretation I2 that satisfies the same FOL formulas as I1. Then, it is
straightforward to see that I2 is a (S,∆2)-premodel and for each defeasible inclusion
δ, sat(δ, I1) = sat(δ, I2). By applying the (downward) Löwenheim–Skolem theorem,
the converse can be proved similarly.

It remains to show by induction on the priority relation ≺ that for each DI δ,
ovd(δ, I1) = ovd(δ, I2). Base case, δ has maximal priority. Assume that NC ∈
ovd(δ, I1) and let J2 be (S,∆2)-premodel. By the (downward) Löwenheim–Skolem
theorem, there exists a ∆1-interpretation J1 which satisfies the same FOL formulas
as J2. Then, J1 is a (S,∆1)-premodel and, since NC ∈ ovd(δ, I1), either NC 6∈
sat(δ,J1) or J1 |= NC v⊥. However, sat(δ,J1) = sat(δ,J2) and J1 |= NC v⊥ iff
J2 |= NC v⊥. Consequently, NC ∈ ovd(δ, I2). Analogously, it can be proved that
if NC ∈ ovd(δ, I2), then NC ∈ ovd(δ, I1).
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Induction step. By hypothesis, for all δ′ ∈ D, if δ′ ≺ δ, then ovd(δ′, I1) =
ovd(δ′, I2). Assume that NC ∈ ovd(δ, I1), by definition for all (S,∆1)-premodels
J one of the following holds: (i) NC 6∈ sat(δ,J ), (ii) J |= NC v⊥, or (iii) for
some δ′ ∈ D, δ′ ≺ δ and sat(δ′, I1) \ ovdKB(δ′, I1) ⊆ sat(δ′,J ). Now, let J2

be (S,∆2)-premodel. As before, by the Löwenheim–Skolem theorem, there exists
a (S,∆1)-premodel such that sat(δ,J1) = sat(δ,J2) and J1 |= NC v⊥ iff J2 |=
NC v⊥. Since sat(δ′, I1) = sat(δ′, I2) and by induction hypothesis ovdKB(δ′, I1) =
ovdKB(δ′, I2), it follows that J2 satisfies one of (i), (ii), or (iii) too. Subsequently,
NC ∈ ovd(δ, I2). The converse can be proved analogously.

Claim 2: KB |≈∆1
ε iff KB |≈∆2

ε. Assume that KB |≈∆1
ε and let I2 be a

model KB in ∆2. By Claim 1, there exists a (S,∆1)-premodel I1 that satisfies the
same classical axiom and defeasible inclusions as I2. Consequently, the following
chain of facts hold: I1 is model of KB (by Claim 1); I1 |≈ ε (by the assumption
KB |≈∆1

ε); I2 |≈ ε (again, by Claim 1). Hence, KB |≈∆2
ε. The converse can be

proved analogously.

Theorem 8. Let KB be a general DLN knowledge base, and let Σ be any finite set of
normality concepts containing at least all the NC that occur in KB. Let KBΣ denote
the new translation of KB where (4) is replaced by (64). For all subsumptions and
assertions α ∈ DLΣ,

KB |≈ α iff KBΣ |= α.

Proof. Similar to the proof of Theorem 1 in [5]. We just report the points where
substantial changes are required.

Claim 2 of Lemma 24: If δND
i ∈ KBΣ and ND ∈ ovd(δi, I), then there exist j < i

and NE ∈ Σ such that δj ∈ KB, δNE
j 6∈ KBΣ, and NE 6∈ ovd(δj , I).

Assume the hypotheses of Claim 2 hold. The first one (δND
i ∈ KBΣ) implies (by

definition of the sequence 〈SΣ
i 〉i) that SΣ

i−1 ↓≺δi ∪{δND
i } 6|= ND v ⊥, therefore,

there exists J0 satisfying SΣ
i−1 ↓≺δi and δND

i , such that NDJ0 6= ∅. Let J be an
extension of J0 such that, for all normality concepts NH 6∈ Σ, we have that

NHJ =

{
NFJ if for some NF ∈ Σ, S |= F ≡ H
∅ otherwise

By construction, J agrees with J0 on the interpretation of all DLΣ sentences.
Since J0 satisfies SΣ

0 , this means that J satisfies S, NH v H (for all NH ∈ Σ), and
NH ≡ NH ′ (for all for all NH,NH ′ ∈ Σ such that S |= H ≡ H ′).

Concerning the normality concepts NH 6∈ Σ, we distinguish two cases. In the first
case there exists NF ∈ Σ such that S |= F ≡ H . By construction NHJ = NFJ and,
as seen above, J satisfies NF v F . Therefore, being J a model of S, we have that J
satisfies NH v H as well. Moreover, for eachG such that S |= G ≡ H , by transitivity
S |= G ≡ F , consequently NHJ = NGJ . In the second case S 6|= F ≡ H , for each
NF ∈ Σ. By construction, NHJ = ∅ and hence J trivially satisfies NH v H .
Moreover, if S |= F ≡ H , by hypothesis NFJ is empty as well – otherwise NH
would come under the previous case. Hence, J satisfies NH ≡ NF .
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So, putting all this together, we have that J is a premodel of S . Moreover, by
construction, J satisfies conditions 1 and 2 of Def. 1.21 If J satisfied also condition
3, then ND 6∈ ovd(δi, I), which contradicts the assumptions. Therefore J violates
condition 3; it follows that there must be some δj ∈ KB (j < i) and some normality
concept NE such that NE ∈ sat(δj , I) \ ovd(δj , I) but

NE 6∈ sat(δj ,J ) . (102)

This fact has two consequences. First, if NE 6∈ Σ, then NEJ = NFJ , for some
NF ∈ Σ, otherwise NE would vacuously satisfy δj , contradicting (102). Therefore,
we can assume w.l.o.g. that NE ∈ Σ. Second, since J and J0 agree on DLΣ by
construction, (102) implies J0 6|= δNE

j which is possible only if δNE
j 6∈ KBΣ. Finally,

NE 6∈ ovd(δj , I) holds because NE ∈ sat(δj , I) \ ovd(δj , I).
Lemma 25: Let I be a DLN model of KB. For all normality concepts NC ∈ Σ,

and for all δi ∈ KB, NC ∈ ovd(δi, I) iff

SΣ
i−1 ↓≺δi ∪{δNC

i } |= NC v ⊥ .

The if direction does not need to be changed whereas the only if direction only
requires to define the extension J of J0 as previously done in Claim 2 of Lemma 24.
As proved above, J is a premodel of S and the proof then continues as it was.

Theorem 9. For all canonical knowledge bases KB, LLEN is sound.

Proof. Suppose the premises of LLEN hold:

KB |≈ NC v E (103)
KB |≈ C ≡ D . (104)

By [5, Theorem 21], (104) implies S |= C ≡ D (S is the strong part of KB). Then,
for any infinite ∆, all (S,∆)-premodels J satisfy NCJ ≡ NDJ . Consequently, by
definition of ∆-model and ∆-consequence, KB |≈ NC ≡ ND, and hence, by (103),
KB |≈ ND v E (the conclusion of LLEN ).

F Typicality logic and metalevel RM
In this appendix we illustrate a counterexample to the metalevel version of RM in the
typicality logic ALC +Tmin.22 This logic minimizes the sets of atypical instances
in the models of the monotonic typicality logic ALC +T. Let KB be the following
knowledge base:

T (A) v ¬C (105)
T (B1) v ¬C (106)
T (B2) v ¬C (107)

> v ∃R.
(
(B1 u C) t (B2 uA u C)

)
(108)

21Where NC and δ are replaced by ND and δi, respectively.
22We are grateful to Laura Giordano for her friendly feedback on this example, that helped in simplifying

its presentation.
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By (108) every model of KB in ALC +Tmin contains one atypical individual x that
belongs either to B1 u ¬A u ¬B2 or to B2 uA u ¬B1.

Due to the latter case, it follows that this KB does not entail ¬(> v ∀R.A). How-
ever, it implies A uB1 uC v ⊥. These are the effects of the minimization of atypical
instances.

Now, RM says that KB ∪ {> v ∀R.A} should still entail A u B1 u C v ⊥.
However, this is not the case. In the models of the extended knowledge base, x belongs
either to B1 u A u ¬B2 or to B2 u A u ¬B1. The former case does not correspond to
any model of the original KB, and invalidates the conclusion A uB1 u C v ⊥.

This example applies also to the nonmonotonic DL obtained by applying to the
models of ALC + TR (that satisfy the internalized version of RM) the minimization
of atypical instances adopted by ALC +Tmin.

46


