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Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are
simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an inno-
vative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in
the transverse-wavevector component of a single light beam. The desired dynamics is obtained by means of a sequence of
liquid-crystal devices, which apply polarization-dependent transverse “kicks” to the photons in the beam. We engineer
our quantum walk so that it realizes a periodically driven Chern insulator, and we probe its topological features by detect-
ing the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile
platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological
systems. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.365028

1. INTRODUCTION

Quantum walks (QWs) are the deterministic quantum analogues
of classical random walks and describe particles (walkers) whose
discrete dynamics is conditioned by the instantaneous configura-
tion of their spin-like degree of freedom (the coin) [1]. QWs were
originally introduced as versatile candidates for implementing
quantum search algorithms and universal quantum computation
[2,3], and have been used to model energy transport in photo-
synthetic processes [4]. These systems bear close analogies with
electrons in periodic potentials, and it was shown that QWs can
host all possible symmetry-protected topological phases displayed
by noninteracting fermions in one or two spatial dimensions (1D
or 2D) [5]. Practical implementations of quantum walks have
been demonstrated, for instance, with ultracold atoms in optical
lattices [6–9], superconducting circuits [10], and photonic systems
[11–16].

In optical architectures, the lattice coordinates have been
encoded in different degrees of freedom of light, such as the arrival
time of a pulse at a detector [14,17,18], the optical path of the beam
[11–13,19,20], or the orbital angular momentum [15], while the
coin is typically encoded in the polarization degree of freedom or in

the entrance port of beam splitters. In a remarkable series of exper-
iments, QWs proved instrumental in studying the evolution of
correlated photons [12,13], the effects of decoherence [11,17] and
interactions [14], Anderson localization [21], quantum transport
in the presence of disorder [22], and topological phenomena in
Floquet systems [10,19,23–27]. An excellent review of the state
of the art on topological photonics and artificial gauge fields in
quantum simulators is given in Refs. [28,29] and [30], respectively.
Despite being so fruitful, experimental research on QWs has been
almost entirely focused on 1D systems. Few exceptions are the
studies presented in Refs. [14,18,31,32], where a 2D walk was
cleverly simulated by folding a 2D lattice in a 1D chain, and in
Ref. [33], where path and OAM encoding were combined. Very
recently, a continuous-time walk has been realized in a 2D array of
coupled waveguides [34,35].

Here, we report a novel approach to the photonic simulation of
quantum dynamics on 2D discrete lattices, based on the encoding
of the individual sites in the transverse wavevector (or photon
momentum), which is an inherently 2D degree of freedom. In
our specific case, we simulate a QW process. Unlike the common
approach of using distinct optical paths (as in parallel waveguides),
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in our system the photonic evolution takes place within a single
light beam that acquires a complex internal structure as it propa-
gates. The core of our photonic QW simulator is a stack of closely
spaced liquid-crystal (LC) devices, conceptually similar to standard
q -plates [36,37]. We present a proof-of-principle demonstration
of our platform by generating up to five steps of a 2D QW, with
both localized and extended initial inputs [18,38,39].

We design the unitary evolution of our QW so that it realizes a
periodically driven (Floquet) Chern insulator. To characterize this
system, we first analyze the energy dispersion of one of the bands
of the effective Hamiltonian by tracking the free displacement of
a wavepacket. Then we probe the Berry curvature of the band by
repeating the tracking under the action of a constant force that
is simulated by means of simple translations of specific plates.
Upon sampling uniformly across the whole band, the average
transverse displacement provides us a straightforward and accurate
measurement of the Chern number of that band.

2. RESULTS AND DISCUSSION

A. Quantum Walks in the Transverse Wavevector of
Light

A discrete-time QW on a square lattice in 2D results from the
repeated action of a unitary operator U on a quantum system, the
walker, and its internal spin-like degree of freedom, the coin [40].
After t discrete steps, a given initial state |90〉 evolves according to
|9(t)〉 =U t

|90〉. The step operator U typically includes a spin
rotation W , and discrete displacements of the walker along the
directions x and y , generated by spin-dependent translation oper-
ators Tx and Ty . In the simplest case, the Hilbert space of the coin
has dimension two [5,18]. In our photonic QW implementation,
we encode the coin into light polarization. For definiteness, we use

left and right circular polarizations (|L〉, |R〉) as the basis states
(with handedness defined from the point of view of the receiver),
like in our earlier realization of a QW with twisted light [15].

The main novelty of the setup considered here lies in encoding
the discrete dimensionless coordinate of the walker m= (mx ,m y )

on a 2D square lattice in the transverse momentum of light. In
particular, we use Gaussian modes whose mean transverse wavevec-
tor assumes the discrete values k⊥ =1k⊥m. The lattice constant
1k⊥ is taken to be much smaller than the longitudinal wavevector
component kz ≈ 2π/λ (where λ is the wavelength of the light), so
that these modes propagate along a direction that is only slightly
tilted with respect to the z axis. More explicitly, a generic light
mode in our setup reads as follows:

|m, φ〉 = A(x , y , z)e i[1k⊥(mx x+m y y )+kzz]
⊗ |φ〉, (1)

where A(x , y , z) is a Gaussian envelope with large beam radiusw0

in the transverse x y plane and |φ〉 denotes the polarization state
[see Sec. S1of Supplement 1 for more details]. Accordingly, arbi-
trary superpositions of these modes still form a single optical beam,
traveling approximately along the z axis. Only in the far field,
or equivalently in the focal plane of a lens, these modes become
spatially separated, and their relative distribution can be easily
readout [see Figs. 1(a) and 1(b)]. The parametersw0 and1k⊥ are
chosen so that these modes almost perfectly overlap spatially while
propagating in the whole QW apparatus (as long as |mx | and |m y |

are not too large) and have negligible crosstalk in the lens focal
plane.

The QW dynamics is implemented with the apparatus depicted
schematically in Fig. 1(a) and described in greater detail in Sec. S2
of Supplement 1. A collimated Gaussian laser beam passes through
a sequence of closely spaced LC plates, which realize both walker-
translation and coin-rotation operators. At the exit of the walk, a

(a) (b)

(c)

(d)

Fig. 1. Experimental concept and apparatus. (a) A collimated beam crosses a sequence of liquid-crystal (LC) devices. Different LC patterns implement
coin rotations (W) and spin-dependent walker discrete translations (Tx and Ty ). Each evolution step U = Ty Tx W is realized with three LC devices. The
walker position is encoded in the transverse momentum of photons, so that walker steps physically correspond to transverse kicks that tilt slightly the pho-
ton propagation direction. The transverse diffraction of light remains negligible across the whole setup, and the entire evolution effectively occurs in a sin-
gle beam. At the exit of the walk, a lens (with focal distance equal to 50 cm) Fourier-transforms transverse momentum into position, allowing us to resolve
and measure individual modes. (b) The recorded intensity pattern is a regular grid of small Gaussian spots, whose intensities are proportional to the walker’s
spatial probability distribution. We set the modes beam radius tow0 = 5 mm, which corresponds to a spot size of' 20 µm (radius) on the camera plane.
(c) LC optic-axis pattern for a g -plate that realizes a Tx operator. The spatial period3 fixes the transverse momentum lattice spacing1k⊥ = 2π/3. We use
3= 5 mm, so that1k⊥ = 1.26 mm−1, corresponding to a spacing between spots of' 63 µm on the camera. (d) Action of a single g -plate Tx on a linearly
polarized beam |90〉 = |0, 0, H〉, where |H〉 = (|L〉 + |R〉)/

√
2, for three different values of δ.
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camera placed in the focal plane of a lens reads out the field inten-
sity, providing the coordinates distribution of the walker [as in
Fig. 1(b); see also Sec. S3 of Supplement 1]. If needed, the polari-
zation components also may be straightforwardly read out (see
Fig. S2 of Supplement 1).

The elements yielding the QW dynamics are optical devices
consisting of thin layers of LC sandwiched between glass plates.
The local orientation α(x , y ) of the LC optic axis in the plane of
the plate can follow arbitrary patterns, imprinted during the fabri-
cation by a photo-alignment technique. The birefringent optical
retardation δ of the LC may instead be controlled dynamically
through an external electric field [37,41]. In the basis of circular
polarizations |L〉= (1, 0)T and |R〉= (0, 1)T , these plates act as
follows:

Lδ(x , y )≡
(

cos(δ/2) i sin(δ/2)e−2iα(x ,y )

i sin(δ/2)e 2iα(x ,y ) cos(δ/2)

)
. (2)

Such plates give rise to coin rotations or walker translations,
depending on the optic axis pattern. For example, a spin-
dependent translation operator in the x direction is obtained
when the local orientationα increases linearly along x :

α(x , y )= π x/3+ α0, (3)

where 3 is the spatial periodicity of the angular pattern and α0 is
a constant [see Fig. 1(c)]. This patterned birefringent structure is
also known as a “polarization grating,” and hence we refer here to
these devices as “g -plates” (as opposed to the q -plates used in our
previous works, which have azimuthally varying patterns [37]). By
inserting Eq. (3) in Eq. (2), one gets the action of a g -plate:

Tx ≡

(
cos(δ/2) i sin(δ/2)e−2iα0 t̂x

i sin(δ/2)e 2iα0 t̂†
x cos(δ/2)

)
, (4)

where t̂x and t̂†
x are the (spin-independent) left and right transla-

tion operators along x , acting, respectively, as t̂x |mx ,m y , φ〉 =

|mx − 1,m y , φ〉 and t̂†
x |mx ,m y , φ〉 = |mx + 1,m y , φ〉. The

spatial periodicity 3 of the LC pattern controls the momentum
lattice spacing 1k⊥ = 2π/3. It is sufficient to set 3∼w0 to
avoid mode crosstalk. The action of a single g -plate Tx is shown in
Fig. 1(d). The Ty operator is implemented analogously, imposing a
gradient of the LC angleα along y . Finally, the spin rotations W are
realized with uniform LC plates acting as standard quarter-wave
plates, that is with constant α = 0 and δ = π/2. By using these
values in Eq. (2), we get that in the basis of circular polarizations
this operator acts as

W =
1
√

2

(
1 i
i 1

)
. (5)

B. Engineering a 2D Topological Quantum Walk

Among possible protocols obtained by combining our plates, we
considered the QW generated by the unit step operator

U = Ty Tx W, (6)

with Tx and Ty tuned at the same value of δ. We implemented five
complete steps of this QW, which represents a generalization of
the alternated protocol described in Refs. [18,38]. In particular, it
realizes a periodically driven Chern insulator, exhibiting different

Fig. 2. 2D quantum walk on a square lattice. Spatial probability
distributions for a quantum walk with initial condition |0, 0, H〉 and
optical retardation δ = π/2. From top to bottom, we display results after
0, 3, and 5 evolution steps. Datapoints are averages of four independent
measures.

topological phases according to the value of the parameter δ, as we
discuss in detail below.

We start with a localized walker state |m= (0, 0), φ〉,
which physically corresponds to a wide input Gaussian beam
with radius w0 = 5 mm, propagating along the z direc-
tion. In Fig. 2 we show representative data for δ = π/2 and a
linearly polarized input. The walker distribution remains con-
centrated along the diagonal mx =−m y during the whole
evolution, as a consequence of the absence of coin rotation
operations between every action of Tx and Ty . All data show
an excellent agreement with numerical simulations. A quan-
titative comparison is provided by computing the similarity
S = (

∑
m

√
Pe Ps )

2/(
∑

m Pe
∑

m Ps ) between simulated (Ps )
and experimental (Pe ) distributions. For the data shown in Fig. 2,
we have S = (98.2± 0.5)%, (98.0± 0.3)%, (98.0± 0.2)%
for the distributions at t = 0, 3, 5, respectively. The uncertainties
on these values are the standard errors of the mean, obtained by
repeating each experiment four times. Distributions obtained for
other choices of the coin input state are reported in Figs. S5, S6 in
Supplement 1.

C. Quasi-Momentum, Quasi-Energy Bands and Group
Velocity

A QW can be regarded as the stroboscopic evolution generated by
the (dimensionless) effective Floquet Hamiltonian Heff ≡ i ln U .
The eigenvalues of Heff are therefore defined only up to integer
multiples of 2π , and are termed quasi-energies. Both U and Heff

admit a convenient representation in the reciprocal space q associ-
ated with the coordinate m of the walker. As discussed above, the
dimensionless coordinate m= k⊥/1k⊥ is encoded in our setup in
the transverse momentum k⊥ of the propagating beam. As such, its
conjugate variable corresponds physically to the position vector r⊥
in the x y transverse plane. We introduce therefore the dimension-
less quasi-momentum q=−2πr⊥/3, belonging to the square
Brillouin zone [−π, π ]2, as the conjugate variable to the walker
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(a) (b)

(c) (d)

ε

Fig. 3. Detection of the group velocity at δ = π/2. (a) Quasi-energy spectrum of the effective Hamiltonian Heff. (b) Light intensity distribution mea-
sured for a wavepacket with q0 = (π/2, π) in the upper band, where the expected group velocity is v(+) = (0,−0.5). The white marker indicates the center
of mass of the wavepacket. The radiuswg of the input beam is (0.62± 0.02) mm. In the camera plane, we measure a beam diameter of (0.32± 0.01) mm,
corresponding to ≈ 5 lattice sites. (c) Displacement of the wavepacket center of mass, extracted from images as in panel (b). Experimental results (data-
points) are compared to semiclassical predictions of uniform motion (straight continuous lines) and to complete numerical simulations (dashed lines).
Statistical uncertainties include estimated misalignment effects, as discussed in the main text. (d) Experimental mapping of the upper band’s group
velocity v(+) along x across the whole Brillouin zone, compared to a complete numerical simulation. Each datapoint is obtained from a linear fit of the
center-of-mass displacement of a Gaussian wavepacket in five steps.

position m. The negative sign in the definition of q provides the
standard representation for plane waves 〈m|q〉 ∝ e im·q. In the
space of quasi-momenta the effective Hamiltonian assumes the
diagonal form Heff(q)= ε(q)n(q) · σ . Here n(q) is a unit vector,
σ = (σx , σy , σz) represents the three Pauli matrices, and ±ε(q)
yields the quasi-energies of two bands [as shown in Fig. 3(a)]. In the
following, we will denote the complete eigenstates of the system
by |q, φ±(q)〉, where ± refers to the upper/lower band. Let us
note here that, although the operator U is obtained by cascading
independent displacements along the x and y axes, the overall evo-
lution is nonseparable; that is, the effective Hamiltonian cannot be
expressed as the sum of two contributions depending on a single
spatial coordinate. This can be seen clearly in the expression of the
quasi-energy dispersion, which is given by the following relation:

cos ε=
1
√

2

(
cos2(δ/2)− cos(δ/2) sin(δ/2)

×
(
cos(qx )+ cos(q y )

)
− sin2(δ/2) cos(qx − q y )

)
. (7)

The complete expression of the Hamiltonian is provided in Sec. S4
of the SM.

In our experiment, we can directly explore the band struc-
ture of the system by observing the propagation of walker
wavepackets |9g (q0,±)〉 that are sharply peaked around a
given quasi-momentum q0 and belong to the upper/lower band.
These wavepackets are physically generated as narrow Gaussian
light beams (with beam radius wg �3) propagating along
the direction z, centered around a specific transverse position
r⊥0 =−q03/(2π) at the input port of the QW, and with polariza-
tion |φ±(q0)〉 (see Sec. S1 of Supplement 1 for further instructions
for preparing these states). In the experiment, the choice of trans-
verse position r⊥0 is easily controlled by translating the whole

QW setup (which is mounted on a single motorized mechanical
holder) relative to the input laser beam. Having narrow Gaussian
envelopes in the conjugate space q, these wavepackets are relatively
broad Gaussians in the space of walker coordinates m. They are
(approximate) eigenstates of the system and therefore preserve
their shape during propagation. Their center of mass 〈m〉9g obeys
a dynamics that semiclassically is governed by the group velocity
v(±)(q0)=±∇qε(q)|q=q0

[15], as shown for instance in Fig. 3(b).
To measure experimentally the group velocity v(±)(q0) we inject
a wavepacket |9g (q0,±)〉 in our QW, we detect its average dis-
placement1m as a function of time-step t , and finally we perform
a linear best fit on the displacements versus time [see Fig. 3(c)].
Figure 3(d) shows a complete mapping of the x component of the
upper band’s velocity v(+) for δ = π/2. Correspondingly mea-
sured values of the y component of v(+) are reported in Fig. S7 of
Supplement 1. A systematic error that can affect our setup is the
possible misalignment of g -plates in both x and y directions. Our
present platform permits to adjust only their position along x . As
such, we can estimate the associated standard error by repeating the
experiment after realigning the plates. It is not possible, however, to
repeat the same procedure for the perpendicular direction. In this
case, after measuring the effective displacements of the Ty plates,
which are determined by fabrication imperfections, we perform
a Monte Carlo simulation of the propagation of our wavepacket,
and we estimate the standard deviation of the final center of the
mass position. The two errors are finally combined by adding their
variances to obtain the error bars in Figs. 3(c), 4(b), and 4(c).

D. Measurement of the Chern Number Through the
Anomalous Velocity

The energy bands of the effective Hamiltonian generally possess
nonzero Berry curvature. For a 2× 2 Hamiltonian like ours, the
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(a) (b) (c)

Fig. 4. Anomalous displacement for trivial and nontrivial Chern bands. (a) Quasi-energy spectra computed on a cylinder open along x for δ = π/2 (top)
and δ = 7π/8 (bottom), showing the Chern numbers ν of the various bands. In our Floquet system, edge states (shown as darker lines inside the gaps) may
be present even if all bands have vanishing Chern numbers. (b) Center-of-mass average displacement 〈1mx 〉

(−)(t) and 〈1m y 〉
(−)(t)measured for δ = π/2

in the lower band. Empty markers show results from the simple protocol U , while solid symbols show the improved results obtained by combining proto-
col U with its inverse U−1. Straight lines correspond to the theoretical results dictated by the semiclassical equations of motion, predicting an anomalous
displacement proportional to the band Chern number. (c) Center of mass displacements measured with δ = 7 π/8. Meaning of all symbols and lines as in
panel (b). Statistical uncertainties include estimated misalignment effects, as discussed in the main text.

latter may be written as [42]

�(±)xy (q)=±
1

2
n(q) ·

[
∂n
∂qx
×
∂n
∂q y

]
. (8)

The integral of the Berry curvature over the whole Brillouin zone
(BZ) gives the Chern number:

ν(±) =

∫
BZ

d2q
2π

�(±)xy (q). (9)

The Chern number ν(±) of our QW depends on the optical retar-
dation of our plates. By tuning δ, we can thus switch from a trivial
to a topological Chern insulator, as shown for example in Fig. 4(a).
Our QW is a Floquet evolution, and as such its complete topo-
logical classification is not based on the Chern number only but
involves a more complex invariant introduced in Ref. [43]. Such
classification is discussed in detail in Sec. S5 of the SM.

When a constant unidirectional force is acting on the system,
the Berry curvature contributes to the wave-packet displacement in
a direction orthogonal to the force (as in the quantum Hall effect).
Let us for definiteness consider a force Fx acting along x . Within
the adiabatic approximation, the semiclassical equations of motion
predict that a wavepacket |9g (q0,±)〉 will experience after a time
t a transverse displacement along y given by [44,45]

1m y =

∫ t

0
dτ
[
v(±)y (qτ )+ Fx�

(±)
xy (qτ )

]
, (10)

with qτ = (q0,x + Fxτ, q0,y ). The contribution to the velocity
coming from the Berry curvature is called anomalous velocity. This
result is derived in the adiabatic regime, where the (dimensionless)
force is much smaller than the bandgaps of the effective energy, so
that interband transitions can be neglected. When we consider the
overall transverse displacement of a filled band, namely when we
integrate Eq. (10) over the whole Brillouin zone, the group-velocity
term averages to zero, while the anomalous contributions add up to
the band’s Chern number [45,46] (see Sec. S4 of Supplement 1 for
a detailed derivation of this result):

〈1m y 〉
(±)
≈

Fxν
(±)

2π
t . (11)

As shown in Eq. (10), implementing a constant force in our setup
requires a linear shift in time of the quasi-momentum component

qx . This degree of freedom corresponds to the x coordinate in
real space. Hence, we impose at each step a quasi-momentum
variation by introducing a transverse spatial displacement of the
light beam between each plate. Actually, rather than displacing the
beam, it is equivalent (and much simpler) to displace the reference
system and the setup in the opposite direction. More specifically,
we shift the g -plate acting at time-step t along the x axis by an
amount 1xt = t Fx3/(2π) (see Sec. S4 in Supplement 1 for
further details). Then, we sum up the measured displacements
1m y obtained for 11× 11 distinct wave-packets |9g (q0,−)〉,
providing a homogeneous sampling of the lower band across the
whole Brillouin zone and realizing a good approximation of the
continuous integral yielding 〈1m y 〉

(−). Figure 4(b) shows the
mean displacement of wavepackets prepared in the lowest energy
band for a QW with δ = π/2, corresponding to Chern number
ν(−) = 1. The energy bandgap ≈ 1 [see Fig. 4(a)] is sufficiently
larger than the applied force Fx = π/20, thereby ensuring the
validity of the adiabatic approximation. Experimental data (empty
markers) are compared to the overall band displacement predicted
by the semiclassical theory within adiabatic regime (continuous
lines), namely 〈1m y (t)〉(−) = tν(−)Fx/(2π), 〈1mx (t)〉(−) = 0.
While 〈1m y 〉

(−) follows the expected curve quite reasonably,
the overall 〈1mx 〉

(−) is found to be not negligible. These small
differences can be understood by simulating the full dynamics
of the wave packet, beyond the single band approximation (see
Fig. S8 in Supplement 1).

To get rid of this spurious contribution, which arises mainly
from residual group-velocity effects, we consider also the “inverse
protocol” generated by the step operator U−1

=W−1T−1
x T−1

y .
The bands of U−1 have the same dispersion as the bands of U but
feature opposite Chern numbers. In this way, if filling the same
band, we expect to observe identical contributions from the group
velocity dispersion, while the anomalous displacement should
be inverted. The step operator U−1 can be easily implemented
by swapping the Ty and W operators and changing suitably their
retardation (see Sec. S4 and Fig. S2 in Supplement 1). In Fig. 4(b)
we show with filled markers the difference (divided by two) of
the data obtained with the protocols U and U−1. This procedure
reduces significantly the overall displacement along x , while in the
y direction we observe a very nice agreement between our data and
the semiclassical predictions. The measured value of the Chern
number is ν(−) = 1.19± 0.13, consistent with the theoretical
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value of 1 (errors are given at one standard deviation). A similar
behavior is also observed for larger values of the force, as shown in
Fig. S9 in Supplement 1. In Fig. 4(c), we replicate the same exper-
iment for a QW with δ = 7π/8, when the Chern numbers are
zero, even though the presence of edge states witnesses nontrivial
topology [43] (see also Sec. S5 of Supplement 1). In agreement
with the prediction of vanishing anomalous displacement, the
average wavepacket motion in both directions is observed to be
negligible, yielding a Chern number ν(−) = 0.10± 0.15.

3. CONCLUSION

In this work we have experimentally demonstrated a conceptually
new scheme for the realization of a 2D discrete-time QW, that
relies on encoding the walker and the coin systems into the trans-
verse momentum of photons and in their polarization, respectively.
The coin rotation and shift operators are implemented by suitably
engineered LC plates, whose number scales linearly with the num-
ber of time-steps. They are arranged in a compact setup, in which
multiple degrees of freedom can be controlled dynamically, such as
the plates’ optical retardation δ or their transverse position, allow-
ing one to study several QW architectures. If needed, different LC
patterns could be written onto the plates, yielding different types of
quantum dynamics. The platform accurately simulates the dynam-
ics dictated by the QW protocols that we tested, as witnessed by the
good agreement between measured distributions and numerical
results. We investigated 2D walks of both localized and extended
inputs, with and without an external force. The 2D protocol we
presented here simulates a Floquet Chern insulator. We probed the
associated topological features by preparing wave-packets that well
approximate the eigenstates of the QW Floquet Hamiltonian and
detecting their average anomalous displacement arising when a
constant force is applied to the system.

The setup has been designed to minimize the decoherence
effects caused by light diffraction and walkoff phase delays
occurring when the walker follows different paths (see Sec. S7
of Supplement 1). There is no fundamental limitation to scaling up
our setup to a much larger number of steps. Reflection losses at each
LC plate (' 15%), representing the main current limitation to the
setup efficiency, could be largely reduced to the level of 1%–2%
by applying a standard antireflection coating. As such, while our
experiment is carried out in a classical-wave regime, the proposed
setup is perfectly suitable for single-photon quantum experiments,
similarly to what was already demonstrated in Ref. [15]. These
represent one of the most appealing future prospects for our sys-
tem, particularly in view of the very large number of input and
output modes that can be easily addressed.

The demonstration of a new platform for 2D QWs opens new
avenues for the experimental study of the rich quantum dynamics
in two dimensions. In prospect, diverse directions could be investi-
gated with our platform, such as the realization of 2D lattices with
more complex topologies (for example, hexagonal), or experiments
in the multiphoton regime, for instance in the context of QW
applications to Boson sampling. Direct access to both walker posi-
tion and quasi-momentum could be exploited to study complex
dynamics in the regime of spatial disorder. By combining topology
and our dynamical control of the system parameters, we could
investigate dynamical quantum phase transitions in QWs [47–49].
Finally, by introducing losses for specific polarization states, this
platform could be used to investigate topological features of 2D
non-Hermitian systems [50–53].
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