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Abstract

The palindromization mapψ in a free monoidA∗ was introduced in 1997 by the first author in the
case of a binary alphabetA, and later extended by other authors to arbitrary alphabets. Acting on
infinite words,ψ generates the class of standard episturmian words, including standard Arnoux-
Rauzy words. In this paper we generalize the palindromization map, starting with a given code
X over A. The new mapψX mapsX∗ to the setPAL of palindromes ofA∗. In this way some
properties ofψ are lost and some are saved in a weak form. WhenX has a finite deciphering
delay one can extendψX to Xω, generating a class of infinite words much wider than standard
episturmian words. For a finite and maximal codeX overA, we give a suitable generalization of
standard Arnoux-Rauzy words, calledX-AR words. We prove that anyX-AR word is a morphic
image of a standard Arnoux-Rauzy word and we determine some suitable linear lower and upper
bounds to its factor complexity.

For any codeX we say thatψX is conservative whenψX(X∗) ⊆ X∗. We study conservative
mapsψX and conditions onX assuring thatψX is conservative. We also investigate the special
case of morphic-conservative mapsψX, i.e., maps such thatϕ ◦ ψ = ψX ◦ ϕ for an injective
morphismϕ. Finally, we generalizeψX by replacing palindromic closure withϑ-palindromic
closure, whereϑ is any involutory antimorphism ofA∗. This yields an extension of the class of
ϑ-standard words introduced by the authors in 2006.

Keywords: Palindromic closure, Episturmian words, Arnoux-Rauzy words, Generalized
palindromization map, Pseudopalindromes
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1. Introduction

A simple method of constructing all standard Sturmian wordswas introduced by the first
author in [1]. It is based on an operator definable in any free monoidA∗ and called right palin-
dromic closure, which maps each wordw ∈ A∗ into the shortest palindrome ofA∗ havingw as a
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prefix. Any given wordv ∈ A∗ can suitably ‘direct’ subsequent iterations of the preceding oper-
ator according to the sequence of letters inv, as follows: at each step, one concatenates the next
letter ofv to the right of the already constructed palindrome and then takes the right palindromic
closure. Thus, starting with any directive wordv, one generates a palindromeψ(v). The mapψ,
called palindromization map, is injective; the wordv is called the directive word ofψ(v).

Since for anyu, v ∈ A∗, ψ(uv) hasψ(u) as a prefix, one can extend the mapψ to right infinite
wordsx ∈ Aω producing an infinite wordψ(x). It has been proved in [1] that if each letter of a
binary alphabetA occurs infinitely often inx, then one can generate all standard Sturmian words.

The palindromization mapψ has been extended to infinite words over an arbitrary alphabet
A by X. Droubay, J. Justin, and G. Pirillo in [2], where the family of standard episturmian words
overA has been introduced. In the case that each letter ofA occurs infinitely often in the directive
word, one obtains the class of standard Arnoux-Rauzy words [3, 4]. A standard Arnoux-Rauzy
word over a binary alphabet is a standard Sturmian word.

Some generalizations of the palindromization map have beengiven. In particular, in [5] a
ϑ-palindromization map, whereϑ is any involutory antimorphism of a free monoid, has been
introduced. By acting with this operator on any infinite wordone obtains a class of words larger
than the class of standard episturmian, calledϑ-standard words; whenϑ is the reversal operator
one obtains the class of standard episturmian words. Moreover, the palindromization map has
been recently extended to the case of the free groupF2 by C. Kassel and C. Reutenauer in [6]. A
recent survey on palindromization map and its generalizations is in [7].

In this paper we introduce a natural generalization of the palindromization map which is con-
siderably more powerful than the mapψ since it allows to generate a class of infinite words much
wider than standard episturmian words. The generalizationis obtained by replacing the alphabet
A with a codeX overA and then ‘directing’ the successive applications of the right-palindromic
closure operator by a sequence of words of the codeX. Since any non-empty element ofX∗ can
be uniquely factorized by the words ofX, one can uniquely map any word ofX∗ to a palindrome.
In this way it is possible associate to every codeX overA a generalized palindromization map
denoted byψX. If X = A one reobtains the usual palindromization map.

General properties of the mapψX are considered in Section 3. Some properties satisfied byψ

are lost and others are saved in a weak form. In generalψX is not injective; ifX is a prefix code,
thenψX is injective. Moreover, for any codeX, w ∈ X∗, andx ∈ X one has thatψX(w) is a prefix
of ψX(wx).

In Section 4 the generalized palindromization map is extended to infinite words ofXω. In
order to define a mapψX : Xω → Aω one needs that the codeX has a finite deciphering delay,
i.e., any word ofXω can be uniquely factorized in terms of the elements ofX. For anyt ∈ Xω

the words = ψX(t) is trivially closed under reversal, i.e., ifu is a factor ofs, then so will be
its reversalu∼. If X is a prefix code, the mapψX : Xω → Aω is injective. Moreover, one can
prove that ifX is a finite code having a finite deciphering delay, then for anyt ∈ Xω the word
ψX(t) is uniformly recurrent. We show that one can generate all standard Sturmian words by the
palindromization mapψX with X = A2. Furthermore, one can also construct the Thue-Morse
word by using the generalized palindromization map relative to a suitable infinite code.

In Section 5 we consider the case of a mapψX : Xω → Aω in the hypothesis thatX is a
maximal finite code. From a basic theorem of Schützenbergerthe codeX must have a deciphering
delay equal to 0, i.e.,X has to be a maximal prefix code. Giveny = x1 · · · xi · · · ∈ Xω with xi ∈ X,
i ≥ 1, we say that the words= ψX(y) is a generalized Arnoux-Rauzy word relative toX, briefly
X-AR word, if for any wordx ∈ X there exist infinitely many integersi such thatx = xi . If X = A
one obtains the usual definition of standard Arnoux-Rauzy word.
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Some properties of the generalized Arnoux-Rauzy words are proved. In particular, anyX-AR
word s isω-power free, i.e., any non-empty factor ofshas a power which is not a factor ofs. We
prove that the numberSr (n) of right special factors ofs of lengthn for a sufficiently largen has
the lower bound given by the number of proper prefixes ofX, i.e., (card(X) − 1)/(d − 1), where
d = card(A). From this one obtains that for a sufficiently largen, the factor complexityps(n) has
the lower bound (card(X) − 1)n + c, with c ∈ Z. Moreover, we prove that for alln, ps(n) has
the linear upper bound 2 card(X)n+ b with b ∈ Z. The proof of this latter result is based on a
theorem which gives a suitable generalization of a formula of Justin [15]. A further consequence
of this theorem is that anyX-AR word is a morphic image of a standard Arnoux-Rauzy word on
an alphabet of card(X) letters. An interesting property showing that anyX-AR word sbelongs to
Xω is proved in Section 6.

In Section 6 we consider a palindromization mapψX satisfying the conditionψX(X∗) ⊆ X∗.
We say thatψX is conservative. Some general properties of conservative maps are studied and a
sufficient condition onX assuring thatψX is conservative is given. A special case of conservative
map is the following: letϕ : A∗ → B∗ be an injective morphism such thatϕ(A) = X. The map
ψX is called morphic-conservative if for allw ∈ A∗, ϕ(ψ(w)) = ψX(ϕ(w)). We prove that ifψX is
morphic-conservative, thenX ⊆ PAL, wherePAL is the set of palindromes, andX has to be a
bifix code. This implies thatψX is injective. Moreover one has thatψX is morphic-conservative
if and only if X ⊆ PAL, X is prefix, andψX is conservative. Any morphic-conservative map
ψX can be extended toXω and the infinite words which are generated are images by an injective
morphism of epistandard words. An interesting generalization of conservative map to the case
of infinite words is the following: a mapψX, with X a code having a finite deciphering delay,
is weakly conservative if for anyt ∈ Xω, ψX(t) ∈ Xω. If ψX is conservative, then it is trivially
weakly conservative, whereas the converse is not in generaltrue. We prove that ifX is a finite
maximal code, thenψX is weakly conservative.

In Section 7 we give an extension of the generalized palindromization mapψX by replacing
the palindromic closure operator with theϑ-palindromic closure operator, whereϑ is an arbitrary
involutory antimorphism inA∗. In this way one can define a generalizedϑ-palindromization map
ψϑ,X : X∗ → PALϑ, wherePALϑ is the set of fixed points ofϑ (ϑ-palindromes). IfX is a code
having a finite deciphering delay one can extendψϑ,X to Xω obtaining a class of infinite words
larger than theϑ-standard words introduced in [5]. We limit ourselves to proving a noteworthy
theorem showing thatψϑ = µϑ ◦ψ = ψϑ,X ◦µϑ whereX = µϑ(A) andµϑ is the injective morphism
defined for anya ∈ A asµϑ(a) = a if a = ϑ(a) andµϑ(a) = aϑ(a), otherwise.

2. Notation and preliminaries

Let A be a non-empty finite set, oralphabet. In the following,A∗ will denote thefree monoid
generated byA. The elements ofA are calledlettersand those ofA∗ words. The identity element
of A∗ is calledempty wordand it is denoted byε. We shall setA+ = A∗ \ {ε}. A word w ∈ A+ can
be written uniquely as a product of lettersw = a1a2 · · ·an, with ai ∈ A, i = 1, . . . , n. The integer
n is called thelengthof w and is denoted by|w|. The length ofε is conventionally 0.

Let w ∈ A∗. A word v is afactor of w if there exist wordsr andssuch thatw = rvs. A factor
v of w is proper if v , w. If r = ε (resp.s = ε), thenv is called aprefix(resp.suffix) of w. If v
is a prefix (resp. suffix) of w, thenv−1w (resp.wv−1) denotes the wordu such thatvu= w (resp.
uv= w). If v is a prefix ofw we shall writev � w and, ifv , w, v ≺ w.

A word w is calledprimitive if w , vn, for all v ∈ A∗ andn > 1. We letPRIM denote the set
of all primitive words ofA∗.
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The reversalof a wordw = a1a2 · · ·an, with ai ∈ A, 1 ≤ i ≤ n, is the wordw∼ = an · · ·a1.
One setsε∼ = ε. A palindromeis a word which equals its reversal. The set of all palindromes
over A will be denoted byPAL(A), or PAL when no confusion arises. For anyX ⊆ A∗ we set
X∼ = {x∼ | x ∈ X}. For any wordw ∈ A∗ we letLPS(w) denote the longest palindromic suffix of
w. For X ⊆ A∗, we setLPS(X) = {LPS(x) | x ∈ X}. A word w is said to berich in palindromes,
or simply rich, if it has the maximal possible number of distinct palindromic factors, namely
|w| + 1 (cf. [2]).

A right infinite word, or simplyinfinite word, w is just an infinite sequence of letters:

w = a1a2 · · ·an · · · ,whereai ∈ A, for all i ≥ 1 .

For any integern ≥ 0, w[n] will denote the prefixa1a2 · · ·an of w of lengthn. A factor of w is
either the empty word or any sequenceai · · ·a j with i ≤ j. If w = uvvv· · ·v · · · = uvω with u ∈ A∗

andv ∈ A+, thenw is calledultimately periodicandperiodicif u = ε.
The set of all infinite words overA is denoted byAω. We also setA∞ = A∗ ∪ Aω. For any

w ∈ A∞ we denote respectively by Factw and Prefw the sets of all factors and prefixes of the
wordw. ForX ⊆ A∗, PrefX denotes the set of all prefixes of the words ofX.

Let w ∈ A∞. A factor u of w is right special(resp. left special) if there exist two letters
a, b ∈ A, a , b, such thatua andub (resp. au andbu) are factors ofw. The factoru is called
bispecialif it is right and left special. Theorder of a right (resp. left) special factoru of w is the
number of distinct lettersa ∈ A such thatua ∈ Factw (resp.au∈ Factw).

Let w ∈ A∞ andu a factor ofw. An occurrenceof u in w is anyλ ∈ A∗ such thatλu � w. If
λ1 andλ2 are two distinct occurrences ofu in w with |λ1| < |λ2|, the gap between the occurrences
is |λ2| − |λ1|. For anyw ∈ A∗ and lettera ∈ A, |w|a denotes the number of occurrences of the letter
a in w.

Thefactor complexity pw of a wordw ∈ A∞ is the mappw : N → N counting for eachn ≥ 0
the distinct factors ofw of lengthn, i.e.,

pw(n) = card(An ∩ Factw).

The following recursive formula (see, for instance, [8]) allows one to compute the factor com-
plexity in terms of right special factors: for alln ≥ 0

pw(n+ 1) = pw(n) +
d
∑

j=0

( j − 1)sr( j, n), (1)

whered = card(A), andsr ( j, n) is the number of right special factors ofw of lengthn and order
j.

A morphism(resp.antimorphism) from A∗ to the free monoidB∗ is any mapϕ : A∗ → B∗

such thatϕ(uv) = ϕ(u)ϕ(v) (resp.ϕ(uv) = ϕ(v)ϕ(u)) for all u, v ∈ A∗. A morphismϕ can be
naturally extended toAω by setting for anyw = a1a2 · · ·an · · · ∈ Aω,

ϕ(w) = ϕ(a1)ϕ(a2) · · ·ϕ(an) · · · .

A codeoverA is a subsetX of A+ such that every word ofX+ admits a unique factorization
by the elements ofX (cf. [9]). A subset ofA+ with the property that none of its elements is a
proper prefix (resp. suffix) of any other is trivially a code, usually calledprefix(resp.suffix). We
recall that ifX is a prefix (resp. suffix) code, thenX∗ is right unitary (resp.left unitary), i.e., for
all p ∈ X∗ andw ∈ A∗, pw ∈ X∗ (resp.wp ∈ X∗) impliesw ∈ X∗.
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A bifix code is a code which is both prefix and suffix. A codeX is calledinfix if no word of X
is a proper factor of another word ofX. A codeX will be calledweakly overlap-freeif no word
x ∈ X can be factorized asx = spwheres andp are respectively a proper non-empty suffix of a
word x′ ∈ X and a proper non-empty prefix of a wordx′′ ∈ X. Note that the codeX = {abb, bbc}
is not overlap-free [10], but it is weakly overlap free.

A codeX has afinite deciphering delayif there exists an integerk such that for allx, x′ ∈ X,
if xXkA∗ ∩ x′X∗ , ∅ thenx = x′. The minimalk for which the preceding condition is satisfied is
called deciphering delay ofX. A prefix code has a deciphering delay equal to 0.

Let X be a set of words overA. We letXω denote the set of all infinite words

x = x1x2 · · · xn · · · ,with xi ∈ X, i ≥ 1.

As is well known [9], if X is a code having a finite deciphering delay, then anyx ∈ Xω can be
uniquely factorized by the elements ofX.

2.1. The palindromization map
We introduce inA∗ the map(+) : A∗ → PAL which associates to any wordw ∈ A∗ the

palindromew(+) defined as the shortest palindrome having the prefixw (cf. [1]). We callw(+) the
right palindromic closure of w. If Q = LPS(w) is the longest palindromic suffix of w = uQ, then
one has

w(+) = uQu∼ .

Let us now define the map
ψ : A∗ → PAL,

calledright iterated palindromic closure, or simplypalindromization map, overA∗, as follows:
ψ(ε) = ε and for allu ∈ A∗, a ∈ A,

ψ(ua) = (ψ(u)a)(+) .

The following proposition summarizes some simple but noteworthy properties of the palin-
dromization map (cf., for instance, [1, 2]):

Proposition 2.1. The palindromization mapψ over A∗ satisfies the following properties: for
u, v ∈ A∗

P1. If u is a prefix of v, thenψ(u) is a palindromic prefix (and suffix) ofψ(v).

P2. If p is a prefix ofψ(v), then p(+) is a prefix ofψ(v).

P3. Every palindromic prefix ofψ(v) is of the formψ(u) for some prefix u of v.

P4. The palindromization map is injective.

For anyw ∈ ψ(A∗) the unique wordu such thatψ(u) = w is called thedirective wordof w.
One can extendψ to Aω as follows: letw ∈ Aω be an infinite word

w = a1a2 · · ·an · · · , ai ∈ A, i ≥ 1.

Since by property P1 of the preceding proposition for alln, ψ(w[n]) is a prefix ofψ(w[n+1]), we
can define the infinite wordψ(w) as:

ψ(w) = lim
n→∞

ψ(w[n]).
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The extended mapψ : Aω → Aω is injective. The wordw is called thedirective wordof ψ(w).
The family of infinite wordsψ(Aω) is the class of thestandard episturmian words, or simply

epistandard words, over A introduced in [2](see also [11]). When each letter ofA occurs in-
finitely often in the directive word, one has the class of thestandard Arnoux-Rauzy words[3, 4].
A standard Arnoux-Rauzy word over a binary alphabet is usually calledstandard Sturmian word.
EpistandA will denote the class of all epistandard words overA.

An infinite word s ∈ Aω is calledepisturmian(resp. Sturmian) if there exists a standard
episturmian (resp. Sturmian) wordt ∈ Aω such that Facts= Factt.

The words of the setψ(A∗) are the palindromic prefixes of all standard episturmian words
over the alphabetA. They are calledepicentral words, and simplycentral [12], in the case of a
two-letter alphabet.

Example2.1. Let A = {a, b}. If w = (ab)ω, then the standard Sturmian wordf = ψ((ab)ω) having
the directive wordw is the famousFibonacci word

f = abaababaabaab· · ·

In the case of a three letter alphabetA = {a, b, c} the standard Arnoux-Rauzy word having the
directive wordw = (abc)ω is the so-calledTribonacci word

τ = abacabaabacaba· · · .

3. A generalized palindromization map

Let X be a code over the alphabetA. Any wordw ∈ X+ can be uniquely factorized in terms
of the elements ofX. So we can introduce the map

ψX : X∗ → PAL,

inductively defined for anyw ∈ X∗ andx ∈ X as:

ψX(ε) = ε, ψX(x) = x(+),

ψX(wx) = (ψX(w)x)(+).

In this way to each wordw ∈ X∗, one can uniquely associate the palindromeψX(w). We callψX

thepalindromization map relative to the code X. If X = A, thenψA = ψ.

Example3.1. Let A = {a, b}, X = {ab, ba}, andw = abbaab; X is a code so thatw can be uniquely
factorized asw = x1x2x1 with x1 = ab and x2 = ba. One has:ψX(ab) = aba, ψX(abba) =
(ababa)(+) = ababa, andψX(abbaab) = ababaababa.

The properties of the palindromization mapψ stated in Proposition 2.1 are not in general
satisfied by the generalized palindromization mapψX. For instance, takeX = {ab, abb} one has
ab ≺ abbbutψX(ab) = aba is not a prefix ofψX(abb) = abba. Property P1 can be replaced by
the following:

Proposition 3.1. Let v= x1 · · · xn with xi ∈ X, i = 1, . . . , n. For any vj = x1 · · · x j , 1 ≤ j < n one
hasψX(v j) ≺ ψX(v). If X is a prefix code, then the following holds: for u, v ∈ X∗ if u � v, then
ψX(u) � ψX(v).
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Proof. For any j = 1, . . . , n− 1 one has

ψX(x1 · · · x j x j+1) = (ψX(x1 · · · x j)x j+1)(+),

so thatψX(x1 · · · x j) ≺ ψX(x1 · · · x j+1). From the transitivity of relation≺ it follows ψX(v j) ≺
ψX(v). Let nowX be a prefix code and suppose thatu, v ∈ X∗ andu � v. We can writev = x1 · · · xn

andu = x′1 · · · x
′
m with xi , x′j ∈ X, i = 1, . . . , n and j = 1, . . . ,m. Sinceu � v, one hasv = uζ, with

ζ ∈ A∗. From the right unitarity ofX∗ it follows ζ ∈ X∗ and, therefore,x′i = xi for i = 1, . . . ,m.
From the preceding result it follows thatψX(u) � ψX(v).

Properties P2 and P3 are also in general not satisfied byψX. As regards P2, consider, for
instance, the codeX = {a, ab, bb} and the wordw = abbab. One hasψX(w) = abbaabba. Now
ψX(w) has the prefixab but not (ab)(+) = aba. As regards P3 takeX = {abab, b} one has that
ψX(abab) = ababa. Its palindromic prefixabais not equal toψX(v) for anyv ∈ X∗.

Differently fromψ, the mapψX is not in general injective. For instance, ifX is the code
X = {ab, aba}, thenψX(ab) = ψX(aba) = aba. Property P4 can be replaced by the following:

Proposition 3.2. Let X be a prefix code over A. ThenψX is injective.

Proof. Suppose that there exist wordsx1, . . . , xm, x′1, . . . x
′
n ∈ X such that

ψX(x1 · · · xm) = ψX(x′1 · · · x
′
n).

We shall prove thatm= n and that for all 1≤ i ≤ n, one hasxi = x′i .
Without loss of generality, we can supposem≤ n. Let us first prove by induction that for all

1 ≤ i ≤ m, one hasxi = x′i . Let us assume thatx1 = x′1, . . . , xk = x′k for 0 < k < m and show
that xk+1 = x′k+1. To this end let us setw = ψX(x1 · · · xm) andw′ = ψX(x′1 · · · x

′
m). In view of the

preceding proposition, we can write:

w = ψX(x1 · · · xkxk+1)ζ = (ψX(x1 · · · xk)xk+1)(+)ζ

and
w′ = ψX(x1 · · · xkx′k+1)ζ′ = (ψX(x1 · · · xk)x′k+1)(+)ζ′,

with ζ, ζ′ ∈ A∗. Now one has:

(ψX(x1 · · · xk)xk+1)(+) = ψX(x1 · · · xk)xk+1ξ

and
(ψX(x1 · · · xk)x

′
k+1)(+) = ψX(x1 · · · xk)x

′
k+1ξ

′,

with ξ, ξ′ ∈ A∗. Therefore, we obtain:

w = ψX(x1 · · · xk)xk+1ξζ = ψX(x1 · · · xk)x′k+1ξ
′ζ′ = w′.

By cancelling on the left in both the sides of previous equation the common prefixψX(x1 · · · xk)
one derives

xk+1ξζ = x′k+1ξ
′ζ′. (2)

SinceX is a prefix code one obtainsxk+1 = x′k+1. Since an equation similar to (2) holds also in
the casek = 0 one has alsox1 = x′1. Therefore,xi = x′i for i = 1, . . . ,m. We can write:

ψX(x1 · · · xm) = ψX(x1 · · · xmx′m+1 · · · x
′
n).

Since by Proposition 3.1,ψX(x1 · · · xm) � ψX(x1 · · · xmx′m+1 · · · x
′
n) it follows thatm= n.
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A partial converse of the preceding proposition is:

Proposition 3.3. Let X be a code such that X⊆ PAL∩PRIM. IfψX is injective, then X is prefix.

Proof. Let us suppose thatX is not a prefix code. Then there exist wordsx, y ∈ X such thatx , y
andy = xλ with λ ∈ A+. Sincex, y ∈ PALone hasy = xλ = λ∼x. We shall prove that the longest
palindromic suffix LPS(yyx) of the wordyyx= λ∼xyx is xyx. This would imply, asx, y ∈ PAL,
that

ψX(yyx) = (yyx)(+) = λ∼xyxλ = yyy= (yyy)(+) = ψX(yyy),

so thatψX would be not injective, a contradiction.
Let us then suppose thaty = λ∼x = αxβ, α, β ∈ A∗, and thatLPS(yyx) = xβyx. This implies

βy ∈ PAL, so that,βy = βαxβ = yβ∼ = αxββ∼. Therefore, one hasβ = β∼ and

β(αxβ) = (αxβ)β.

From a classic result of combinatorics on words [13], there exist w ∈ PRIM and integersh, k ∈ N
such thatβ = wh andy = αxβ = wk. Sincey ∈ PRIM, it follows thatk = 1, y = w, andβ = yh.
As |β| < |y|, the only possibility ish = 0, so thatβ = ε, which impliesLPS(yyx) = xyx.

4. An extension to infinite words

Let us now consider a codeX having a finite deciphering delay. One can extendψX to Xω

as follows: letx = x1x2 · · · xn · · · , with xi ∈ X, i ≥ 1. From Proposition 3.1, for anyn ≥ 1,
ψX(x1 · · · xn) is a proper prefix ofψX(x1 · · · xnxn+1) so that there exists

lim
n→∞

ψX(x1 · · · xn) = ψX(x).

Let us observe that the wordψX(x) has infinitely many palindromic prefixes. This implies that
ψX(x) is closed under reversal, i.e., if w ∈ FactψX(x), then alsow∼ ∈ FactψX(x). If X = A one
obtains the usual extension ofψ to the infinite words.

Let us explicitly remark that ifX is a code with an infinite deciphering delay one cannot
associate by the generalized palindromization map to each word x ∈ Xω a unique infinite word.
For instance, the codeX = {a, ab, bb} has an infinite deciphering delay; the wordabω admits two
distinct factorizations by the elements ofX. The first beginning withab is (ab)(bb)ω, the second
beginning witha is a(bb)ω. Using the first decomposition one can generate by the generalized
palindromization map the infinite word (ababb)ω and using the second the infinite word (abb)ω.

Let us observe that the previously defined mapψX : Xω → Aω is not in general injective.
For instance, take the codeX = {ab, aba} which has finite deciphering delay equal to 1. As it is
readily verified one hasψX((ab)ω) = ψX((aba)ω) = (aba)ω.

The following proposition holds; we omit its proof, which isvery similar to that of Proposi-
tion 3.2.

Proposition 4.1. Let X be a prefix code over A. Then the mapψX : Xω → Aω is injective.

The class of infinite words that one can generate by means of generalized palindromization
mapsψX is, in general, strictly larger than the class of standard episturmian words.
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Example4.1. Let A = {a, b} andX = {a, bb}. Let x be any infinite wordx = abbaywith y ∈ Xω.
One has thatψX(abba) = abbaabba, so that the wordψX(x) will not be balanced (cf. [12]). This
implies thatψX(x) is not a Sturmian word. LetA = {a, b, c} andX = {a, abca}. Take any word
x = abcaywith y ∈ Xω. One hasψX(abca) = abcacba. Since the prefixabca is not rich in
palindromes, it follows thatψX(x) is not an episturmian word.

Theorem 4.2. For any finite code X having finite deciphering delay and any t∈ Xω, the word
s= ψX(t) is uniformly recurrent.

Proof. Let t = x1x2 · · · xn · · · ∈ Xω, with xi ∈ X, i ≥ 1, andw be any factor ofs. Let α be the
shortest prefixα = x1 · · · xh of t such thatw ∈ Factu, with u = ψX(α). The words is trivially
recurrent since it has infinitely many palindromic prefixes.Hence,w occurs infinitely many times
in s. We will show that the gaps between successive occurrences of w in sare bounded above by
|u| + 2ℓX, whereℓX = maxx∈X |x|. This is certainly true within the prefixu: even ifw occurs inu
more than once, the gap between any two such occurrences cannot be longer than|u|.

Let us then assume we proved such bound on gaps for successiveoccurrences ofw in ψX(β),
whereβ = x1 · · · xk, h ≤ k, and let us prove it for occurrences inψX(βy), wherey = xk+1. We can
write ψX(β) = uρ = ρ∼u andψX(βy) = ψX(β)λ = λ∼ψX(β) for someλ, ρ ∈ A∗, so that

ψX(βy) = ρ∼uλ = λ∼uρ . (3)

By inductive hypothesis, the only gap we still need to consider is the one between the last oc-
currence ofw in ρ∼u and the first one inuρ as displayed in (3). If|ρ| > |λ|, then both such
occurrences ofw fall within ρ∼u = ψX(β), so that by induction we are done. So suppose|λ| > |ρ|.
As one easily verifies, the previous gap is at most equal to thegap between the two displayed
occurrences ofu in (3), namely|λ| − |ρ|. From (3) one has:

|λ| − |ρ| = |ψX(βy)| − |ψX(β)| − (|ψX(β)| − |u|) = |ψX(βy)| − 2|ψX(β)| + |u|.

Now, as
|ψX(βy)| = |(ψX(β)y)(+)| < 2(|ψX(β)| + |y|) ≤ 2|ψX(β)| + 2ℓX ,

we have|λ| − |ρ| < |u| + 2ℓX. By induction, we can conclude that gaps between successive
occurrences ofw are bounded by|u| + 2ℓX in the wholes, as desired.

Let y = y1y2 · · · yn · · · ∈ Xω, with yi ∈ X for all i ≥ 1. We say that a wordx ∈ X is persistent
in y if there exist infinitely many integersi1 < i2 < · · · < ik < · · · such thatx = yik for all k ≥ 1.

We say that the wordy = y1y2 · · ·yn · · · ∈ Xω is alternating if there exist distinct letters
a, b ∈ A, a wordλ ∈ A∗, and a sequence of indicesi0 < i1 < · · · < in < · · · , such thatλa � yi2k

andλb � yi2k+1 for all k ≥ 0.
We remark that if there exist two distinct wordsx1, x2 ∈ X, which are persistent iny and

such that{x1, x2} is a prefix code, theny is alternating. IfX is finite, then the two conditions are
actually equivalent.

Proposition 4.3. Let y= y1 · · · yn · · · ∈ Xω with yi ∈ X, i ≥ 1. If y is alternating, thenψX(y) is
not ultimately periodic.

Proof. By hypothesis, there exists an increasing sequence of indices (in)n≥0, such that for all
k ≥ 0 we haveλa � yi2k andλb � yi2k+1, for someλ ∈ A∗ and lettersa , b.
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For all n ≥ 0, letun denote the wordψX(y1 · · ·yn). We shall prove thatunλ is a right special
factor ofs= ψX(y) for anyn, thus showing thats cannot be ultimately periodic (cf. [12]).

We can choose an integerh > 0 satisfyingi2h > n. Let us setm= i2h andx1 = yi2h. Now one
has that:

um−1x1 � um ∈ Prefs.

Sinceun is a prefix and a suffix of um−1 it follows, writing x1 = λaη for someη ∈ A∗, that

unx1 = unλaη ∈ Facts.

Sincei2h+1 > i2h, settingx2 = y2h+1 = λbη′ for someη′ ∈ A∗, one derives by a similar argument
that:

unx2 = unλbη′ ∈ Facts.

From the preceding equations one has thatunλ is a right special factor ofs.

We shall now prove a theorem showing how one can generate all standard Sturmian words
by the palindromization map relative to the codeX = {a, b}2. We premise the following lemma
which is essentially a restatement of a well known characterization of central words (see for
instance [1, Proposition 9]).

Lemma 4.4. Let A= {a, b} and E be the automorphism of A∗ interchanging the letter a with b.
If z ∈ A and w∈ A∗ \ z∗, then

ψ(wz) = ψ(w)zE(z)ψ(w′) for some w′ ∈ Prefw.

Theorem 4.5. Let A= {a, b} and X= A2. An infinite word s∈ Aω is standard Sturmian if and
only if s= ψX(t) for some alternating t∈ Xω such that

t ∈ ((aa)∗ ∪ (bb)∗) {ab, ba}ω .

Proof. Let s = ψX(t); we can assume without loss of generality thatt ∈ (aa)k{ab, ba}ω with
k ∈ N. Let t[2n] be the prefix oft of length 2n (which belongs toX∗). We shall prove thatψX(t[2n])
is a central word for alln ≥ 0. This is trivial for all prefixest[2p] of t with p ≤ k. Let us now
assume, by induction, thatψX(t[2n]) is central for a givenn ≥ k and prove thatψX(t[2n+2]) is
central.

We can writet[2n+2] = t[2n]ab or t[2n+2] = t[2n]ba. Since by the inductive hypothesisψX(t[2n])
is central, there existsun ∈ A∗ such thatψX(t[2n]) = ψ(un). The wordsψX(t[2n])abandψX(t[2n])ba
are finite standard words and therefore, as is well known, prefixes of standard Sturmian words
(cf. [12, Corollary 2.2.28]). By property P2 of Proposition2.1, their palindromic closures
(ψX(t[2n])ab)(+) = ψX(t[2n]ab) and (ψX(t[2n])ba)(+) = ψX(t[2n]ba) are both central. Hence, in any
caseψX(t[2n+2]) is central so that there existsun+1 ∈ A∗ such thatψX(t[2n+2]) = ψ(un+1). Since
ψ(un) is a prefix ofψ(un+1) from Proposition 2.1 one derives thatun ≺ un+1.

We have thus proved the existence of a sequence of finite words(un)n≥0, with ui ≺ ui+1 for all
i ≥ 0, such that for alln ≥ 0 we have

ψX(t[2n]) = ψ(un) .

Letting∆ = limn→∞ un, we obtains= ψ(∆). Sincet is alternating,s is not ultimately periodic by
Proposition 4.3, so that it is a standard Sturmian word.
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Conversely, lets be a standard Sturmian word, and let∆ be its directive word. Without loss
of generality, we can assume that∆ begins ina; let n ≥ 1 be such thatanb ∈ Pref∆. If n is even,
we have

ψ(anb) =
(

(aa)
n
2 b
)(+)
=
(

(aa)
n
2 ba
)(+)
= ψX

(

(aa)
n
2 ba
)

whereas ifn is odd,

ψ(anb) =
(

(aa)
n−1
2 ab
)(+)
= ψX

(

(aa)
n−1
2 ab
)

.

Let nowz ∈ A anduzbe a prefix of∆ longer thananb. By induction, we can suppose that there
exists somew ∈ (aa)∗{ab, ba}∗ such thatψ(u) = ψX(w). From Lemma 4.4 and Proposition 2.1,
we obtain, setting ˆz= E(z), (ψ(u)zẑ)(+) � ψ(uz) � (ψ(u)zẑ)(+). Hence,

ψ(uz) = (ψ(u)zẑ)(+) = (ψX(w)zẑ)(+) = ψX(wẑz) . (4)

We have thus shown how to construct arbitrarily long prefixesof the desired infinite wordt,
starting from the Sturmian words. Sincea andb both occur infinitely often in∆, by (4) we
derive thatt is alternating.

Example4.2. In the case of Fibonacci wordf let us takeX = {ab, ba}. As it is readily verified,
one has:

f = ψX(ab(abba)ω).

Let µ be the Thue-Morse morphism, andt = µω(a) the Thue-Morse word [13]. We recall that
µ is defined byµ(a) = ab andµ(b) = ba. The next proposition will show thatt can be obtained
using our generalized palindromization map, relative to a suitable infinite code.

Let us setun = µ2n(a) andvn = E(un)b, for all n ∈ N. Thusv0 = bb, v1 = baabb, v2 =

baababbaabbabaabb, and so on.

Proposition 4.6. The set X= {a} ∪ {vn | n ∈ N} is a prefix code, and

t = ψX(av0v1v2 · · · ) .

Proof. As a consequence of [5, Theorem 8.1], we can writeun+1 = µ2n+2(a) =
(

µ2n+1(a)b
)(+)

.

Since for anyk ≥ 0 one hasµk+1(a) = µk(a)E
(

µk(a)
)

, we obtain for alln ≥ 0

un+1 = (unE(un)b)(+) = (unvn)(+) . (5)

Sinceb ≺ vi for all i ≥ 0, by (5) it followsuib ≺ uivi � ui+1, so thatuib ≺ u j whenever 0≤ i < j,
whenceE(uib) = E(ui)a ≺ E(u j). This implies that for 0≤ i < j, vi = E(ui)b is not a prefix of
v j = E(u j)b. Clearlyvi is not a prefix of anyvk with k < i, nor ofa, which in turn is not a prefix
of anyvi with i ∈ N; henceX is a prefix code.

Sinceu0 = a = ψX(a), from (5) it follows that for alln > 0, un = ψX(av0 · · ·vn−1). As
t = limn→∞ un, the assertion is proved.
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5. Generalized Arnoux-Rauzy words

Let us suppose that the codeX over the alphabetA is finite andmaximal, i.e., it is not properly
included in any other code on the same alphabet. By a classic result of Schützenberger either
X is prefix or has an infinite deciphering delay [9]. Therefore,if one wants to define a map
ψX : Xω → Aω one has to suppose that the code is a prefix maximal code.

We shall now introduce a class of infinite words which are a natural generalization in our
framework of the standard Arnoux-Rauzy words.

Let X be a finite maximal prefix code over the alphabetA of cardinalityd > 1. We say that
the words = ψX(y), with y ∈ Xω is a standardArnoux-Rauzy word relative to X, or X-AR word
for short, if every wordx ∈ X is persistent iny.

Let us observe that ifX = A we have the usual definition of standard Arnoux-Rauzy word.
Any X-AR word is trivially alternating and therefore, from Proposition 4.3 it is not ultimately
periodic. The following proposition extends toX-AR words a property satisfied by the classic
standard Arnoux-Rauzy words.

Proposition 5.1. Let s= ψX(y) be an X-AR word with y= y1 · · · yn · · · , yi ∈ X, i ≥ 1. Then for
any n≥ 0, un = ψX(y1 · · · yn) is a bispecial factor of s of order d= card(A). This implies that
every prefix of s is a left special factor of s of order d.

Proof. SinceX is a finite maximal prefix code, it is complete [9], i.e., it is represented by the
leaves of a fulld-ary tree (i.e., each node in the tree is either a leaf or has exactly degreed).
Hence,X f = A, whereX f denotes the set formed by the first letter of all words ofX. Any word
x ∈ X is persistent iny, so that, by using an argument similar to that of the proof of Proposition
4.3, one has that for anyn ≥ 0,

unX ⊆ Facts,

that impliesunX f = unA ⊆ Facts, i.e.,un is a right special factor ofsof orderd. Sinces is closed
under reversal andun is a palindrome, one has thatun is also a left special factor ofs of orderd.
Hence,un is a bispecial factor of orderd. Let u be a prefix ofs. There exists an integern such
thatu � un. From this one has thatu is a left special factor ofsof orderd.

An infinite wordsover the alphabetA isω-power freeif for every non-empty wordu ∈ Facts
there exists an integerp > 0 such thatup

< Facts. We recall the following result (see, for
instance, [14, Lemma 2.6.2]) which will be useful in the sequel:

Lemma 5.2. A uniformly recurrent word is either periodic orω-power free.

Corollary 5.3. An X-AR word isω-power free.

Proof. An X-AR word is not periodic and by Theorem 4.2 it is uniformly recurrent, so that the
result follows from the preceding lemma.

Lemma 5.4. Let X ⊆ A∗ be a finite set and setℓ = ℓX = max{|x| | x ∈ X}. Let w= w1 · · ·wm,
wi ∈ A, i = 1, . . . ,m, be a palindrome with m≥ ℓ. If there exist u, v ∈ (PrefX) \ X such that
|u| = p, |v| = q, p< q, and

wp+1 · · ·wmu = wq+1 · · ·wmv, (6)

then
w1 · · ·wm−p = α

kα′,

whereα′ ∈ Prefα, α∼ is a prefix of v of length q− p, and k≥ m
ℓ−1 − 1.
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Proof. Let u = a1 · · ·ap andv = b1 · · ·bq with ai, b j ∈ A, i = 1, . . . , p, j = 1, . . . , q. From (6) one
derives:ai = bq−p+i , i = 1, . . . , p, and

wp+1 · · ·wq(wq+1 · · ·wm) = (wq+1 · · ·wm)b1 · · ·bq−p.

From a classic result of Lyndon and Schützenberger (cf. [13]), there existλ, µ ∈ A∗ and an integer
h ≥ 0 such that:

wp+1 · · ·wq = λµ, b1 · · ·bq−p = µλ, wq+1 · · ·wm = (λµ)hλ. (7)

Hence,
wp+1 · · ·wm = (λµ)h+1λ.

Sincew ∈ PAL, one has for anyi = 1, . . . ,m, wi = wm−i+1. Hence, by taking the reversals of both
the sides of the preceding equation, one has:

w1 · · ·wm−p = wm · · ·wp+1 = (λ∼µ∼)h+1λ∼ = αkα′,

having setk = h+ 1,α = λ∼µ∼, andα′ = λ∼. Now from (7),α∼ = µλ = b1 · · ·bq−p is a prefix of
v.

From (7) one has thatm− q = h(q − p) + |λ|. Since|λ| ≤ q − p it follows that m− q ≤
h(q− p) + (q− p) = (h+ 1)(q− p) = k(q− p). Hence,k ≥ m−q

q−p . As q− p ≤ ℓ − 1 and q
ℓ−1 ≤ 1,

the result follows.

Lemma 5.5. Let X be a finite maximal prefix code over a d-letter alphabet. Then

card((PrefX) \ X) =
card(X) − 1

d− 1
.

Proof. The codeX is represented by the set of leaves of a fulld-ary tree. The elements of the
set (PrefX) \ X, i.e., the proper prefixes of the words ofX are represented by the internal nodes
of the tree. As is well known, the number of internal nodes of afull d-ary tree is equal to the
number of leaves minus 1 divided byd − 1.

In the following we letλX be the quantity

λX =
card(X) − 1

d− 1
.

Proposition 5.6. Let s be an X-AR word. There exists an integer es such that for any non-empty
proper prefix u of a word of X, one has ues < Facts. Moreover, also(u∼)es < Facts.

Proof. Any wordx ∈ X, as well as any prefix ofx, is a factor ofs. Letu be any proper non-empty
prefix of a word ofX. From Lemma 5.2 there exists an integerp such thatup

< Facts. Let eu be
the smallestp such that this latter condition is satisfied. Let us set

es = max{ev | v ∈ (PrefX) \ (X ∪ {ε})}.

We observe thates is finite sinceX is a finite code. Therefore, for anyu ∈ (PrefX) \ (X ∪ {ε})
one has

ues < Facts.

Sinces is closed under reversal it follows that also (u∼)es < Facts.
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Theorem 5.7. Let s= ψX(y), with y= y1 · · · yn · · · ∈ Xω, yi ∈ X, i ≥ 1, be an X-AR word. There
exists an integerν such that for all h≥ ν the number Sr (h) of right special factors of s of length
h has the lower boundλX, i.e.,

Sr (h) ≥ λX.

Moreover, any such right special factor of s is of degree d.

Proof. In the following we shall set for alln, un = ψX(y1 · · · yn). Let ℓ be as in Lemma 5.4,m0

be the minimal integer such thatm0

ℓ−1 − 1 ≥ es, and letn be an integer such that|un| = m ≥ m0.
Let us writeun asun = w1 · · ·wm with wi ∈ A, i = 1, . . . ,m. Since any wordx ∈ X is persistent
in y it follows thatunX ⊆ Facts. Therefore, for any proper prefixu of a wordx ∈ X one has that:
unu = w1 · · ·wmu is a right special factor ofs of orderd and lengthm+ |u|. This implies that

w|u|+1 · · ·wmu (8)

is a right special factor of lengthm. However, foru, v ∈ (PrefX) \ X, u , v, one cannot have

w|u|+1 · · ·wmu = w|v|+1 · · ·wmv.

This is trivial if |u| = |v|. If |u| < |v|, asun ∈ PAL, by Lemma 5.4 one would derive:

w1 · · ·wm−|u| = α
kα′

with k ≥ es andα equal to the reversal of a proper prefix of a word ofX, which is absurd in view
of Proposition 5.6. Thus one has that all the words of (8) withu ∈ (PrefX) \ X, are right special
factors ofs of lengthm and orderd. Since by Lemma 5.5 the number of proper prefixes of the
words ofX is λX it follows that the numberSr (m) of right special factors of lengthm has the
lower boundSr (m) ≥ λX. Thus we have proved the result for allm= |un| ≥ m0.

Let us now takeh such thatm < h < m′ = |un+1|. We can writeun+1 = ζw1 · · ·wm for some
word ζ. Since for anyu ∈ (PrefX) \ X, un+1u is a right special factor ofs of lengthm′ + |u| and
orderd, so is its suffix of lengthh. We wish to prove that all such suffixes of lengthh, for different
values ofu in (PrefX) \ X, are distinct. Indeed, if two such suffixes were equal, for instance the
ones corresponding tou, v ∈ (PrefX) \ X, then their suffixes of lengthm would be equal, i.e.,

w|u|+1 · · ·wmu = w|v|+1 · · ·wmv,

which is absurd as shown above. Hence,Sr (h) ≥ λX.

Corollary 5.8. Let s be an X-AR word. There exists an integerν such that the factor complexity
ps of s has for all n≥ ν the linear lower bound

(card(X) − 1)n+ c, with c ∈ Z.

Proof. From the preceding theorem for alln ≥ ν, s has at leastλX right special factors of length
n and orderd. Therefore, in view of (1), we can write for alln ≥ ν

ps(n) ≥ ps(ν) + (n− ν)λX(d− 1) = ps(ν) + (n− ν)(card(X) − 1)

= (card(X) − 1)n+ c,

having setc = ps(ν) − ν(card(X) − 1).
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We shall prove that the factor complexityps of an X-AR word s is linearly upper bounded
(cf. Theorem 5.15). We need some preparatory results and a theorem (cf. Theorem 5.13) which
is a suitable extension of a formula of Justin [15] to generalized palindromization maps.

We recall that a positive integerp is aperiodof the wordw = a1 · · ·an, ai ∈ A, 1 ≤ i ≤ n
if the following condition is satisfied: ifi and j are any integers such that 1≤ i, j ≤ n andi ≡ j
(mod p), thenai = a j. We shall denote byπ(w) the minimal period ofw.

Let X be a finite prefix code andℓX be the maximal length of the words ofX. We say that
ψX(x1 · · · xm) with xi ∈ X, i ≥ 1, is full if it satisfies the three following conditions:

F1. For anyx ∈ X there exists at least one integerj such that 1≤ j ≤ m andx j = x.
F2. π(ψX(x1 · · · xm)) ≥ ℓX.
F3. For allx ∈ X the longest palindromic prefix ofψX(x1 · · · xm) followed byx isψX(x1 · · · xrx−1),

whererx is the greatest integer such that 1≤ rx ≤ mandxrx = x.

Proposition 5.9. Let X be a finite prefix code, z∈ X+, and y∈ X. If ψX(z) is full, thenψX(zy) is
full.

Proof. It is clear thatψX(zy) satisfies property F1. Moreover, one has also thatπ(ψX(zy)) ≥ ℓX.
Indeed, otherwise sinceψX(z) is a prefix ofψX(zy), one would derive thatψX(z) has a period, and
then the minimal period, less thanℓX, which is a contradiction.

Let us first prove thatψX(z) = P, whereP is the longest proper palindromic prefix ofψX(zy).
Indeed, we can write:

ψX(zy) = ψX(z)yλ = Pµ,

with λ, µ ∈ A∗ andµ , ε. One has that|P| ≥ |ψX(z)| and, moreover,|P| < |ψX(z)y|. This last
inequality follows from the minimality of the length of palindromic closure. Let us then suppose
that:

P = ψX(z)y′ = (y′)∼ψX(z),

with y′ ≺ y. From the Lyndon and Schützenberger theorem there existα, β ∈ A∗ andn ∈ N such
that (y′)∼ = αβ, y′ = βα, andψX(z) = (αβ)nα. SinceψX(z) is full, from property F1 one has
that |ψX(z)| ≥ ℓX, so thatn > 0 andπ(ψX(z)) ≤ |αβ| = |y′| < ℓX which is a contradiction. Thus
P = ψX(z).

From the preceding result one derives that the longest palindromic prefix ofψX(zy) followed
by y isψX(z). Now let x , y and letQ be the longest palindromic prefix ofψX(zy) followed byx.
We can write:

ψX(zy) = ψX(z)yλ = Qxδ,

with δ ∈ A∗. From the preceding result one has|Q| ≤ |ψX(z)|. If |Q| = |ψX(z)|, then, asX is a
prefix code, one getsx = y, a contradiction. Hence,|Q| < |ψX(z)|. We have to consider two cases:
Case 1.|Qx| > |ψX(z)|. This implies

ψX(z) = Qx′ = (x′)∼Q,

with x′ ≺ x. Hence, one would derive (x′)∼ = uv, x′ = vu, andψX(z) = (uv)nu with u, v ∈ A∗ and
n > 0. This gives rise to a contradiction, asπ(ψX(z)) ≤ |uv| < ℓX.
Case 2.|Qx| ≤ |ψX(z)|. Let z = x1 · · · xm with xi ∈ X, 1 ≤ i ≤ m. In this caseQ is the longest
palindromic prefix ofψX(z) followed byx, namelyψX(x1 · · · xrx−1).

In conclusion,ψX(zy) satisfies conditions F1–F3 and is then full.
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Lemma 5.10. Let s be an X-AR word andψX(z), with z ∈ X∗, be a prefix of s. There exists
an integerνs such that if|ψX(z)| ≥ νs, then for any prefix u= ψX(zyx1 · · · xk) of s with k≥ 0,
y, x1, . . . , xk ∈ X, y, xi , 1 ≤ i ≤ k, the longest palindromic prefix of u followed by y isψX(z).

Proof. Let us denote byP the longest palindrome such thatPy is a prefix ofu. We wish to prove
that for a sufficiently largeψX(z) one has thatP = ψX(z). Let us then suppose by contradiction
that |P| > |ψX(z)|. Settingx0 = y, there exists an integeri, −1 ≤ i ≤ k− 1 such that

|ψX(zx0 · · · xi)| ≤ |P| ≤ |ψX(zx0 · · · xi+1)|, (9)

where fori = −1 the l.h.s. of the preceding equation reduces to|ψX(z)|. Let us prove that for
−1 ≤ i ≤ k, P , ψX(zx0 · · · xi). This is trivial for i = −1 andi = k as|P| < |u|. For 0≤ i ≤ k − 1
the result is a consequence of the fact thatP is followed byy whereasψX(zx0 · · · xi) is followed
by xi+1. As X is a prefix code, one would obtainy = xi+1 which is a contradiction. Hence in (9)
the inequalities are strict. If

|ψX(zx0 · · · xi)xi+1| ≤ |P| < |ψX(zx0 · · · xi+1)|,

then one would contradict the definition of palindromic closure. Thus the only possibility is that
there exists−1 ≤ i ≤ k− 1 such that

P = ψX(zx0 · · · xi)p = p∼ψX(zx0 · · · xi)

wherep is a proper non-empty prefix ofxi+1. This implies that there exist wordsλ, µ ∈ A∗ and
an integern ≥ 0 such that

p∼ = λµ, p = µλ, ψX(zx0 · · · xi) = (λµ)nλ. (10)

Let us setνs = (es + 1)ℓX, wherees has been defined in Proposition 5.6 andℓX is the maximal
length of the words ofX. Let us suppose that|ψX(z)| ≥ νs. Since

(es + 1)ℓX ≤ |ψX(z)| ≤ |ψX(zx0 · · · xi)| ≤ (n+ 1)ℓX,

one would deriven ≥ es andpn
< Factswhich contradicts (10) and this concludes the proof.

Corollary 5.11. Let s= ψX(x1x2 · · · xn · · · ) be an X-AR word, with xi ∈ X, i ≥ 1. There exists an
integer m≥ 1 such that for all n≥ m,ψX(x1 · · · xn) is full.

Proof. Sinces is anX-AR word, for anyx ∈ X there exist infinitely many integersj such that
x = x j . We can take the integerm so large that for anyx ∈ X there exists at least one integerj
such that 1≤ j ≤ m, x j = x, and, moreover, for eachx ∈ X

|ψX(x1 · · · xrx−1)| > νs.

This assures, in view of preceding lemma, that for eachx ∈ X the longest palindromic prefix
of ψX(x1 · · · xm) followed by x is ψX(x1 · · · xrx−1). Finally, there exists an integerm such that
π(ψX(x1 · · · xm)) ≥ ℓX. Indeed,s is ω-power free, so that there exists an integerp such that
for any non-empty factoru of s of length |u| < ℓX one hasup

< Facts. Thus if for all m,
π(ψX(x1 · · · xm)) < ℓX we reach a contradiction by takingm such that|ψX(x1 · · · xm)| ≥ (p+ 1)ℓX.
Hence there exists an integerm such that conditions F1–F3 are all satisfied, so thatψX(x1 · · · xm)
is full. By Proposition 5.9,ψX(x1 · · · xn) is also full, for alln ≥ m.
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Lemma 5.12. Let z∈ X∗ and y∈ X. Suppose thatψX(z) has some palindromic prefixes followed
by y, and let∆y be the longest one. Then

ψX(zy) = ψX(z)∆−1
y ψX(z) .

Proof. Since∆ = ∆y is the longest palindromic prefix ofψX(z) followed byy, it is also the longest
palindromic suffix preceded byy∼, so thaty∼∆y is the longest palindromic suffix of ψX(z)y. Thus,
lettingψX(z) = ∆yζ = ζ∼y∼∆ for a suitableζ, we obtain

ψX(zy) = (ψX(z)y)(+) = ζ∼y∼∆yζ = ψX(z)∆−1ψX(z) .

Let B be a finite alphabet andµ : B→ X be a bijection to a prefix codeX ⊆ A∗. Forz ∈ X∗,
we define a morphismϕz : B∗ → A∗ by setting for allb ∈ B

ϕz(b) = ψX(zµ(b))ψX(z)−1 = ψX(z)∆−1
µ(b), (11)

where for the last equality we used Lemma 5.12.

Theorem 5.13. Let s= ψX(x1x2 · · · xn · · · ) be an X-AR word with xi ∈ X, i ≥ 1. If z = x1 · · · xm

is such that um = ψX(z) is full andµ, ϕz are defined as above, then for any w∈ B∗ the following
holds:

ψX(zµ(w)) = ϕz(ψ(w))ψX(z) .

Proof. In the following we shall use the readily verified property that if γ : B∗ → A∗ is a
morphism andv is a suffix of u ∈ B∗, thenγ(uv−1) = γ(u)γ(v)−1.

We will prove the theorem by induction on|w|. It is trivial that for w = ε the claim is true
sinceψ(ε) = ε = ϕz(ε). Suppose that for all the words shorter thanw, the statement holds. For
|w| > 0, we setw = vbwith b ∈ B, and lety = µ(b).

First we consider the case|v|b , 0. We can then writev = v1bv2 with |v2|b = 0. SinceψX(z)
is full, so isψX(zµ(v)); henceψX(zµ(v1)) is the longest palindromic prefix (resp. suffix) followed
(resp. preceded) byy (resp.y∼) in ψX(zµ(v)). Therefore, by Lemma 5.12 we have

ψX(zµ(v)y) = ψX(zµ(v))ψX(zµ(v1))−1ψX(zµ(v)) (12)

and, asψ(v1) is the longest palindromic prefix (resp. suffix) followed (resp. preceded) byb in
ψ(v),

ψ(vb) = ψ(v)ψ(v1)−1ψ(v) . (13)

By induction we have:

ψX(zµ(v)) = ϕz(ψ(v))ψX(z) , ψX(zµ(v1)) = ϕz(ψ(v1))ψX(z) .

Replacing in (12), and by (13), we obtain

ψX(zµ(v)y) = ϕz(ψ(v))ϕz(ψ(v1))−1ϕz(ψ(v))ψX(z)

= ϕz(ψ(v)ψ(v1)−1ψ(v))ψX(z)

= ϕz(ψ(vb))ψX(z) ,

which was our aim.
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Now suppose that|v|b = 0. AsψX(z) is full, the longest palindromic prefix ofψX(z) which is
followed byy is ∆y = ψX(x1 · · · xry−1), wherery is the greatest integer such that 1≤ ry ≤ m and
xry = y. By Lemma 5.12 we obtain

ψX(zµ(v)y) = (ψX(zµ(v))y)(+) = ψX(zµ(v))∆−1
y ψX(zµ(v)) . (14)

By induction, this implies

ψX(zµ(v)y) = ϕz(ψ(v))ψX(z)∆−1
y ϕz(ψ(v))ψX(z) . (15)

From (11) it follows
ϕz(b) = ψX(zy) (ψX(z))−1 = ψX(z)∆−1

y .

Moreover, sinceψ(v) has no palindromic prefix (resp. suffix) followed (resp. preceded) byy
one has

ψ(vb) = ψ(v)bψ(v) . (16)

Thus from (15) we obtain

ψX(zµ(v)y) = ϕz(ψ(v))ϕz(b)ϕz(ψ(v))ψX(z)

= ϕz(ψ(v)bψ(v))ψX(z)

= ϕz(ψ(vb))ψX(z) ,

which completes the proof.

Corollary 5.14. Every X-AR word is a morphic image of a standard Arnoux-Rauzyword over
an alphabet B of the same cardinality as X.

Proof. Let s= ψX(x1x2 · · · xn · · · ) be anX-AR word with xi ∈ X, i ≥ 1, and letxi = µ(bi) for all
i ≥ 1, whereµ : B→ X is a bijection. By the preceding theorem, there exists an integerm ≥ 1
such that, settingz= x1 · · · xm, for all w ∈ B∗ we haveψX(zµ(w)) = ϕz(ψ(w))ψX(z). Hence for all
k ≥ m we have

ψX(x1 · · · xk) = ϕz(ψ(bm+1 · · ·bk))ψX(z) ,

so that taking the limit of both sides ask→ ∞, we get

s= ϕz(ψ(bm+1bm+2 · · ·bn · · · )) .

The assertion follows, as each letter ofB occurs infinitely often in the wordbm+1bm+2 · · ·bn · · · .

Example5.1. Let X = {aa, ab, b}, B = {a, b, c}, andµ : B→ X be defined byµ(a) = ab, µ(b) = b,
andµ(c) = aa. Let s be theX-AR word

s= ψX((abbaa)ω) = ababaaababaababaaabababaaababaababaaaba· · · .

Settingz = abbaa, it is easy to verify that the prefixψX(z) = ababaaababaof s is full, so that
s= ϕz (ψ ((abc)ω)), whereϕz(a) = ababaaababa,ϕz(b) = ababaaab, andϕz(c) = ababaa.

Let s = ψX(x1 · · · xn · · · ) be anX-AR word with xi ∈ X, i ≥ 1, and letm0 be the minimal
integer such thatum0 = ψX(x1 · · · xm0) is full. For all j ≥ 0 we shall set

α j = um0+ j and n j = |α j |.
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Theorem 5.15. Let s be an X-AR word. Then the factor complexity of s is linearly upper
bounded. More precisely for all n≥ n0

ps(n) ≤ 2 card(X)n− card(X).

Proof. We shall first prove that for allj ≥ 0

ps(n j) ≤ card(X)n j − card(X). (17)

Let µ be a bijection of an alphabetB andX. We setzj = x1 · · · xm0+ j and consider the morphism
ϕzj : B∗ → A∗ defined, in view of (11), for allb ∈ B as:

ϕzj (b) = α j∆
−1
µ(b),

whereα j = ψX(zj) and∆µ(b) is the longest palindrome such that∆µ(b)µ(b) (resp. (µ(b))∼∆µ(b)) is
a prefix (resp. suffix) of α j .

Sinces is uniformly recurrent, there exists an integerp such that all factors ofs of lengthn j

are factors ofα j+p. Hence, there existp lettersb1, . . . , bp ∈ Bsuch thatα j+p = ψX(zjµ(b1) · · ·µ(bp)).
By Theorem 5.13 one has

ψX(zjµ(b1) · · ·µ(bp)) = α j∆
−1
µ(b1)α j∆

−1
µ(b2) · · ·α j∆

−1
µ(bp)α j .

Thusα j coversα j+p and the overlaps between two consecutive occurrences ofα j in α j+p are
given by∆µ(bi ), 1 ≤ i ≤ p. Any factor of s of lengthn j will be a factor of two consecutive
overlapping occurrences ofα j , i.e., of

α j∆
−1
µ(bi )

α j , i = 1, . . . , p. (18)

For any 1≤ i ≤ p the number of distinct factors in (18) is at mostn j − |∆µ(bi )| ≤ n j − 1. Since
µ(B) = X and the number of distinct consecutive overlapping occurrences ofα j in α j+p is at most
card(X), equation (17) is readily derived.

Now let n be any integern ≥ n0 such thatn , nk for all k ≥ 0. There exists an integer
j such thatn j < n < n j+1. Sinces is not periodic, by a classic result of Morse and Hedlund
(see [12, Theorem 1.3.13]) the factor complexityps is strictly increasing withn. Moreover, as
n j+1 < 2n j < 2n, one has by (17):

ps(n) < ps(n j+1) ≤ card(X)n j+1 − card(X) < 2 card(X)n− card(X),

which concludes the proof.

6. Conservative maps

Let A be an alphabet of cardinalityd > 1 and letX be a code overA. We say that the
palindromization mapψX is conservativeif

ψX(X∗) ⊆ X∗. (19)

WhenX = A, the palindromization mapψ is trivially always conservative. In the general case
ψX may be non conservative.



6 CONSERVATIVE MAPS 20

Example6.1. Let X = {ab, ba}. One hasψX(ab) = aba< X∗, so thatψX is not conservative. In
the caseY = {aa, bb} one easily verifies thatψY(Y∗) ⊆ Y∗. If Z = {a, ab} one has that for any
wordw ∈ Z∗, ψZ(w) ∈ aA∗ \ A∗bbA∗, with A = {a, b}, so that it can be uniquely factorized by the
elements ofZ. This implies thatψZ is conservative.

The following result shows that a prefix code having a conservative palindromization map
allows a natural generalization of properties P2 and P3 of Proposition 2.1, in addition to the ones
for P1 and P4 shown in Propositions 3.1 and 3.2.

Proposition 6.1. Let X be a prefix code such thatψX is conservative, and p,w ∈ X∗ with p a
prefix ofψX(w). The following hold:

1. p(+) is a prefix ofψX(w) and p(+) ∈ X∗.
2. If p is a palindrome, then p= ψX(u) for some prefix u∈ X∗ of w.

Proof. Let w = x1x2 · · · xk with xi ∈ X for 1 ≤ i ≤ k, and letv be the longest prefix ofw in X∗

such thatψX(v) is a prefix ofp; we can writev = x1 · · · xn or setn = 0 if v = ε. Thusp = ψX(v)ζ
with ζ ∈ A∗. SinceψX is conservative one hasψX(v) ∈ X∗. Moreover, asX is a prefix code,X∗

is right unitary, so that one hasζ ∈ X∗. If ζ = ε, thenp = ψX(v) = p(+) and there is nothing to
prove. Let us then supposeζ , ε. SinceψX(v)xn+1, as well asp, is a prefix ofψX(w) andX is a
prefix code, one has thatζ ∈ xn+1X∗. ThusψX(v)xn+1 is a prefix ofp.

From the definition of palindromic closure it follows that|(ψX(v)xn+1)(+)| ≤ |p(+)|. By the
maximality ofn, we also obtain thatp is a (proper) prefix of (ψX(v)xn+1)(+) = ψX(x1 · · · xn+1), so
that |p(+)| ≤ |(ψX(v)xn+1)(+)|. Thus|p(+)| = |(ψX(v)xn+1)(+)|. Sincep(+) is a palindrome of minimal
length havingψX(v)xn+1 as a prefix, from the uniqueness of palindromic closure it follows that
p(+) = ψX(vxn+1). Hence,p(+) is a prefix ofψX(w), andp(+) ∈ X∗ asψX is conservative.

If p is a palindrome andp , ψX(v), then the argument above shows thatp(+) = p = ψX(vxn+1),
which is absurd by the maximality ofn.

The following proposition gives a sufficient condition which assures thatψX is conservative.

Proposition 6.2. Let X ⊆ PAL be an infix and weakly overlap-free code. ThenψX is conserva-
tive.

Proof. We shall prove that for alln ≥ 0 one has thatψX(Xn) ⊆ X∗. The proof is by induction on
the integern. The base of the induction is true. Indeed the casen = 0 is trivial and forn = 1,
sinceX ⊆ PAL, one hasψX(X) = X. Let us then suppose the result true up ton and prove it
for n + 1. Let w ∈ Xn andx ∈ X. By induction we can writeψX(w) = x′1 · · · x

′
m, with x′i ∈ X,

1 ≤ i ≤ m. Thus:
ψX(wx) = (ψX(w)x)(+) = (x′1 · · · x

′
mx)(+). (20)

Let Q denote the longest palindromic suffix of x′1 · · · x
′
mx. Sincex ∈ PAL we have|Q| ≥ |x|. We

have to consider two cases:

Case 1.|Q| = |x|. From (20) andX ⊆ PAL, it follows:

ψX(wx) = (x′1 · · · x
′
mx)(+) = x′1 · · · x

′
mxx′m · · · x

′
1.

ThusψX(wx) ∈ X∗ and in this case we are done.

Case 2.|Q| > |x|. One has:
x′1 · · · x

′
mx = ζQ.
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Since|Q| > |x| andx,Q ∈ PAL, there exists 1≤ j ≤ m such thatx′j = λµ, λ, µ ∈ A∗ and

µx′j+1 · · · x
′
mx = Q = xη,

with η ∈ A∗. We shall prove thatλ = ε. Indeed, suppose thatλ , ε. We have to consider the
following subcases:

1) |x| ≤ |µ|. This implies thatx is a proper factor ofx′j which is a contradiction, sinceX is an infix
code.

2) |x| ≥ |µx′j+1|. In this case one has thatx′j+1 is a factor ofx which is a contradiction.

3) |µ| < |x| < |µx′j+1|. This implies thatx = µp, wherep is a proper prefix ofx′j+1. Sinceµ is a
proper suffix of x′j we reach a contradiction with the hypothesis thatX is weakly overlap-free.

Hence,λ = ε andµ = x = x′j . Therefore, one has, asX ⊆ PAL,

ψX(wx) = (x′1 · · · x
′
mx)(+) = x′1 · · · x

′
j−1xx′j+1 · · · x

′
mxx′j−1 · · · x

′
1 ∈ X∗,

which concludes the proof.

Example6.2. Let X = {bab, bcb}. One has thatX ⊆ PAL. Moreover,X is an infix and weakly
overlap-free code. From the preceding proposition one has thatψX is conservative.

Let us observe that Proposition 6.2 can be proved by replacing the requirementX ⊆ PAL
with the two conditions:X = X∼ andψX(X) ⊆ X∗. However, the following lemma shows that if
the codeX is prefix these two latter conditions are equivalent toX ⊆ PAL.

Lemma 6.3. Let X be a prefix code. Then one has:

X ⊆ PAL⇐⇒ X = X∼ and ψX(X) ⊆ X∗.

Proof. If X ⊆ PAL, then trivially X = X∼. Moreover, for anyx ∈ X one hasψX(x) = x(+) = x ∈
X∗. Let us prove the converse. Suppose thatx ∈ X is not a palindrome. We can writex = λQ,
whereQ = LPS(x) is the longest palindromic suffix of x andλ , ε. One has, by hypothesis:

ψX(x) = x(+) = λQλ∼ = xλ∼ ∈ X∗.

SinceX is a prefix code, from the right unitarity ofX∗ one hasλ∼ ∈ X∗. As X = X∼ it follows
λ ∈ X∗. Sincex = λQ andX is a prefix code, one derivesλ = x andQ = ε which is absurd as
|Q| > 0.

Proposition 6.4. Let X⊆ PAL be a prefix code. Then:

ψX is conservative⇐⇒ for all x ∈ X, LPS(ψX(X∗)x) ⊆ X∗.

Proof. (⇒) Let w ∈ X∗. If w = ε, sinceX ⊆ PAL, one hasLPS(x) = x ∈ X. Supposew , ε, so
thatw = x1 · · · xn, with xi ∈ X, i = 1, . . . , n. Let x ∈ X andQ be the longest palindromic suffix of
ψX(x1 · · · xn)x. We can write:ψX(x1 · · · xn)x = δQ with δ ∈ A∗ and

ψX(x1 · · · xnx) = (ψX(x1 · · · xn)x)(+) = δQδ∼ = ψX(x1 · · · xn)xδ∼.
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SinceψX is conservative, one hasψX(x1 · · · xn), ψX(x1 · · · xnx) ∈ X∗, so that asX is a prefix code
from the preceding equation one derivesδ∼ ∈ X∗ and thenδ ∈ X∗ becauseX ⊆ PAL. Finally,
from the equationψX(x1 · · · xn)x = δQ it follows Q ∈ X∗ asX is a prefix code.

(⇐) We shall prove that for alln ≥ 0 one hasψX(Xn) ⊆ X∗. The result is trivial ifn = 0. For
n = 1 one has that for anyx ∈ X, ψX(x) = x(+) = x asX ⊆ PAL, so thatψX(X) ⊆ X∗. Let us now
by induction suppose thatψX(Xn) ⊆ X∗ and prove thatψX(Xn+1) ⊆ X∗. Let x1, . . . , xn, x ∈ X and
let Q denote the longest palindromic suffix of ψX(x1 · · · xn)x, so that

ψX(x1 · · · xn)x = δQ,

with δ ∈ A∗. The codeX is bifix becauseX is a prefix code andX ⊆ PAL. Since by hypothesis
Q, ψX(x1 · · · xn) ∈ X∗, from the preceding equation and the left unitarity ofX∗, one getsδ ∈ X∗.
Moreover,δ∼ ∈ X∗ sinceX ⊆ PAL. Hence, one has:

ψX(x1 · · · xnx) = (ψX(x1 · · · xn)x)(+) = δQδ∼ ∈ X∗,

which concludes the proof.

Let X be a code over the alphabetB andϕ : A∗ → B∗ an injective morphism such that
ϕ(A) = X. We say thatψX is morphic-conservativeif for any w ∈ A∗ one has

ϕ(ψ(w)) = ψX(ϕ(w)). (21)

Example6.3. Let A = {a, b}, B = {a, b, c}, X = {c, bab}, andϕ : A∗ → B∗ be the injective
morphism defined byϕ(a) = c andϕ(b) = bab. Let w = abaa; one hasψ(w) = abaabaaba,
ϕ(w) = cbabcc, and

ϕ(ψ(w)) = cbabccbabccbabc= ψX(ϕ(w)).

As a consequence of Corollary 6.11, one can prove thatψX is morphic-conservative.

Lemma 6.5. If ψX is morphic-conservative, then it is conservative.

Proof. Let u ∈ X∗. The result is trivial ifu = ε. If u is not empty let us writeu = x1 · · · xn, with
xi ∈ X, i = 1, . . . , n. Sinceϕ is injective, letai ∈ A be the unique letter such thatxi = ϕ(ai).
Therefore,u = ϕ(a1 · · ·an). By (21) one hasψX(u) = ϕ(ψ(a1 · · ·an)) ∈ X∗, which proves the
assertion.

The converse of the preceding lemma is not true in general. Indeed, from the following
proposition, one has that ifψX is morphic-conservative, then the words ofX have to be palin-
dromes. However, as we have seen in Example 6.1, there areψX which are conservative with a
codeX whose words are not palindromes.

Proposition 6.6. If ψX is morphic-conservative, then X⊆ PAL and X has to be a bifix code.

Proof. Let a be any letter ofA and setx = ϕ(a). One has from (21) thatϕ(ψ(a)) = ϕ(a) =
x = ψX(ϕ(a)) = ψX(x) = x(+). Hence,x = x(+) ∈ PAL, so that all the words ofX have to be
palindromes.

Let us now prove thatX is a suffix code. Indeed, suppose by contradiction that there exist
wordsx, y ∈ X such thaty = λx with λ ∈ A+. Let a, b ∈ A be letters such thatϕ(a) = x and
ϕ(b) = y. Forw = baone has:

ϕ(ψ(ba)) = ϕ(bab) = yxy,
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and, recalling thaty ∈ PAL,

ψX(ϕ(ba)) = ψX(yx) = (yx)(+) = (λxx)(+).

Sincexx ∈ PAL, the longest palindromic suffix Q of λxx has a length|Q| ≥ 2|x|. Thus

|(λxx)(+)| ≤ |λxxλ∼| = 2|y| < |yxy|,

which is absurd. Hence,X has to be a suffix code and then bifix asX ⊆ PAL.

Remark 6.7. As a consequence of Lemma 6.5 and Proposition 6.6, every codeX having a
morphic-conservativeψX satisfies the hypotheses of Propositions 3.1, 3.2, 4.1, and 6.1, so that
all properties P1–P4 in Proposition 2.1 admit suitable generalizations forψX. Let us highlight in
particular the following:

Proposition 6.8. If ψX is morphic-conservative, then it is injective.

Proof. From Proposition 6.6 the codeX has to be bifix, so that the result follows from Proposi-
tion 4.1.

Let us observe that in the preceding proposition one cannot replace morphic-conservative
with conservative. Indeed, for instance, ifX = {a, ab} thenψX is conservative (see Example 6.1)
but it is not injective, sinceψX(aba) = ψX(abab).

The following theorem relates the two notions of conservative and morphic-conservative
palindromization map.

Theorem 6.9. The mapψX is morphic-conservative if and only if X⊆ PAL, X is prefix, andψX

is conservative.

For the proof of the preceding theorem we need the following

Lemma 6.10. Letϕ : A∗ → B∗ be an injective morphism andϕ(A) = X ⊆ PAL. For any w∈ A∗,
ϕ(w∼) = (ϕ(w))∼. Thus for any w∈ A∗, ϕ(w) = (ϕ(w))∼ if and only if w∈ PAL.

Proof. The result is trivial ifw = ε. Let us supposew , ε and writew asw = a1 · · ·an with
ai ∈ A, 1 ≤ i ≤ n. One has

ϕ(w) = ϕ(a1) · · ·ϕ(an) = x1 · · · xn,

having setxi = ϕ(ai) ∈ X, 1≤ i ≤ n. SinceX ⊆ PAL, one derives

(ϕ(w))∼ = xn · · · x1 = ϕ(w∼).

As ϕ is injective one obtains:

ϕ(w) = (ϕ(w))∼ = ϕ(w∼) if and only if w = w∼,

which concludes the proof.
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Proof of Theorem 6.9.(⇒) Immediate from Proposition 6.6 and Lemma 6.5.

(⇐) Letϕ : A∗ → B∗ be an injective morphism such thatϕ(A) = X is a prefix code andX ⊆ PAL.
We wish to prove that for anyw ∈ A∗ one has:

ϕ(ψ(w)) = ψX(ϕ(w)).

The proof is by induction on the lengthn of w. The result is trivial ifn = 0. If n = 1, i.e.,
w = a ∈ A, one has, asϕ(a) ∈ PAL,

ϕ(ψ(a)) = ϕ(a) = ψX(ϕ(a)).

Let us then suppose the result true up to the lengthn and prove it forn + 1. We can write, by
using the induction hypothesis and the fact thatϕ(w) ∈ X∗,

ψX(ϕ(wa)) = ψX(ϕ(w)ϕ(a)) = (ψX(ϕ(w))ϕ(a))(+) = (ϕ(ψ(w))ϕ(a))(+).

Let z= ψ(w); we need to show that (ϕ(z)ϕ(a))(+) = ϕ(ψ(wa)). AsψX is conservative, by Proposi-
tion 6.4 the longest palindromic suffix Q of ψX(ϕ(w))ϕ(a) = ϕ(z)ϕ(a) belongs toX∗. Sinceϕ(a)
is a palindrome andX is a suffix code, there exists a suffix v of z such thatQ = ϕ(v)ϕ(a). Using
Lemma 6.10 one derives thatva is the longest palindromic suffix of za, so that, lettingz= uv,

(ϕ(z)ϕ(a))(+) = ϕ(uvau∼) = ϕ((za)(+)) = ϕ(ψ(wa)),

which concludes the proof.

Corollary 6.11. Let X be a weakly overlap-free and infix code such that X⊆ PAL. ThenψX is
morphic-conservative.

Proof. Trivial by Proposition 6.2 and Theorem 6.9.

Remark 6.12. The hypotheses in the previous corollary thatX is a weakly overlap-free and
infix code are not necessary in order thatψX is morphic-conservative. For instance, letX be the
prefix codeX = {aa, cbaabc}. One has thatbcX∗ ∩ PAL = ∅. From this one easily verifies that
for all n ≥ 0, if ψX(Xn) ⊆ X∗, then forx ∈ X, LPS(ψX(Xn)x) ⊆ X∗. Thus by using the same
argument as in the sufficiency of Proposition 6.4, one has thatψX(Xn+1) ⊆ X∗. It follows thatψX

is conservative and then morphic-conservative by Theorem 6.9.

Let ψX be a morphic-conservative palindromization map andϕ : A∗ → B∗ the injective
morphism such thatX = ϕ(A) andϕ ◦ ψ = ψX ◦ ϕ. SinceX has to be bifix,ϕ can be extended to
a bijectionϕ : Aω → Xω. The extension ofψX to Xω is such that for anyx ∈ Xω

ψX(x) = ϕ(ψ(ϕ−1(x))).

For anyx ∈ Xω the wordψ(ϕ−1(x)) is an epistandard word overA, so that

ψX(Xω) = ϕ(EpistandA).

Therefore, one has:

Proposition 6.13. The infinite words generated by morphic-conservative generalized palin-
dromization maps are images by injective morphisms of the epistandard words.
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Let us now consider the case whenX is a finite and maximal prefix code.

Lemma 6.14. If X is a finite and maximal prefix code over A such that X⊆ PAL, then X= A.

Proof. Let ℓX be the maximal length of the words ofX. SinceX is represented by a fulld-ary
tree, there existd distinct wordspa ∈ X, with p a fixed word ofA∗, a ∈ A, and|pa| = ℓX. As for
anya ∈ A, the wordpa∈ PAL, the only possibility isp = ε, so thatX = A.

Proposition 6.15. Let X be a finite and maximal prefix code over A. ThenψX is morphic-
conservative if and only if X= A.

Proof. The proof is an immediate consequence of Theorem 6.9 and Lemma 6.14.

In the case of a finite maximal prefix code the mapψX can be non conservative. For instance,
if X = {a, ba, bb}, thenψX(ba) = bab < X∗. The situation can be quite different if one refers to
infinite words overX. Let us give the following definition.

Let X be a code having a finite deciphering delay. We say thatψX is weakly conservativeif
for any t ∈ Xω, one hasψX(t) ∈ Xω; in other terms the mapψX : Xω → Aω can be reduced to a
mapψX : Xω → Xω. In general,ψX is not weakly conservative. For instance, ifX = {ab, ba} and
t ∈ ababXω, thenψX(t) < Xω.

Trivially, if ψX is conservative, then it is also weakly conservative. However, the converse is
not in general true as shown by the following:

Theorem 6.16. If X is a finite and maximal prefix code, thenψX is weakly conservative.

Proof. Let s = ψX(t) whereX a finite and maximal prefix code andt ∈ Xω. We recall [9] that
any maximal prefix code is right complete, i.e., for anyf ∈ A∗, one hasf A∗ ∩ X∗ , ∅. If X is
finite, then for anyf ∈ A∗ and any lettera ∈ A one has:

f ak ∈ X∗,

for a suitable integerk, depending onf and ona, such that 0≤ k ≤ ℓ, whereℓ = ℓX is the
maximal length of the words ofX. Let a be a fixed letter ofA. We can write:

s[n]a
kn ∈ X∗,

with 0 ≤ kn ≤ ℓ. Settingp = ⌊ n
ℓ
⌋, we can write:

s[n] = x1x2 · · · xqnλ,

with xi ∈ X, i = 1, . . . , qn, qn ≥ p and|λ| < ℓ. Now s[n] ≺ s[n+ℓ] , so that sinceX is a prefix code,
one has:

s[n+ℓ] = x1x2 · · · xqn+ℓλ
′,

with qn+ℓ > qn, xi ∈ X, i = qn+1, . . . , qn+ℓ, and|λ′| < ℓ. Since

lim
n→∞

x1 · · · xqn ∈ Xω

and limn→∞ x1 · · · xqn = limn→∞ s[n] , the result follows.

Corollary 6.17. Let s= ψX(t) with t ∈ Xω be an X-AR word. Then s is the morphic image by an
injective morphism of a word w∈ Bω, where B is an alphabet of the same cardinality as X.
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Proof. By the preceding theorem, sinceψX is weakly conservative, we can write:

s= x1x2 · · · xn · · · ,

with xi ∈ X, i ≥ 1. LetB be an alphabet having the same cardinality ofX andϕ : B∗ → X∗ be the
injective morphism induced by an arbitrary bijection ofB andX. If ϕ−1 is the inverse morphism
of ϕ one has:

ϕ−1(s) = ϕ−1(x1)ϕ−1(x2) · · ·ϕ−1(xn) · · · .

Settingϕ−1(xi) = wi ∈ B for all i ≥ 1, one hasϕ−1(s) = w1w2 · · ·wn · · · = w ∈ Bω and s =
ϕ(w).

Let us observe that in general the wordw ∈ Bω is not episturmian as shown by the following:

Example6.4. Let X = {a, ba, bb} ands= ψX((ababb)ω). One has:

s= ababbabaababbabababbabaababbaba· · · .

Let B = {0, 1, 2} andϕ the morphism ofB∗ in X∗ defined by the bijectionϕ(0) = a, ϕ(1) = ba,
andϕ(2) = bb. One has:

w = ϕ−1(s) = 0120101201120101201· · · ,

and the wordw is not episturmian (indeed, for instance, the factor 01201 is not rich in palin-
dromes).

7. The pseudo-palindromization map

An involutory antimorphismof A∗ is any antimorphismϑ : A∗ → A∗ such thatϑ ◦ ϑ = id.
The simplest example is thereversal operator R: A∗ −→ A∗ mapping eachw ∈ A∗ to its reversal
w∼. Any involutory antimorphismϑ satisfiesϑ = τ ◦ R= R◦ τ for some morphismτ : A∗ → A∗

extending an involution ofA. Conversely, ifτ is such a morphism, thenϑ = τ ◦ R = R◦ τ is an
involutory antimorphism ofA∗.

Let ϑ be an involutory antimorphism ofA∗. For anyw ∈ A∗ we shall denoteϑ(w) simply
by w̄. We callϑ-palindromeany fixed point ofϑ, i.e., any wordw such thatw = w̄, and let
PALϑ denote the set of allϑ-palindromes. We observe thatε ∈ PALϑ by definition, and that
R-palindromes are exactly the usual palindromes. If one makes no reference to the antimorphism
ϑ, aϑ-palindrome is called apseudo-palindrome.

For anyw ∈ A∗, w⊕ϑ , or simplyw⊕, denotes the shortestϑ-palindrome havingw as a prefix.
If Q is the longestϑ-palindromic suffix of w andw = sQ, then

w⊕ = sQs̄.

Example7.1. Let A = {a, b, c} andϑ be defined as ¯a = b, c̄ = c. If w = abacabc, thenQ = cabc
andw⊕ = abacabcbab.

We can define theϑ-palindromization mapψϑ : A∗ → PALϑ by ψϑ(ε) = ε and

ψϑ(ua) = (ψϑ(u)a)⊕

for u ∈ A∗ anda ∈ A.
The following proposition extends to the case ofϑ-palindromization mapψϑ the properties

of palindromization mapψ of Proposition 2.1 (cf., for instance, [5]):
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Proposition 7.1. The mapψϑ over A∗ satisfies the following properties: for u, v ∈ A∗

P1. If u is a prefix of v, thenψϑ(u) is aϑ-palindromic prefix (and suffix) ofψϑ(v).

P2. If p is a prefix ofψϑ(v), then p⊕ is a prefix ofψϑ(v).

P3. Everyϑ-palindromic prefix ofψϑ(v) is of the formψϑ(u) for some prefix u of v.

P4. The mapψϑ is injective.

The mapψϑ can be extended to infinite words as follows: letx = x1x2 · · · xn · · · ∈ Aω with
xi ∈ A for i ≥ 1. Since for alln, ψϑ(x[n]) is a prefix ofψϑ(x[n+1]), we can define the infinite word
ψϑ(x) as:

ψϑ(x) = lim
n→∞

ψϑ(x[n]) .

The infinite wordx is called thedirective wordof ψϑ(x), ands = ψϑ(x) theϑ-standard word
directed byx. If one does not make reference to the antimorphismϑ a ϑ-standard word is also
calledpseudostandard word.

The class of pseudostandard words was introduced in [5]. Some interesting results about
such words are also in [16, 17]. In particular, we mention thenoteworthy result that any pseudo-
standard word can be obtained, by a suitable morphism, from astandard episturmian word.

More precisely letµϑ be the endomorphism ofA∗ defined for any lettera ∈ A as:µϑ(a) = a⊕,
so thatµϑ(a) = a if a = ā andµϑ(a) = aā, if a , ā. We observe thatµϑ is injective sinceµϑ(A)
is a prefix code. The following theorem, proved in [5], relates the mapsψϑ andψ through the
morphismµϑ.

Theorem 7.2. For any w∈ A∞, one hasψϑ(w) = µϑ(ψ(w)).

An important consequence is that anyϑ-standard word is a morphic image of an epistandard
word.

A generalization of the pseudo-palindromization map, similar to that given in Section 3 for
the palindromization map, is the following. Letϑ be an involutory antimorphism ofA∗ andX a
code overA. We define a map:

ψϑ,X : X∗ → PALϑ,

inductively as:ψϑ,X(ε) = ε and for anyw ∈ X∗ andx ∈ X,

ψϑ,X(wx) = (ψϑ,X(w)x)⊕.

If ϑ = R, thenψR,X = ψX. If X = A thenψϑ,A = ψϑ. The mapψϑ,X will be called theϑ-
palindromization map relative to the code X.

Example7.2. Let A = {a, b, c} andϑ be defined as ¯a = b and c = c̄. Let X be the code
X = {ab, ba, c} andw = abcba. One has:ψϑ,X(ab) = ab, ψϑ,X(abc) = abcabandψϑ,X(abcba) =
abcabbaabcab.

Let us now consider a codeX having a finite deciphering delay. One can extendψϑ,X to Xω

as follows: letx = x1x2 · · · xn · · · , with xi ∈ X, i ≥ 1. For anyn ≥ 1, ψϑ,X(x1 · · · xn) is a proper
prefix ofψϑ,X(x1 · · · xnxn+1) so that there exists

lim
n→∞

ψϑ,X(x1 · · · xn) = ψϑ,X(x).
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Let us observe that the wordψϑ,X(x) has infinitely manyϑ-palindromic prefixes. This implies
thatψϑ,X(x) is closed underϑ, i.e., if w ∈ Factψϑ,X(x), then also ¯w ∈ Factψϑ,X(x).

We remark that the mapsψϑ,X and their extensions toXω, when X is a code with finite
deciphering delay, are not in general injective. The following proposition, extending Propositions
3.2 and 4.1, can be proved in a similar way.

Proposition 7.3. Let X be a prefix code over A. Then the mapψϑ,X : X∗ → PALϑ and its
extension to Xω are injective.

Several concepts, such as conservative and morphic-conservative maps, and results consid-
ered in the previous sections for the mapψX can be naturally extended to the case of the map
ψϑ,X. We limit ourselves only to proving the following interesting theorem relating the mapsψϑ
andψϑ,X whereX = µϑ(A). Combining this result with Theorem 7.2 one will obtain that ψϑ,X is
morphic-conservative.

Theorem 7.4. Let A be an alphabet,ϑ an involutory antimorphism, and X= µϑ(A). Then for
any w∈ A∞ one has:

ψϑ(w) = ψϑ,X(µϑ(w)).

Proof. It is sufficient to prove that the above formula is satisfied for anyw ∈ A∗. The proof is
obtained by making induction on the length ofw.

Let us first prove the base of the induction. The result is trivially true if w = ε. Letw = a ∈ A.
If a = ā, thena ∈ X andψϑ(a) = a = ψϑ,X(µϑ(a)) = ψϑ,X(a). If a , ā, one hasµϑ(a) = aā ∈ X
andψϑ(a) = aā = ψϑ,X(µϑ(a)) = ψϑ,X(aā).

Let us now prove the induction step. Forw ∈ A∗ anda ∈ A we can write, by using the
induction hypothesis,

ψϑ(wa) = (ψϑ(w)a)⊕ = (ψϑ,X(µϑ(w))a)⊕. (22)

Moreover, one has:

ψϑ,X(µϑ(wa)) = ψϑ,X(µϑ(w)a⊕) = (ψϑ,X(µϑ(w))a⊕)⊕ = (ψϑ(w)a⊕)⊕. (23)

We have to consider two cases. Ifa = ā, thena⊕ = a, so that from the preceding formulas (22)
and (23) we obtain the result.

Let us then consider the casea , ā. We shall prove that (ψϑ(w)a)⊕ = ψϑ(wa) has the prefix
p = ψϑ(w)aā, so that from property P2 of Proposition 7.1 one will havep⊕ � ψϑ(wa). Since
ψϑ(w)a � p, one will derive that|ψϑ(wa)| = |(ψϑ(w)a)⊕| ≤ |p⊕| so thatp⊕ = (ψϑ(w)a)⊕ from
which the result will follow. We have to consider two cases:

Case 1.ψϑ(w) has not aϑ-palindromic suffix preceded by the letter ¯a. Thus

(ψϑ(w)a)⊕ = ψϑ(w)aāψϑ(w),

so that in this case we are done.

Case 2.ψϑ(w) has aϑ-palindromic suffix u of maximal length preceded by the letter ¯a. Sinceu
is also aϑ-palindromic prefix ofψϑ(w), by property P3 of Proposition 7.1 there existsv prefix of
w such thatu = ψϑ(v). Sinceāu is a suffix of ψϑ(w) one has thatua= ψϑ(v)a is a prefix ofψϑ(w).
By property P2 of Proposition 7.1, (ψϑ(v)a)⊕ is a prefix ofψϑ(w).

Since|v| < |w| one has|va| ≤ |w|. By using two times the inductive hypothesis one has:

(ψϑ(v)a)⊕ = ψϑ(va) = ψϑ,X(µϑ(v)aā) = (ψϑ,X(µϑ(v))aā)⊕ = (ψϑ(v)aā)⊕.
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Hence,ψϑ(w) has the prefixuaā and the suffix aāu, so thatψϑ(w) = λaāuwith λ ∈ A∗ and

(ψϑ(w)a)⊕ = λaāuaāλ̄ = ψϑ(w)aāλ̄,

from which the result follows.

From Theorems 7.2 and 7.4 one derives the noteworthy:

Corollary 7.5. Let A be an alphabet,ϑ an involutory antimorphism, and X= µϑ(A). Then one
has:

ψϑ = µϑ ◦ ψ = ψϑ,X ◦ µϑ.

Example7.3. Let A = {a, b}, ϑ be defined as ¯a = b, andX = ϑ(A) = {ab, ba}. Let w = aab. One
hasψ(aab) = aabaa, ψϑ(aab) = ababbaabab= µϑ(aabaa). Moreover,µϑ(aab) = ababbaand
ψϑ,X(ababba) = ababbaabab.
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