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Abstract

The palindromization map in a free monoidA* was introduced in 1997 by the first author in the
case of a binary alphab#t and later extended by other authors to arbitrary alphaeting on
infinite words, generates the class of standard episturmian words, imguandard Arnoux-
Rauzy words. In this paper we generalize the palindrondratiap, starting with a given code
X over A. The new mapyx mapsX* to the setPAL of palindromes ofA*. In this way some
properties ofy are lost and some are saved in a weak form. WKeras a finite deciphering
delay one can extenglx to X“, generating a class of infinite words much wider than stahdar
episturmian words. For a finite and maximal cotlever A, we give a suitable generalization of
standard Arnoux-Rauzy words, call¥dAR words. We prove that any¥-AR word is a morphic
image of a standard Arnoux-Rauzy word and we determine saitabte linear lower and upper
bounds to its factor complexity.

For any codeX we say that/x is conservative whenryx(X*) € X*. We study conservative
mapsyx and conditions orX assuring that/y is conservative. We also investigate the special
case of morphic-conservative maygg, i.e., maps such that o y = y¥x o ¢ for an injective
morphismg. Finally, we generalizggx by replacing palindromic closure with-palindromic
closure, where# is any involutory antimorphism of*. This yields an extension of the class of
¥-standard words introduced by the authors in 2006.

Keywords: Palindromic closure, Episturmian words, Arnoux-RauzydiGeneralized
palindromization map, Pseudopalindromes
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1. Introduction

A simple method of constructing all standard Sturmian wosds introduced by the first
author in [1]. It is based on an operator definable in any freaoid A* and called right palin-
dromic closure, which maps each warde A* into the shortest palindrome &f havingw as a
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prefix. Any given wordv € A* can suitably ‘direct’ subsequent iterations of the precgdiper-

ator according to the sequence of letters,ias follows: at each step, one concatenates the next
letter ofv to the right of the already constructed palindrome and thked the right palindromic
closure. Thus, starting with any directive wordone generates a palindroméy). The mapy,
called palindromization map, is injective; the worés called the directive word af(v).

Since for any, v € A*, (uv) hasy(u) as a prefix, one can extend the mato right infinite
wordsx € A“ producing an infinite worg/(x). It has been proved inl[1] that if each letter of a
binary alphabe# occurs infinitely often irx, then one can generate all standard Sturmian words.

The palindromization map has been extended to infinite words over an arbitrary alghabe
A by X. Droubay, J. Justin, and G. Pirillo in/[2], where the fandf standard episturmian words
overAhas been introduced. In the case that each lettAmafcurs infinitely often in the directive
word, one obtains the class of standard Arnoux-Rauzy w&ds][ A standard Arnoux-Rauzy
word over a binary alphabet is a standard Sturmian word.

Some generalizations of the palindromization map have gaem. In particular, inl[5] a
¥-palindromization map, wher# is any involutory antimorphism of a free monoid, has been
introduced. By acting with this operator on any infinite wortke obtains a class of words larger
than the class of standard episturmian, catlestandard words; whefi is the reversal operator
one obtains the class of standard episturmian words. Merethe palindromization map has
been recently extended to the case of the free gFaupy C. Kassel and C. Reutenauerlin [6]. A
recent survey on palindromization map and its generatinatis in [7].

In this paper we introduce a natural generalization of tHegeomization map which is con-
siderably more powerful than the megsince it allows to generate a class of infinite words much
wider than standard episturmian words. The generaliz&iobtained by replacing the alphabet
A with a codeX overA and then ‘directing’ the successive applications of thatrigalindromic
closure operator by a sequence of words of the ¢Gd8ince any non-empty elementXf can
be uniquely factorized by the words ¥f one can uniquely map any word Xf to a palindrome.

In this way it is possible associate to every cotlever A a generalized palindromization map
denoted byyx. If X = A one reobtains the usual palindromization map.

General properties of the max are considered in Sectigh 3. Some properties satisfigd by
are lost and others are saved in a weak form. In gemeréd not injective; ifX is a prefix code,
thenyx is injective. Moreover, for any cod¢, w € X*, andx € X one has thatx(w) is a prefix
of yx(wx).

In Sectior 4 the generalized palindromization map is exdrio infinite words ofX®. In
order to define a mapyx : X¥ — A“ one needs that the codehas a finite deciphering delay,
i.e., any word ofX® can be uniquely factorized in terms of the elementXofor anyt € X*
the words = yx(t) is trivially closed under reversal, i.e., ifis a factor ofs, then so will be
its reversal™. If X is a prefix code, the mapx : X¥ — A is injective. Moreover, one can
prove that ifX is a finite code having a finite deciphering delay, then for aryX® the word
¥x(t) is uniformly recurrent. We show that one can generate afidsird Sturmian words by the
palindromization magx with X = A?. Furthermore, one can also construct the Thue-Morse
word by using the generalized palindromization map redgtiiva suitable infinite code.

In Sectionb we consider the case of a mgp: X¥ — A? in the hypothesis thaX is a
maximal finite code. From a basic theorem of SchitzenbéngerodeX must have a deciphering
delay equal to 0, i.eX has to be a maximal prefix code. Givege X; - -- X - - - € X“ with X € X,

i > 1, we say that the word = yx(y) is a generalized Arnoux-Rauzy word relativeXtpbriefly
X-AR word, if for any wordx € X there exist infinitely many integersuch that = x;. If X = A
one obtains the usual definition of standard Arnoux-Rauzgwo
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Some properties of the generalized Arnoux-Rauzy wordsraneeg. In particular, an)X-AR
word sis w-power free, i.e., any non-empty factorsifias a power which is not a factor afWe
prove that the numbes; (n) of right special factors o$ of lengthn for a suficiently largen has
the lower bound given by the number of proper prefixeXpie., (cardk) — 1)/(d — 1), where
d = card@). From this one obtains that for afigiently largen, the factor complexitys(n) has
the lower bound (car&) — 1)n + ¢, with ¢ € Z. Moreover, we prove that for all, ps(n) has
the linear upper bound 2 caXn + b with b € Z. The proof of this latter result is based on a
theorem which gives a suitable generalization of a form@lustin [15]. A further consequence
of this theorem is that an¥-AR word is a morphic image of a standard Arnoux-Rauzy word on
an alphabet of card() letters. An interesting property showing that &AR word sbelongs to
X¢ is proved in Sectiofl6.

In Sectior 6 we consider a palindromization m@gpsatisfying the conditiomx(X*) € X*.
We say that/y is conservative. Some general properties of conservatifesrare studied and a
sufficient condition orX assuring thayy is conservative is given. A special case of conservative
map is the following: letp : A* — B* be an injective morphism such thatA) = X. The map
¥ is called morphic-conservative if for all € A", p(¥(W)) = ¥x(e(w)). We prove that ifyx is
morphic-conservative, thext C PAL, wherePAL is the set of palindromes, arihas to be a
bifix code. This implies thayy is injective. Moreover one has thak is morphic-conservative
if and only if X € PAL, X is prefix, andyx is conservative. Any morphic-conservative map
¥x can be extended t§« and the infinite words which are generated are images by aativg
morphism of epistandard words. An interesting generatinadf conservative map to the case
of infinite words is the following: a mapy, with X a code having a finite deciphering delay,
is weakly conservative if for anyy e X“, yx(t) € X®. If yx is conservative, then it is trivially
weakly conservative, whereas the converse is not in getreial We prove that iX is a finite
maximal code, therry is weakly conservative.

In Sectior ¥ we give an extension of the generalized palimération mapyx by replacing
the palindromic closure operator with tiiepalindromic closure operator, whefés an arbitrary
involutory antimorphism irA*. In this way one can define a generalifzegalindromization map
vex + X* = PALy, wherePAL; is the set of fixed points af (9-palindromes). 1X is a code
having a finite deciphering delay one can extépg to X“ obtaining a class of infinite words
larger than the-standard words introduced in [5]. We limit ourselves toyimg a noteworthy
theorem showing thaty = ug o = Y x oy WhereX = ug(A) anduy is the injective morphism
defined for anya € A asuy(a) = aif a = ¥(a) anduy(a) = a¥(a), otherwise.

2. Notation and preliminaries

Let A be a non-empty finite set, afphabet In the following,A* will denote thefree monoid
generated byA. The elements oA are calledettersand those ofA* words The identity element
of A* is calledempty wordand it is denoted by. We shall seA* = A"\ {¢}. Awordw € A" can
be written uniquely as a product of letters= aja,---a,, witha € A, i = 1,...,n. The integer
nis called thdengthof w and is denoted bj|. The length ok is conventionally 0.

Letw e A*. Awordv is afactor of w if there exist words ands such thatv = rvs. A factor
vofwis properif v # w. If r = ¢ (resp.s = &), thenv is called aprefix (resp.syfix) of w. If v
is a prefix (resp. sftix) of w, thenv—lw (resp.wv1) denotes the word such thatvu = w (resp.
uv=w). If vis a prefix ofw we shall writev < wand, ifv # w, v < w.

A word w is calledprimitiveif w # V", for allv € A* andn > 1. We IetPRIM denote the set
of all primitive words ofA*.
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Thereversalof a wordw = aja,---an, witha, € A, 1 <i < n, is the wordw™ = a,---a;.
One setg™ = ¢. A palindromeis a word which equals its reversal. The set of all palindreme
over A will be denoted byPAL(A), or PAL when no confusion arises. For ayc A* we set
X~ ={x" | x e X}. For any wordwv € A* we letLPS(w) denote the longest palindromicfiy of
w. ForX c A", we setLPS(X) = {LPS(X) | x € X}. A wordw is said to beich in palindromes,
or simply rich, if it has the maximal possible number of disti palindromic factors, namely
w| + 1 (cf. [2]).

A right infinite word, or simplyinfinite word w is just an infinite sequence of letters:

W=aas---a,--- ,whereag; € A, foralli>1.

For any integen > 0, wyy will denote the prefixa;a; - - - a, of w of lengthn. A factor ofw is
either the empty word or any sequerge: - a; with i < j. If w=uvvv---v-.. = uv’ withu e A*
andv € A*, thenw is calledultimately periodicandperiodicif u = &.

The set of all infinite words oveh is denoted byA”. We also seA™ = A* U A“. For any
w € A* we denote respectively by Fagtand Prefv the sets of all factors and prefixes of the
wordw. For X C A*, PrefX denotes the set of all prefixes of the words<of

Letw € A®. A factoru of w is right special(resp. left specia) if there exist two letters
a,b € A a # b, such thaua andub (resp. au andbu) are factors ofv. The factoru is called
bispecialif it is right and left special. Therder of a right (resp. left) special factorof w is the
number of distinct lettera € A such thatia € Factw (resp.au € Factw).

Letw € A* andu a factor ofw. An occurrenceof uin wis anyaA € A* such thattu < w. If
A1 andA; are two distinct occurrences ofin w with |1;] < |42, the gap between the occurrences
is|A2] — |A1]. Foranyw € A" and lettera € A, |w|, denotes the number of occurrences of the letter
ainw.

Thefactor complexity p of a wordw € A is the mappy : N — N counting for eacm > 0
the distinct factors oW of lengthn, i.e.,

pw(n) = card@" N Factw).

The following recursive formula (see, for instance, [8]pals one to compute the factor com-
plexity in terms of right special factors: for all> 0

d
Pu(n+ 1) = puln) + >_ (i = Vs (J, ), (1)

j=0

whered = card(), ands (], n) is the number of right special factors wfof lengthn and order
j-

A morphism(resp.antimorphisn from A* to the free monoid* is any mapy : A* —» B*
such thatp(uv) = e(U)e(V) (resp.e(uv) = ¢(V)e(u)) for all u,v € A*. A morphismg can be
naturally extended t&“ by setting for anyw = aja---an- - - € A%,

e(W) = p(ar)p(az) - p(@n) - - .

A codeoverAis a subseK of A" such that every word ok* admits a unique factorization
by the elements oK (cf. [9]). A subset ofA* with the property that none of its elements is a
proper prefix (resp. gfix) of any other is trivially a code, usually callgadefix (resp.syfix). We
recall that ifX is a prefix (resp. diix) code, therX* is right unitary (resp.left unitary), i.e., for
all pe X*andw € A", pwe X* (resp.wp € X*) impliesw € X*.
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A bifix code is a code which is both prefix andisu A codeX is calledinfix if no word of X
is a proper factor of another word & A codeX will be calledweakly overlap-freé no word
X € X can be factorized as = spwheres andp are respectively a proper non-emptyfsuof a
word X' € X and a proper non-empty prefix of a woxd € X. Note that the cod& = {abh bbg
is not overlap-free [10], but it is weakly overlap free.

A codeX has dinite deciphering delaif there exists an integdrsuch that for allk, X' € X,
if xXKA* N x'X* £ 0 thenx = X'. The minimalk for which the preceding condition is satisfied is
called deciphering delay of. A prefix code has a deciphering delay equal to 0.

Let X be a set of words ovek. We letX“ denote the set of all infinite words

X=XXo -+ Xn---,Withx € X, i > 1.
As is well known [9], if X is a code having a finite deciphering delay, then &rey X¥ can be

uniquely factorized by the elements Xf

2.1. The palindromization map

We introduce inA* the map™) : A* — PAL which associates to any woml € A* the
palindromem™*) defined as the shortest palindrome having the prefif. [1]). We callw*) the
right palindromic closure of wif Q = LPS(w) is the longest palindromic #iix of w = uQ, then
one has

w = uQu.

Let us now define the map
v A" > PAL

calledright iterated palindromic closureor simply palindromization mapoverA*, as follows:
Y(e) = eandforallue A", ae A,

y(ua) = ((ua)™.

The following proposition summarizes some simple but notghy properties of the palin-
dromization map (cf., for instance/ [1, 2]):

Proposition 2.1. The palindromization magp over A satisfies the following properties: for
uve A

P1. If uis a prefix of v, theri(u) is a palindromic prefix (and gfix) of (V).
P2. If pis a prefix ofy(v), then p*) is a prefix ofiy(v).

P3. Every palindromic prefix af(v) is of the formy(u) for some prefix u of v.
P4. The palindromization map is injective.

For anyw € (A*) the unique wordi such thaty(u) = w is called thedirective wordof w.
One can extend to A as follows: letw € A“ be an infinite word

W=aa---ay---, A Ii>1

Since by property P1 of the preceding proposition fomall(wn) is a prefix ofy(win.1), we
can define the infinite worg(w) as:

W) = lim ().
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The extended mayp : A® — A” is injective. The wordv is called thalirective wordof y(w).

The family of infinite wordsy(A®) is the class of thetandard episturmian worger simply
epistandard wordsover A introduced in|[?](see also_[11]). When each letterfobccurs in-
finitely often in the directive word, one has the class ofgtendard Arnoux-Rauzy worgf3, 4].
A standard Arnoux-Rauzy word over a binary alphabet is Uggalledstandard Sturmian word
E pistand, will denote the class of all epistandard words oser

An infinite word s € A“ is calledepisturmian(resp. Sturmian) if there exists a standard
episturmian (resp. Sturmian) wotré A“ such that Fact = Factt.

The words of the set(A*) are the palindromic prefixes of all standard episturmiandso
over the alphabeA. They are calle@épicentral wordsand simplycentral [12], in the case of a
two-letter alphabet.

Example2.1 LetA = {a,b}. If w = (ab)“, then the standard Sturmian wafrd= ¥((ab)*) having
the directive wordv is the famoug-ibonacci word

f = abaababaabaab -

In the case of a three letter alphaldet {a, b, c} the standard Arnoux-Rauzy word having the
directive wordw = (abg)” is the so-calledribonacci word

7 = abacabaabacaba - .

3. A generalized palindromization map

Let X be a code over the alphabt Any wordw € X* can be uniquely factorized in terms
of the elements oK. So we can introduce the map

Ux 1 X — PAL
inductively defined for any € X* andx € X as:
Ux(e) = & Yx(x) = XY,

Ux(Wx) = (Wx(wW)X)™.

In this way to each worey € X*, one can uniquely associate the palindraméw). We callyx
the palindromization map relative to the code XK X = A, thenya = .

Example3.1 LetA = {a, b}, X = {ab, ba}, andw = abbaah X is a code so that can be uniquely
factorized asv = x1xox; with x; = abandx; = ba. One has:yx(ab) = aba yx(abbg =
(abab3d™) = ababa andyx(abbaal) = ababaababa

The properties of the palindromization mepstated in Proposition 2.1 are not in general
satisfied by the generalized palindromization ngap For instance, takX = {ab, abb} one has
ab < abbbutyx(ab) = abais not a prefix ofiyx(abb) = abba Property P1 can be replaced by
the following:

Proposition 3.1. Letv= X --- X with x € X,i=1,...,n. Foranyy = x;---Xj, 1 < j <none
hasyx(vj) < yx(v). If X is a prefix code, then the following holds: farwe X* if u < v, then
Yx(U) < Yx(v).
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Proof. Foranyj =1,...,n—1one has

U (X - XiXjs1) = Wx(Xa - - X)) Xj1) P,

S0 thatyx(X1---Xj) < ¥x(X1---Xj+1). From the transitivity of relatiorx it follows yx(v;) <
Ux(v). Let nowX be a prefix code and suppose that € X* andu < v. We can writev = X3 - - - X
andu = x; -+ X With x;, x; € X, i =1,...,nandj = 1,...,m Sinceu < v, one hay = ug, with
¢ € A*. From the right unitarity oX* it follows ¢ € X* and, thereforex/ = x fori =1,...,m.
From the preceding result it follows thak (u) < ¢ (V). O

Properties P2 and P3 are also in general not satisfie@lkbyAs regards P2, consider, for
instance, the cod¥ = {a, ab, bb} and the wordv = abbabh One has/x(w) = abbaabba Now
wx (W) has the prefixab but not @b)*) = aba As regards P3 tak¥ = {abah b} one has that
yx(abab = ababa Its palindromic prefixabais not equal tayx(v) for anyv e X*.

Differently fromy, the mapyyx is not in general injective. For instance,Xfis the code
X = {ab, aba}, thenyx(ab) = yx(aba) = aba Property P4 can be replaced by the following:

Proposition 3.2. Let X be a prefix code over A. Thegg is injective.

Proof. Suppose that there exist Worgs . . ., Xm, XJ, ... X, € X such that

Yx(Xa - Xm) = Px(Xy - %)
We shall prove that = nand that for all 1< i < n, one hasg = x.

Without loss of generality, we can suppases n. Let us first prove by induction that for all
1<i<monehas; = x. Letus assume thag = X;, ..., % = X for 0 < k < mand show
thatxc,1 = X, ,. To this end let us sat = yx (X1 - - - Xm) @ndw’ = yx(X] - -- X1,). In view of the
preceding proposition, we can write:

W= Y (Xa - XXien)d = Wx(Xe - X)Xien) L
and
W = Px(Xa - XX )d = (x(Xa -+ %)% ) DL
with £, ¢’ € A*. Now one has:

Wx (X1 - X)Xee1) ) = (X -+ X)X 1€
and
(x(xa--- Xk)Xf<+1)(+) = Px (X X)X 1€ s
with &, & € A*. Therefore, we obtain:
W= g (X X X168 = Y (X X)X 1§ = W

By cancelling on the left in both the sides of previous equrathe common prefisdy(X; - - - Xq)
one derives

X164 = X{<+1§/§,' (2)
SinceX is a prefix code one obtaing.1 = X, ;. Since an equation similar tb](2) holds also in
the case& = 0 one has als@; = x;. Thereforex; = x fori = 1,...,m. We can write:

Yx (X1 Xm) = Yx(Xe -+ XmXipeq o X0)-
Since by Proposition 3. ix (X1 - - - Xm) < x (X1 - - - XmX/,,,1 - - - Xp) it follows thatm = n. O
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A partial converse of the preceding proposition is:
Proposition 3.3. Let X be a code such thatX PALN PRIM. If yx is injective, then X is prefix.

Proof. Let us suppose thatis not a prefix code. Then there exist wosdg € X such thax # y
andy = x1 with 2 € A*. Sincex,y € PALone hay = x4 = 2~ x. We shall prove that the longest
palindromic stfix LPS(yyX) of the wordyyx = A~ xyxis xyx This would imply, asx,y € PAL,
that

Ux(yy® = (yyX™ = 17 xyxt = yyy= (yy)® = ux(yyy),

so thatyx would be not injective, a contradiction.
Let us then suppose that= 1°x = axB, @, B € A%, and thalLPS(yyX) = x8yx This implies
By € PAL, so thatgy = BaxB = yB~ = axBB”. Therefore, one hgg= g~ and

BlaxB) = (axB)B.

From a classic result of combinatorics on words [13], theistey € PRIM and integers, k € N
such thapg = w" andy = ax8 = WK, Sincey € PRIM, it follows thatk = 1,y = w, andg = y".
As 8| < I, the only possibility ish = 0, so thas = &, which impliesLPS(yyX = xyx O

4. An extension to infinite words

Let us now consider a codé¢ having a finite deciphering delay. One can extgmdo X*
as follows: letx = XgXo-+-Xn---, with x; € X,i > 1. From Proposition 311, for any > 1,
Ux(Xq -+ - Xn) is a proper prefix ofrx (X1 - - - XnXns1) SO that there exists

A[T(]o x (X1 Xn) = ¥x(X).

Let us observe that the worid (x) has infinitely many palindromic prefixes. This implies that
¥x(X) is closed under reversal.e., if w € Factyx(x), then alsov™ € Factyx(x). If X = Aone
obtains the usual extensionfto the infinite words.

Let us explicitly remark that iX is a code with an infinite deciphering delay one cannot
associate by the generalized palindromization map to eact xve X* a unique infinite word.
For instance, the cod¢ = {a, ab, bb} has an infinite deciphering delay; the waid’ admits two
distinct factorizations by the elementsXf The first beginning wittab is (ab)(bb)“, the second
beginning witha is a(bb)“. Using the first decomposition one can generate by the géresta
palindromization map the infinite wor@l§ablj“ and using the second the infinite woabf)~.

Let us observe that the previously defined nggp: X“ — A is not in general injective.
For instance, take the code= {ab, aba which has finite deciphering delay equal to 1. As it is
readily verified one hagx((ab)®) = vx((aba®) = (aba“.

The following proposition holds; we omit its proof, whichvery similar to that of Proposi-

tion[3.2.
Proposition 4.1. Let X be a prefix code over A. Then the nggp: X¥ — A“ is injective.

The class of infinite words that one can generate by meansnafrgized palindromization
mapsyx is, in general, strictly larger than the class of standaistepnian words.
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Exampled.1 Let A = {a, b} andX = {a, bb}. Let x be any infinite wordk = abbaywith y € X“.
One has thatx(abbd = abbaabbaso that the worg x(x) will not be balanced (cfL[12]). This
implies thatyx(x) is not a Sturmian word. LeA = {a,b,c} andX = {a,abcg. Take any word
x = abcaywith y € X“. One hasyx(abcg = abcacba Since the prefixabcais not rich in
palindromes, it follows thatx(x) is not an episturmian word.

Theorem 4.2. For any finite code X having finite deciphering delay and aryX®, the word
s = yx(t) is uniformly recurrent.

Proof. Lett = x3X2--- X -+ € X, with x; € X, i > 1, andw be any factor ok. Leta be the
shortest prefixx = x; --- %y of t such thatw € Factu, with u = yx(a). The words is trivially
recurrent since it has infinitely many palindromic prefiddencew occurs infinitely many times
in s. We will show that the gaps between successive occurrerfieescs are bounded above by
lu] + 2¢x, wherefx = maxex |X. This is certainly true within the prefit even ifw occurs inu
more than once, the gap between any two such occurrencestdalonger thaiul.

Let us then assume we proved such bound on gaps for successiwgences ofv in ¥x(8),
whereB = X3 - - - X, h < k, and let us prove it for occurrencesii (8y), wherey = x¢,1. We can
write yx(8) = Up = p~uandyx(BY) = ¥x(8)A = 1" yx(B) for someq, p € A, so that

Ux(BY) =p ud=A"up. )

By inductive hypothesis, the only gap we still need to coesid the one between the last oc-
currence ofw in p~u and the first one inip as displayed in[{3). lfo| > |1|, then both such
occurrences ofv fall within p~u = ¥x(B), so that by induction we are done. So supgase |o|.
As one easily verifies, the previous gap is at most equal t@#mebetween the two displayed
occurrences afi in @), namelyd| — [o|. From [3) one has:

|1 = lol = Wx(BY)] = W (B)] = (Wx(B)] — [ul) = lox(BY)] - 2lx(B)] + lul.

Now, as

lox(BY)| = 1WwxB)Y) P < 2(wx(B)] + Iyl) < 2ux B + 2¢x ,

we havell| — |p| < |ul + 2¢x. By induction, we can conclude that gaps between successive
occurrences ofv are bounded bju| + 2¢x in the wholes, as desired. O

Lety =viy2---¥n--- € X, withy; € Xforalli > 1. We say that a word € X is persistent
in y if there exist infinitely many integelig < i < --- < ix < --- such thax = y;, forallk > 1.

We say that the worg = y1y>---yn--- € X“ is alternatingif there exist distinct letters
a,b e A aworda € A%, and a sequence of indicgs< i1 < --- < ip < ---, such thatta < y;,,
andab <y, forallk> 0.

We remark that if there exist two distinct wordsg, X, € X, which are persistent ig and
such thaf{x;, xp} is a prefix code, theg s alternating. 1fX is finite, then the two conditions are
actually equivalent.

Proposition 4.3. Lety=y;---yn--- € X? with y € X, i > 1. Ify is alternating, theyx(y) is
not ultimately periodic.

Proof. By hypothesis, there exists an increasing sequence ofaadignso, such that for all
k > 0 we havela <y, and4b <y,,,, for somel € A" and lettersa # b.
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For alln > 0, letu, denote the worgx(y: - - - yn). We shall prove thati,1 is a right special
factor of s = yx(y) for anyn, thus showing thas cannot be ultimately periodic (ci._[12]).
We can choose an integler> O satisfyingion > n. Let us setn = iz andxg = Vyi,,. Now one
has that:
Un-1X1 < Um € Prefs.

Sinceu, is a prefix and a 4iix of uy_; it follows, writing x; = Aan for somen € A*, that
UnX1 = Updan € Facts.

Sinceizn1 > ian, settingxe = yani1 = Aby’ for somen’ € A*, one derives by a similar argument
that:
UnX2 = Updbry’ € Facts.

From the preceding equations one has thatis a right special factor of. O

We shall now prove a theorem showing how one can generataatiard Sturmian words
by the palindromization map relative to the code-= {a, b}>. We premise the following lemma
which is essentially a restatement of a well known char&zton of central words (see for
instance [[1, Proposition 9]).

Lemma 4.4. Let A= {a, b} and E be the automorphism of Aterchanging the letter a with b.
If ze Aand we A"\ Z', then

w(w2) = y(w)zE(@)y (W) for some we Prefw.

Theorem 4.5. Let A= {a, b} and X = A2. An infinite word s A is standard Sturmian if and
only if s= yx(t) for some alternating € X* such that

t € ((a@)" U (bb)") {ab, ba)® .

Proof. Let s = yx(t); we can assume without loss of generality that (aa)*{ab, ba}* with
k € N. Lettp be the prefix of of length 2 (which belongs toX*). We shall prove thagx(tj2n)
is a central word for alh > 0. This is trivial for all prefixedp,; of t with p < k. Let us now
assume, by induction, thaitx(tr) is central for a givem > k and prove thatx(tj2n.2)) is
central.

We can writetpn.o) = tpnab or tpne2) = tpgba Since by the inductive hypothesis (ton)
is central, there exists, € A* such thaiyx(t2n) = ¥(un). The wordsyx(tony)ab andyx(tpon)ba
are finite standard words and therefore, as is well knowrfiy@®of standard Sturmian words
(cf. [12, Corollary 2.2.28]). By property P2 of Propositi@al, their palindromic closures
Wx(ten)ab)®) = yx(tpnab) and ¢x(ten)ba)™) = yx(tpyba) are both central. Hence, in any
caseyx(tpons2) is central so that there existg,1 € A* such thatyx(tjznio)) = ¥(Uns1). Since
¥(up) is a prefix ofy(un,1) from Proposition 211 one derives that < Un,1.

We have thus proved the existence of a sequence of finite ayllso, with u; < uj,1 for all
i > 0, such that for alh > 0 we have

Yx(tzny) = ¥(un) -

Letting A = lim,_, Uy, We obtains = ¥(A). Sincet is alternatingsis not ultimately periodic by
Propositio 4.8, so that it is a standard Sturmian word.
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Conversely, les be a standard Sturmian word, andAebe its directive word. Without loss
of generality, we can assume thtabegins ina; letn > 1 be such thaa"b € PrefA. If nis even,
we have @ @

y(a') = ((aa)?b) ~ = ((a@)?ba) = yx ((aa)?ba)
whereas ifnis odd,
n n-1 (+) n-1
y(a'b) = ((aa) 7 ab) = yx((aa) 7 ab) .

Let nowz € A anduzbe a prefix ofA longer thama"b. By induction, we can suppose that there
exists somav € (aa)*{ab, ba}* such thaty(u) = yx(w). From LemmaZ4} and Propositibn P.1,
we obtain, setting = E(2), (#(u)2)™) < ¢(u? < (¥ (u)z2)™). Hence,

Y(ud = WU = xR = yxw2) . (4)

We have thus shown how to construct arbitrarily long prefieethe desired infinite word,
starting from the Sturmian word Sincea andb both occur infinitely often im, by (4) we
derive that is alternating. O

Example4.2 In the case of Fibonacci worllet us takeX = {ab, ba}. As it is readily verified,
one has:

f = yx(ablabbg®).

Letu be the Thue-Morse morphism, ahé u“(a) the Thue-Morse word [13]. We recall that
w is defined byu(a) = abandu(b) = ba. The next proposition will show thatcan be obtained
using our generalized palindromization map, relative taitable infinite code.

Let us setu, = x?"(a) andv, = E(uy)b, for alln € N. Thusvy = bb, vi = baabh v, =
baababbaabbabaahblnd so on.

Proposition 4.6. The set X= {a} U {v, | n € N} is a prefix code, and

t=yx(@vpvive---).

Proof. As a consequence df| [5, Theorem 8.1], we can wiitg = p?"2(a) = (u2“+1(a)b)(+).

Since for anyk > 0 one hag*'(a) = uX(a)E (,uk(a)), we obtain for alln > 0

Uns1 = (u“E(un)b)(+) = (UnVn)(+) . (5)

Sinceb < v; foralli > 0, by (8) it followsuib < uvi < ui,1, so thatuib < u; whenever i < |,
whenceE(ub) = E(uj)a < E(u;). This implies that for 0< i < j, v; = E(u;)b is not a prefix of
vj = E(uj)b. Clearlyv; is not a prefix of any with k < i, nor ofa, which in turn is not a prefix
of anyv; with i € N; henceX is a prefix code.

Sinceup = a = yx(a), from (8) it follows that for alln > 0, up = ¥x(@vw---Vh1). As
t = lim,- Uy, the assertion is proved. O
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5. Generalized Arnoux-Rauzy words

Let us suppose that the codever the alphabéi is finite andmaximal i.e., it is not properly
included in any other code on the same alphabet. By a classidtrof Schiitzenberger either
X is prefix or has an infinite deciphering delay [9]. Therefdafene wants to define a map
Ux : X¥ — A” one has to suppose that the code is a prefix maximal code.

We shall now introduce a class of infinite words which are argtgeneralization in our
framework of the standard Arnoux-Rauzy words.

Let X be a finite maximal prefix code over the alphaBaif cardinalityd > 1. We say that
the words = yx(y), withy € X“ is a standard\rnoux-Rauzy word relative to,Xr X-AR word
for short, if every wordk € X is persistent iry.

Let us observe that K = A we have the usual definition of standard Arnoux-Rauzy word.
Any X-AR word is trivially alternating and therefore, from Pragition[4.3 it is not ultimately
periodic. The following proposition extends ¥eAR words a property satisfied by the classic
standard Arnoux-Rauzy words.

Proposition 5.1. Let s= yx(y) be an X-AR word with = y;---yn---, ¥ € X, i > 1. Then for
any n> 0, u, = ¥x(Yy1---Yn) iS a bispecial factor of s of order & card@). This implies that
every prefix of s is a left special factor of s of order d.

Proof. SinceX is a finite maximal prefix code, it is complete [9], i.e., it spresented by the
leaves of a fulld-ary tree (i.e., each node in the tree is either a leaf or hastiyxdegreed).
Hence X' = A, whereX denotes the set formed by the first letter of all wordXofny word
X € X is persistent iry, so that, by using an argument similar to that of the proofropBsition
[43, one has that for any> 0,

upX € Facts,

that impliesu, X" = u,A C Facts, i.e.,u, is a right special factor of of orderd. Sincesis closed
under reversal and, is a palindrome, one has thatis also a left special factor afof orderd.
Hence,u, is a bispecial factor of ordet. Letu be a prefix ofs. There exists an integersuch
thatu < u,. From this one has thatis a left special factor o$ of orderd. O

An infinite wordsover the alphabék is w-power fredf for every non-empty word € Facts
there exists an integgy > 0 such thau® ¢ Facts. We recall the following result (see, for
instance, [[14, Lemma 2.6.2]) which will be useful in the selqu

Lemma 5.2. A uniformly recurrent word is either periodic as-power free.
Corollary 5.3. An X-AR word isv-power free.

Proof. An X-AR word is not periodic and by Theordm %.2 it is uniformly ueent, so that the
result follows from the preceding lemma. O

Lemma 5.4. Let X C A" be a finite set and sét= ¢x = maxX|x| | X € X}. Letw= wy - -+ W,
w; € A, i=1,...,m, be a palindrome with nz ¢. If there exist uv € (PrefX) \ X such that
lu=p,M=d,p<q,and

Wps1 +* - Winll = W1+ - - WiV, (6)

then
Wyp--- Wmfp = a’ka',,

wherea’ € Prefe, o is a prefix of v of length g p, and k> T — 1.
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Proof. Letu=a;---apandv="Db;---bgwitha,bje Aji=1,...,p,j=1,...,9. From[6) one
derives:a; = bypsi, i =1,...,p, and

Wp+l' . 'Wq(Wq+l' . 'Wm) — (Wq+l' . 'Wm)bl' . 'bqu-

From a classic result of Lyndon and Schiutzenbergeri(cl) [f8re existl, u € A* and an integer
h > 0 such that:

Wpi1 - Wg = A, by--- bq—p = pd, Wos1 -+ Wm = (/l,u)h/l- (7)

Hence,
Wp+1 o Wnp = (/l,l,l)h+l/1

Sincew € PAL, one has forany=1,...,m w = wy_i;1. Hence, by taking the reversals of both
the sides of the preceding equation, one has:

Wi - Winop = Wi+ - Wpy1 = (/lwﬂw)h"'l/lw = aka"

having sek=h+ 1, = A"u~, ande’ = 2~. Now from (4),a™ = ud = by - - - by_p is a prefix of
V.

From [1) one has thah— q = h(g - p) + |4]. Since|d| < q- p it follows thatm - q <
h(g-p)+ (q-p) = (h+ 1)(g- p) = k(g - p). Hencek > % Asq-p<{-land; <1,
the result follows. O

Lemma 5.5. Let X be a finite maximal prefix code over a d-letter alphabbent

cardX) -1

d-1 °
Proof. The codeX is represented by the set of leaves of a €ifiry tree. The elements of the
set (PreiX) \ X, i.e., the proper prefixes of the wordsXfare represented by the internal nodes
of the tree. As is well known, the number of internal nodes &flhd-ary tree is equal to the
number of leaves minus 1 divided dy- 1. O

card((PreiX) \ X) =

In the following we letix be the quantity
A = cardX) - 1
XTTd-1

Proposition 5.6. Let s be an X-AR word. There exists an integesiech that for any non-empty
proper prefix u of a word of X, one ha&% ¢ Facts. Moreover, alsqu™)® ¢ Facts.

Proof. Any wordx € X, as well as any prefix of, is a factor ofs. Letu be any proper non-empty
prefix of a word ofX. From Lemma5]2 there exists an integesuch thauP ¢ Facts. Lete, be
the smallesp such that this latter condition is satisfied. Let us set

es = maxe, | v e (PrefX) \ (XU {&})}.

We observe thags is finite sinceX is a finite code. Therefore, for anye (PrefX) \ (X U {&})
one has
u® ¢ Facts.

Sincesis closed under reversal it follows that also)® ¢ Facts. O
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Theorem 5.7. Let s= yx(y), withy=y1---yn--- € X?, ¥ € X, i > 1, be an X-AR word. There
exists an integer such that for all h> v the number §h) of right special factors of s of length
h has the lower boundly, i.e.,

Sr(h) > Ax.

Moreover, any such right special factor of s is of degree d.

Proof. In the following we shall set for alh, uy = ¥x(y1---yn). Let€ be as in Lemmpa5l4yg
be the minimal integer such th@i -1 > e, and letn be an integer such that,| = m > my.
Let us writeu, asu, = Wy ---Wp Withwi € A i = 1,...,m. Since any worc € X is persistent
in y it follows thatu,X € Facts. Therefore, for any proper prefixof a wordx € X one has that:
Upu = Wy - - - Wil is a right special factor of of orderd and lengthm + |u|. This implies that

Wy+1 - - - WmU (8)
is a right special factor of lengtim. However, foru, v € (PrefX) \ X, u # v, one cannot have
Wig1 -+ - Wil = Wiy41 - - - WinV.
This is trivial if |u| = |v|. If |u| < |V, asu, € PAL, by LemmdZ5.} one would derive:
Wi - Wiy = @¥a’

with k > es anda equal to the reversal of a proper prefix of a wordkofwhich is absurd in view

of Propositiod 5.6. Thus one has that all the word$bf (8) with(PrefX) \ X, are right special
factors ofs of lengthm and order. Since by Lemm&a35l5 the number of proper prefixes of the
words of X is Ax it follows that the numbes;(m) of right special factors of lengtm has the
lower boundS, (m) > Ax. Thus we have proved the result for all= |uy| > M.

Let us now takeh such thaim < h < nY = |upy1|. We can writeun,1 = Jws - - - Wiy, for some
word¢. Since for anyu € (PrefX) \ X, un.1U is a right special factor of of lengthnt + |u] and
orderd, so is its stfix of lengthh. We wish to prove that all such iixes of lengthh, for different
values ofu in (PrefX) \ X, are distinct. Indeed, if two such fixes were equal, for instance the
ones corresponding g v € (PrefX) \ X, then their stfixes of lengttmwould be equal, i.e.,

Wiyj+1 * + - WmU = Wyyj4+1 * - - WV,
which is absurd as shown above. Heregh) > Ax. O

Corollary 5.8. Let s be an X-AR word. There exists an integeuch that the factor complexity
ps of s has for all n> v the linear lower bound

(cardX) — 1)n+c, with ce Z.

Proof. From the preceding theorem for alt> v, s has at leasty right special factors of length
n and orded. Therefore, in view ofl{ll), we can write for ail> v

Ps(n) 2 ps(v) + (N = v)Ax(d - 1) = ps(v) + (n - v)(cardX) - 1)

= (cardX) - 1)n+c,
having set = ps(v) — v(cardX) — 1). O
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We shall prove that the factor complexipg of an X-AR word siis linearly upper bounded
(cf. Theoreni 5.7l5). We need some preparatory results anebagim (cf. Theorein 5.13) which
is a suitable extension of a formula of Justini [15] to gerieedl palindromization maps.

We recall that a positive integgris aperiod of the wordw = a;---a5, 8 € A, 1 <i <n
if the following condition is satisfied: if and j are any integers such thatli, j < nandi = j
(mod p), thena; = a;. We shall denote by(w) the minimal period ofv.

Let X be a finite prefix code anék be the maximal length of the words ¥ We say that
Ux(Xq -+ - Xm) With x; € X, i > 1, isfull if it satisfies the three following conditions:

F1. For anyx € X there exists at least one integesuch that I< j < mandx; = x.

F2. ﬂ(lﬂx(Xl cee Xm)) > {x.

F3. Forallx € X the longest palindromic prefix @fx (X1 - - - Xm) followed byxisyx (X1 - - - Xr 1),
wherery is the greatest integer such that ¥y < mandx,, = x.

Proposition 5.9. Let X be a finite prefix code,X*, and ye X. If yx(2) is full, thenyx(zy) is
full.

Proof. It is clear thatyx(zy) satisfies property F1. Moreover, one has also #ak(zy) > x.
Indeed, otherwise sinagx(2) is a prefix ofyx(zy), one would derive thatx(2) has a period, and
then the minimal period, less thdg, which is a contradiction.
Let us first prove thatx(2) = P, whereP is the longest proper palindromic prefixf(zy).
Indeed, we can write:
Ux(2y) = Yx(Qyd = P,

with A,u € A" andu # €. One has thaP| > |¢x(2)| and, moreovenP| < |yx(2)yl. This last
inequality follows from the minimality of the length of patiromic closure. Let us then suppose
that:

P=yx(@y = () yx(2,

with y < y. From the Lyndon and Schitzenberger theorem there @xist A* andn € N such
that /)~ = aB,yY = Ba, andux(2) = (aB)"a. Sinceyx(2) is full, from property F1 one has
that|yx(2)| = ¢x, so thatn > 0 andn(¥x(2) < laBl = lY| < £x which is a contradiction. Thus
P =yx(2.

From the preceding result one derives that the longestgralinic prefix ofyx(zy) followed
byyisyx(2). Now letx # y and letQ be the longest palindromic prefix ¢k (zy) followed by x.
We can write:

Ux(zy) = Yx(Dyd = Qx5,

with 6 € A*. From the preceding result one H&% < |yx(2)|. If |Q| = [¥x(2)I, then, asX is a
prefix code, one gets=y, a contradiction. Henc¢Q) < |[¥x(2)|. We have to consider two cases:
Case 11QX > |¥x(2)|. This implies

¥x(@ = Qx = (X)"Q,

with X' < x. Hence, one would derivex)™ = uv, X' = vu, andyx(2) = (uv)"u with u,v e A* and
n > 0. This gives rise to a contradiction, a&/x(2) < |uM < x.
Case 2.|QX < |yx(2]. Letz = x1---XmWith X; € X, 1 <i < m. In this caseQ is the longest
palindromic prefix ofyx(2) followed by x, namelyyx (X - - - X -1).

In conclusionyx(zy) satisfies conditions F1-F3 and is then full. O
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Lemma 5.10. Let s be an X-AR word anglx(2), with z € X*, be a prefix of s. There exists
an integervs such that iflyx(2)| = vs, then for any prefix u= ¥x(zyx - - - %) of s with k> 0,
Y, X1,..., X € X, ¥# %, 1 <i <K, the longest palindromic prefix of u followed by yig(2).

Proof. Let us denote by the longest palindrome such tHay is a prefix ofu. We wish to prove
that for a stficiently largeyx(2) one has thaP = yx(2). Let us then suppose by contradiction
that|P| > |yx(2)|. Settingxy =y, there exists an integér—1 < i < k— 1 such that

(2% - %) < Pl < lyx(z% - - - Xix1)l, 9)

where fori = —1 the l.h.s. of the preceding equation reducelidz)|. Let us prove that for
-1<i<k P#uyx(zo---x). Thisis trivial fori = -1 andi = kas|P| < |ul. ForO<i <k-1
the result is a consequence of the fact thas followed byy whereas/x(zx - - - %) is followed
by x;1. As X is a prefix code, one would obtajn= x,; which is a contradiction. Hence ihl(9)
the inequalities are strict. If

(2% - - X )Xirtl < Pl < lx(z% - - - Xix1)l,

then one would contradict the definition of palindromic cies Thus the only possibility is that
there exists-1 < i < k-1 such that

P=yx(2%--X)p=p ¥x(zX%---X)

wherep is a proper non-empty prefix of,1. This implies that there exist wordsu € A* and
an integen > 0 such that

PT =, p=pd, Yx(@%- - x) = () A. (10)

Let us setvs = (es + 1)fx, wherees has been defined in Propositionls.6 axds the maximal
length of the words oK. Let us suppose thakx(2)| > vs. Since

(€s+ 1)tx < Yx(DI < Ix(2%0--- X))l < (n+ 1)lx,
one would deriven > esandp” ¢ Factswhich contradictd(10) and this concludes the prodfl

Corollary 5.11. Let s= yx(X1X2-- - Xn - - -) be an X-AR word, withjx X, i > 1. There exists an
integer m> 1 such that for all "> m, yx (X1 - - - X,) is full.

Proof. Sincesis anX-AR word, for anyx € X there exist infinitely many integefssuch that
X = Xj. We can take the integen so large that for anx € X there exists at least one integer
such that I< j < m, Xj = x, and, moreover, for eache X

[x (X1 -+ Xr =) > Vs.

This assures, in view of preceding lemma, that for each X the longest palindromic prefix
of yYx(x1---xm) followed by x is yx(X1--- X -1). Finally, there exists an integen such that
m(yx(X1---Xm)) = ¢x. Indeed,sis w-power free, so that there exists an integesuch that
for any non-empty factou of s of length|u| < ¢x one hasu? ¢ Facts. Thus if for all m,
m(Yx(X1- -+ Xm)) < £x we reach a contradiction by takimgsuch thafyx (X - - - Xm)| = (p + 1)¢x.
Hence there exists an integarsuch that conditions F1-F3 are all satisfied, so #hdk; - - - Xn)
is full. By Propositio 5.0y x (X1 - - - Xn) is also full, for alln > m. O
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Lemma5.12. Let ze X* and ye X. Suppose thatx(2) has some palindromic prefixes followed
by y, and letA, be the longest one. Then

Ux(2y) = ux@A, ux(2) .

Proof. SinceA = Ay is the longest palindromic prefix @ (2) followed byy, it is also the longest
palindromic stfix preceded by~, so thaty~ Ay is the longest palindromic flix of x(2)y. Thus,
lettingyx(2) = AyZ = £~y A for a suitable’, we obtain

Ux(2) = Wx@V) = Y Ay = yx (DA (@) - 0

Let B be a finite alphabet and: B — X be a bijection to a prefix codé ¢ A*. Forz € X*,
we define a morphism;, : B* — A* by setting for alb € B

0o(b) = Yx(zu(O)Yx(D " = Ux(D Ay (12)
where for the last equality we used Lemimab.12.

Theorem 5.13. Let s= yx(XaX2 - X - -+ ) be an X-AR word withijxe X,i> 1. If z= X; -+ Xm
is such that @, = ¥x(2) is full andy, ¢, are defined as above, then for anyewB* the following
holds:

Ux(Zu(W)) = ey (W))¥x(2) -
Proof. In the following we shall use the readily verified propertathf v : B* — A*is a
morphism and is a sdfix of u € B*, theny(uv?) = y(u)y(v) L.

We will prove the theorem by induction dwj. It is trivial that forw = & the claim is true
sincey(e) = e = ¢,(¢). Suppose that for all the words shorter tharthe statement holds. For
lw] > 0, we setw = vbwith b € B, and lety = u(b).

First we consider the ca$éd, # 0. We can then write = v;bwv, with |v|, = 0. Sinceyx(2)
is full, so isyx(zu(v)); hencepx(zu(vy)) is the longest palindromic prefix (resp fBy) followed
(resp. preceded) by(resp.y™) in ¥x(zu(v)). Therefore, by Lemmia’5.112 we have

Ux(2u(v)y) = Yx(@u(W))Wx(2(v1)) " Yx (2u(v)) (12)

and, asy(v1) is the longest palindromic prefix (resp. fBx) followed (resp. preceded) Hyin
¥(v),
Y(vb) = YWy (ve) () . (13)

By induction we have:
Ux(Zu(V) = (b (MYx(D . ¥x(zu(v1)) = (¥ (Vi))Yx(2) .

Replacing in[[IR), and by{13), we obtain

2 (V)@ (v) oo (V)ux(2)

A (VY (v1) Y (yx(2)
e (VO)Yx() .

Ux(zu(V)y)

which was our aim.
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Now suppose thgtl, = 0. Asyx(2) is full, the longest palindromic prefix afx(2) which is
followed byy is Ay = ¥x (X1 - - - X,-1), wherery is the greatest integer such thakl, < mand
X, =Y. By Lemmd5.1P we obtain

Ux(zu(V)Y) = WUx@OIND = ex(ZuV) Ay Yx(zuV)) - (14)
By induction, this implies
Ux(@UV)Y) = (e (DWx@A, @ (W (V)Ux(2) - (15)

From [11) it follows
02(b) = Ux(2y) (Ux (@) " = Ux(DA)* .
Moreover, since/(v) has no palindromic prefix (resp. ) followed (resp. preceded) by
one has

Y(vb) = y(V)by(v) . (16)
Thus from [I5) we obtain
Ux(zu(y) = e(¥(V)eb)e(¢(V))¥x(D)
= e (Vb ()¥x(d)
= e(W(VD)yx(2) .
which completes the proof. O

Corollary 5.14. Every X-AR word is a morphic image of a standard Arnoux-Rawayl over
an alphabet B of the same cardinality as X.

Proof. Let s = yx (X1 X2+ -+ Xn - - -) be anX-AR word with X € X, i > 1, and let = u(b;) for all
i > 1, whereu : B — X is a bijection. By the preceding theorem, there exists aagigrm > 1
such that, setting = X3 - - - Xm, for all w € B* we haveyx(zu(w)) = ¢.(¢(w))y¥x(2). Hence for all
k > mwe have

Ux(Xa -+ %) = @z (Bmea -+ b)Y (2)
so that taking the limit of both sides &s— o, we get
S= ‘Pz(lp(bm+1bm+2 coebpee )) .

The assertion follows, as each letter®bccurs infinitely often in the worbly 1bmi2---bn---.
O

Examples.1 Let X = {aa ab, b}, B={a, b, c}, andu : B— X be defined by(a) = ab, u(b) = b,
andu(c) = aa. Let s be theX-AR word

s = yx((abbag®) = ababaaababaababaaabababaaababaababaaaba

Settingz = abbag it is easy to verify that the prefixx(2) = ababaaababaf sis full, so that
s = ¢, (¥ ((abg®)), whereyp,(a) = ababaaababay,(b) = ababaaabandy,(c) = ababaa

Lets = yx(Xy- - % ---) be anX-AR word with x; € X, i > 1, and letmg be the minimal
integer such thatim, = yx(X1- - - Xm,) is full. For all j > 0 we shall set

@j = Ump+j and n; = |cyj|.
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Theorem 5.15. Let s be an X-AR word. Then the factor complexity of s is liyeapper
bounded. More precisely for all 5 ng

ps(n) < 2 cardX)n — card(X).
Proof. We shall first prove that for alj > 0
ps(n;) < cardX)n; — card(X). a7

Let u be a bijection of an alphab8tandX. We setzj = X; - - - Xmy+j @and consider the morphism
¢z - B* — A" defined, in view of[(Ill), for alb € B as:

-1
¢z (D) = @jA )

wherea; = yx(z;) andA,p) is the longest palindrome such thgjgu(b) (resp. f«(b))~Auwp)) is
a prefix (resp. sftix) of «;j.

Sincesis uniformly recurrent, there exists an integesuch that all factors of of lengthn;
are factors ofrj, . Hence, there exigtlettersby, ..., by € Bsuch thatyj.p = yx(zju(bs) - - - u(bp)).
By Theoreni 5.3 one has

-1 -1 -1
Yx(Zju(ba) - - u(Bp)) = @jA 5@ Doy TAWCRLIR

Thusaj coversej,, and the overlaps between two consecutive occurrences of o, are
given byA,r), 1 < i < p. Any factor of s of lengthn; will be a factor of two consecutive
overlapping occurrences af, i.e., of

a’jA;(lbi)a’j, i=1,..., p. (18)

For any 1< i < p the number of distinct factors i (IL8) is at mwogt- |A,p)l < nj — 1. Since
1(B) = X and the number of distinct consecutive overlapping octwes ofy; in @j.p iS at most
card(X), equation[(I]7) is readily derived.

Now let n be any integen > ng such thatn # ny for all k > 0. There exists an integer
j such thain; < n < nj,1. Sinces is not periodic, by a classic result of Morse and Hedlund
(seel[12, Theorem 1.3.13]) the factor complexityis strictly increasing witm. Moreover, as
Nj.1 < 2nj < 2n, one has by[(17):

Ps(N) < pPs(nj«1) < cardX)nj.1 — cardX) < 2 cardX)n — card(X),

which concludes the proof. O

6. Conservative maps

Let A be an alphabet of cardinality > 1 and letX be a code oveA. We say that the
palindromization magx is conservativef

Yx(X7) € X (19)

WhenX = A, the palindromization mag is trivially always conservative. In the general case
¥x may be non conservative.
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Example6.1 Let X = {ab, ba}. One hag/x(ab) = aba¢ X*, so thatyy is not conservative. In
the caseY = {aa, bb} one easily verifies thaty(Y*) C Y*. If Z = {a, ab} one has that for any
wordw € Z*, yz(w) € aA* \ A*bbA, with A = {a, b}, so that it can be uniquely factorized by the
elements o¥. This implies thaty; is conservative.

The following result shows that a prefix code having a coretém palindromization map
allows a natural generalization of properties P2 and P3apbésitior[ 2.1, in addition to the ones
for P1 and P4 shown in Propositidnsl13.1 3.2.

Proposition 6.1. Let X be a prefix code such thak is conservative, and,wv € X* with p a
prefix ofyx(w). The following hold:

1. p™ is a prefix ofyx(w) and g*) e X*.
2. If pis a palindrome, then g yx(u) for some prefix & X* of w.

Proof. Letw = x3% - - - X with x; € X for 1 < i < k, and letv be the longest prefix of in X*
such thatyx(v) is a prefix ofp; we can writev = x; - - - X, or setn = 0 if v = &. Thusp = yx(V)¢
with £ € A*. Sinceyy is conservative one has(v) € X*. Moreover, asX is a prefix codeX*
is right unitary, so that one hase X*. If £ = ¢, thenp = yx(v) = p® and there is nothing to
prove. Let us then suppoger &. Sinceyx(V)xn.1, as well asp, is a prefix ofyx(w) andX is a
prefix code, one has thate xn,1X*. Thusyx(V)Xn.1 is a prefix ofp.

From the definition of palindromic closure it follows thiépx(V)%..1)™®| < |p™)]. By the
maximality ofn, we also obtain thap is a (proper) prefix ofx(V)Xn:1)™® = ¥x (X1 - - - Xns1), SO
that|p™)| < |(¥x(V)Xn1)P]. Thus|p®| = [(¥x(V)Xas1)P]. Sincep™ is a palindrome of minimal
length havingyx(V)xn+1 as a prefix, from the uniqueness of palindromic closure lofe that
P™) = Yy (VX1). Hencep™) is a prefix ofyx(w), andp™ e X* asyy is conservative.

If pis a palindrome ang # yx(v), then the argument above shows théat = p = yx(VX1),
which is absurd by the maximality of O

The following proposition gives a flicient condition which assures thag is conservative.

Proposition 6.2. Let X € PAL be an infix and weakly overlap-free code. Thgris conserva-
tive.

Proof. We shall prove that for alh > 0 one has thatx(X") € X*. The proof is by induction on
the integem. The base of the induction is true. Indeed the aaseO is trivial and forn = 1,
sinceX € PAL, one has/x(X) = X. Let us then suppose the result true umtand prove it
forn+ 1. Letw € X" andx € X. By induction we can writg/x(w) = X - -- X, with X' € X,
1<i<m Thus:

Ux (W) = (Wx (WX = (4 - x5 0. (20)
Let Q denote the longest palindromicfiiu of x; - - - X, x. Sincex € PALwe havelQ| > |x. We
have to consider two cases:

Case 1/Q| = |x|. From [20) andX ¢ PAL, it follows:
Ux(WxX) = (X - X)) = X - XXXy - X

Thusyx(wx) € X* and in this case we are done.

Case 2]Q| > |X. One has:
Xy XX = £Q.
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Since|Q| > |X| andx, Q € PAL, there exists k j < msuch tha1><'j = Au, A,u € A*and

#X/J'Jrl"'x;nxz Q= xp,
with n € A*. We shall prove that = ¢. Indeed, suppose that+ . We have to consider the
following subcases:

1) X < |ul. This implies thak is a proper factor ox’(g which is a contradiction, sinc€ is an infix
code.

2)IX > |uX;, 4| In this case one has the , is a factor ofx which is a contradiction.

3) Iul < IX| < |ux;, 4. This implies thatx = up, wherep is a proper prefix ok, ;. Sinceu is a
proper siifix of X; we reach a contradiction with the hypothesis thas weakly overlap-free.

Henced = gandu = x = X Therefore, one has, asc PAL,

W) = (6= X)) = XXX g € X
which concludes the proof. O

Example6.2. Let X = {bah bch}. One has thaK ¢ PAL Moreover,X is an infix and weakly
overlap-free code. From the preceding proposition oneliagk is conservative.

Let us observe that Propositibn 6.2 can be proved by regabie requiremenX ¢ PAL
with the two conditionsX = X~ andyx(X) € X*. However, the following lemma shows that if
the codeX is prefix these two latter conditions are equivalenXta PAL

Lemma 6.3. Let X be a prefix code. Then one has:
X C PAL &< X = X" and yx(X) c X".

Proof. If X C PAL, then trivially X = X~. Moreover, for anyk € X one hag/x(x) = xX*) = x €
X*. Let us prove the converse. Suppose that X is not a palindrome. We can write= 1Q,
whereQ = LPS(X) is the longest palindromic fiix of x andA # . One has, by hypothesis:

Px(¥) = X = 1Q17 = x1” e X"

SinceX is a prefix code, from the right unitarity of* one hast™ € X*. As X = X" it follows
A € X*. Sincex = 1Q andX is a prefix code, one derivals= x andQ = ¢ which is absurd as
Q| > 0. O

Proposition 6.4. Let X € PAL be a prefix code. Then:
Yx is conservative— for all x € X, LPS(yx(X")x) € X*.

Proof. (=) Letw € X*. If w = g, sinceX C PAL, one had PS(X) = x € X. Supposev # &, SO
thatw = x; - - - Xp, With X, € X, i = 1,...,n. Letx € X andQ be the longest palindromic fix of
Ux(Xq -+ - Xn)X. We can writeiyx(Xy - - - Xn)X = 6Q with § € A* and

Ux(Xa - X%aX) = Wx (X - X)X = 6Q6™ = (X1 - - X)X~
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Sinceyy is conservative, one has(X1 - - - Xn), ¥x (X1 - - - XnX) € X*, so that aX is a prefix code
from the preceding equation one derivese X* and thens € X* becauseX ¢ PAL Finally,
from the equatiox (X - - - Xa)x = 6Q it follows Q € X* asX is a prefix code.

(&) We shall prove that for alh > 0 one hag/x(X") € X*. The result is trivial ifn = 0. For
n = 1 one has that for any € X, yx(x) = X*) = xasX c PAL, so thaiyx(X) C X*. Let us now
by induction suppose thai(X") ¢ X* and prove thagx(X™?!) c X*. Letxy,..., X, X € X and
let Q denote the longest palindromicfBid of yx (X1 - - - X,)X, so that

Ux(Xy - X)X = 6Q,

with § € A*. The codeX is bifix because is a prefix code anX < PAL. Since by hypothesis
Q. ¥x(Xa - - %Xa) € X*, from the preceding equation and the left unitarityX6f one getsy € X*.
Moreovergs™~ € X* sinceX ¢ PAL Hence, one has:

Ux(Xa - XnX) = Wx(Xe - X)X = 6Q6™ € X,
which concludes the proof. O

Let X be a code over the alphabBtandy : A* — B* an injective morphism such that
©(A) = X. We say thatyy is morphic-conservativi for any w € A* one has

e (W) = ¥x(e(W)). (21)

Example6.3 Let A = {a,b}, B = {a,b,c}, X = {c,bab}, andy : A* — B* be the injective
morphism defined by(a) = c andy(b) = bab. Letw = abag one hasy(w) = abaabaaba
¢(w) = cbabcgand

o(¥(w)) = cbabccbabccbabe yx(p(w)).

As a consequence of Corolldry 6111, one can provegthas morphic-conservative.
Lemma 6.5. If yx is morphic-conservative, then it is conservative.

Proof. Letu € X*. The resultis trivial ifu = . If uis not empty let us writ@ = X3 - - - X, with
X € X, i =1,...,n. Sincey is injective, leta; € A be the unique letter such that = ¢(&).
Therefore,u = p(a;---an). By 21) one hagx(u) = ¢(y(as---ay)) € X*, which proves the
assertion. O

The converse of the preceding lemma is not true in generaledd, from the following
proposition, one has that §fx is morphic-conservative, then the words>Xthave to be palin-
dromes. However, as we have seen in Example 6.1, therg@andich are conservative with a
codeX whose words are not palindromes.

Proposition 6.6. If x is morphic-conservative, then XPAL and X has to be a bifix code.

Proof. Let a be any letter ofA and setx = ¢(a). One has from[{21) that(y(a)) = ¢(a) =
x = Yx(p(@) = yx(x) = xX*). Hencex = xX*) e PAL, so that all the words oK have to be
palindromes.

Let us now prove thaX is a sufix code. Indeed, suppose by contradiction that there exist
wordsx,y € X such thaty = Axwith 1 € A*. Leta,b € A be letters such that(a) = x and
¢(b) = y. Forw = baone has:

¢(y(ba)) = p(bab) = yxy,
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and, recalling thay € PAL,
Ux(e(08) = Yx(y®) = (Y™ = (9.
Sincexx e PAL, the longest palindromic $lix Q of Axx has a lengthQ| > 2|x|. Thus
(D)@ < o] = 21yl < lyxy,
which is absurd. Hencé& has to be a gfix code and then bifix a¥ € PAL O

Remark 6.7. As a consequence of Lemrhal6.5 and Propos(tioh 6.6, every Xdu&ving a
morphic-conservativery satisfies the hypotheses of Propositibn$ B.1,[3.2, 4.1[_dhd6 that
all properties P1-P4 in PropositibnP.1 admit suitable g@imtions fonyyx. Let us highlight in
particular the following:

Proposition 6.8. If yx is morphic-conservative, then it is injective.

Proof. From Propositiof 616 the codéhas to be bifix, so that the result follows from Proposi-
tion[4.1. O

Let us observe that in the preceding proposition one carepace morphic-conservative
with conservative. Indeed, for instanceXif= {a, ab} thenyy is conservative (see Example6.1)
but it is not injective, sincex(aba) = yx(abab.

The following theorem relates the two notions of conseveatind morphic-conservative
palindromization map.

Theorem 6.9. The mapyx is morphic-conservative if and only if 8 PAL, X is prefix, an@/x
is conservative.

For the proof of the preceding theorem we need the following

Lemma 6.10. Lety : A* — B* be an injective morphism ang(A) = X € PAL. For any we A*,
(W) = (p(W))~. Thus for any we A", p(w) = (¢(w))~ if and only if we PAL.

Proof. The result is trivial ifw = £. Let us suppos& # ¢ and writew asw = a; - - - a, with
g €A 1<i<n Onehas
(W) = p(a1) - ¢(an) = X1+ Xn,

having setx; = ¢(a) € X, 1 <i < n. SinceX C PAL, one derives
(W)™ = X+ X1 = p(W").
As ¢ is injective one obtains:
e(W) = (W)™ = p(w™) if and only if w=w",

which concludes the proof. O
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Proof of Theorerh 619(=) Immediate from Propositidn 8.6 and Lemmal6.5.

(&) Lety : A* — B* be an injective morphism such thaA) = X is a prefix code and ¢ PAL
We wish to prove that for amyw € A* one has:

e (W) = vx(e(wW)).

The proof is by induction on the lengthof w. The result is trivial ifn = 0. If n = 1, i.e,,
w=ace A one has, ag(a) € PAL,

¢(¥(@)) = ¢(a) = Yx(»(a)).

Let us then suppose the result true up to the lemgdind prove it fom + 1. We can write, by
using the induction hypothesis and the fact th@t) € X*,

Ux(e(wa)) = Ux(pW)e(@)) = Wx(eW))e(@) ™ = (pw(W))e(@)®.

Let z = y(w); we need to show thai(2)¢(a))™*) = ¢(y(wa)). Asyy is conservative, by Proposi-
tion[6.4 the longest palindromic ix Q of yx(e(W))p(a) = p(2)¢(a) belongs toX*. Sincey(a)

is a palindrome an is a sufix code, there exists a ix v of z such thatQ = ¢(v)¢(a). Using
Lemmd6.1D one derives tha is the longest palindromic fiix of za, so that, lettingz = uv,

(PDe@) = p(uvau) = ¢((za ) = p(y(wa)),
which concludes the proof. O

Corollary 6.11. Let X be a weakly overlap-free and infix code such tha RAL. Thenyy is
morphic-conservative.

Proof. Trivial by Propositio 6.2 and Theordm 6.9. O

Remark 6.12. The hypotheses in the previous corollary tixats a weakly overlap-free and
infix code are not necessary in order thatis morphic-conservative. For instance, ¥ebe the
prefix codeX = {aa, cbaabg. One has thabcX N PAL = 0. From this one easily verifies that
forall n > 0, if yx(X") € X*, then forx € X, LPS(yx(X")x) € X*. Thus by using the same
argument as in the fliciency of Proposition 614, one has thigg(X™?1) c X*. It follows thatyy

is conservative and then morphic-conservative by Thebr8&mn 6

Let yx be a morphic-conservative palindromization map and A* — B* the injective
morphism such thaX = ¢(A) andy o ¥ = ¥x o ¢. SinceX has to be bifixy can be extended to
a bijectiony : A“ — X“. The extension ofx to X* is such that for anyx € X¢

Ux(¥) = @@ le (3)).
For anyx € X* the wordy(¢~1(X)) is an epistandard word ové; so that
Yx(X*) = p(E pistand).
Therefore, one has:

Proposition 6.13. The infinite words generated by morphic-conservative gdizexd palin-
dromization maps are images by injective morphisms of tietalard words.
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Let us now consider the case wheris a finite and maximal prefix code.
Lemma 6.14. If X is a finite and maximal prefix code over A such that RAL, then X= A.

Proof. Let ¢x be the maximal length of the words ¥f SinceX is represented by a fudl-ary
tree, there exigll distinct wordspa € X, with p a fixed word ofA*, a € A, and|pa = ¢x. As for
anya € A, the wordpa e PAL, the only possibility isp = &, so thatX = A. O

Proposition 6.15. Let X be a finite and maximal prefix code over A. Tlggnis morphic-
conservative if and only if X A.

Proof. The proofis an immediate consequence of Thedrein 6.9 and laEntd. O

In the case of a finite maximal prefix code the nggpcan be non conservative. For instance,
if X = {a, ba, bb}, thenyx(ba) = bab ¢ X*. The situation can be quiteftirent if one refers to
infinite words overX. Let us give the following definition.

Let X be a code having a finite deciphering delay. We sayikat weakly conservativi
for anyt € X“, one hag/x(t) € X“; in other terms the mapx : X* — A® can be reduced to a
mapyyx : X¥ — X, In generalyx is not weakly conservative. For instanceXif {ab, ba} and
t € ababX’, thenyx(t) ¢ X“.

Trivially, if ¥x is conservative, then it is also weakly conservative. Hauahe converse is
not in general true as shown by the following:

Theorem 6.16. If X is a finite and maximal prefix code, theg is weakly conservative.

Proof. Let s = yx(t) whereX a finite and maximal prefix code atnde X“. We recall [9] that
any maximal prefix code is right complete, i.e., for ahg A", one hasfA* N X* # 0. If X'is
finite, then for anyf € A* and any letten € A one has:

fak e X*,

for a suitable integek, depending orf and ona, such that 0< k < ¢, where¢ = {x is the
maximal length of the words of. Leta be a fixed letter oA. We can write:

sma e X7,
with 0 < k, < £. Settingp = | 7], we can write:
S = XaX2 -+ X4,

with x; € X, i =1,...,0n, 0n > p and|d| < £. Now s < Snq, SO that sinceX is a prefix code,
one has:
S[n+€] = X1X2 T XQn+[/l/’

With Qnye > Ony X € X, 0 = Qneds - - - » Onee, @Nd|A’] < £. Since

lim Xq- - Xq, € X*

N—oo

and limye X1 -+ Xg, = liMpoe0 Sy, the result follows. O

Corollary 6.17. Let s= yx(t) with t € X* be an X-AR word. Then s is the morphic image by an
injective morphism of a word w B*, where B is an alphabet of the same cardinality as X.
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Proof. By the preceding theorem, singg is weakly conservative, we can write:

S=X1Xo - Xn--",

with x; € X, i > 1. LetB be an alphabet having the same cardinalitX@ndy : B* — X* be the
injective morphism induced by an arbitrary bijectionBandX. If ¢~ is the inverse morphism
of ¢ one has:

) = ¢ () (X)) (Xe)
Settingg™1(x) = w; € Bforalli > 1, one hagp™(s) = wyWy---Wy--- = w € B* ands =
o(W). O

Let us observe that in general the waveE B® is not episturmian as shown by the following:
Example6.4. Let X = {a, ba, bb} ands = yx((ababh®). One has:

s = ababbabaababbabababbabaababbaba

Let B = {0, 1, 2} andy the morphism oB* in X* defined by the bijectiop(0) = a, ¢(1) = ba,
ande(2) = bb. One has:

w = ¢ }(s) = 0120101201120101201- ,

and the wordw is not episturmian (indeed, for instance, the factor 0120dat rich in palin-
dromes).

7. The pseudo-palindromization map

An involutory antimorphisnof A* is any antimorphisn# : A* — A* such that$ o ¢ = id.
The simplest example is tlieversal operator R A* — A* mapping eaclv € A* to its reversal
w™. Any involutory antimorphisn# satisfies? = v o R = Ro r for some morphism : A* — A*
extending an involution of. Conversely, ifr is such a morphism, theh= 7o R=Roris an
involutory antimorphism of\*.

Let  be an involutory antimorphism o&*. For anyw € A" we shall denote&}(w) simply
by w. We call 9-palindromeany fixed point ofd, i.e., any wordw such thatw = w, and let
PALy denote the set of al#-palindromes. We observe thate PALy by definition, and that
R-palindromes are exactly the usual palindromes. If one makeeference to the antimorphism
9, av-palindrome is called pseudo-palindrome

For anyw € A*, w® or simplyw®, denotes the shortestpalindrome havingv as a prefix.
If Qis the longest)-palindromic sifix of w andw = sQ, then

w® = sQs.

Example7.1 Let A = {a, b, c} and¥ be defined aa = b, ¢ = c. If w= abacabg¢thenQ = cabc
andw® = abacabcbab

We can define thé@-palindromization mags : A* — PALy by ¥y(e) = € and
wo(ua) = (ys(u)a)®

forue A*andac A
The following proposition extends to the casedepalindromization magyy the properties
of palindromization magr of Propositiod 211 (cf., for instance, [5]):
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Proposition 7.1. The mapy, over A satisfies the following properties: forue A*
P1. Ifuis a prefix of v, thetry(u) is ad-palindromic prefix (and sfix) of ys(v).
P2. If pis a prefix ofyy(v), then @ is a prefix ofy(v).

P3. Everyg-palindromic prefix ofy4(v) is of the formys(u) for some prefix u of v.
P4. The map; is injective.

The mapy,y can be extended to infinite words as follows: et x; Xz« -+ Xn--- € A¥ with
X € Afori > 1. Since for alin, ys(Xn) is a prefix ofyy(Xn.1)), we can define the infinite word
Yg(X) as:
wo(X) = im v (x) -

The infinite wordx is called thedirective wordof yy(x), ands = y(X) the J-standard word
directed byx. If one does not make reference to the antimorphfsang-standard word is also
calledpseudostandard word
The class of pseudostandard words was introduced in [5]. eSateresting results about
such words are also in [16,/17]. In particular, we mentionrtbeworthy result that any pseudo-
standard word can be obtained, by a suitable morphism, fretaredard episturmian word.
More precisely lejy be the endomorphism & defined for any lettea € A as: ug(a) = a®,
so thatuy(a) = aif a = aanduy(a) = aa, if a # a. We observe that, is injective sincauy(A)
is a prefix code. The following theorem, proved|lin [5], retatee mapgy andy through the
morphismuy.

Theorem 7.2. For any we A%, one hasyy(w) = ug (¥ (w)).

An important consequence is that afsgtandard word is a morphic image of an epistandard
word.

A generalization of the pseudo-palindromization map, ksinto that given in Sectiol] 3 for
the palindromization map, is the following. Létbe an involutory antimorphism &&* andX a
code overA. We define a map:

Yox 1 X — PALy,

inductively asis x(€) = € and for anyw € X* andx € X,

Yo x(WX) = (s x(W)X)®.

If 9 = R, thenyrx = ¥x. If X = Athenyya = ¥y. The mapyyx will be called thed-
palindromization map relative to the code X

Example7.2 Let A = {a,b,c} and¥ be defined am = b andc = c. Let X be the code
X = {ab, ba, ¢} andw = abcba One hasiyy x(ab) = ab, ¥y x(abg = abcabandyy x(abcbg =
abcabbaabcab

Let us now consider a codé€ having a finite deciphering delay. One can extépg to X*
as follows: letx = xgXo -« Xn - -+, With X € X,i = 1. Foranyn > 1, ¢y x(X1 - - - X1) iS @ proper
prefix of g x(X1 - - - XnXn+1) SO that there exists

lim yox(xa-- %) = Yax(X).
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Let us observe that the worly x(xX) has infinitely manyg-palindromic prefixes. This implies
thatys x(X) is closed undet, i.e., if w € Factyy x(X), then alsav € Factyg x(X).

We remark that the mapgyx and their extensions tX“, when X is a code with finite
deciphering delay, are not in general injective. The folfayproposition, extending Propositions
[3.2 and 4.1, can be proved in a similar way.

Proposition 7.3. Let X be a prefix code over A. Then the magx : X* —» PALy and its
extension to X are injective.

Several concepts, such as conservative and morphic-a@tisermaps, and results consid-
ered in the previous sections for the map can be naturally extended to the case of the map
Yex. We limit ourselves only to proving the following interesgitheorem relating the mapgs
andyy x whereX = py(A). Combining this result with Theorelm 7.2 one will obtainttit@ x is
morphic-conservative.

Theorem 7.4. Let A be an alphabet} an involutory antimorphism, and % u4(A). Then for
any we A® one has:
Yo (W) = g x (o (W)).

Proof. It is sufficient to prove that the above formula is satisfied for ang A*. The proof is
obtained by making induction on the lengthvaf

Let us first prove the base of the induction. The result igafiivtrue if w = . Letw = a € A
If a=a, thena e X andyy(a) = a = yyx(us(@)) = ¥ x(@). If a+ a, one hagy(a) = aa € X
andy () = aa = ¥y x(us(a)) = ¥y x(ad).

Let us now prove the induction step. Fare A* anda € A we can write, by using the
induction hypothesis,

Up(wa) = (Yp(W)a)® = (Ya.x(ka(W))a)®. (22)

Moreover, one has:

Yo x(s(Wa)) = g x (s (Wa®) = (ox(us(W)a®)® = (vg(w)a®)®. (23)

We have to consider two cases.alf a, thena® = a, so that from the preceding formulas{22)
and [Z3) we obtain the result.

Let us then consider the caaet a. We shall prove thatfy(w)a)® = yy(wa) has the prefix
p = yg(W)aa, so that from property P2 of Propositibn17.1 one will hafe< yy(wa). Since
vs(wW)a < p, one will derive thatys(wa)| = |(Ys(w)a)®| < |p® so thatp® = (yy(w)a)® from
which the result will follow. We have to consider two cases:

Case 1yy(w) has not a-palindromic sifix preceded by the letter Thus
Wa(W)Q)® = yrp(W)aauss(w),

so that in this case we are done.

Case 2.45(w) has a?-palindromic sifix u of maximal length preceded by the letterSinceu
is also a?-palindromic prefix ofys(w), by property P3 of Propositidn 7.1 there existrefix of
w such that = y4(v). Sinceauis a sufix of ¥3(w) one has thatia = yy(v)ais a prefix ofyrg(w).
By property P2 of Propositidn 4. 1/4(v)a)® is a prefix ofiys(w).

Sincelv| < |w| one hagval < |w|. By using two times the inductive hypothesis one has:

Ws(Va)® = yro(va) = Yo x(us(v)ad) = (Yo.x(us(V))ad)® = (¥s(v)aa)®.
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Hence (W) has the prefixiaa and the stfix aau, so thatyy(w) = 1aauwith 1 € A* and
(Wa(W)a)® = 1aauaal = yy(w)aan,
from which the result follows. O
From Theorems 712 and T.4 one derives the noteworthy:

Corollary 7.5. Let A be an alphabet} an involutory antimorphism, and X uy(A). Then one
has:

Yy = o oY =g x o ly.

Example7.3. Let A = {a, b}, ¢ be defined aa = b, andX = ¥(A) = {ab, ba}. Letw = aah One
hasy(aab) = aabag yy(aab) = ababbaabab= uy(aabag. Moreoveruy(aab) = ababbaand
Yy x(ababbg = ababbaabab
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