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Abstract. This paper presents a uniaxial phenomenological model for the simulation of the
hysteretic behavior typically exhibited by sliding bearings deforming along one of their trans-
verse directions under the effect of an axial compressive load. The proposed hysteretic model is
able to take into account the dependency of the device restoring force on the velocity of sliding,
on the bearing pressure, and on the condition of the sliding interface. Furthermore, it allows
for a considerable reduction of the computational effort of nonlinear dynamic analyses since
the model hysteretic variable is evaluated by solving an algebraic equation. The numerical ac-
curacy and computational efficiency of the proposed model are assessed by means of numerical
simulations.
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1 INTRODUCTION

Base isolation represents one of the most effective techniques for the seismic protection of
buildings and bridges [1, 2, 3]. Such a technique requires the use of special devices, called seis-
mic isolation bearings, having flexibility and energy dissipation capacity along their transverse
directions and a large axial stiffness [4, 5].

Seismic isolation bearings can be divided into two main categories, that is, elastomeric and
sliding bearings. The latter, of particular interest in this work, are devices made up of rigid
plates that can slide with respect to each other. Looking at the type of sliding surface, it is
possible to distinguish between flat surface sliding bearings and curved surface sliding bearings
[6].

Sliding bearings deforming along one of their transverse directions under the effect of an
axial compressive load display a hysteretic behavior due to the friction occurring at the sliding
interface. Experimental tests results available in the literature show that the device restoring
force depends not only on the device transverse displacement but also on the device transverse
velocity. In particular, the dependency of the device restoring force on the velocity of sliding is
due to the variation of the kinetic friction coefficient with the sliding velocity [7, 8].

Several hysteretic models have been proposed in the literature for simulating the complex
behavior occurring in sliding bearings [9]. Among existing models, the one proposed by Mokha
et al. [10] seems to be the most suitable one since it allows for an accurate prediction of the
hysteretic response of both flat and curved surface sliding bearings by using a relatively small
number of parameters. In particular, such a model is able to take into account the dependency
of the restoring force on the velocity of sliding, on the bearing pressure, and on the condition of
the sliding interface. Unfortunately, this model is not computationally efficient since it requires
the numerical solution of a first-order nonlinear ordinary differential equation for the evaluation
of the hysteretic variable at each time step of a nonlinear dynamic analysis.

This paper presents a uniaxial phenomenological model able to predict the hysteretic behav-
ior generally displayed by sliding bearings. Compared to the model formulated by Mokha et
al. [10], the proposed one not only offers the important advantage of accurately simulating the
response of such devices, but it also allows for a considerable reduction of the computational
effort required by nonlinear dynamic analyses since the model hysteretic variable is evaluated
by solving an algebraic equation. Furthermore, it is based on a smaller set of parameters and
can be easily implemented in a computer program.

2 SLIDING BEARINGS

Sliding bearings are seismic isolation devices consisting of a slider that moves on a sliding
surface. Such devices, having an axial stiffness that is very much greater than the transverse
one, display an energy dissipation capacity due to the friction damping occurring at the sliding
interface [4].

According to the type of sliding surface, sliding bearings can be classified into two main
categories, namely, Flat Surface Sliding Bearings (FSSBs) and Curved Surface Sliding Bearings
(CSSBs) [6].

In this section, the main characteristics of the two above-mentioned types of sliding bear-
ings are illustrated with particular emphasis on the brief description of the hysteretic behavior
displayed along their transverse directions under the effect of an axial compressive load.
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2.1 Flat Surface Sliding Bearings

Figure 1a shows the sectional view of a typical FSSB in deformed configuration. Such a de-
vice has a slider generally made up of an upper sliding plate and a lower polished stainless steel
plate. The flat sliding surface is typically overlain by unfilled or filled Polytetrafluoroethylene,
referred to as PTFE or Teflon.

FSSBs deforming along one of their transverse directions under the effect an axial com-
pressive load display both rate-dependent and rate-independent hysteretic behaviors. Indeed,
experimental test results available in the literature [7, 8] show that the device restoring force
f depends not only on the device transverse displacement u but also on the device transverse
velocity u̇. Figure 1b shows the typical hysteresis loop shape displayed by FSSBs.

(a) (b)

Figure 1: Typical FSSB: sectional view in deformed configuration (a) and hysteresis loop shape (b).

2.2 Curved Surface Sliding Bearings

Figure 2a shows the sectional view of a typical CSSB in deformed configuration. Such
a device, denominated Friction Pendulum Bearing (FPB), has an articulated slider generally
coated with a low-friction and high-pressure capacity composite material, typically PTFE. The
curved sliding surface, having radius of curvature R, is generally overlain by polished stainless
steel.

FPBs deforming along one of their transverse directions under the effect an axial compressive
load display both rate-dependent and rate-independent hysteretic behaviors. Figure 2b shows
the typical hysteresis loop shape displayed by FPBs.

(a) (b)

Figure 2: Typical FPB: sectional view in deformed configuration (a) and hysteresis loop shape (b).
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3 PROPOSED HYSTERETIC MODEL

In this section, we first present the proposed hysteretic model formulation; subsequently, we
illustrate a schematic flowchart of the model to allow for an easy computer implementation.

3.1 Model Formulation

The restoring force of a sliding bearing may be evaluated as [10]:

f (u, u̇) =
N

R
u+ µ (u̇)Nz (u) , (1)

where N is the axial compressive force acting on the bearing, R is the radius of curvature of
the sliding surface, µ (u̇) is the kinetic coefficient of friction, z(u) is a dimensionless hysteretic
variable, whereas u and u̇ are the bearing transverse displacement and velocity, respectively.

The kinetic friction coefficient µ (u̇) may be computed as [8]:

µ (u̇) = µmax − (µmax − µmin) e−a|u̇|, (2)

where µmax (µmin) is the value of the kinetic friction coefficient at large (low) bearing transverse
velocity, and a is a parameter, having units of time per unit length, that rules the velocity of
transition of µ (u̇) from µmin to µmax. Note that the values of µmax, µmin, and a depend on the
bearing pressure, temperature, as well as condition of the sliding surface.

The dimensionless hysteretic variable z(u) is a function of u and has a unit maximum abso-
lute value, that is, max {|z(u)|} = 1; in particular, if u cycles between two values, z(u) traces
a hysteresis loop bounded by two parallel horizontal straight lines.

In the model proposed by Mokha et al. [10], such a variable is evaluated by solving the
following differential equation, typical of the celebrated Bouc-Wen model [11, 12]:

Y ż + γ |u̇| z |z|n−1 + βu̇ |z|n − Au̇ = 0, (3)

where Y > 0 is a parameter having dimension of displacement, whereas A, β, γ, and n are
dimensionless parameters. Unfortunately, the numerical solution of Equation (3) for each time
step of a nonlinear dynamic analysis may significantly increase the overall computational effort.

To decrease the computational burden of the analyses without decreasing the accuracy of the
numerical results, we propose to evaluate z(u) by employing a specific instance of the general
class of uniaxial phenomenological models formulated by Vaiana et al. [13, 14].

According to such a general formulation, a generic hysteresis loop, in the z-u plane, can be
described by means of four types of curves, that is, the upper cu and the lower cl limiting curves
and the generic loading c+ and unloading c− curves.

As shown in Figure 3, the upper (lower) limiting curve cu (cl) intercepts the vertical axis at
z = f̄ (z = −f̄ ). Furthermore, the generic loading (unloading) curve has a starting point, lying
on the lower (upper) limiting curve, having abscissa u+

i (u−i ) and an ending point, lying on the
upper (lower) limiting curve, having abscissa u+

j (u−j ), with u+
i = u+

j − 2u0 (u−i = u−j + 2u0).
In the generic loading case, z = c+ when u+

i ≤ u < u+
j , and z = cu when u > u+

j , whereas,
in the generic unloading case, z = c− when u−j < u ≤ u−i , and z = cl when u < u−j .

Specifically, in this work, the expressions of the upper cu and lower cl limiting curves are:

cu = f̄ , (4)

cl = −f̄ , (5)
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Figure 3: Curves cu, cl, c+, and c− defining the dimensionless hysteretic variable z(u).

whereas, the ones of the generic loading c+ and unloading c− curves are:

c+
(
u, u+

j

)
= ka


(
1 + u− u+

j + 2u0

)(1−α)

1− α
− (1 + 2u0)(1−α)

1− α

+ f̄ , (6)

c−
(
u, u−j

)
= ka


(
1− u+ u−j + 2u0

)(1−α)

α− 1
− (1 + 2u0)(1−α)

α− 1

− f̄ , (7)

where ka and α are model parameters to be calibrated from experimental tests, whereas u0 and f̄
are two internal model parameters that can be expressed as a function of ka and α. In particular,
ka > 0, α > 0, α 6= 1, u0 > 0, and f̄ > 0.

The internal model parameters u0 and f̄ can be evaluated as follows:

u0 =
1

2

(ka
δk

) 1
α

− 1

 , (8)

f̄ =
ka
2

(1 + 2u0)(1−α) − 1

1− α

 , (9)

where δk may be set equal to 10−20, as explained in [13, 14].
Finally, for the generic loading case, the expression of the history variable is:

u+
j = 1 + uP + 2u0 −

1− α
ka

fP − f̄ + ka
(1 + 2u0)(1−α)

1− α


( 1
1−α)

, (10)

whereas, for the generic unloading case, it becomes:

u−j = −1 + uP − 2u0 +

α− 1

ka

fP + f̄ + ka
(1 + 2u0)(1−α)

α− 1


( 1
1−α)

, (11)

where (uP ,fP ) are the coordinates of the initial point P of the generic loading or unloading
curve.

Note that, in order to have max {|z(u)|} = 1, the parameters ka and α need to be selected
so that Equation (9) gives a unit value of f̄ .
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1. Initial settings.

1.1 Set the model parameters: N , R, µmax, µmin, a, ka, and α.
1.2 Compute the internal model parameters:

u0 = 1
2

[(
ka
δk

) 1
α − 1

]
and f̄ = ka

2

[
(1+2u0)(1−α)−1

1−α

]
, with δk = 10−20.

2. Calculations at each time step.

2.1 If stst−∆t < 0, update the history variable:

uj = ut−∆t + st (1 + 2u0)− st
{
st(1−α)
ka

[
zt−∆t − stf̄ + ka

(1+2u0)(1−α)

st(1−α)

]}( 1
1−α)

.

2.2 Evaluate the dimensionless hysteretic variable at time t:
if ujst − 2u0 ≤ utst < ujst:

zt = ka

[
(1+stut−stuj+2u0)(1−α)

st(1−α)
− (1+2u0)(1−α)

st(1−α)

]
+ stf̄ ,

otherwise:
zt = stf̄ .

2.3 Compute the kinetic friction coefficient at time t:
µt = µmax − (µmax − µmin) e−a|u̇t|.

2.4 Evaluate the restoring force of the sliding bearing at time t:
ft = N

R
ut + µtNzt.

Table 1: Proposed hysteretic model algorithm.

3.2 Computer Implementation

To allow for an easy computer implementation, Table 1 presents a schematic flowchart of
the proposed hysteretic model. To this end, we suppose that a sliding bearing is subjected to a
given transverse displacement history and that a displacement-driven solution scheme has been
adopted. Because of these assumptions, the displacements ut−∆t and ut, the velocities u̇t−∆t

and u̇t, as well as the restoring force ft−∆t are known over a time step ∆t, and the restoring
force ft has to be evaluated.

The implementation scheme of the proposed hysteretic model, summarized in Table 1, is
composed of two parts. In the first one, called Initial settings, the model parameters, that is, N ,
R, µmax, µmin, a, ka, and α are assigned and the internal ones, namely, u0 and f̄ , are evaluated.
In the second one, called Calculations at each time step, the history variable uj is updated if
the sign of the transverse velocity at time t, that is, st = sgn(u̇t), changes with respect to the
one at time t − ∆t, that is, st−∆t = sgn(u̇t−∆t); then, the dimensionless hysteretic variable zt
is computed by using the expression of the generic loading/unloading curve if ujst − 2u0 ≤
utst < ujst; otherwise, it is computed by adopting the expression of the upper/lower limiting
curve. Finally, after updating the value of the kinetic friction coefficient µt, the restoring force
of the sliding bearing ft is evaluated.
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4 VERIFICATION OF THE PROPOSED MODEL

This section presents the validation of the Proposed Hysteretic Model (PHM), described in
Section 3. Specifically, numerical accuracy and computational efficiency of the proposed model
are assessed by performing Nonlinear Time History Analyses (NLTHAs) on a base-isolated
rigid block and comparing the results obtained by modeling the restoring force of each sliding
bearing on the basis of the PHM with those obtained by using the model developed by Mokha
et al. [10], given by Equations (1)-(3) and referred to as the Mokha Hysteretic Model (MHM)
for simplicity.

4.1 Analyzed Mechanical System

Figure 4 illustrates the analyzed mechanical system that consists of a rigid block isolated by
two FPBs placed between a shaking table and the rigid block.

Figure 4: Mechanical system adopted for the numerical verification.

The motion of such a system is described by the following equation:

mü+ 2cu̇+ 2f(u, u̇) = p(t), (12)

where m denotes the rigid block mass, c the viscous damping coefficient of each bearing, u,
u̇, and ü the mechanical system displacement, velocity, and acceleration relative to the ground,
respectively, f the restoring force of each FPB, and p the external force depending upon time t.

If the mechanical system is subjected to an earthquake excitation, p represents the effective
earthquake force, that is, a force acting opposite to the acceleration and equal to mass m times
the ground acceleration üg. Thus, Equation (12) is replaced by:

mü+ 2cu̇+ 2f(u, u̇) = −müg(t). (13)

The rigid block has a mass of 11685.94 Ns2m−1, whereas the two FPBs, characterized by
negligible mass and viscous damping coefficient, have the same properties as the one tested
by Mokha et al. [10]. Their nonlinear behavior is simulated by using the hysteretic models
parameters listed in Table 2.

4.2 Applied External Forces

The nonlinear dynamic response of the mechanical system is evaluated for two different
external forces, namely, a harmonic force and an earthquake force.

The harmonic force, shown in Figure 5a, is a sinusoidal force characterized by an amplitude
p0 that increases linearly with time from 0 to 104 N, a forcing frequency ωp = 2π rad/s, and a
time duration td = 10 s.
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MHM N [N] R [m] µmax µmin a [s/m] Y [m] A β γ n

57300 0.247 0.075 0.040 43.30 0.0001 1 0.1 0.9 1.1

PHM N [N] R [m] µmax µmin a [s/m] ka [m−1] α

57300 0.247 0.075 0.040 43.30 15500 7750

Table 2: Hysteretic models parameters.
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Figure 5: Applied external forces: harmonic (a) and earthquake force (b).

The earthquake force, shown in Figure 5b, is evaluated by adopting the SN component of
horizontal ground acceleration recorded at the Jensen Filter Plant station during the Northridge
earthquake of January 17, 1994. The original ground acceleration record, having time step
equal to 0.005 s, has been scaled by a factor of 1/3 in order to reach a peak mechanical system
displacement, relative to the ground, that is close to the maximum displacement attained by the
FPB during the experimental tests conducted by Mokha et al. [10].

4.3 Results of the Nonlinear Time History Analyses

In this subsection, the results of some numerical simulations are presented to assess the
numerical accuracy and the computational efficiency of the PHM.

The equation of motion, given by Equation (12) or (13), according to the type of applied
external force, has been numerically solved by employing a widely used explicit time inte-
gration method, that is, the central difference method [15, 16], and adopting a time step of
0.005 s. In addition, the first-order nonlinear ordinary differential equation characterizing the
MHM has been numerically solved by adopting the unconditionally stable semi-implicit Runge-
Kutta method [17] and using 50 steps. The numerical time integration algorithm as well as
the hysteretic models have been implemented in MATLAB and run on a computer having an
Intel R©CoreTMi7-4700MQ processor and a CPU at 2.40 GHz with 16 GB of RAM.

Tables 3 and 4 present the NLTHAs results obtained for the harmonic and earthquake forces,
respectively.

The numerical results confirm the accuracy of the PHM since the maximum and minimum
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u [m] u̇ [ms−1] ü [ms−2]

tct [s] tctp max min max min max min

MHM 9.55 - 0.0350 -0.0321 0.2078 -0.2255 1.4296 -1.5581
PHM 0.07 0.73% 0.0350 -0.0320 0.2077 -0.2253 1.4286 -1.5573

Table 3: NLTHAs results obtained by applying the harmonic force.

u [m] u̇ [ms−1] ü [ms−2]

tct [s] tctp max min max min max min

MHM 27.00 - 0.0218 -0.0345 0.1392 -0.1406 1.6221 -1.1974
PHM 0.22 0.81% 0.0218 -0.0346 0.1391 -0.1408 1.6227 -1.1896

Table 4: NLTHAs results obtained by applying the earthquake force.

values of the relative displacement, velocity, and acceleration of the mechanical system, evalu-
ated by employing the proposed model, are quite close to those predicted by the MHM.

Furthermore, the numerical results also show that the computational burden of the PHM,
expressed by the total computational time tct, is significantly smaller than the one characterizing
the MHM. Since the parameter tct depends upon the amount of the back-ground process running
on the computer, the relevant memory, as well as the CPU speed, a fully objective measure of
the computational benefits, associated with the use of the PHM with respect to the MHM, is
obtained by normalizing such a parameter as follows:

PHM tctp [%] =
PHM tct

MHM tct
· 100 . (14)

Figures 6, 7, and 8 illustrate, respectively, the time histories of the relative displacement, ve-
locity, and acceleration of the mechanical system, whereas Figure 9 shows the restoring force-
displacement hysteresis loops displayed by each FPB. Generally speaking, the comparison be-
tween the responses simulated with the PHM and the MHM shows a very good agreement.

5 CONCLUSIONS

We have presented a uniaxial phenomenological model able to simulate the complex hys-
teretic behavior typically displayed by sliding bearings deforming along one of their transverse
directions under the effect of an axial compressive load.

The proposed model allows for the evaluation of the device restoring force taking into ac-
count its dependency on the sliding velocity, bearing pressure, and sliding surface conditions.
Furthermore, such a model requires the solution of an algebraic equation for the evaluation of
the hysteretic variable and can be easily implemented in a computer program.

The numerical accuracy and the computational efficiency of the proposed model have been
assessed by performing nonlinear time history analyses on a single degree of freedom mechan-
ical system, for two different external forces, that is, a harmonic force and an earthquake force,
and comparing the results of the PHM with those associated with the MHM. Specifically, the
following conclusions can be drawn:
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Figure 6: Relative displacement time history obtained by applying the harmonic (a) and the earthquake force (b).
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Figure 7: Relative velocity time history obtained by applying the harmonic (a) and the earthquake force (b).

- the numerical results of the PHM closely match those predicted by the MHM, for both
types of external force;

- the total computational time required by the PHM is equal to 0.73% (0.81%), for the
harmonic (earthquake) force case, of the one associated with the MHM.

Current research is focusing on the extension of the proposed model to the two-dimensional
case through the definition of an interaction domain involving restoring forces. Furthermore, in
forthcoming papers, the presented model will be combined with recent strategies to address the
nonlinear behavior of framed [18] or shear wall structures [19] in order to analyze base-isolated
buildings by exploiting the concept of seismic response envelopes [20].
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Figure 8: Relative acceleration time history obtained by applying the harmonic (a) and the earthquake force (b).
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Figure 9: Hysteresis loops obtained by applying the harmonic (a) and the earthquake force (b).
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