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Abstract
In this paper, a family of mean past weighted (MPWα) distributions of order α is
introduced. For the construction of this family, the concepts of themean inactivity time
and cumulative α-class past entropy are used. Distributional properties and stochastic
comparisonswith other knownweighted distributions are given. Furthermore, an upper
bound for the k-order moment of the random variables associated with the new family
and a characterization result are obtained. Generalized discrete mixtures that involve
MPWα distributions and other weighted distributions are also explored.

Keywords Cumulative past entropy · Mean inactivity time · Cumulative Tsallis past
entropy · Weighted distributions

Mathematics Subject Classification 94A17 · 60E15

1 Introduction

Let X be an absolutely continuous non-negative random variable with probability
density function (pdf) fX (x), cumulative distribution function (cdf) FX (x) and survival
function FX (x) = 1 − FX (x). For a parameter α > 0, the α-class Shannon entropy
is defined by

Hα( fX ) =

⎧
⎪⎨

⎪⎩

1
α−1

(

1 − ∫ ∞
0 [ fX (x)]α dx

)

, for α �= 1,

− ∫ ∞
0 fX (x) log fX (x) dx, for α = 1,
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see Havrda and Charvat [11], Tsallis [29], Ullah [30] and Riabi et al. [27] for more
details. Keeping in mind that

∫ ∞
0 fX (x) dx = 1, a simple modification is to use the

cdf instead of pdf, defining the α-class past entropy

Hα(FX ) =

⎧
⎪⎨

⎪⎩

1
α−1

∫ ∞
0

(

FX (x) − [FX (x)]α
)

dx, for α �= 1,

− ∫ ∞
0 FX (x) log FX (x) dx, for α = 1.

In reliability theory, the duration of the time between an inspection time x and the
failure time X , given that at time x the system has been found failed, is called inactivity
time and is represented by the random variable [x − X | X ≤ x], x > 0, with mean
inactivity time (MIT )

μ̃X (x) = E(x − X | X ≤ x) =
∫ x
0 FX (u) du

FX (x)
(1)

for all x > 0 such that FX (x) > 0 (see Kayid and Ahmad [16] and Misra et al. [18]).
Moreover, the entropy

CE(X) = E(μ̃X (X)) = −
∫ ∞

0
FX (x) log FX (x) dx, (2)

is known as cumulative past entropy; see Di Crescenzo and Longobardi [8] and Di
Crescenzo and Longobardi [9], while for α �= 1 and α > 0, the entropy

CTα(X) = E(μ̃X (X) [FX (X)]α−1) = 1

α − 1

∫ ∞

0

(

FX (x) − [FX (x)]α
)

dx, (3)

is known as cumulative Tsallis past entropy; see Calì et al. [6].
In this paper, we propose and study a family of weighted distributions based on the

mean inactivity time μ̃X (x) and the entropies CE(X) and CTα(X). We provide first
the pdf’s, cdf’s and reversed hazard rates of these distributions, and then we derive
(under some assumptions for themonotonicity related toMIT) stochastic comparisons
with other known weighted distributions. We also construct an upper bound for the
k-order moment of the random variables in the new family, and using a proportional
reversed hazards model we obtain a characterization result (see Sect. 3). Furthermore,
we study generalized discrete mixtures by using the proposed family (see Sect. 4).
Finally, we give some conclusions, discussing an approach by using the mean residual
lifetime and residual entropies (see Sect. 5). In the next section, we give some further
preliminaries that we use in the sequel of the paper.

2 Preliminaries

Let Xw be a weighted version of the random variable X associated with a weighted
function w : [0,∞) → [0,∞) such that 0 < E(w(X)) < ∞. Then, the pdf and cdf
of Xw are
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fXw(x) = w(x)

E(w(X))
fX (x), x > 0, (4)

and

FXw(x) = 1

E(w(X))

∫ x

0
w(u) fX (u) du, x ≥ 0,

respectively. For more details on weighted distributions, see Patil and Rao [23], Jain
et al. [15], Gupta and Kirmani [14], Nanda and Jain [20], Navarro et al. [22], Bar-
toszewicz and Skolimowska [4], Riabi et al. [27], and Feizjavadian and Hashemi [10].

A particular case of weighted distribution is the so-called length-biased version of
the X , denoted by L , that is the weighted version of the random variable X associated
with the weight function w(x) = x . In this case, the pdf of L is

fL(x) = x

E(X)
fX (x), x > 0, (5)

provided that E(X) < ∞. Another choice we use below is the weight w(x) =
[FX (x)]α−1 for α > 0. In this case, the pdf of the weighted version of X , denoted by
fXα (x), is given by

fXα (x) = [FX (x)]α−1

E([FX (X)]α−1)
fX (x), x > 0, (6)

whereE([FX (X)]α−1) = α−1. Finally, forw(x) = x [FX (x)]α−1, α > 0, we consider
the random variable Lα with pdf

fLα (x) = x [FX (x)]α−1

E(X [FX (X)]α−1)
fX (x), x > 0, (7)

provided that E(X [FX (X)]α−1) < ∞. It is worth mentioning that for α = 1, (7)
yields (5); see also Riabi et al. [27].

The reversed hazard rate function of X is defined as

τX (x) = fX (x)

FX (x)

for all x > 0 such that FX (x) > 0. The derivative of the mean inactivity time of X
can be expressed in term of the reversed hazard rate,

μ̃
′
X (x) = 1 − τX (x)μ̃X (x). (8)

For further properties of reversed hazard rate functions, see Gupta and Gupta [13] and
Longobardi [17].

Definition 2.1 Let X be an absolutely continuous non-negative randomvariable. Then,
X is said to be
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• increasing mean inactivity time (IMIT), if μ̃X (x) is increasing in x ;
• decreasing reversed hazard rate (DRHR), if τX (x) is decreasing in x .

The DRHR class of distributions is a subclass of IMIT. It is worth mentioning that
for an absolutely continuous random variable X supported on [0,∞) the function
τX (x) cannot be strictly increasing in x , while the function μ̃X (x) cannot be strictly
decreasing in x ; see Block et al. [5], Nanda et al. [21] and Ahmad and Kayid [1].

Let us recall some stochastic orders; see for details Müller and Stoyan [19] and
Shaked and Shanthikumar [28].

Definition 2.2 Let X and Y be two absolutely continuous non-negative random vari-
ables, with pdf’s fX (x) and fY (x), cdf’s FX (x) and FY (x), and survival functions
FX (x) and FY (x), respectively. Then, X is said to be smaller than Y in

• the usual stochastic order, denoted by X ≤st Y , if F̄X (x) ≤ F̄Y (x) for all x ;
• the likelihood ratio order, denoted by X ≤lr Y , if fY (x)/ fX (x) is increasing in x ;
• the reversed hazard rate order, denoted by X ≤rh Y , if FY (x)/FX (x) is increasing
in x .

The following implication among the above mentioned stochastic orders is well
known

X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y . (9)

Throughout this paper, the terms “increasing” and “decreasing” are used in non-
strict sense.Moreover, for simplicity in the rest of the paperwe consider that X1 =d X ,
L1 =d L and Y1 =d Y , where =d denotes the equality in distribution.

3 The family of MPW˛ distributions and properties

The dynamic forms of CE(X) and CTα(X) given in (2) and (3) are (see Di Crescenzo
and Longobardi [8] and Calì et al. [6])

CE(X; x) := CE(X | X ≤ x) = −
∫ x

0

FX (u)

FX (x)
log

FX (u)

FX (x)
du (10)

and

CTα(X; x) := CTα(X | X ≤ x) = 1

α − 1

∫ x

0

(
FX (u)

FX (x)
−

[
FX (u)

FX (x)

]α)

du (11)

for all x > 0 such that FX (x) > 0, respectively.
Next, for α > 0, we define the pdf’s of the family of mean past weighted

random variables of order α (MPWα), by using the weight function w(x) =
μ̃X (x) [FX (x)]α−1.
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Definition 3.1 Let X be an absolutely continuous non-negative random variable with
pdf fX (x), mean inactivity time μ̃X (x), cumulative past entropy CE(X) and cumula-
tive Tsallis past entropy CTα(X). For α > 0, the random variables Yα possessing the
pdf’s

fYα (x) =

⎧
⎪⎨

⎪⎩

μ̃X (x) [FX (x)]α−1

CTα(X)
fX (x), for α �= 1,

μ̃X (x)
CE(X)

fX (x), for α = 1,

(12)

denote the family of MPWα random variables related to the random variable X .

In the following result, for α > 0, we give the cdf’s of MPWα .

Theorem 3.1 Let X be an absolutely continuous non-negative random variable with
cdf FX (x), mean inactivity time μ̃X (x), cumulative past entropy CE(X), dynamic
cumulative past entropyCE(X; x), cumulative Tsallis past entropyCTα(X) and cumu-
lative dynamic Tsallis past entropy CTα(X; x). Then, for α > 0, the cdf’s of MPWα

random variables are

FYα (x) =

⎧
⎪⎨

⎪⎩

CTα(X;x)
CTα(X)

[FX (x)]α, for α �= 1,

CE(X;x)
CE(X)

FX (x), for α = 1.
(13)

Proof For α �= 1, we have

FYα (x) = 1

CTα(X)

∫ x

0
μ̃X (t) [FX (t)]α−1 fX (t) dt

= 1

CTα(X)

∫ x

0

[ ∫ t

0
FX (z) [FX (t)]α−2 fX (t) dz

]

dt .

Applying Fubini’s theorem (see Apostol [2, p. 410]), we obtain

FYα (x) = 1

CTα(X)

∫ x

0

[ ∫ x

z
FX (z) [FX (t)]α−2 fX (t) dt

]

dz

= 1

(α − 1)CTα(X)

∫ x

0
FX (z) ([FX (x)]α−1 − [FX (z)]α−1) dz

= 1

(α − 1)CTα(X)
[FX (x)]α

( ∫ x

0

FX (z)

FX (x)
dz −

∫ x

0

[FX (z)]α
[FX (x)]α dz

)

= CTα(X; x)
CTα(X)

[FX (x)]α.
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Table 1 The quantities CTα(X), CE(X) and μ̃(x) for exponential, uniform and power distribution

FX (x) CTα(X) CE(X) μ̃X (x)

(1 − e−λx ) I[0,∞)(x), λ > 0 harmonicnumber(α)−1
(α−1)λ

π2−6
6λ

λx−1+e−λx

λ(1−e−λx )
I[0,∞)(x)

x−a
b−a I[a,b](x), 0 < a < b b−a

2(α+1)
b−a
4

x−a
2 I[a,b](x)

xk I[0,1](x), k > 0 k
(k+1)(αk+1)

k
(k+1)2

x
α+1 I[0,1](x)

For α = 1, we get

FY (x) = 1

CE(X)

∫ x

0
μ̃X (t) fX (t) dt

= 1

CE(X)

(

−
∫ x

0
FX (z) log FX (z)dz + log FX (x)

∫ x

0
FX (z) dz

)

= −1

CE(X)

∫ x

0
FX (z) log

FX (z)

FX (x)
dz

= CE(X; x)
CE(X)

FX (x).

	


By (12) and (13), we obtain directly the following result for the reversed hazard
rate.

Corollary 3.1 Let X be an absolutely continuous non-negative random variable with
reversed hazard rate function τX (x). Then, for α > 0, the reversed hazard rates of
MPWα random variables are

τYα (x) =

⎧
⎪⎨

⎪⎩

μ̃X (x)
CTα(X;x) τX (x), for α �= 1,

μ̃X (x)
CE(X;x) τX (x), for α = 1.

(14)

In Table 1, we compute the quantities CTα(X), CE(X) and μ̃X (x) for exponential,
uniform and power distribution (where given a set B, the indicator function IB(x) is
equal to 1 if x ∈ B is true and 0 otherwise). Some further examples on the computation
of CE(X) can be found in Asadi and Berred [3]. Moreover, for CT2(X) and CE(X),
there are more analytical formulas, see part (i) of Remark 3.1 below.

Remark 3.1 (i) The Gini index is defined as

G(X) =
∫ ∞
0 FX (x) (1 − FX (x)) dx

E(X)
= CT2(X)

E(X)
.
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Furthermore, the Bonferroni index is defined as

B(X) = − ∫ ∞
0 FX (x) log FX (x) dx

E(X)
= CE(X)

E(X)
.

Giorgi and Nadarajah [12] gave Bonferroni and Gini indices for a large number of
parametric families, including the cdf’s given in Table 1 (for α = 1 and α = 2).

(ii) When α is positive integer the harmonic number is

harmonicnumber(α) = 1 + 1

2
+ 1

3
+ · · · =

α∑

k=1

1

k
.

If X follows an exponential distribution with parameter λ > 0 (see Table 1), then
for α = 2 the cumulative Tsallis past entropy is

CT2(X) = 1 + 1
2 − 1

λ
= 1

2λ
,

and part (i) of the remark gives that the Gini index is G(X) = 1/2, see Giorgi and
Nadarajah [12].

Next, we provide some stochastic comparisons among the random variables Xα ,
Yα and Lα . Before that we give an auxiliary result.

Lemma 3.1 Let X be an absolutely continuous non-negative random variable with
pdf fX (x). Let Xw1 and Xw2 be the weighted versions of X based on the non-negative
weight functions w1(x) and w2(x), respectively. If

w2(x)
w1(x)

is an increasing function in
x, then Xw1 ≤lr Xw2 .

Proof Using the definition (4), we have

fXw2
(x)

fXw1
(x)

= E(w1(X))

E(w2(X))

w2(x)

w1(x)
,

which is an increasing function of x , that is, Xw1 ≤lr Xw2 . 	

Theorem 3.2 Let X be an absolutely continuous non-negative random variable. The
random variables Xα , Lα and Yα with pdf’s denote in (6), (7) and (12), respectively,
satisfy the following properties:

(i) If X is IMIT, then Xα ≤lr Yα;
(ii) If μ̃X (x)/x is increasing in x, then Lα ≤lr Yα;
(iii) Xα ≤lr Lα .

Proof For α > 0, letw1(x) = [FX (x)]α−1,w2(x) = μ̃X (x) [FX (x)]α−1 andw3(x) =
x [FX (x)]α−1, the weighted functions correspond to the weighted random variables
Xα ,Yα and Lα , respectively. Then,w2(x)/w1(x) = μ̃X (x),w2(x)/w3(x) = μ̃X (x)/x
and w3(x)/w1(x) = x , and Lemma 3.1 completes the proof. 	
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By Theorem 3.2 and (9), we obtain immediately the next result.

Corollary 3.2 Let X be an absolutely continuous non-negative random variable. Then,
the following hold:

(i) If X is IMIT, then τXα (x) ≤ τYα (x) and FYα (x) ≤ FXα (x);
(ii) If μ̃X (x)/x is increasing in x, then τLα (x) ≤ τYα (x) and FYα (x) ≤ FLα (x);
(iii) τXα (x) ≤ τLα (x) and FLα (x) ≤ FXα (x).

Example 3.1 We consider a random variable X uniformly distributed on [0, b] with
b > 0; the quantities CTα(X), CE(X) and μ̃X (x) are calculated in Table 1. The
weighted functions corresponding to the weighted random variables Xα , Yα and Lα

are

w1(x) =
(
x

b

)α−1

, w2(x) = x

2

(
x

b

)α−1

and w3(x) = x

(
x

b

)α−1

,

respectively. Since w3(x) = 2w2(x), the random variables Yα and Lα have the same
distribution. In particular, for α > 0, (6), (7) and (12) yield

fXα (x) = α xα−1

bα

and

fYα (x) = fLα (x) = (α + 1) xα

bα+1 .

Furthermore, keeping inmind that X is IMIT, one can verify the results in Theorem3.2.

For an absolutely continuous random variable X supported on [0, b], where 0 <

b < ∞, the following theorem gives an upper bound for the moments of Yα based on
the moments of a function of X .

Theorem 3.3 Let X be an absolutely continuous random variable with support [0, b],
where 0 < b < ∞, and Yα be the MPWα version of X. If X is IMIT, then

E(Y k
α ) ≤

⎧
⎪⎨

⎪⎩

b−E(X)
CTα(X)

E(Xk [FX (X)]α−1), for α �= 1,

b−E(X)
CE(X)

E(Xk), for α = 1.
(15)

Proof We note that for a random variable that takes values in [0, b] with 0 < b < ∞,
we have

μ̃X (b) = E[b − X |X ≤ b] = b − E(X).
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For α �= 1, under the hypothesis that μ̃X (x) is increasing in x , we obtain

E(Y k
α ) = 1

CTα(X)

∫ b

0
xk μ̃X (x) [FX (x)]α−1 fX (x) dx

≤ μ̃X (b)

CTα(X)

∫ b

0
xk [FX (x)]α−1 fX (x)dx

= b − E(X)

CTα(X)
E(Xk [FX (X)]α−1).

For α = 1, the proof is similar. 	

Motivated by Theorem 6.2 in Di Crescenzo and Longobardi [8] and Theorem 7 in

Calì et al. [6], we provide a characterization result by using a proportional reversed
hazards model between the random variables Yα and X . For completeness, we present
a short proof.

Theorem 3.4 Let X be an absolutely continuous random variable with support [0, b],
where 0 < b < ∞, and Yα be the MPWα version of X. For 0 < c < 1,

τYα (x) = α

c
τX (x) if and only if FX (x) =

(
x

b

) c
α−α c

.

Proof For α �= 1, by (14), it follows that

τYα (x) = α

c
τX (x) if and only if CTα(X; x) = c

α
μ̃X (x).

Let us consider CTα(X; x) = α−1 c μ̃X (x). By differentiation with respect to x , we
obtain

τX (x) (μ̃X (x) − α CTα(X; x)) = c

α
(1 − τX (x) μ̃X (x)),

or equivalently,

τX (x) μ̃X (x) (α − αc + c) = c. (16)

For 0 < c < 1, we have α − αc + c > 0, and using the identity (8) we get

μ̃
′
X (x) = α − αc

α − αc + c
.

Keeping in mind that μ̃X (0) = 0, we obtain

μ̃X (x) = α − αc

α − αc + c
x .

123



C. Calì et al.

Thus, by (8), the reversed hazard rate of X is

τX (x) = 1 − μ̃
′
X (x)

μ̃X (x)
= c

α − αc

1

x
,

which implies

FX (x) = e− ∫ b
x τX (z) dz =

(
x

b

) c
α−α c

.

The converse implication follows from straightforwards calculations. For a = 1 by
(14) it follows that τY (x) = c−1 τX (x) if and only if CE(X; x) = c μ̃X (x). By using
similar arguments as in the case α �= 1 (see also Di Crescenzo and Longobardi [8]),
the result follows. 	


In the following example, we provide somemore numerical results for the cdf given
in Theorem 3.4.

Example 3.2 We consider a random variable X with cdf

FX (x) =
(
x

b

)d

, 0 ≤ x ≤ b,

where b and d are positive numbers. Then, for α > 0 and c = αd/(αd + 1) ∈ (0, 1),
it is clear that

FX (x) =
(
x

b

) c
α−α c

, 0 ≤ x ≤ b,

and consistent with the statement of Theorem 3.4. By straightforward computations,
we obtain

μ̃X (x) = α(1 − c)

α + c − αc
x,

CTα(X; x) = c(1 − c)

α + c − αc
x, for α �= 1,

and

CE(X; x) = c(1 − c) x .

Thus, it holds that CTα(X; x) = c α−1 μ̃X (x) for α �= 1, and CE(X; x) = c μ̃X (x)
for α = 1. Furthermore, (13) yields

FYα (x) =
(
x

b

) 1
1−c

, 0 ≤ x ≤ b.
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Fig. 1 The cdf’s FYα (x), FX (x) (left part) and the functions CTα(X; x), μ̃X (x) (right part) for (α, b, c) =
(0.4, 5, 0.5) and 0 ≤ x ≤ 5

Fig. 2 The cdf’s FYα (x), FX (x) (left part) and the functions CTα(X; x), μ̃X (x) (right part) for (α, b, c) =
(2, 5, 0.5) and 0 ≤ x ≤ 5

Fig. 3 The cdf’s FYα (x), FX (x) (left part) and the functions CE(X; x), μ̃X (x) (right part) for (α, b, c) =
(1, 5, 0.5) and 0 ≤ x ≤ 5

For different choices of (α, b, c), in Figs. 1, 2 and 3 , we plotted in the left part
the cdf’s FYα (x) (solid line) and FX (x) (dashed line), while in the right part the
functions CTα(X; x) or CE(X; x) (solid line) and μ̃X (x) (dashed line). For α < c,
we have FX (x) ≤ FYα (x), while for α > c we have FX (x) ≥ FYα (x). Similarly,
the comparison between μ̃X (x) and CTα(X; x) for α �= 1 (or CE(X; x) for α = 1)
affected from the comparison of c/α (respectively c) with the value one.
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4 Generalizedmixtures

For all x > 0 such that FX (x) > 0, the mean failure time of a system conditioned by
a failure before time x , also named mean past lifetime, is given by (see Section 2 of
Di Crescenzo and Longobardi [7])

E(X | X ≤ x) = x − μ̃X (x) ≥ 0.

By the latter formula, it follows that

E(X) ≥ E(μ̃X (X)) = CE(X),

see Di Crescenzo and Longobardi [8]. Furthermore, for α > 0 and α �= 1 we have

x[FX (x)]α−1 − μ̃X (x)[FX (x)]α−1 ≥ 0,

and as a consequence we obtain

E(X [FX (X)]α−1) ≥ E(μ̃X (X)[FX (X)]α−1) = CTα(X).

We now consider the weight

w(x) = E(X | X ≤ x) [FX (x)]α−1 = x [FX (x)]α−1 − μ̃X (x) [FX (x)]α−1,

such that 0 < E(w(X)) < ∞. Then,

fZα (x) = x [FX (x)]α−1 − μ̃X (x) [FX (x)]α−1

E(X [FX (X)]α−1) − E(μ̃X (X) [FX (X)]α−1)
fX (x),

which can be rewritten as,

fZα (x) = qα fLα (x) + (1 − qα) fYα (x), x > 0,

where

qα = E(X [FX (X)]α−1)

E(X [FX (X)]α−1) − E(μ̃X (X) [FX (x)]α−1)
> 0

and

1 − qα = − E(μ̃X (X) [FX (X)]α−1)]
E(X [FX (X)]α−1) − E(μ̃X (X) [FX (X)]α−1)

< 0.
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For α > 0, and recalling formulas (2) and (3), we conclude

fZα (x)=

⎧
⎪⎨

⎪⎩

E(X [FX (X)]α−1)

E(X [FX (X)]α−1)−CTα(X)
fLα (x)− CTα(X)

E(X [FX (X)]α−1)−CTα(X)
fYα (x) , α �=1,

E(X)
E(X)−CE(X)

fL(x) − CE(X)
E(X)−CE(X)

fY (x), for α=1.

(17)

Assuming that X has a uniform distribution on [0, b], where b > 0, (17) yields
fZα (x) = fLα (x). In particular, recalling that fLα (x) = fYα (x) (see Example 3.1),
we have fZα (x) = 2 fLα (x) − fYα (x).

5 Conclusions

In this paper, a family of weighted distributions based on the mean inactivity time
and α-class past entropy Hα(FX ) has been introduced. Properties of the proposed
family of distributions have been studied, related to stochastic orders, bounds and
characterization results. The obtained results can be useful for further exploring the
concept of informationmeasures. Also, generalizedmixtures involving otherweighted
distributions have been provided. Another approach to construct a weighted family
of distribution, analogous to the MPWα distributions, is to use the survival function
FX (x) instead to cdf FX (x). In this case, one can use the mean residual lifetime

μX (x) = E(X − x | X > x) =
∫ ∞
x F X (u) du

FX (x)

for all x > 0 such that FX (x) > 0, and the α-class residual entropy (where α > 0)

Hα(FX ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
α−1

∫ ∞
0

(

FX (x) − [FX (x)]α
)

dx, for α �= 1,

− ∫ ∞
0 FX (x) log FX (x) dx, for α = 1,

seeRao et al. [26] andRajesh and Sunoj [25]. Recently, Feizjavadian andHashemi [10]
considered the case α = 1 and studied a weighted distribution with w(x) = μX (x)
(see also Psarrakos and Economou [24]). Possible future developments may tackle the
case of α �= 1.
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