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Abstract

In a recent paper with L. Q. Zamboni, the authors introduced the
class of ¥-episturmian words. An infinite word over A is standard -
episturmian, where 9 is an involutory antimorphism of A*, if its set of
factors is closed under ¥ and its left special factors are prefixes. When o
is the reversal operator, one obtains the usual standard episturmian words.
In this paper, we introduce and study ¥-characteristic morphisms, that
is, morphisms which map standard episturmian words into standard -
episturmian words. They are a natural extension of standard episturmian
morphisms. The main result of the paper is a characterization of these
morphisms when they are injective. In order to prove this result, we also
introduce and study a class of biprefix codes which are overlap-free, i.e.,
any two code words do not overlap properly, and normal, i.e., no proper
suffix (prefix) of any code-word is left (right) special in the code. A further
result is that any standard ¥-episturmian word is a morphic image, by an
injective Y¥-characteristic morphism, of a standard episturmian word.

Introduction

The study of combinatorial and structural properties of finite and infinite words
is a subject of great interest, with many applications in mathematics, physics,
computer science, and biology (see for instance [2, 14]). In this framework,
Sturmian words play a central role, since they are the aperiodic infinite words
of minimal “complexity” (see [2]). By definition, Sturmian words are on a binary
alphabet; some natural extensions to the case of an alphabet with more than
two letters have been given in [9, 12], introducing the class of the so-called
episturmian words.

Several extensions of standard episturmian words are possible. For exam-
ple, in [10] a generalization was obtained by making suitable hypotheses on the
lengths of palindromic prefixes of an infinite word; in [8, 5, 4, 6] different exten-
sions were introduced, all based on the replacement of the reversal operator R
by an arbitrary involutory antimorphism 9 of the free monoid A*. In particular,
the so called ¥-standard and standard ¥-episturmian words were studied. An



infinite word over A is standard ¥-episturmian if its set of factors is closed under
¥ and its left special factors are prefixes.

In this paper we introduce and study ¥-characteristic morphisms, a natural
extension of standard episturmian morphisms, which map all standard epis-
turmian words on an alphabet X to standard ¥-episturmian words over some
alphabet A. When X = A and ¥ = R, one obtains the usual standard epis-
turmian morphisms (cf. [9, 12, 11]). Beside being interesting by themselves,
such morphisms are also a powerful tool for constructing nontrivial examples of
standard ¥-episturmian words and for studying their properties.

In Section 2 we introduce ¥-characteristic morphisms and prove some of their
structural properties (mainly concerning the images of letters). In Section 3 our
main results are given. A first theorem is a characterization of injective -
characteristic morphisms such that the images of the letters are unbordered
J¥-palindromes. The section concludes with a full characterization (cf. Theo-
rem 3.13) of all injective J-characteristic morphisms, to whose proof Section 5
is dedicated. This result, which solves a problem posed in [4], is very useful to
construct nontrivial examples of ¥-characteristic morphisms and then of stan-
dard v¥-episturmian words. Moreover, one has a quite simple procedure to decide
whether a given injective morphism is ¥-characteristic.

In Section 4 we study some properties of two classes of codes: the overlap-
free codes, i.e., codes whose any two elements do not overlap properly, and the
normal codes, i.e., codes in which no proper nonempty prefix (suffix) which
is not a code-word, appears followed (preceded) by two different letters. The
family of biprefix, overlap-free, and normal codes appears to be deeply connected
with ¥-characteristic morphisms, and especially useful for the proof of our main
result.

In Section 6, we prove that every standard J-episturmian word is a morphic
image of a standard episturmian word under a suitable injective ¥-characteristic
morphism. This solves another question asked in [4].

A short version of this work was presented at the Developments in Language
Theory conference, held in Kyoto in September 2008 [3].

1 Preliminaries

Let A be a nonempty finite set, or alphabet. In the following, A* (resp. AT) will
denote the free monoid (resp. semigroup) generated by A. The elements of A
are called letters and those of A* words. The identity element of A* is called
empty word and it is denoted by €. A word w € A" can be written uniquely as
a product of letters w = ajas - - an, with a; € A, i =1,...,n. The integer n is
called the length of w and is denoted by |w|. The length of ¢ is conventionally
0. For any a € A, |w|, denotes the number of occurrences of @ in the word w.
For any nonempty word w, we will denote by w/ and w’ respectively the first
and the last letter of w.

A word u is a factor of w € A* if w = rus for some words r and s. In the
special case r = ¢ (resp. s = ¢), u is called a prefiz (resp. suffiz) of w. A
factor u of w is proper if u # w. We denote respectively by Fact w, Pref w, and
Suff w the sets of all factors, prefixes, and suffixes of the word w. For Y C A*,
Pref Y, Suff Y, and FactY will denote respectively the sets of prefixes, suffixes,
and factors of all the words of Y.



A factor of w is called a border of w if it is both a prefix and a suffix of w.
A word is called unbordered if its only proper border is . A positive integer p
is a period of w = ay - - - a, if whenever 1 <4,j < |w| one has that

i=j (modp)=a; =aqj.

As is well known [13], a word w has a period p < |w| if and only if it has a
border of length |w| — p. Thus a nonempty word w is unbordered if and only
if its minimal period is |w|. We recall the famous theorem of Fine and Wilf,
stating that if a word w has two periods p and ¢, and |w| > p + ¢ — ged(p, q),
then w has also the period ged(p, q) (cf. [13]).

A word w € AT is primitive if it cannot be written as a power u* with
k> 1. As is well known (cf. [13]), any nonempty word w is a power of a unique
primitive word, also called the primitive root of w.

A right-infinite word over the alphabet A, called infinite word for short, is
a mapping = : N — A, where N, is the set of positive integers. One can
represent x as

T =TT T

where for any ¢ > 0, z; = z(i) € A. A (finite) factor of z is either the empty
word or any sequence u = x;---x; with ¢ < j, i.e., any block of consecutive
letters of z. If i = 1, then u is a prefiz of x. We shall denote by [, the prefix
of x of length n, and by Fact x and Pref x the sets of finite factors and prefixes
of x respectively. The set of all infinite words over A is denoted by A“. We also
set A = A*UAY. For any Y C A* Y“ denotes the set of infinite words which
can be factorized by the elements of Y. If w € A, alphw will denote the set
of letters occurring in w.

Let w € A*. An occurrence of a factor v in w is any pair (A, p) € A* x A®
such that w = \up. If v € A* is a prefix of w, then v~!w denotes the unique
word u € A* such that vu = w.

A factor u of w is called right special if there exist a,b € A, a # b, such
that ua and ub are both factors of w. Symmetrically, u is said left special if
au,bu € Factw. A word u is called a right (resp. left) special factor of a set
Y C A* if there exist letters a,b € A such that a # b and ua,ub € FactY
(resp. au,bu € FactY). We denote by RSY (resp. LSY) the set of right
(resp. left) special factors of Y.

The reversal of a word w = ajas---a,, with a; € A for 1 < i < n, is the
word W = a, ---a1. One sets € = €. A palindrome is a word which equals its
reversal. We shall denote by PAL(A), or PAL when no confusion arises, the set
of all palindromes over A.

A morphism (resp. antimorphism) from A* to the free monoid B* is any
map ¢ : A* — B* such that ¢(uv) = p(u)p(v) (resp. p(uv) = @(v)p(u)) for
all u,v € A*. The morphism (resp. antimorphism) ¢ is nonerasing if for any
a € A, p(a) # e. A morphism ¢ can be naturally extended to A“ by setting for
any r = Ti&To: Ty -+ € AY,

o(x) = p(z1)p(x2) - play) -

A code over A is a subset Z of AT such that every word of Z+ admits a
unique factorization by the elements of Z (cf. [1]). A subset of AT with the
property that none of its elements is a proper prefix (resp. suffix) of any other



is trivially a code, usually called a prefiz (resp. suffiz) code. We recall that
if Z is a prefix code, then Z* is left unitary, i.e., for all p € Z* and w € A*,
pw € Z* implies w € Z*. A biprefix code is a code which is both prefix and
suffix. We say that a code Z over A is overlap-free if no two of its elements
overlap properly, i.e., if for all u,v € Z, Suff u N Prefv C {e, u,v}.

For instance, let Z; = {a,bac,abc} and Zy = {a,bac,cba}. One has that
Z is an overlap-free and suffix code, whereas Z is a prefix code which is not
overlap-free as bac and cba overlap properly.

A code Z C AT will be called right normal if it satisfies the following con-
dition:

(Pref Z\ Z)N RS Z C {¢e}, (1)

i.e., any proper and nonempty prefix u of any word of Z such that u ¢ Z is
not right special in Z. In a symmetric way, a code Z is called left normal if it
satisfies the condition

(Suff Z\ Z)NLS Z C {e} . 2)

A code Z is called normal if it is right and left normal.

As an example, the code Z; = {a, ab, bb} is right normal but not left normal;
the code Zy = {a,aba,aab} is normal. The code Zs = {a,cad,bacadad} is
biprefix, overlap-free, and right normal, and the code Z4 = {a, badc} is biprefix,
overlap-free, and normal.

The following proposition and lemma will be useful in the sequel.

Proposition 1.1. Let Z be a biprefix, overlap-free, and right normal (resp. left
normal) code. Then:

1. if z € Z is such that z = lvp, with A\,p € A* and v a nonempty prefic
(resp. suffix) of 2/ € Z, then A\z' (resp. 2'p) is a prefix (resp. suffiz) of z,
proper if z # z'.

2. for z1,29 € Z, zfz{c = zg (resp. 2{ = 25), then 21 = 2.

Proof. Let z = \vp with v € Pref 2’ and v # . If v = 2/, there is nothing to
prove. Suppose then that v is a proper prefix of z’. Since Z is a prefix code,
any proper nonempty prefix of z’, such as v, is not an element of Z; moreover,
it is not right special in Z, since Z is right normal. Therefore, to prove the first
statement it is sufficient to show that |vp| > |2’|, where the inequality is strict
if z # 2’. Indeed, if |vp| < |2'|, then a proper prefix of 2z’ would be a suffix of z,
which is impossible as Z is an overlap-free code. If |vp| = |Z/|, then 2’ € Suff z,
so that 2z’ = z as Z is a suffix code.

Let us now prove the second statement. Let z1, 2o € Z with z{ = fo . By
contradiction, suppose z; # zo. By the preceding statement, we derive that z;
is a proper prefix of zo and z5 is a proper prefix of z;, which is clearly absurd.
The symmetrical claims can be analogously proved. O

From the preceding proposition, a biprefix, overlap-free, and normal code
satisfies both properties 1 and 2 and their symmetrical statements. Some further
properties of such codes will be given in Section 4.

Lemma 1.2. Let g : B* — A* be an injective morphism such that g(B) = Z s
a prefix code. Then for all p € B* and ¢ € B> one has that p is a prefix of q if

and only if g(p) is a prefix of g(q).



Proof. The ‘only if’ part is trivial. Therefore, let us prove the ‘if’ part. Let us
first suppose ¢ € B*, so that g(q) = g(p)( for some ( € A*. Since g(p),g(q) € Z*
and Z* is left unitary, it follows that ( € Z*. Therefore, there exists, and is
unique, r € B* such that g(r) = ¢. Hence g(q) = g(p)g(r) = g(pr). Since g is
injective one has ¢ = pr which proves the assertion in this case. If ¢ € B“, there
exists a prefix qp,) of ¢ such that g(p) € Pref g(gj,)). By the previous argument,
it follows that p is a prefix of gf,) and then of ¢. O

1.1 Standard episturmian words and morphisms

We recall (cf. [9, 12]) that an infinite word ¢ € A¥ is standard episturmian if it is
closed under reversal (that is, if w € Factt then @ € Factt) and each of its left
special factors is a prefix of ¢. We denote by SEpi(A), or by SEpi when there
is no ambiguity, the set of all standard episturmian words over the alphabet A.

Given a word w € A*, we denote by w'*) its right palindrome closure, i.e., the
shortest palindrome having w as a prefix (cf. [7]). If Q is the longest palindromic
suffix of w and w = sQ, then wt) = sQ3. For instance, if w = abacbea, then
wt) = abacbcaba.

We define the iterated palindrome closure operator® 1 : A* — A* by setting
Y(e) = e and ¢ (va) = ((v)a)*) forany a € A and v € A*. From the definition,
one easily obtains that the map 1) is injective. Moreover, for any u,v € A*, one
has ¥ (uv) € ¥ (u)A* N A*Y(u). The operator ¢ can then be naturally extended
to A“ by setting, for any infinite word x,

Y(x) = lm Y(zp,) .

The following fundamental result was proved in [9]:

Theorem 1.3. An infinite word t is standard episturmian over A if and only
if there exists A € A¥ such that t = P(A).

For any t € SEpi, there exists a unique A such that ¢t = ¢(A). This A is
called the directive word of t. If every letter of A occurs infinitely often in A,
the word ¢ is called a (standard) Arnouz-Rauzy word. In the case of a binary
alphabet, an Arnoux-Rauzy word is usually called a standard Sturmian word
(cf. [2]).

Ezample 1.4. Let A = {a,b} and A = (ab)*. The word ¥(A) is the famous
Fibonacci word
f = abaababaabaababaababa - - - .

If A= {a,b,c} and A = (abc)¥, then ¥(A) is the so-called Tribonacci word
T = abacabaabacababacabaabacabaca - - - .

A letter a € A is said to be separating for w € A if it occurs in each factor
of w of length 2. We recall the following well known result from [9]:

Proposition 1.5. Let t be a standard episturmian word and a be its first letter.
Then a is separating for t.

1This operator is denoted by Pal in [11] and other papers.



For instance, the letter a is separating for f and 7.

We report here some properties of the operator ¢ which will be useful in the
sequel. The first one is known (see for instance [7, 9]); we give a proof for the
sake of completeness.

Proposition 1.6. For all u,v € A*, u is a prefix of v if and only if Y(u) is a
prefix of ¥(v).

Proof. If u is a prefix of v, from the definition of the operator v, one has that
P() € Y(u)A* N A*p(u), so that ¥(u) is a prefix (and a suffix) of ¥ (v). Let
us now suppose that ¥ (u) is a prefix of ¥(v). If ¢(u) = 9(v), then, since
is injective, one has u = v. Hence, suppose that ¢ (u) is a proper prefix of
¥(v). If u = g, the result is trivial. Hence we can suppose that u,v € AT. Let
v =aj---a, and ¢ be the integer such that 1 <7 <n —1 and

[Y(ar---ai)| < [P(u)| <[¥(ar---aipa)]-

If [ (a1 - - - a;)| < |(u)|, then ¥ (ay - - - a;)a;11 is a prefix of the palindrome 1 (u),
so that one would have:

[W(ar- - ai1)| = |(W(ar - ai)ai) M| < [(u)| < [Plas - ai)]

which is a contradiction. Therefore |¢)(ay - - - a;)| = | (u)], that implies ¢ (a; - - - a;) =
Y(u) and u = ay - - a;. O

Proposition 1.7. Let v € AU{e}, w' € A*, and w € w'A*. Then Y(w'z) is a
factor of Y(wx).

Proof. By the previous proposition, ¥ (w’) is a prefix of t(w). This solves the
case x = e. For x € A, we prove the result by induction on n = |w| — |w'|.

The assertion is trivial for n = 0. Let then n > 1 and write w = ua with
a € Aand u € A*. As w' € Prefu and |u| — |w'| = n — 1, we can assume
by induction that ¢ (w’z) is a factor of ¥ (uz). Hence it suffices to show that
Y(uz) € Fact(wax). We can write

Y(w) = (Y(u)a) ™) = p(u)av = vayp(u)

for some v € A*, so that 1 (wz) = (Dayp(u)z) ). Since 1 (u) is the longest proper
palindromic prefix and suffix of ¢ (w), if  # a it follows that the longest palin-
dromic suffixes of ¥(u)z and ¥ (w)x must coincide, so that 1 (uz) = (¢ (u)z)H)
is a factor of ¢ (wzx), as desired.

If © = a, then ¢(ux) = (w) is trivially a factor of ¢(wz). This concludes
the proof. O

The following proposition was proved in [9, Theorem 6].

Proposition 1.8. Let x € A, u € A*, and A € A¥. Then ¥(u)z is a factor of
Y(ul) if and only if © occurs in A.

For each a € A, let u, : A* — A* be the morphism defined by p,(a) = a and
ta(b) = ab for all b e A\ {a}. If a1,...,a, € A, we set fy = g, © - 0 fig, (in
particular, p. = id4). The next proposition, proved in [11], shows a connection
between these morphisms and iterated palindrome closure.



Proposition 1.9. For any w,v € A*, ¥(wv) = py (Y (v))p(w).

By the preceding proposition, if v € A“ then one has

P(wo) = lm P(wopy) = Hm g, (¢ ()9 (w)

n—oo

= ergoﬂw(w(v[n])) = pw(P(v)) -

n

Thus, for any w € A* and v € A¥ we have

Y(wv) = p (¥ (v)) - 3)
Corollary 1.10. For any t € A¥ and w € A*, (w) is a prefix of py(t).

Proof. Let t = tqtg---t,---, with t; € A for ¢ > 1. We prove that ¢¥(w) is a
prefix of pu,(tf,)) for all n such that |, (tp))| > [¢(w)|. Indeed, by Proposi-
tion 1.9 we have, for all ¢ > 1, u, (t;)¥(w) = P(wt;) = P(w)E; for some &; € A*.
Hence

frw (tpn)) V(W) = o (B1) -+ o (b)Y (w) = p(w)Er - &n
and this shows that 1) (w) is a prefix of pi, (t[)).- -

From the definition of the morphism u,, a € A, it is easy to prove the
following:

Proposition 1.11. Let w € A and a be its first letter. Then a is separating
for w if and only if there exists a € A>® such that w = pq ().

For instance, the letter a is separating for the word w = abacaaacaba, and
one has w = 4 (bcaacha).

We recall (cf. [9, 12, 11]) that a standard episturmian morphism of A* is any
composition p,, o o, with w € A* and o : A* — A* a morphism extending to
A* a permutation on the alphabet A. All these morphisms are injective. The
set £ of standard episturmian morphisms is a monoid under map composition.
The importance of standard episturmian morphisms, and the reason for their
name, lie in the following (see [9, 12]):

Theorem 1.12. An injective morphism ¢ : A* — A* is standard episturmian
if and only if ¢(SEpi) C SEpi, that is, if and only if it maps every standard
episturmian word over A into a standard episturmian word over A.

A pure standard episturmian morphism is just a p, for some w € A*.
Trivially, the set of pure standard episturmian morphisms is the submonoid of
& generated by the set {u, | a € A}. The following was proved in [9]:

Proposition 1.13. Let t € A¥ and a € A. Then pq(t) is a standard epistur-
mian word if and only if so is t.

1.2 Involutory antimorphisms and pseudopalindromes

An involutory antimorphism of A* is any antimorphism 9 : A* — A* such that
¥ o =id. The simplest example is the reversal operator:

R:A* — A

w o w .



Any involutory antimorphism 9 satisfies 9 = 7 0 R = R o 7 for some morphism
7 : A* — A* extending an involution of A. Conversely, if 7 is such a morphism,
then ¥ =70 R = Ro 7 is an involutory antimorphism of A*.

Let ¥ be an involutory antimorphism of A*. We call ¢-palindrome any fixed
point of ¥, i.e., any word w such that w = ¥(w), and denote by PALy the
set of all ¥-palindromes. We observe that ¢ € PALy by definition, and that
R-palindromes are exactly the usual palindromes. If one makes no reference to
the antimorphism 4, a ¥-palindrome is called a pseudopalindrome.

Some general properties of pseudopalindromes, mainly related to conjugacy
and periodicity, have been studied in [8]. We mention here the following lemma,
which will be useful in the sequel:

Lemma 1.14. Let w be in PALy. If p is a period of w, then each factor of w
of length p is in PAL%.

For instance, let A = {a,b} and let ¥(a) = b, ¥(b) = a. The word w =
babaababbaba is a ¥-palindrome, having the periods 8 and 10. Any factor of w
of length 8 or 10 belongs to PAL3; as an example, abaababb = (ab)(aababb) €
PAL3.

For any involutory antimorphism ¢, one can define the (right) ¥-palindrome
closure operator: for any w € A*, w®? denotes the shortest ¥-palindrome having
w as a prefix.

In the following, we shall fix an involutory antimorphism ¢ of A*, and use the
notation @ for ¥(w). We shall also drop the subscript ¥ from the ¥-palindrome
closure operator ®? when no confusion arises. As one easily verifies (cf. [8]), if
Q is the longest ¥-palindromic suffix of w and w = s@, then

w® = 5Q5 .

Ezample 1.15. Let A = {a, b, c} and ¥ be defined asa = b, ¢ = ¢. If w = abacabe,
then Q = cabc and w® = abacabcbab.

We can naturally define the iterated ¥-palindrome closure operator 1y :
A* — PALy by y(c) = ¢ and

Vo (ua) = (thg(u)a)®

for u € A*, a € A. For any u,v € A* one has 1y (uv) € Pg(u)A* N A*y(u),
so that vy can be extended to infinite words too. More precisely, if A =
T1Xg -+ Ty -+ € AY with z; € A for i > 1, then

by (A) = lm 9y (Apy) -

The word A is called the directive word of 1y(A), and s = 1y(A) the ¥-standard
word directed by A. The class of ¥-standard words was introduced in [8]; some
interesting results about such words are in [5].

We denote by Py the set of unbordered ¥-palindromes. We remark that Py
is a biprefiz code. This means that every word of Py is neither a prefix nor a
suffix of any other element of Py. We observe that Pr = A. The following
result was proved in [4]:

Proposition 1.16. PALj = Pj.



This can be equivalently stated as follows: every ¥-palindrome can be uniquely
factorized by the elements of Py. For instance, the ¥-palindrome abacabcbab of
Example 1.15 is factorizable as ab - acabceb - ab, with acabeb, ab € Py.

Since Py is a code, the map

f:Py — A (4)

/S e 7Tf

can be extended (uniquely) to a morphism f : Pj — A*. Moreover, since Py
is a prefix code, any word in Py can be uniquely factorized by the elements of
Py, so that f can be naturally extended to Py.

Proposition 1.17. Let ¢ : X* — A* be an injective morphism such that
©(X) C Py. Then, for any w € X*:

1 p(w) = p(w),
2. w € PAL < p(w) € PALjy,
3. p(w®) = p(w)®.

Proof. The first statement is trivially true for w = e. If w = z1--- 2, with
x; € X fori=1,...,n, then since p(X) C Py C PALy,

o(w) = p(xn) - p(1) = @(T0) - (1) = (W) .

As ¢ is injective, statement 2 easily follows from 1.

Finally, let p(w) = v@ where v € A* and @ is the longest ¥-palindromic
suffix of ¢(w). Since p(w),Q € Pj and Py is a biprefix code, we have v € Pj.
This implies, as ¢ is injective, that there exist wq, ws € X™* such that w = wyws,
o(wy) = v, and p(wy) = Q. By 2, ws is the longest palindromic suffix of w.
Hence, by 1:

= p(wywahy) = vQV = p(w)?

as desired. O

(+))

Ezample 1.18. Let X = {a,b,c}, A = {a,b,¢,d,e}, and 9 be defined in A as
a=b,c=c,andd=ce. Let ¢ : X* — A* be the injective morphism defined by
o(a) = ab, (b) = ba, v(c) = dece. One has p(X) C Py and

® ((abc)(ﬂ) = ¢(abcba) = abbadcebaab = (p(abc))® .

1.3 Standard v-episturmian words

In [4] standard ¥-episturmian words were naturally defined by substituting, in
the definition of standard episturmian words, the closure under reversal with
the closure under . Thus an infinite word s is standard J-episturmian if it
satisfies the following two conditions:

1. for any w € Fact s, one has w € Fact s,

2. for any left special factor w of s, one has w € Pref s.



We denote by SEpiy the set of all standard ¥-episturmian words on the alphabet
A. The following two propositions, proved in [4], give methods for constructing
standard ¥-episturmian words.

Proposition 1.19. Let s be a ¥-standard word over A, and B = alph(A(s)).
Then s is standard V¥-episturmian if and only if

r€EB,x#% = T ¢ B.

Ezample 1.20. Let A = {a,b,c,d,e}, A = (acd)”, and ¥ be defined by a = b,
¢ = ¢, and d = e. The ¥-standard word 1y(A) = abcabdeabcaba - - - is standard

¥-episturmian.

Proposition 1.21. Let ¢ : X* — A* be a nonerasing morphism such that
1. p(x) € PALy for allx € X,
2. alphp(z) Nalph(y) =0 if z,y € X and z # v,
3. lp@)]e <1 forallz e X and a € A.

Then for any standard episturmian word t € X“, s = @(t) is a standard ¥-
episturmian word.

Ezample 1.22. Let A = {a,b,c,d,e},a=b,é¢=c,d=¢, X = {z,y}, and s =
g(t), where t = zayrzryrrzyzzy--- € SEpi(X), A(t) = (zay)*, g(z) = ach,
and g(y) = de, so that

s = acbacbdeacbacbacbde - - - . (5)

By the previous proposition, the word s is standard ¥-episturmian, but it is not
¥-standard, as a® = ab ¢ Pref s.

It is easy to prove (see [4]) that every standard -episturmian word has
infinitely many ¥-palindromic prefixes. By Proposition 1.16, they all admit a
unique factorization by the elements of Py. Since Py is a prefix code, this
implies the following;:

Proposition 1.23. FEvery standard 9-episturmian word s admits a (unique)
factorization by the elements of Py, that is,

8271'17(2...»“'”...
where w; € Py fori > 1.

For a given standard J-episturmian word s, such factorization will be called
canonical in the sequel. For instance, in the case of the standard ¥-episturmian
word of Example 1.22; the canonical factorization is:

ach - acb-de-acb-ach-achb-de--- .
The following important lemma was proved in [4]:

Lemma 1.24. Let s be a standard V-episturmian word, and s = mwy -7y -
be its canonical factorization. For all i > 1, any proper and nonempty prefix of
m; 18 not right special in s.
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In the following, for a given standard ¥-episturmian word s we shall denote
by
Iy = {m, [ n > 1} (6)

the set of words of Py appearing in its canonical factorization s = myms - - - .
Theorem 1.25. Let s € SEpiy. Then Il is a normal code.

Proof. Any nonempty prefix p of a word of Il does not belong to I, since I,
is a biprefix code. Moreover, p ¢ RS II, as otherwise it would be a right special
factor of s, and this is excluded by Lemma 1.24. Hence Il is a right normal
code. Since s is closed under ¢ and II;, C PALy, it follows that Il is also left
normal. O

The following result shows that no two words of Il overlap properly.
Theorem 1.26. Let s € SEpiy. Then Ilg is an overlap-free code.

Proof. If cardIl; = 1 the statement is trivial since an element of Py cannot
overlap properly with itself as it is unbordered. Let then w, 7’ € II; be such
that m # /. By contradiction, let us suppose that there exists a nonempty
u € Suff 7 N Pref n’ (which we can assume without loss of generality, since it
occurs if and only if @ € Suff 7’ N Pref 7). We have |7| > 2|u| and |7'| > 2]u],
for otherwise u would overlap properly with @ and so it would have a nonempty
¥-palindromic prefix (or suffix), which is absurd. Then there exist v,v" € PALy
such that 7 = @vu and 7’ = wv'a.

Without loss of generality, we can assume that 7 occurs before n’ in the
canonical factorization of s, so that there exists A € (II; \ {n'})* such that
Am € Prefs. Since by Lemma 1.24 any proper prefix of m cannot be right
special in s, each occurrence of 4 must be followed by vu; the same argument
applies to 7', so each occurrence of u in s must be followed by v'@. Therefore
we have

s = AMavuv' ) = \(mv) .

As v’ is a ¥-palindromic proper factor of 7/, it must be in (Py \ {7'})*, as well
as mv’ and, by definition, A\. Thus we have obtained that s € (I, \ {#'})¥, and
so 7' ¢ Il,, which is clearly a contradiction. Then 7 and 7’ cannot overlap
properly. O

The following theorem, proved in [4, Theorem 5.5], shows, in particular,
that any standard -episturmian word is a morphic image, by a suitable injective
morphism, of a standard episturmian word. We report here a direct proof based
on the previous results.

Theorem 1.27. Let s be a standard ¥-episturmian word, and f be the map
defined in (4). Then f(s) is a standard episturmian word, and the restriction
of f to Il is injective, i.e., if m; and w; occur in the factorization of s over Py,
f

f—
and 7; =mj,

Proof. Since s € SEpiy, by Theorems 1.25 and 1.26 the code II, is biprefix,
overlap-free, and normal. By Proposition 1.1, the restriction to Il of the map f
defined by (4) is injective. Let B = f(II;) C A and denote by g : B* — A* the
injective morphism defined by g(nf) = 7 for any 7/ € B. One has s = g(t) for

then m; = 7;.
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some t € B¥. Let us now show that ¢t € SEpi(B). Indeed, since s has infinitely
many ¥-palindromic prefixes, by Proposition 1.17 it follows that ¢ has infinitely
many palindromic prefixes, so that it is closed under reversal. Let now w be a
left special factor of ¢, and let a,b € B, a # b, be such that aw,bw € Factt.
Thus g(a)g(w), g(b)g(w) € Facts. Since g(a)’ # g(b)/, we have g(a)’ # g(b)*,
so that g(w) is a left special factor of s, and then a prefix of it. From Lemma 1.2
it follows w € Pref't. O

2 Characteristic morphisms

Let X be a finite alphabet. A morphism ¢ : X* — A* will be called ¥-
characteristic if
¢(SEpi(X)) C SEpiy ,

i.e., p maps any standard episturmian word over the alphabet X in a standard -
episturmian word on the alphabet A. Following this terminology, Theorem 1.12
can be reformulated by saying that an injective morphism ¢ : A* — A* is
standard episturmian if and only if it is R-characteristic.

For instance, every morphism ¢ : X* — A* satisfying the conditions of
Proposition 1.21 is ¥-characteristic (and injective). A trivial example of a non-
injective ¥-characteristic morphism is the constant morphism ¢ : x € X — a €
A, where a is a fixed ¥-palindromic letter.

Let X = {z,y}, A = {a,b,c}, ¥ defined by @ = a, b = ¢, and ¢ : X* — A*
be the injective morphism such that ¢(x) = a, ¢(y) = bac. If ¢ is any standard
episturmian word beginning in 3%z, then s = ¢(t) begins with bacbaca, so that a
is a left special factor of s which is not a prefix of s. Thus s is not ¥-episturmian
and therefore ¢ is not ¥-characteristic.

In this section we shall prove some results concerning the structure of ¥-
characteristic morphisms.

Proposition 2.1. Let ¢ : X* — A* be a ¥-characteristic morphism. For each
zin X, p(x) € PAL.

Proof. It is clear that |¢(z)| is a period of each prefix of p(z*). Since @(a*)
is in SEpiy, it has infinitely many 9-palindromic prefixes (see [4]). Then, from
Lemma 1.14 the statement follows. O

Let ¢ : X* — A* be a morphism such that ¢(X) C P}. For any =z € X, let

p(e) = mi” - m?)

--mp,’ be the unique factorization of p(z) by the elements of Py.
We set

M) ={rePy|IreX,F:1<i<r, and’ﬂ':ﬂgw)}. (7)

If ¢ is a ¥-characteristic morphism, then by Propositions 2.1 and 1.16, we
have o(X) C PAL} C P}, so that TI() is well defined.

Proposition 2.2. Let ¢ : X* — A* be a U¥-characteristic morphism. Then
II(p) is an overlap-free and normal code.

Proof. Let t € SEpi(X) be such that alpht = X, and consider s = ¢(t) €
SEpig. Then the set II(p) equals I, as defined in (6). The result follows from
Theorems 1.25 and 1.26. O
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Proposition 2.3. Let ¢ : X* — A* be a ¥-characteristic morphism. If there
exist two letters x,y € X such that p(z)! # p(y)f, then o(X) C PALy.

Proof. Set w = ¢((x?y)*). Clearly o(z) is a right special factor of w, since it
appears followed both by ¢(x) and ¢(y). As w is in SEpiy, being the image
of the standard episturmian word (22y)“, we have that ¢(z) is a left special
factor, and thus a prefix, of w. But also ¢(x) is a prefix of w, then it must be
o(x) = p(x), ie., p(r) € PALy. The same argument can be applied to ¢(y),
setting w’ = o((y?z)“).

Now let z € X. Then ¢(z)! cannot be equal to both o(x)f and ¢(y)f.
Therefore, by applying the same argument, we obtain ¢(z) € PALy. From this
the assertion follows. O

Proposition 2.4. Let ¢ : X* — A* be a U-characteristic morphism. If for
z,y € X, Suff p(x) N Suff p(y) # {e}, then p(xy) = w(yx), that is, both v(x)
and p(y) are powers of a word of A*.

Proof. If p(zy) # ¢(yz), since Suff p(x) N Suff p(y) # {€}, there exists a com-
mon proper suffix h of ¢(xy) and ¢(yx), with h # €. Let h be the longest of
such suffixes. Then there exist v,u € AT such that

¢(zy) =vh and  @(yz) =uh, (8)

with v¢ # u’. Let s be a standard episturmian word whose directive word can
be written as A = zy?2\, with A € X*, so that s = zyryzryryrt, with t € X«.
Thus

o(s) = o(zy)e(zy)a = o(x)e(y)p(yz)(zy) B

for some «, 3 € A¥. By (8), it follows
©(8) = vhvha = p(x)uhuhvhf .

The underlined occurrences of hv are preceded by different letters, namely v’
and u’. Since p(s) € SEpi,, this implies hv € Pref ¢(s) and then

hv = vh . 9)

In a perfectly symmetric way, by considering an episturmian word s’ whose
directive word A’ has yz2y as a prefix, we obtain that uh = hu. Hence v and h
are powers of a common primitive word w; by (9), the same can be said about
v and h. Since the primitive root of a nonempty word is unique, it follows that
u and v are both powers of w. As |u| = |v| by definition, we obtain u = v and
then p(xy) = p(yx), which is a contradiction. O

Corollary 2.5. If o : X* — A* is an injective U-characteristic morphism, then
o(X) is a suffiz code.

Proof. 1t is clear that if ¢ is injective, then for all x,y € X,z # y, one has
o(xy) # @(yx); from Proposition 2.4 it follows Suff p(z) N Suff p(y) = {e}.
Thus, for all z,y € X, if x # y, then p(z) ¢ Suff o(y), and the statement
follows. O
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Proposition 2.6. Let ¢ : X* — A* be a ¥-characteristic morphism. Then for
each xz,y € X, either

alph ¢(z) N alph o(y) = 0
or

p(x)! = p(y).

Proof. Let alph p(z) Nalpho(y) # 0 and p(x)f # p(y)/. We set p as the
longest prefix of p(z) such that alphp N alph (y ) () and ¢ € A such that
pc € Pref p(x). Let then p’ be the longest prefix of ¢(y) in which ¢ does not
appear, i.e., such that ¢ ¢ alphp’. Since we have assumed that ¢(z)/ # ¢(y)7,
it cannot be p = p’ = . Let us suppose that both p # ¢ and p’ # . In this
case we have that ¢ is left special in (p(zy))“, since it appears preceded both
by p and p’ and, from the definition of p, alphp N alphp’ = 0. We reach a
contradiction, since ¢ should be a prefix of p(zy)¥ which is in SEpi,, and thus
a prefix of ¢(x).

We then have that either p # & and p’ = € or p = ¢ and p’ # &. In the first
case we set z = x and 2z’ = y, otherwise we set 2’ = x and z = y. Thus we can
write

p(z) =Xy, p(z) =¢r, (10)
with A € AT, ¢ ¢ alph ), and 7,7 € A*. For each nonnegative integer n,
(2"2")¥ and (2'"z)¥ are standard episturmian words, so that (p(2"2'))* and
(p(2™2))“ are in SEpiy. Moreover, since

()" = () p('2)*  and  (p(z'2))* = p(2) " (p(22))*

it is clear that (p(zz’))¥ and (p(z'z))“ have the same set of factors, so that
each left special factor of (¢(z2'))% is a left special factor of (¢(z'2))* and wvice
versa.

Let w be a nonempty left special factor of (p(2'2))¥; then w is also a prefix.
As noted above, w has to be a left special factor (and thus a prefix) of (p(zz'))%.
Thus w is a common prefix of (p(2'2))* and (¢(z2’))¥, which is a contradiction
since the first word begins with ¢ whereas the second begins with A, which does
not contain ¢. Therefore ¢(z'2)“ has no left special factor different from &; since
each right special factor of a word in SEpi, is the ¥-image of a left special factor,
it is clear that (p(z'z))“ has no special factor different from e.

Hence each factor of (¢(z'2))* can be extended in a unique way both to the
left and to the right, so that by (10) we can write

(p(2'2))" = cy'Ac- -
and, as stated above, each occurrence of ¢ must be followed by 7’ ¢, which yields
that
(p(2'2)) = (v’ N) = (0(2)N)*

so that this infinite word has the two periods |p(2'z)] and lp(2’)A]. From the
theorem of Fine and Wilf, one derives ¢(2'z)(p(2)A) = (¢p(2)A\)¢(2'2), so that

e(z2)A = dp(2'2) . (11)

The preceding equation tells us that A is a suffix of Ap(2’'z) and so, as
lo(2)] > |A], it must be a suffix of ¢(z); since A does not contain any c¢, it has
to be a suffix of v, so that we can write

@(2) = AcgA (12)
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for some word g. Substituting in (11), it follows

p(22') = Ap(2)Acg .

From the preceding equation, we have

(0(%2))* = p(2") (')A (2 ) Acg - - (13)

From (12), ¢(2)* = A‘. Proposition 2.4 ensures that A’ = ¢(z)* must be different
from ¢(z')¢, otherwise we would obtain ¢(22z') = ¢(2'z) which would imply c is
a prefix of ¢(z), which is a contradiction. Thus, from (13), we have that ¢(2/)A
is a left special factor of ¢(2/22)% and this implies that ¢(z/)\ is a prefix of
©(2")%¢(z), from which we obtain that X is a prefix of p(2'z) = ¢y'¢(z), that is
a contradiction, since A does not contain any occurrence of ¢. Thus the initial
assumption that alph ¢(z) Nalph ¢(y) # 0 and p(z)f # p(y)f, leads in any case
to a contradiction. O

Proposition 2.7. Let ¢ : X* — A* be a 9-characteristic morphism. Ifx,y € X
and p(x),o(y) € PALy, then either alph p(x)Nalph o(y) = 0 or o(zy) = ¢(yz).
In particular, if ¢ is injective and o(X) C PALy, then for oll x,y € X with
x # y we have alph p(z) Nalph ¢(y) = 0.

Proof. If alph p(z)Nalph ¢(y) # 0, from Proposition 2.6 we obtain, as p(x), p(y) €
PALy, that (z)! = ¢(x)! = ¢(y)! = ¢(y)*. Then p(z)" = ¢(y)* and, from
Proposition 2.4, we have that ¢(xy) = ¢(yz).

If o is injective, then for all z,y € X with x # y we have p(zy) # p(yx) so
that the assertion follows. O

Corollary 2.8. Let ¢ : X* — A* be an injective V-characteristic morphism
such that o(X) C PALy and card X > 2. Then ¢(X) C Py.

Proof. Let x,y € X with x # y. Since ¢ is injective, we have from Proposition
2.7 that alphp(z) Nalphe(y) = 0. Let u be a proper border of ¢(x). Then
there exist two nonempty words v and w such that

o(z) = uv = wu.
Since alph p(z) N alph p(y) = 0, we have ¢(y)* # w?; thus
ply)” = p(y)uvp(y)wup(y) - --

shows that u is a left special factor in ¢(yx)“, but this would imply that u is
a prefix of ¢(yx). As alphu Nalphe(y) = 0, it follows u = ¢, i.e., p(z) € Py.
The same argument applies to ¢(y). O

The following lemma will be useful in the next section.

Lemma 2.9. Let ¢ : X* — A* be a ¥-characteristic morphism. Then for each
x € X and for any a € A,

e(@)la > 1 = [9(@)] 0y > L.
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Proof. Let b be the first letter of ¢(x) such that |¢(z)], > 1. Then we can write
o(x) = vbwbw'

with w,w’ € A*, b ¢ (alphv U alphw), and |p(z)|. = 1 for each ¢ in alphwv. If
v # ¢, then we have that v’ # (bw)?, but that means that b is left special in
©(z*¥), which is a contradiction, since each left special factor of ¢(x*) is a prefix
and b is not in alphv. Then it must be v = ¢ and b = ¢(z)/. O

3 Main results

The first result of this section is a characterization of injective ¥-characteristic
morphisms such that the image of any letter is an unbordered ¥-palindrome.

Theorem 3.1. Let ¢ : X* — A* be an injective morphism such that for any
x € X, o(x) € Py. Then ¢ is 9-characteristic if and only if the following two
conditions hold:

1. alph p(z) Nalph p(y) =0, for any z,y in X such that x # y.
2. foranyxz € X and a € A, |p(x)], < 1.

Proof. Let ¢ be ¥-characteristic. Since ¢ is injective, from Proposition 2.7 we
have that if 2 # y, then alph ¢(x) Nalph ¢(y) = 0. Thus condition 1 holds. Let
us now prove that condition 2 is satisfied. This is certainly true if |p(z)| < 2,
as p(z) € Py. Let us then suppose |p(z)| > 2. We can write

p(x) = axy - anb,

withz; € A,i=1,...,n,a=>5, and a # b.

Let us prove that for any i = 1,...,n, 2; ¢ {a,b}. By contradiction, suppose
that b has an internal occurrence in ¢(z), and consider its first occurrence. Since
o(x) is a Y-palindrome, we can write

50(1') =ary- - T\ = Xai'i"'leb,

with Ae A", 1 <i<n,andz; #bfor j=1,...,4.
We now consider the standard ¥-episturmian word s = (%), whose first

letter is a. We have that no letter z;, j = 1,...,4, is left special in s, as otherwise
Z; = a that implies x; = b, which is absurd. Also b cannot be left special since
otherwise b = a. Thus it follows that z; = 1, ;1 = %2, ..., x1 = T;. Hence,

azy - - - x;b is a proper border of ¢(x), which is a contradiction. From this, since
p(z) is a Y-palindrome, one derives that there is no internal occurrence of a in
o(z) as well.

Finally, any letter of ¢(x) cannot occur more than once. This is a conse-
quence of Lemma 2.9, since otherwise the first letter of ¢(z), namely a, would
reoccur in (z). Thus condition 2 holds.

Conversely, let us now suppose that conditions 1 and 2 hold; Proposition 1.21
ensures then that ¢ is ¥-characteristic. O

A different proof of Theorem 3.1 will be given at the end of this section, as
a consequence of a full characterization of injective ¥-characteristic morphisms,
given in Theorem 3.13.
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Remark. In the “if” part of Theorem 3.1 the requirement ¢(X) C Py can
be replaced by ¢(X) C PALy, as condition 2 implies that ¢(z) is unbordered
for any = € X, so that ¢(X) C Py. In the “only if” part, in view of Corol-
lary 2.8, one can replace ¢(X) C Py by ¢(X) C PALy under the hypothesis
that card X > 2.

Ezxample 3.2. Let X, A, ¥, and g be defined as in Example 1.22. Then the
morphism g is ¥-characteristic.

As an immediate consequence of Theorem 3.1, we obtain:

Corollary 3.3. Let ( : X* — B* be an R-characteristic morphism, g : B* —
A* be an injective morphism satisfying g(B) C Py and the two conditions in the
statement of Theorem 3.1. Then ¢ = g o ( is ¥-characteristic.

Example 3.4. Let X, A, 9, and g be defined as in Example 1.22, and let ¢ be the
endomorphism of X* such that {(z) = zy and ((y) = xyx. Since { = pgy 0 0,
where o(z) = y and o(y) = z,  is a standard episturmian morphism. Hence
the morphism ¢ : X* — A* given by

p(x) = acbde, (y) = acbdeach
is ¥-characteristic, as p = g o .
Theorem 3.5. Let ¢ : X* — A* be a ¥-characteristic morphism. Then there
exist B C A, a morphism ¢ : X* — B*, and a morphism g : B* — A* such
that:
1. ¢ is R-characteristic,

2. g(B) =1I(yp), with g(b) € bA* for allb € B,

3. ¢p=go(.

X* A*
\ L
¢ i g
Ilf
|
B*

Figure 1: A commutative diagram describing Theorem 3.5

Proof (see Fig. 1). Set II = II(yp), as defined in (7), and let B = f(II) C A,
where f is the morphism considered in (4). Let ) : X* — IT* and f| : [I* — B*
be the restrictions of ¢ and f, respectively. Setting ¢ = fj o ¢ : X* — B*, by
Theorem 1.27 one derives ((SEpi(X)) C SEpi(B), i.e., ¢ is R-characteristic.
Let t € SEpi(X) be such that alpht = X, and consider s = (t) € SEpiy.
Since IT equals I1,, as defined in (6), by Theorem 1.27 the morphism f is injective
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over II, so that fj is bijective. Set g = LOflfl, where ¢ : IT* — A* is the inclusion
map. Then g(B) =1I, and g(b) € bA* for all b € B. Furthermore, we have

p=rop =1o(filof)op=(of)o(fiop)=go(
as desired. O

Ezample 3.6. Let X = {x,y}, A = {a,b,c}, and ¥ be the antimorphism of A*
such that @ = a and b = ¢. The morphism ¢ : X* — A* defined by ¢(z) = a
and  ¢(y) = abac is Y-characteristic (this will be clear after Theorem 3.13,
see Example 3.14), and it can be decomposed as ¢ = g o ¢, where ¢ : X* —
B* (with B = {a,b}) is the morphism such that {(x) = a and ((y) = ab,
while g : B* — A* is defined by g(a) = a and g(b) = bac. We remark that
C(SEpi(X)) C SEpi(B), but g(SEpi(B)) € SEpiy as it can be verified using
Theorem 3.1. Observe that this example shows that not all ¥-characteristic
morphisms can be constructed as in Corollary 3.3.

Proposition 3.7. Let ( : X* — A* be an injective morphism. Then ( is R-
characteristic if and only if it can be decomposed as ( = ji,, o n, where w € A*
and n: X* — A* is an injective literal morphism.

Proof. Let ¢ = py 0 m, with w € A* and 7 an injective literal morphism. Then
7 is trivially R-characteristic and p,, is R-characteristic too, by Theorem 1.12.
Therefore also their composition ¢ is R-characteristic.

Conversely, let us first suppose that ((X) C a; A* for some a; € A. Then
for any t € SEpi(X), ((t) is a standard episturmian word beginning with ay,
so that by Proposition 1.5 the letter a; is separating for ((¢). In particular
ay is separating for each ((z) (x € X); by Proposition 1.11 there exists a
morphism a; : X* — A* such that ¢ = pg, o @;1. Since t € SEpi(X), tiq, (@1(t))
is a standard episturmian word over A, so that by Proposition 1.13 the word
a1(t) is also a standard episturmian word over A. Thus « is injective and R-
characteristic, and we can iterate the above argument to find new letters a; € A
and R-characteristic morphisms «; such that ¢ = pa, 0+ 0 g, 0 a4, as long as
all images of letters under «; have the same first letter.

If card X > 1, since ( is injective, we eventually obtain the following decom-
position:

¢ = Hay © Hay © 0 fla, O = P O 1] (14)

where a1,...,a, € A, w = ay---a,, and n = «, is such that n(z)’ # n(y)’
for some z,y € X. If the original requirement ¢(X) C a1 A* is not met by any
a1, that is, if ((z)7 # ((y)? for some x,y € X, we can still fit in (14) choosing
n=0and w=c¢.

Let then 2,y € X be such that n(z)/ # n(y)f. Since n is R-characteristic,
by Proposition 2.3 we obtain n(X) C PAL. Moreover, since 7 is injective, by
Corollary 2.8 we have (X)) C Pr = A, so that 7 is an injective literal morphism.

In the case X = {z}, the lengths of the words «;(x) for i > 1 are decreasing.
Hence eventually we find an n > 1 such that «,(z) € A and the assertion is
proved, for

C:ualou-o,uanoan:,uwoan,

with w =a7---a, € A* and a, : X* — A* an injective literal morphism. O
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Ezample 3.8. Let X = {z,y}, A= {a,b,c}, and ¢ : X* — A* be defined by:
¢(z) = abacabaabacab = pq(bebabeb)  and ((y) = abacaba = g (beba) |

so that aq(z) = bebabeb and « (y) = beba. Then () can be rewritten also as

C(z) = pala1(x)) = (pa © pp)(cach) = (pta © iy © pic)(ab) = frapea(b) -

In a similar way, one obtains {(y) = papea(a). Hence, setting n(z) = b and
n(y) = a, the morphism ¢ = papeq 01 is R-characteristic, in view of the preceding
proposition.

From Theorem 3.5 and Proposition 3.7 one derives the following:

Corollary 3.9. Every injective 9-characteristic morphism ¢ : X* — A* can be
decomposed as

p=gopwon, (15)
where n : X* — B* is an injective literal morphism, ., : B* — B* is a pure
standard episturmian morphism (with w € B*), and g : B* — A* is an injective
morphism such that g(B) = II(y).

Remarks.

1. From the preceding result, we have in particular that if ¢ : X* — A* is
an injective ¥-characteristic morphism, then card X < card A.

2. Theorem 3.5 and Proposition 3.7 show that a decomposition (15) can
always be chosen so that B = alphw Un(X) C A and ¢g(b) € bA* NPy for
each b € B.

3. Corollary 3.9 shows that the code ¢(X), which is a suffix code by Corol-
lary 2.5, is in fact the composition (by means of g) [1] of the code ., (n(X)) C
B* and the biprefix, overlap-free, and normal code g(B) C A*.

4. From the proof of Proposition 3.7, one easily obtains that if card X > 1,
the decomposition (15) is unique.

Proposition 3.10. Let ¢ : X* — A* be an injective ¥-characteristic morphism,
decomposed as in (15), and ¢ be the iterated palindrome closure operator. The
word u = g(Y(w)) is a I-palindrome such that for each x € X,

p(x)u = (ug(n())® (16)
and p(x) is either a prefix of u or equal to ug(n(x)).

Proof. Since ¥ (w) is a palindrome and the injective morphism g is such that
g(B) C Py, we have u € PALy in view of Proposition 1.17. Let 2 € X and set
b =n(x). We have

p(@)u = g(pw(n(x)P(w)) = g(pw(b)ib(w)).
By Propositions 1.9 and 1.17 we obtain

9w (0)¥(w)) = g(¥(wb)) = g(((w)0) ) = (g((w)))® = (ug(b))®,

19



and (16) follows. Thus, since g(b) is a ¥-palindromic suffix of ug(b), we derive
lo(z)| < |ug(b)]. By Proposition 2.1, ¢(x) € Pj. Therefore it can be either
equal to ug(b) or a prefix of w. Indeed, if p(z) = ur with r a nonempty proper
prefix of g(b) € Py, then r € Pj§, as Py is left unitary. This gives rise to a
contradiction because Py is a biprefix code. O

Corollary 3.11. Under the same hypotheses and with the same notation as
in Proposition 3.10, if x1,x2 € X are such that |p(x1)| < |p(x2)|, then either
p(x1) € Pref p(x2), or p(x1) and ¢(z2) do not overlap, i.e.,

Suff p(z1) N Pref p(z2) = Suff p(z2) N Pref p(z1) = {e} .

Proof. For i = 1,2, let us set b; = n(x;). By Proposition 3.10, ¢(z;) is either a
prefix of u or equal to ug(b;).

If p(x1) is a prefix of u, then it is a prefix of ¢(x3) too, as |p(z1)| < |p(z2)]-
Let us then suppose that

o(xz;) =ug(b;) fori=1,2. (17)

Now let v be an element of Suff p(x1)NPref p(x2). Since (z2) € P}, we can
write v = v'\, where v’ is the longest word of P} N Prefv. Then A is a proper
prefix of a word 7 occurring in the unique factorization of ¢(x3) over Py. If A
was nonempty, = would overlap with some word 7’ of the factorization of ¢(z1)
over Py. This is absurd, since for any ¢t € SEpi(X) such that x1,z2 € alpht,
both 7 and 7’ would be in T, (1), which is overlap-free by Theorem 1.26. Hence
A = ¢ and v € Pj§. Therefore by (17) we have v = g(§), where £ is an element
of Suff (¢(w)by) N Pref(1p(w)bz).

By Proposition 3.10, (17) is equivalent to (ug(b;))® = ug(bi)u, i = 1,2.
Since for i = 1,2 the word ¢(b;) is an unbordered ¥-palindrome, any ¥-palindromic
suffix of ug(b;) longer than g(b;) can be written as g(b;)&;g(b;), with & a ¥-
palindromic suffix of u. Hence (17) holds for ¢ = 1,2 if and only if u has
no ¥-palindromic suffixes preceded respectively by g(b1) or g(b2). By Proposi-
tion 1.17, this implies that for ¢ = 1,2, ¥(w) has no palindromic suffix preceded
by b;, so that b; ¢ alphw = alph(w). Therefore, since by # by, the only word
in Suff(¢(w)by) N Pref(¢(w)by) is e. Hence v = g(e) = e.

The same argument can be used to prove that Suff p(z2) N Pref p(xy) =

{e}. O

Ezample 3.12. Let X = {x,y}, A = {a,b,¢,d, e}, B = {a,d}, and ¥ be defined
by @ =b, ¢ = ¢, and d = e. As we have seen in Example 3.4, the morphism
p: X* — A* defined by ¢(z) = acbde and ¢(y) = acbdeach is ¥-characteristic.
We can decompose ¢ as ¢ = g o fiaq © 1, where g : B* — A* is defined by
g(a) = acb € Py, g(d) = de € Py, and 7 is such that n(z) = d and n(y) = a.
We have u = g(¢(ad)) = g(ada) = acbdeacd, and

o(z)u = acbdeachdeach = (achdeachde)® = (ug(n(z)))® .

Similarly, o(y)u = (ug(n(y)))®. In this case, o(x) is a prefix of ¢(y).

The following basic theorem gives a characterization of all injective ¥-charac-
teristic morphisms.
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Theorem 3.13. Let ¢ : X* — A* be an injective morphism. Then ¢ is ¥-
characteristic if and only if it is decomposable as

P =9gOHwoMn

as in (15), with B = alphwUn(X) and g(B) =11 C Py satisfying the following
conditions:

1. I is an overlap-free and normal code,

2. LS ({g(4(w))} UTI) C Pref g(¢(w)),

3. if bye € A\ SuffII and v € II* are such that bvé € FactIl, then v =
g((w'z)), with w' € Prefw and z € {e} U (B\ n(X)).

The proof of this theorem, which is rather cumbersome, will be given in

Section 5, using some results on biprefix, overlap-free, and normal codes that
will be proved in Section 4. We conclude this section by giving some examples
and a remark related to Theorem 3.13; moreover, from this theorem we derive
a different proof of Theorem 3.1.
Ezample 3.14. Let A = {a,b,c}, X = {z,y}, B={a,b},andlet Jand p : X* —
A* be defined as in Example 3.6, namely @ = a, b = ¢, and ¢ = go p, o7, where
n(z) = a, n(y) = b, and g : B* — A* is defined by g(a) = a and g(b) = bac.
Then II = g(B) = {a, bac} is an overlap-free code and satisfies:

o (Suff T\ II) N LSTI = {e}, so that II is normal,
o LS({g(¢(a)}UIl) = LS({a} UII) = {e} C Prefa.

The only word verifying the hypotheses of condition 3 is bac = bab = g(b) € I,
with @ € IT* and b ¢ Suff II. Since a = g(¥(a)) and B\ n(X) = 0, also condition
3 of Theorem 3.13 is satisfied. Hence ¢ is ¥-characteristic.

Ezample 3.15. Let X = {x,y}, A = {a,b,c}, ¥ be such that a = a, b = c,
and the morphism ¢ : X* — A* be defined by ¢(x) = a and ¢(y) = abaac.
In this case we have ¢ = g o u, on, where B = {a,b}, g(a) = a, g(b) = baac,
n(xz) = a, and n(y) = b. Then the morphism ¢ is not ¥-characteristic. Indeed, if
t is any standard episturmian word starting with yzy, then ¢(t) has the prefix
abaacaabaac, so that aa is a left special factor of p(t) but not a prefix of it.

In fact, condition 3 of Theorem 3.13 is not satisfied in this case, since baac =
baab = g(b), b ¢ Suff 11, aa € IT*, B\ n(X) = 0, and

aa ¢ {g((w')) | w" € Prefa} = {e,a} .
If we choose X’ = {y} with n/(y) = b, then
9(1a(n'(y*))) = (abaac) € SEpiy ,

so that ¢’ = g oy, on’ is Y-characteristic. In this case B = alpha U n'(X’),
B\ 7' (X’") ={a}, and aa = g(¢(aa)) = g(aa), so that condition 3 is satisfied.

Ezample 3.16. Let X = {z,y}, A= {a,b,c,d,e, h}, and ¥ be the antimorphism
over A defined by a = a, b = ¢, d = e, h = h. Let also w = adb € A*,
B = {a,b,d} = alphw, and n : X* — B* be defined by n(z) = a and n(y) = 0.
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Finally, set g(a) = a, g(d) = dahae, and g(b) = badahaeadahaeac. Then the
morphism ¢ = g o u,, o7 is such that

©(y) = adahaeabadahaeadahaeac and  ¢(x) = ¢(y) adahaea ,

and it is ¥-characteristic as the code II = g(B) and the word u = g(¢(w)) =
g(adabada) = ¢(x) satisfy all three conditions of Theorem 3.13.

Remark. Let us observe that Theorem 3.13 gives an effective procedure to
decide whether, for a given 9, an injective morphism ¢ : X* — A* is -
characteristic. The procedure runs in the following steps:

1. Check whether p(X) C Pj.
2. If the previous condition is satisfied, then compute IT = II(yp).

3. Verify that II is overlap-free and normal.
4. Compute B = f(II) and then the morphism g : B* — A* given by ¢g(B) =
II.

5. Since ¢ = g o (, verify that ( is R-characteristic, i.e., there exists w € B*
such that ¢ = p,, on, where n is a literal morphism from X* to B*. This
can be always simply done, following the argument used in the proof of
Proposition 3.7.

6. Compute g(¢(w)) and verify that conditions 2 and 3 of Theorem 3.13 are
satisfied. This can also be effectively done.

We now give a new proof of Theorem 3.1, based on Theorem 3.13.

Proof of Theorem 3.1. Let ¢ : X* — A* be an injective morphism such that
©(X) =TI C Py and satisfying conditions 1 and 2 of Theorem 3.1. In this case
we can assume w = g, so that B = n(X), u = g(¢(w)) =€, and ¢ = gon. Hence
IT = g(B) = ¢(X). The code IT is overlap-free by conditions 1 and 2. Since any
letter of A occurs at most once in any word of I, we have LS({e} UII) C {e} =

Pref u, whence
(Suf T\ ) N LSTI C {e},

i.e., IT is a left normal, and therefore normal, code. Let b,c € A\ Suff II, and
v € IT* be such that bvé € Fact 7 for some 7 € II. This implies v = ¢ = g(¢(¢)),
because the equation v = 7y - - - with 7y, . .., 7, € Il would violate condition 1
of Theorem 3.1. Thus all the hypotheses of Theorem 3.13 are satisfied for w = ¢,
so that ¢ = g o pe o n is Y-characteristic.

Conversely, let ¢ : X* — A* be an injective ¥J-characteristic morphism such
that ¢(X) =II C Py. We can take w = ¢, B =n(X) C A and write ¢ = g o,
so that g(B) = ¢(X) =1II. Since u = ¢, by Theorem 3.13 we have

LS({ep UTD) C {e}, (18)

and, as B\ n(X) =0, for all b,c € A\ Suff IT and v € IT*,
bve € FactIl = v =g(¢(e)) =¢. (19)
Moreover, since IT = II(y), we have that II is normal and overlap-free by Propo-

sition 2.2.
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Now let a € A and suppose a € alph 7 for some 7 € II. We will show that
any two occurrences of a in the words of II coincide, so that a has exactly one
occurrence in II. Let then 71,7 € II be such that

T = /\1ap1 and T = )\gapg

for some Aq, A9, p1,p2 € A*, and let us first prove that A\; = As.

Let s be the longest common suffix of A; and Az, and let A\; = Als fori =1, 2.
If both A} and N, were nonempty, their last letters would differ by the definition
of s, and therefore sa would be in LSTI, contradicting (18).

Next, we may assume \| = ¢ and A, # e, without loss of generality. Then
sa € Pref 11, so that by Proposition 1.1 we obtain \;m; € Pref mo; in particular,
we have 1 # 7. Let then r be the longest word of IT* NSuff A}, and set A, = &r.
Since A, # ¢ and II is a biprefix code, we have ¢ # . Furthermore, £¢ is not a
suffix of any word of II, for if 7’ were such a word, by Proposition 1.1 we would
derive that 7’ € Suff £, contradicting the definition of r.

Let us now write my = &rm1d. The word 6 is nonempty since II is a biprefix
code. Let r’ be the longest word in IT* N Pref § and set § = /(. Since IT is a
biprefix code, ¢ # €. By Proposition 1.1, we derive that (¥ ¢ PrefII. By (19),
we obtain that rm 7’ = &, which is absurd.

Thus A} = A, = &, whence A\; = Ay as desired. From A\ja = Aga it follows
w{ = w{, so that by Proposition 1.1 we have m; = 75 and hence p; = ps.
Therefore, the two (generic) occurrences of a we have considered are the same.

We have thus proved that every letter of A occurs at most once among all the
words of IT = ¢(X), so that conditions 1 and 2 of Theorem 3.1 are satisfied. [

4 Some properties of normal codes

In this section, we analyse some properties of left (or right) normal codes, under
some additional requirements such as being suffix, prefix, or overlap-free. A first
noteworthy result was already given in Section 1 (cf. Proposition 1.1). We stress
that all statements of the following propositions can be applied to codes which
are biprefix, overlap-free, and normal.

Lemma 4.1. Let Z be a left normal and suffix code over A. For any a,b € A,
a#b, A€ AT, if a), b\ € Fact Z* and \ ¢ Pref Z*, then a), b\ € Fact Z.

Proof. By symmetry, it suffices to prove that aX € Fact Z. By hypothesis there
exist words v,{ € A* such that vaA( = 21 -+ 2,, with n > 1 and z; € Z,
i=1,...,n. If n =1, then a\ € Fact Z and we are done. Then suppose n > 1,
and write:

va=2z1-2p0, 0N = Zpi1 - Zn, 2he1 =0 =2, (20)

with 6 € A*, h > 0, and £ # . Let us observe that § # ¢, for otherwise
A € Pref Z*, contradicting the hypothesis on A.

If [5A| < |2|, then since a = &%, we have a\ € Fact Z and we are done.
Therefore, suppose |dA| > |z|. This implies that £ is a proper prefix of A, and
by (20), a proper suffix of z. Moreover, as a = §*, we have a¢ € Fact Z.

Since bA € Fact Z*, in a symmetric way one derives that either b\ € Fact Z,
or there exists £ # ¢ which is a proper prefix of A and a proper suffix of a word
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2" € Z. In the first case we have b\ € Fact Z, so that a&,b¢ € Fact Z, whence
EeSuff ZNLS Z, and € ¢ Z since Z is a suffix code. We reach a contradiction
since £ # € and Z is left normal.

In the second case, & and & are both prefixes of X. Let & be in {£,£’} with
minimal length. Then a&,bé € Fact Z, so that £ € Suff ZN LS Z. Since & ¢ Z,
as Z is a suffix code, we reach again a contradiction because € # ¢ and Z is left
normal. Therefore, the only possibility is that a\ € Fact Z. O

Proposition 4.2. Let Z be a suffiz, left normal, and overlap-free code over A,
and let a,b € A, v € A*, X\ € AT be such that a # b, va ¢ Z*, va\ € Pref Z*,
and b\ € Fact Z*. Then a) € Fact Z.

Proof. Since vaA € Pref Z*, there exists ( € A* such that val( = z1--- z,,
n>1,2z¢€Z i=1,...,n. Then we can assume that (20) holds for suitable
h>06¢€ A", and £ € AT. We have n > 1, for otherwise the statement is
trivial, and § # ¢ since va ¢ Z*. As §* = a, if |0A\| < |z| we obtain a\ € Fact Z
and we are done. Therefore assume |6\ > |z|. In this case £ is a proper prefix
of X\ and a proper suffix of z. If A\ € Pref Z* we reach a contradiction, since
& € Suff Z N Pref Z* and this contradicts the hypothesis that Z is a suffix and
overlap-free code. Thus A ¢ Pref Z*; this implies, by the previous lemma, that
a\ € Fact Z. O

Proposition 4.3. Let Z be a biprefix, overlap-free, and right normal code over
A. If A € Pref Z*\ {e}, then there exists a unique word w = z1 -+ z, with k > 1
and z; € Z,1=1,...,k, such that

u=2z1-2t =M, 21" 2k_10 =X\, (21)

where § € AT and ¢ € A*.
Proof. Let us suppose that there exist h > 1 and words 21, ..., 2}, € Z such that
2z =N, 226 = (22)

with ¢/ € A* and ' € AT. From (21) and (22) one obtains u = 21 --- 2, =
2{-- 2z _q0'Cand 2] - 2, = 21 - - 2K,_10C, with z,, = 6¢ and 2}, = 6'¢’. Since Z
is a biprefix code, we derive h = k and consequently z; = 2} fori=1,..., k—1.
Indeed, if h # k, we would derive by cancellation that 6’¢ = € or ¢’ = ¢, which
is absurd as 6,8’ € AT,

Hence we obtain zp = 6’ = 6¢, whence § = ¢’. Thus ¢ is a common
nonempty prefix of z; and zj. Since Z is right normal, by Proposition 1.1 we
obtain that z is a prefix of 2}, and vice versa, i.e., z = 2. O

Proposition 4.4. Let Z be a biprefix, overlap-free, and normal code over A. If
u € Z*\ {e} is a proper factor of = € Z, then there exist p,q € Z*, h,h' € AT
such that h* ¢ Suff Z, (h')! ¢ Pref Z, and

z = hpugh’ .

Proof. Since u is a proper factor of z € Z, there exist £,& € A* such that
z = &ug’; moreover, £ and £’ are both nonempty as 7 is a biprefix code. Let p
(resp. q) be the longest word in Suff £ N Z* (resp. Pref &' N Z*), and write

z = &ul’ = hpugh'
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for some h,h’ € A*. Since u and hp are nonempty and Z is a biprefix code,
one derives that h and b’ cannot be empty. Moreover, h’ ¢ Suff Z and (h')7 ¢
Pref Z, for otherwise the maximality of p and ¢ would be contradicted using
Proposition 1.1. [

5 Proof of Theorem 3.13

In order to prove the theorem, we need the following lemma.

Lemma 5.1. Let t € SEpi(B) with alpht = B, and let s = g(t) be a standard
J-episturmian word over A, with g : B* — A* an injective morphism such
that g(B) C Py. Suppose that b,c € A\ SuffII; and v € II* are such that
bvc € FactII,. Then there exists § € B* such that v = g(¢(9)).

Proof. Let m € Il be such that bvc € Fact . By definition, we have II; = ¢g(B),
so that, since v € II%, we can write v = g(§) for some £ € B*. We have to
prove that & = ¢(0) for some 6 € B*. This is trivial for £ = . Let then
¥(0") be the longest prefix in ¢ (B*) of £, and assume by contradiction that
& # Y(d'), so that ¥(6")a € Prefé for some a € B. We shall prove that
P(da) = (w(é')a)(ﬂ € Pref £, contradicting the maximality of ¢(d’).

Since g(1(8")) is a prefix of v, we have bg(1(0")) € Fact w C Fact s. Moreover
g(1(8")a) € Pref v C Fact . By Proposition 1.17 and since 7 is a ¥-palindrome,
we have

g(a(8")) = g(¥(0")a) € Fact .

Thus g(¢)(¢')), being preceded in s both by b ¢ Suff IT, and by (g(a))? € Suff I,
is a left special factor of s, and hence a prefix of it.

Suppose first that a ¢ alphd’, so that (6’a) = (8" )ap(6"). Let A be the
longest prefix of (¢") such that (6" )aX is a prefix of . Then g(¢(§')a)) is
followed in v¢ by some letter z, i.e.,

g9(¢(6")aN)z € Pref(ve) . (23)

We claim that
g(N)z ¢ Pref g(v(3")) - (24)

Indeed, assume the contrary. Then z is a prefix of g(A) ~g(1(8')), which is in IT*
since I is a biprefix code. Hence x € Pref g(d) for some d € B such that g(A\d) €
Pref g(¢(¢)), and then Ad € Pref ¢(¢') by Lemma 1.2. As ¢ ¢ Pref I, we obtain
x # ¢, so that by (23) it follows g(¢(8")aN)x € Pref v. Therefore g(¢(§")aAd) €
Pref v by Proposition 1.1, so that 1(6")ald € Pref ¢ by Lemma 1.2. This is a
contradiction because of our choice of A.

Let us prove that A = (8'). Indeed, since A € Suff ("), by (23) the word
g(AaN)z is a factor of 7, and so is its image under 9, that is Zg(Aa)). By
contradiction, suppose |A| < [¢(d")]. By (24), zg(A) ¢ Suff g((d")), so that
the suffix g(AaX) of g(¥(8")aX) is preceded by a letter which is not . Thus
g(:\a)\) is a left special factor of w € Fact s, and hence a prefix of s. As we have
previously seen, g(¢(0")) is a prefix of s too, so that, as |A| < [¢(d)], it follows
by Lemma 1.2 that Aa is a prefix of ¥(8"), contradicting the hypothesis that
a ¢ alphd’. Thus A = ¢(d’), so that ¢(d'a) € Pref &, as we claimed.
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Now let us assume a € alph ¢’ instead, and write ' = yay' with a ¢ alph~/,
so that ¥(&") = ¥(y)ap = pa(y) and () is the longest palindromic prefix
(resp. suffix) of ¥(¢) followed (resp. preceded) by a. Thus

P(8'a) = parp(y)ap = (8 )ap .

Let A € Pref p and 2 € A be such that (23) holds and g(\)x ¢ Pref g(p). With
the same argument as above, one can show that if |A| < |pl|, then g(Aay(y)a) is
a left special factor, and then a prefix, of s. Since g((d")) is a prefix of s too, and
|Aatp(y)al < |pap()| = [(6")], by Lemma 1.2 we obtain Aath(v)a € Pref 1 (d").
Since A is a suffix of g, Xaw(v) is a suffix, and then a border, of ¥(§’). This
is absurd since ¥(v) is the longest border of ¢ (d’) followed by a. Thus A = p,
showing that (d’a) is a prefix of £ also in this case. The proof is complete. [

We can now proceed with the proof of Theorem 3.13.

5.1 Necessity

The decomposition (15) with B = alphw Un(X) follows from Corollary 3.9 and
subsequent remark.

Since IT = ¢g(B) C Py and ¢ is ¥-characteristic, one has by Theorem 3.5
that I = TI(p) as defined by (7), so that it is overlap-free and normal by
Proposition 2.2.

Let us set u = g(1(w)), and prove that condition 2 holds. We first suppose
that card X > 2, and that a,a’ € n(X) are distinct letters. Let A be an infinite
word such that alph A = n(X). Setting ¢, = ¥(waA) and ¢t = P(wa’A), by (3)
we have

ta = pow(P(al)) and  to = p,(Y(a’A)),
so that, setting s, = g(t,) for y € {a,da’}, we obtain

sy = g(pw(Y(yA))) € SEpiy

as Y(yA) € n(SEpi(X)) C SEpi(B) and ¢ = g o p,, o n is ¥-characteristic.
By Corollary 1.10 and (3), one obtains that the longest common prefix of ¢,
and t, is ¥(w). As alph A = n(X) and B = alphw Un(X), we have alpht, =
alpht, = B, so that II,, = II; , = II. Since g is injective, by Theorem 1.27
we have g(a)f # g(a’)?, so that the longest common prefix of s, and s, is
u = g(¢(w)). Any word of LS({u} UII), being a left special factor of both s,
and s./, has to be a common prefix of s, and s,/, and hence a prefix of u.
Now let us suppose X = {2z} and denote 7(z) by a. In this case we have

e(SEpi(X)) = {g(nw(a®))} = {(g(tw(a)))“} .

Let us set s = (g(pw(a)))” € SEpiy. By Corollary 1.10, u = g(¢(w)) is a prefix
of s. Let A € LS({u} U II). Since II = II,, the word X is a left special factor of
the ¥-episturmian word s, so that we have A € Pref s.

If a € alphw, then B = {a} U alphw = alphw = alph(w), so that IT C
Fact u. This implies |A| < |u| and then A € Pref u as desired.

If a ¢ alphw, then by Proposition 3.10 we obtain ¢(z) = g(uy(a)) = u g(a),
because ¢(z) ¢ Prefu otherwise by Lemma 1.2 we would obtain p,(a) €
Pref ¢)(w), that implies a € alphw. Hence s = (ug(a))*. Since II C {g(a)} U
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Fact u, we have |A| < |ug(a)l, so that A € Pref(ug(a)). Again, if A is a proper
prefix of u we are done, so let us suppose that A = u\’ for some X € Pref g(a),
and that \ is a left special factor of g(a). Then the prefix X' of g(a) is repeated
in g(a). The longest repeated prefix p of g(a) is either a right special factor or
a border of g(a). Both possibilities imply p = €, since g(a) is unbordered and
IT is a biprefix and normal code. As X € Pref p, it follows A = e. This proves
condition 2.

Finally, let us prove condition 3. Let b,c € A\ SuffII, v € II*, and 7 €
IT be such that bvé € Factw. Let ¢ € SEpi(X) with alpht’ = X, and set
t = pw(n(t)), s1 = g(t). Since ¢ is V¥-characteristic, s1 = (¢') is standard
YJ-episturmian. By Lemma 5.1, we have v = g(¢(J)) for some 6 € B*. If § = ¢
we are done, as condition 3 is trivially satisfied for w’ = xz = ¢; let us then
write § = ¢’a for some a € B. The words bg(¢)(6")) and g(ap(8’)) are both
factors of the ¥-palindrome ; indeed, ¥ (¢'a) begins with 1 (¢")a and terminates
with ap(d"). Hence g(1(8")) is left special in 7 as b ¢ SuffII is different from
(g(a))’ € SuffII. Therefore g(3(8")) is a prefix of g(1)(w)), as we have already
proved condition 2. Since g is injective and II is a biprefix code, by Lemma 1.2
it follows 1 (¢") € Pref ¢)(w), so that ¢’ € Pref w by Proposition 1.6. Hence, we
can write 6 = w'z with w’ € Pref w and z either equal to a (if 6’a ¢ Pref w) or
to €. It remains to show that if w'a ¢ Pref w, then = ¢ n(X).

Let us first assume that n(X) = {z}. In this case we have s1 = g(p, (n(t'))) =
g((wz*)) by (3). Since bv = bg(¢(w'z)) € Factm, g(x) is a proper factor of
7. Then, as B = {z} Ualphw and g(z) # m, we must have 7 € g(alphw),
so that bv € Fact g(¢(w)) as alphw = alph(w). By Proposition 1.7, ¢(w'z)
is a factor of ¢¥(wx). We can then write ¥(wx) = (¢(w'z)¢" for some (, (" €
B*. If ¢ were empty, by Proposition 1.6 we obtain w'z € Pref(wz). Since
w'z ¢ Pref w we would derive w = w’, which is a contradiction since we proved
that bv = bg(¥(w'z)) € Fact g(¢(w)). Therefore { # ¢, and v is left special
in s, being preceded both by (g(¢))* and by b ¢ SuffII. This implies that v
is a prefix of s and then of g(¢»(w)) as |v| < |g(¢(w))]. By Lemma 1.2, it fol-
lows 9 (w'x) € Pref ¢(w) and then w'z € Pref w by Proposition 1.6, which is a
contradiction.

Suppose now that there exists y € n(X) \ {z}, and let A € n(X)* with
alph A = n(X). The word ss = g(¢p(wyxzA)) is equal to g(u, (Y (yxA))) by (3),
and is then standard ¥-episturmian since ¢ = g o p,, 0 7 is ¥-characteristic. By
applying Proposition 1.7 to w’ and wy € w’ A*, we obtain ¢(w'z) € Fact ¢ (wyx).
We can write ¢(wyz) = (¢(w'z)¢’" for some (,{’ € B*. As w'x ¢ Prefw and
x # y, we have by Proposition 1.6 that ¢ (w'z) ¢ Pref ¢)(wy), so that ¢ # e.
Hence v = g(y(w'z)) is left special in sy, being preceded both by (g(¢))" and
by b ¢ Suff II. This implies that v is a prefix of s and then of g(¢(wy)); by
Lemma 1.2, this is absurd since ¢ (w'z) ¢ Pref ¢(wy).

5.2 Sufficiency

Let ¢ € SEpi(n(X)) and t = (') € SEpi(B). Since g(B) = II C Py, by
Proposition 1.17 it follows that g(¢) has infinitely many v¥-palindromic prefixes,
so that it is closed under 9.

Thus, in order to prove that g(t) € SEpiy, it is sufficient to show that any
nonempty left special factor A of g(¢) is in Pref g(¢). Since A is left special, there
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exist a,a’ € A, a # d’, v,v" € A*, and r,r’ € A¥, such that
g(t) =varr =v'a’ M’ . (25)

The word g(t) can be uniquely factorized by the elements of II. Therefore, vaA
and v'a’\ are in Pref IT*. We consider three different cases.

Case 1: va ¢ II*, v'a’ ¢ TT*.

Since II is a biprefix (as it is a subset of Py), overlap-free, and normal code,
by Proposition 4.2 we have a),a’X\ € FactIl. Therefore, by condition 2 of
Theorem 3.13, it follows A € LSTI C Pref g(¢)(w)), so that it is a prefix of g(t)
since by Corollary 1.10, 1(w) is a prefix of ¢ = p,,(¢').

Case 2: va € IT*, v'a’ € TT*.

From (25), we have A € Pref IT*. By Proposition 4.3, there exists a unique word
N € II* such that N =m---m, =X and 7y -+ -mp_10 = A\, with k > 1, m; € II
fori=1,...,k, 0 € AT, and ( € A*.

Since g is injective, there exist and are unique the words 7,7,v" € B* such
that g(7) = N, g(v) = va,g(7') = v'a’. Moreover, we have g(y7) = vaX =
vaX( € Pref g(t) and g(v'7) = v'a’N = v'a’ A\ € Pref g(t). By Lemma 1.2, we
derive y7,~'T € Preft. Setting a = 7%, a’ = 7'*, we obtain o, /7 € Factt, and
a # o as a # o/. Hence 7 is a left special factor of t; since ¢t € SEpi(B), we
have 7 € Preft, so that g(7) = X € Pref g(t). As X is a prefix of X', it follows
A € Pref g(t).

Case 3: va ¢ IT*, v'a’ € II* (resp. va € IT*, v'a’ ¢ II*).

We shall consider only the case when va ¢ IT* and v'a’ € IT*, as the symmetric
case can be similarly dealt with.

Since v'a’ € II*, by (25) we have A € Pref II*. By Proposition 4.3, there
exists a unique word A’ € IT* such that N = ---m, = A and 71 -+ - 16 = A,
withk > 1, m;elfori=1,...,k 6 € AT, and ¢ € A*. By the uniqueness of
N, v'a’ N is a prefix of g(t).

By (25) we have vary - - - 10 € Pref g(¢). By Proposition 4.2, a\ € FactII,
so that there exist £,& € A*, m € II, such that

EaX¢ = Eamy -+ w10 =7 ell.

Since § is a nonempty prefix of 7, it follows from Proposition 1.1 that 7 =
Eamy - - mp€" = EaN' &', with £ € A*. By Proposition 4.4, we can write

7 =EaN€" = hp\qh'

with h,h’ € At p,q € IT*, b= h* ¢ SuffII, and ¢ = (/)7 ¢ PrefIl.

By condition 3, we have pA'q = g(¢(w'x)) for some w’ € Prefw and z €
{e} U(B\ n(X)). Since p, N, q € II* and g is injective, we derive X' = g(7) for
some 7 € Fact ¢(w'z). We will show that A’ is a prefix of ¢(t), which proves the
assertion as A € Pref .

Suppose first that p = ¢, so that @ = b and 7 € Prefy(w'z). If 7 €
Pref ¢(w’), then A" € g(Pref ¢)(w’)) C Pref g(¢)(w')) C Pref g(1p(w)), and we are
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done as g(1p(w)) € Pref g(t). Let us then assume z # €, so that € B\ n(X),
and (w')x € Pref 7. Moreover, we can assume w’z ¢ Pref w, for otherwise we
would derive A" € Pref g(¢)(w)) again. Let A € n(X)* be the directive word
of ¢, so that by (3) we have t = ¢ (wA). Since w’' € Prefw, we can write
wA = w'A’ for some A’ € B¥, so that t = ¢(w'A’).

We have already observed that v'a’ X € Pref g(t); as v'a’ € II*, by Lemma 1.2
one derives that 7 is a factor of ¢. Since ¢(w’)x € Pref 7, it follows ¥ (w')z €
Fact ¢(w’A’); by Proposition 1.8, we obtain € alph A’. This implies, since
z ¢ n(X), that w # w’, and we can write w = w'cxc’ for some o,0’ € B*. By
Proposition 1.7, ¢(w'z) is a factor of ¢)(w’ox) and hence of ¥(w), so that, since
7 € Pref¢)(w'z), we have 7 € Fact1)(w). Hence we have either 7 € Pref ¢(w),
so that X € Pref g(¢(w)) and we are done, or there exists a letter y such that
y7 € Facty(w), so that d\ € Fact g(1)(w)) with d = (g(y))* € SuffII. In the
latter case, since a = b ¢ Suff IT and a)\ € FactIl, we have by condition 2
that X" € Pref g(¢»(w)). Since g(¢(w)) is a prefix of g(t), in the case p = ¢ the
assertion is proved.

If p # &, we have a € SuffII. Let then a,a’ € B be such that (g(a))’ = a
and (g(/))* = a'; as a # a’, we have a # o'. Since p)’ is a prefix of g(¢(w'z)),
p € IT*, and p* = (g())* = a, by Lemma 1.2 one derives that a7 is a factor of
Y(w'z). Moreover, as v'a’\ € Pref g(t) and v'a’ € IT*, we derive that o/7 is a
factor of t.

Let then & be any prefix of the directive word A of ', such that o't €
Fact ¢)(wd’). By Proposition 1.7, (wé’z) contains ¢(w'z), and hence art, as
a factor. Thus 7 is a left special factor of ¢(wd’x) and then of the standard
episturmian word ¢ (wd’'z*); as |7| < |[¢p(wd’)], it follows 7 € Pref ¢)(wd’) and
then 7 € Pref ¢, so that ' € Pref g(¢). The proof is now complete.

6 Further results and concluding remarks

Theorem 1.27 shows that every standard J-episturmian word is a morphic image,
under a suitable injective morphism, of some standard episturmian word. The
following theorem improves upon this, showing that the morphism can always
be taken to be ¥-characteristic.

Theorem 6.1. Let s be a standard ¥-episturmian word over A. Then there
exists X C A, t' € SEpi(X) and an injective 9-characteristic morphism ¢ :
X* — A* such that s = o(t').

Proof. Set II = II,. By Theorem 1.27, the restriction to II of the map f: w €
Py — wf € A is injective. Hence, setting B = f(II) C A, we can define an
injective morphism ¢ sending any letter x € B to the only word of II beginning
with z. We have s = g(t), where t = f(s) € SEpi(B) by Theorem 1.27.

Let now w € B* be the longest word such that ¢¥(w) € Pref ¢ and g(¢(w)) €
FactII. Such a word certainly exists, as ¢ = v(e) € Preft and ¢ = g(¢(¢)) €
FactII. Since ¥(w) € Preft, we can write ¢t as ¥ (wA) for some A € B¥; let us
set

X =alphACB and t =¢(A)e SEpi(X).

By (3) we obtain s = ¢(t'), where ¢ = g o u,, o7 and 7 is the inclusion map of
X in B, ie, n(X)=X.
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Let us now show that ¢ is ¥-characteristic. We have B = X U alphw, and
g(B) = II; C Py is a biprefix code. By Theorems 1.25 and 1.26, II is also
normal and overlap-free, so that condition 1 of Theorem 3.13 is satisfied.

Let us first prove that ¢ meets condition 3 of that theorem. Indeed, if v € IT*
and b,c € A\ Suff II are such that bv¢ € Fact 7 with 7 € II, then by Lemma 5.1
we have v = g(¢(J)) for some § € B*. If § = ¢ we are done; let us then write
d = ¢'a for some a € B. The words bg(y(4")) and g(ap(6”)) are both factors of
the ¥-palindrome 7, so that g(¢(d")) is left special in 7 as b ¢ Suff IT is different
from (g(a))’. Therefore g(1)(8')) € Pref g(t), so that by Lemma 1.2 we have
P(8") € Preft. Since g(1(0")) € FactIl, from the maximality condition on w
it follows |¢'| < |w|. Moreover, as ¢(w) € Preft, by Proposition 1.6 it follows
0" € Pref w. Hence, we can write § = w’z with w’ € Pref w and z either equal
to a (if ’a ¢ Pref w) or to e.

In order to prove condition 3, it remains to show that if w'z ¢ Pref w, then
x ¢ X. By contradiction, assume x € X = alph A and write A = £z A’ for some
e (X \{z})* and A" € X¥. From (3), it follows ¢t = ¢y(w&xA’). By applying
Proposition 1.7 to w’ and w§ € w'B*, we obtain ¢ (w'z) € Facty(wlz); let
us write P(wéz) = (Y(w'z)¢’ for some ¢, ¢’ € B*. We claim that ¢ # ¢, i.e.,
P(w'x) ¢ Pref p(wéx). Indeed, assume the contrary. Then w'z € Pref(wlz) by
Proposition 1.6, so that w’ = w and £ = ¢ since w'x ¢ Prefw and = ¢ alphé.
Thus g(p(wz)) = g(1(0)) = v € FactII and ¢ (wzx) € Pref ¢, but this contradicts
the maximality of w. Therefore ¢ # ¢, so that g(¢(w’z)) is left special in s, being
preceded both by b ¢ Suff IT and by (g(¢))* € Suff II. Hence g(¢)(w'z)) is a prefix
of s, and then of g(¢(wéx)). By Lemma 1.2, we obtain ¢(w'z) € Pref ¢(wz),
a contradiction. Thus ¢ satisfies condition 3 of Theorem 3.13.

Finally, let uw = g(¢(w)) € Pref s and let us prove that LS({u}UII) C Pref u.
Any word A € LS({u} UTI) is left special in s, and hence a prefix of it. If A is
a factor of u, then |A| < |u|, so that A\ € Pref u as desired.

Let then A € LSTI, with XA # €. Since A € Pref s, we have A € Pref IT*, so
that by Proposition 4.3 there exists a unique \' = mymy - - -7 € IT* (with k > 1
and m; € Il for ¢« = 1,...,k) such that A € Pref M and 7y ---mx—1 € Pref \.
Because of its uniqueness, A’ has to be a prefix of s. Moreover, as a consequence
of Proposition 1.1, every occurrence of A as a factor of any m € II can be
extended to the right to A’ € Factw, so that A’ € LSII. As X € II*, we can
write A" = g(7) € Pref g(¢) for some 7 € B*. By Lemma 1.2, 7 is a prefix of ¢.

As X € LSTI, it is a proper factor of some m € II. By Proposition 4.4,
we can write 7 = hpNqh' with h,h/ € AT, p,q € II*, b = h* ¢ SuffII, and
¢ = (h')) ¢ PrefIl. Therefore, as we have already proved that condition 3
of Theorem 3.13 is satisfied, pX'¢ = g(¥(w'z)) for suitable w’ € Prefw and
x €{etU(B\ X). As p € IT*, this implies 7 € Fact ¢(w'z).

We claim that 7 € Pref ¢)(w), so that A € Pref X’ is a prefix of u. Indeed,
suppose this is not the case, so that, since 7 € Pref ¢, one has ¥ (w)d € Pref 7
where d is the first letter of A. Then ¢(w)d € Fact¢(w'z). This is absurd
if wa € Prefw, as |[¢(w)d| > [¢(w'z)| in that case. If w'z ¢ Prefw, since
w’ € Pref w we can write w = w'yw” for some letter y # x and w” € B*. Then
P(w')y is a prefix of ¥(w)d € Fact (w'z) C Fact(w'z?). As y ¢ alphz®, we
reach a contradiction by Proposition 1.8. Hence all conditions of Theorem 3.13
are met, so that ¢ is ¥-characteristic. O

Let us consider the family SWy(N), introduced in [4], of all words w € A%
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which are closed under ¢ and such that every left special factor of w whose
length is at least N is a prefix of w. Moreover, SWy will denote the class of
words which are in SWy(N) for some N > 0. One has that SWy(0) = SEpiy.
It has been proved in [4] that the family of ¥-standard words is included in
SWy(3), and that SWy coincides with the family of ¥-standard words with seed
introduced in [8, 5].

Proposition 6.2. Let ¢ : X* — A* be an injective morphism decomposable as
@ = gopy,on where w € B*, B =alphw U n(X), n a literal morphism, and
g is an injective morphism such that g(B) = 11 C Py. If II is overlap-free and
normal, then ¢(SEpi(X)) C SWy(N) with N = max{|r| | = € II}.

Proof. The proof is very similar to the sufficiency of Theorem 3.13 (see Sec-
tion 5.2). Using the same notation, suppose that A is a left special factor of g(t)
of length |A| > N where t = p,,(t') € SEpi(B) and ¢’ € SEpi(n(X)). One has
that Cases 1 and 3 cannot occur since otherwise one would derive aA € Fact Il
that implies |A| < N, which is a contradiction. It remains to consider Case
2. By using exactly the same argument one obtains that A is a prefix of g(t).
Finally, since g(t) has infinitely many ¥-palindromic prefixes one has that g(t)
is closed under 9. O

In the previous sections we have introduced and studied ¥-characteristic mor-
phisms and their strict link with normal and overlap-free codes, especially in the
biprefix case. Many interesting properties have been proved; in particular, the
characterization of injective ¥-characteristic morphisms given by Theorem 3.13
is a powerful tool for constructing standard J-episturmian words.

Some natural problems could be the subject of further investigation. A first
problem is to give a characterization of the endomorphisms of A* such that
©(SEpiy) C SEpiy. A second, quite general problem is to characterize the
injective morphisms ¢ : X* — A* such that ¢(X) C Z*, where Z is a biprefix,
overlap-free, and normal code, with the condition that if £ € X* is such that any
its left special factor is a prefix of ¢, then ¢(t) € A% satisfies the same property.
Theorem 3.13 gives a characterization of these morphisms in the special case
Z C Py and t closed under reversal.

Finally, we think that the classes of codes considered here (i.e., normal and
overlap-free codes, both in the biprefix and general case) and their combinatorial
properties would deserve a deeper analysis.
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