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Abstract

In a recent paper with L. Q. Zamboni, the authors introduced the
class of ϑ-episturmian words. An infinite word over A is standard ϑ-
episturmian, where ϑ is an involutory antimorphism of A∗, if its set of
factors is closed under ϑ and its left special factors are prefixes. When ϑ
is the reversal operator, one obtains the usual standard episturmian words.
In this paper, we introduce and study ϑ-characteristic morphisms, that
is, morphisms which map standard episturmian words into standard ϑ-
episturmian words. They are a natural extension of standard episturmian
morphisms. The main result of the paper is a characterization of these
morphisms when they are injective. In order to prove this result, we also
introduce and study a class of biprefix codes which are overlap-free, i.e.,
any two code words do not overlap properly, and normal, i.e., no proper
suffix (prefix) of any code-word is left (right) special in the code. A further
result is that any standard ϑ-episturmian word is a morphic image, by an
injective ϑ-characteristic morphism, of a standard episturmian word.

Introduction

The study of combinatorial and structural properties of finite and infinite words
is a subject of great interest, with many applications in mathematics, physics,
computer science, and biology (see for instance [2, 14]). In this framework,
Sturmian words play a central role, since they are the aperiodic infinite words
of minimal “complexity” (see [2]). By definition, Sturmian words are on a binary
alphabet; some natural extensions to the case of an alphabet with more than
two letters have been given in [9, 12], introducing the class of the so-called
episturmian words.

Several extensions of standard episturmian words are possible. For exam-
ple, in [10] a generalization was obtained by making suitable hypotheses on the
lengths of palindromic prefixes of an infinite word; in [8, 5, 4, 6] different exten-
sions were introduced, all based on the replacement of the reversal operator R
by an arbitrary involutory antimorphism ϑ of the free monoid A∗. In particular,
the so called ϑ-standard and standard ϑ-episturmian words were studied. An
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infinite word over A is standard ϑ-episturmian if its set of factors is closed under
ϑ and its left special factors are prefixes.

In this paper we introduce and study ϑ-characteristic morphisms, a natural
extension of standard episturmian morphisms, which map all standard epis-
turmian words on an alphabet X to standard ϑ-episturmian words over some
alphabet A. When X = A and ϑ = R, one obtains the usual standard epis-
turmian morphisms (cf. [9, 12, 11]). Beside being interesting by themselves,
such morphisms are also a powerful tool for constructing nontrivial examples of
standard ϑ-episturmian words and for studying their properties.

In Section 2 we introduce ϑ-characteristic morphisms and prove some of their
structural properties (mainly concerning the images of letters). In Section 3 our
main results are given. A first theorem is a characterization of injective ϑ-
characteristic morphisms such that the images of the letters are unbordered
ϑ-palindromes. The section concludes with a full characterization (cf. Theo-
rem 3.13) of all injective ϑ-characteristic morphisms, to whose proof Section 5
is dedicated. This result, which solves a problem posed in [4], is very useful to
construct nontrivial examples of ϑ-characteristic morphisms and then of stan-
dard ϑ-episturmian words. Moreover, one has a quite simple procedure to decide
whether a given injective morphism is ϑ-characteristic.

In Section 4 we study some properties of two classes of codes: the overlap-
free codes, i.e., codes whose any two elements do not overlap properly, and the
normal codes, i.e., codes in which no proper nonempty prefix (suffix) which
is not a code-word, appears followed (preceded) by two different letters. The
family of biprefix, overlap-free, and normal codes appears to be deeply connected
with ϑ-characteristic morphisms, and especially useful for the proof of our main
result.

In Section 6, we prove that every standard ϑ-episturmian word is a morphic
image of a standard episturmian word under a suitable injective ϑ-characteristic
morphism. This solves another question asked in [4].

A short version of this work was presented at the Developments in Language
Theory conference, held in Kyoto in September 2008 [3].

1 Preliminaries

Let A be a nonempty finite set, or alphabet. In the following, A∗ (resp. A+) will
denote the free monoid (resp. semigroup) generated by A. The elements of A
are called letters and those of A∗ words. The identity element of A∗ is called
empty word and it is denoted by ε. A word w ∈ A+ can be written uniquely as
a product of letters w = a1a2 · · · an, with ai ∈ A, i = 1, . . . , n. The integer n is
called the length of w and is denoted by |w|. The length of ε is conventionally
0. For any a ∈ A, |w|a denotes the number of occurrences of a in the word w.
For any nonempty word w, we will denote by wf and w` respectively the first
and the last letter of w.

A word u is a factor of w ∈ A∗ if w = rus for some words r and s. In the
special case r = ε (resp. s = ε), u is called a prefix (resp. suffix ) of w. A
factor u of w is proper if u 6= w. We denote respectively by Factw, Pref w, and
Suff w the sets of all factors, prefixes, and suffixes of the word w. For Y ⊆ A∗,
Pref Y , Suff Y , and FactY will denote respectively the sets of prefixes, suffixes,
and factors of all the words of Y .
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A factor of w is called a border of w if it is both a prefix and a suffix of w.
A word is called unbordered if its only proper border is ε. A positive integer p
is a period of w = a1 · · · an if whenever 1 ≤ i, j ≤ |w| one has that

i ≡ j (mod p) =⇒ ai = aj .

As is well known [13], a word w has a period p ≤ |w| if and only if it has a
border of length |w| − p. Thus a nonempty word w is unbordered if and only
if its minimal period is |w|. We recall the famous theorem of Fine and Wilf,
stating that if a word w has two periods p and q, and |w| ≥ p + q − gcd(p, q),
then w has also the period gcd(p, q) (cf. [13]).

A word w ∈ A+ is primitive if it cannot be written as a power uk with
k > 1. As is well known (cf. [13]), any nonempty word w is a power of a unique
primitive word, also called the primitive root of w.

A right-infinite word over the alphabet A, called infinite word for short, is
a mapping x : N+ −→ A, where N+ is the set of positive integers. One can
represent x as

x = x1x2 · · ·xn · · · ,

where for any i > 0, xi = x(i) ∈ A. A (finite) factor of x is either the empty
word or any sequence u = xi · · ·xj with i ≤ j, i.e., any block of consecutive
letters of x. If i = 1, then u is a prefix of x. We shall denote by x[n] the prefix
of x of length n, and by Factx and Pref x the sets of finite factors and prefixes
of x respectively. The set of all infinite words over A is denoted by Aω. We also
set A∞ = A∗ ∪Aω. For any Y ⊆ A∗, Y ω denotes the set of infinite words which
can be factorized by the elements of Y . If w ∈ A∞, alphw will denote the set
of letters occurring in w.

Let w ∈ A∞. An occurrence of a factor u in w is any pair (λ, ρ) ∈ A∗ ×A∞

such that w = λuρ. If v ∈ A∗ is a prefix of w, then v−1w denotes the unique
word u ∈ A∞ such that vu = w.

A factor u of w is called right special if there exist a, b ∈ A, a 6= b, such
that ua and ub are both factors of w. Symmetrically, u is said left special if
au, bu ∈ Factw. A word u is called a right (resp. left) special factor of a set
Y ⊆ A∗ if there exist letters a, b ∈ A such that a 6= b and ua, ub ∈ FactY
(resp. au, bu ∈ FactY ). We denote by RS Y (resp. LS Y ) the set of right
(resp. left) special factors of Y .

The reversal of a word w = a1a2 · · · an, with ai ∈ A for 1 ≤ i ≤ n, is the
word w̃ = an · · · a1. One sets ε̃ = ε. A palindrome is a word which equals its
reversal. We shall denote by PAL(A), or PAL when no confusion arises, the set
of all palindromes over A.

A morphism (resp. antimorphism) from A∗ to the free monoid B∗ is any
map ϕ : A∗ → B∗ such that ϕ(uv) = ϕ(u)ϕ(v) (resp. ϕ(uv) = ϕ(v)ϕ(u)) for
all u, v ∈ A∗. The morphism (resp. antimorphism) ϕ is nonerasing if for any
a ∈ A, ϕ(a) 6= ε. A morphism ϕ can be naturally extended to Aω by setting for
any x = x1x2 · · ·xn · · · ∈ Aω,

ϕ(x) = ϕ(x1)ϕ(x2) · · ·ϕ(xn) · · · .

A code over A is a subset Z of A+ such that every word of Z+ admits a
unique factorization by the elements of Z (cf. [1]). A subset of A+ with the
property that none of its elements is a proper prefix (resp. suffix) of any other
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is trivially a code, usually called a prefix (resp. suffix ) code. We recall that
if Z is a prefix code, then Z∗ is left unitary, i.e., for all p ∈ Z∗ and w ∈ A∗,
pw ∈ Z∗ implies w ∈ Z∗. A biprefix code is a code which is both prefix and
suffix. We say that a code Z over A is overlap-free if no two of its elements
overlap properly, i.e., if for all u, v ∈ Z, Suff u ∩ Pref v ⊆ {ε, u, v}.

For instance, let Z1 = {a, bac, abc} and Z2 = {a, bac, cba}. One has that
Z1 is an overlap-free and suffix code, whereas Z2 is a prefix code which is not
overlap-free as bac and cba overlap properly.

A code Z ⊆ A+ will be called right normal if it satisfies the following con-
dition:

(Pref Z \ Z) ∩RS Z ⊆ {ε} , (1)

i.e., any proper and nonempty prefix u of any word of Z such that u /∈ Z is
not right special in Z. In a symmetric way, a code Z is called left normal if it
satisfies the condition

(Suff Z \ Z) ∩ LS Z ⊆ {ε} . (2)

A code Z is called normal if it is right and left normal.
As an example, the code Z1 = {a, ab, bb} is right normal but not left normal;

the code Z2 = {a, aba, aab} is normal. The code Z3 = {a, cad, bacadad} is
biprefix, overlap-free, and right normal, and the code Z4 = {a, badc} is biprefix,
overlap-free, and normal.

The following proposition and lemma will be useful in the sequel.

Proposition 1.1. Let Z be a biprefix, overlap-free, and right normal (resp. left
normal) code. Then:

1. if z ∈ Z is such that z = λvρ, with λ, ρ ∈ A∗ and v a nonempty prefix
(resp. suffix) of z′ ∈ Z, then λz′ (resp. z′ρ) is a prefix (resp. suffix) of z,
proper if z 6= z′.

2. for z1, z2 ∈ Z, if zf
1 = zf

2 (resp. z`
1 = z`

2), then z1 = z2.

Proof. Let z = λvρ with v ∈ Pref z′ and v 6= ε. If v = z′, there is nothing to
prove. Suppose then that v is a proper prefix of z′. Since Z is a prefix code,
any proper nonempty prefix of z′, such as v, is not an element of Z; moreover,
it is not right special in Z, since Z is right normal. Therefore, to prove the first
statement it is sufficient to show that |vρ| ≥ |z′|, where the inequality is strict
if z 6= z′. Indeed, if |vρ| < |z′|, then a proper prefix of z′ would be a suffix of z,
which is impossible as Z is an overlap-free code. If |vρ| = |z′|, then z′ ∈ Suff z,
so that z′ = z as Z is a suffix code.

Let us now prove the second statement. Let z1, z2 ∈ Z with zf
1 = zf

2 . By
contradiction, suppose z1 6= z2. By the preceding statement, we derive that z1
is a proper prefix of z2 and z2 is a proper prefix of z1, which is clearly absurd.
The symmetrical claims can be analogously proved.

From the preceding proposition, a biprefix, overlap-free, and normal code
satisfies both properties 1 and 2 and their symmetrical statements. Some further
properties of such codes will be given in Section 4.

Lemma 1.2. Let g : B∗ → A∗ be an injective morphism such that g(B) = Z is
a prefix code. Then for all p ∈ B∗ and q ∈ B∞ one has that p is a prefix of q if
and only if g(p) is a prefix of g(q).
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Proof. The ‘only if’ part is trivial. Therefore, let us prove the ‘if’ part. Let us
first suppose q ∈ B∗, so that g(q) = g(p)ζ for some ζ ∈ A∗. Since g(p), g(q) ∈ Z∗
and Z∗ is left unitary, it follows that ζ ∈ Z∗. Therefore, there exists, and is
unique, r ∈ B∗ such that g(r) = ζ. Hence g(q) = g(p)g(r) = g(pr). Since g is
injective one has q = pr which proves the assertion in this case. If q ∈ Bω, there
exists a prefix q[n] of q such that g(p) ∈ Pref g(q[n]). By the previous argument,
it follows that p is a prefix of q[n] and then of q.

1.1 Standard episturmian words and morphisms

We recall (cf. [9, 12]) that an infinite word t ∈ Aω is standard episturmian if it is
closed under reversal (that is, if w ∈ Fact t then w̃ ∈ Fact t) and each of its left
special factors is a prefix of t. We denote by SEpi(A), or by SEpi when there
is no ambiguity, the set of all standard episturmian words over the alphabet A.

Given a word w ∈ A∗, we denote by w(+) its right palindrome closure, i.e., the
shortest palindrome having w as a prefix (cf. [7]). If Q is the longest palindromic
suffix of w and w = sQ, then w(+) = sQs̃. For instance, if w = abacbca, then
w(+) = abacbcaba.

We define the iterated palindrome closure operator1 ψ : A∗ → A∗ by setting
ψ(ε) = ε and ψ(va) = (ψ(v)a)(+) for any a ∈ A and v ∈ A∗. From the definition,
one easily obtains that the map ψ is injective. Moreover, for any u, v ∈ A∗, one
has ψ(uv) ∈ ψ(u)A∗ ∩A∗ψ(u). The operator ψ can then be naturally extended
to Aω by setting, for any infinite word x,

ψ(x) = lim
n→∞

ψ(x[n]) .

The following fundamental result was proved in [9]:

Theorem 1.3. An infinite word t is standard episturmian over A if and only
if there exists ∆ ∈ Aω such that t = ψ(∆).

For any t ∈ SEpi , there exists a unique ∆ such that t = ψ(∆). This ∆ is
called the directive word of t. If every letter of A occurs infinitely often in ∆,
the word t is called a (standard) Arnoux-Rauzy word. In the case of a binary
alphabet, an Arnoux-Rauzy word is usually called a standard Sturmian word
(cf. [2]).

Example 1.4. Let A = {a, b} and ∆ = (ab)ω. The word ψ(∆) is the famous
Fibonacci word

f = abaababaabaababaababa · · · .

If A = {a, b, c} and ∆ = (abc)ω, then ψ(∆) is the so-called Tribonacci word

τ = abacabaabacababacabaabacabaca · · · .

A letter a ∈ A is said to be separating for w ∈ A∞ if it occurs in each factor
of w of length 2. We recall the following well known result from [9]:

Proposition 1.5. Let t be a standard episturmian word and a be its first letter.
Then a is separating for t.

1This operator is denoted by Pal in [11] and other papers.
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For instance, the letter a is separating for f and τ .
We report here some properties of the operator ψ which will be useful in the

sequel. The first one is known (see for instance [7, 9]); we give a proof for the
sake of completeness.

Proposition 1.6. For all u, v ∈ A∗, u is a prefix of v if and only if ψ(u) is a
prefix of ψ(v).

Proof. If u is a prefix of v, from the definition of the operator ψ, one has that
ψ(v) ∈ ψ(u)A∗ ∩ A∗ψ(u), so that ψ(u) is a prefix (and a suffix) of ψ(v). Let
us now suppose that ψ(u) is a prefix of ψ(v). If ψ(u) = ψ(v), then, since ψ
is injective, one has u = v. Hence, suppose that ψ(u) is a proper prefix of
ψ(v). If u = ε, the result is trivial. Hence we can suppose that u, v ∈ A+. Let
v = a1 · · · an and i be the integer such that 1 ≤ i ≤ n− 1 and

|ψ(a1 · · · ai)| ≤ |ψ(u)| < |ψ(a1 · · · ai+1)|.

If |ψ(a1 · · · ai)| < |ψ(u)|, then ψ(a1 · · · ai)ai+1 is a prefix of the palindrome ψ(u),
so that one would have:

|ψ(a1 · · · ai+1)| = |(ψ(a1 · · · ai)ai+1)(+)| ≤ |ψ(u)| < |ψ(a1 · · · ai+1)|

which is a contradiction. Therefore |ψ(a1 · · · ai)| = |ψ(u)|, that implies ψ(a1 · · · ai) =
ψ(u) and u = a1 · · · ai.

Proposition 1.7. Let x ∈ A∪ {ε}, w′ ∈ A∗, and w ∈ w′A∗. Then ψ(w′x) is a
factor of ψ(wx).

Proof. By the previous proposition, ψ(w′) is a prefix of ψ(w). This solves the
case x = ε. For x ∈ A, we prove the result by induction on n = |w| − |w′|.

The assertion is trivial for n = 0. Let then n ≥ 1 and write w = ua with
a ∈ A and u ∈ A∗. As w′ ∈ Pref u and |u| − |w′| = n − 1, we can assume
by induction that ψ(w′x) is a factor of ψ(ux). Hence it suffices to show that
ψ(ux) ∈ Factψ(wx). We can write

ψ(w) = (ψ(u)a)(+) = ψ(u)av = ṽaψ(u)

for some v ∈ A∗, so that ψ(wx) = (ṽaψ(u)x)(+). Since ψ(u) is the longest proper
palindromic prefix and suffix of ψ(w), if x 6= a it follows that the longest palin-
dromic suffixes of ψ(u)x and ψ(w)x must coincide, so that ψ(ux) = (ψ(u)x)(+)

is a factor of ψ(wx), as desired.
If x = a, then ψ(ux) = ψ(w) is trivially a factor of ψ(wx). This concludes

the proof.

The following proposition was proved in [9, Theorem 6].

Proposition 1.8. Let x ∈ A, u ∈ A∗, and ∆ ∈ Aω. Then ψ(u)x is a factor of
ψ(u∆) if and only if x occurs in ∆.

For each a ∈ A, let µa : A∗ → A∗ be the morphism defined by µa(a) = a and
µa(b) = ab for all b ∈ A \ {a}. If a1, . . . , an ∈ A, we set µw = µa1 ◦ · · · ◦ µan (in
particular, µε = idA). The next proposition, proved in [11], shows a connection
between these morphisms and iterated palindrome closure.
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Proposition 1.9. For any w, v ∈ A∗, ψ(wv) = µw(ψ(v))ψ(w).

By the preceding proposition, if v ∈ Aω then one has

ψ(wv) = lim
n→∞

ψ(wv[n]) = lim
n→∞

µw(ψ(v[n]))ψ(w)

= lim
n→∞

µw(ψ(v[n])) = µw(ψ(v)) .

Thus, for any w ∈ A∗ and v ∈ Aω we have

ψ(wv) = µw(ψ(v)) . (3)

Corollary 1.10. For any t ∈ Aω and w ∈ A∗, ψ(w) is a prefix of µw(t).

Proof. Let t = t1t2 · · · tn · · · , with ti ∈ A for i ≥ 1. We prove that ψ(w) is a
prefix of µw(t[n]) for all n such that |µw(t[n])| ≥ |ψ(w)|. Indeed, by Proposi-
tion 1.9 we have, for all i ≥ 1, µw(ti)ψ(w) = ψ(wti) = ψ(w)ξi for some ξi ∈ A∗.
Hence

µw

(
t[n]

)
ψ(w) = µw(t1) · · ·µw(tn)ψ(w) = ψ(w)ξ1 · · · ξn ,

and this shows that ψ(w) is a prefix of µw(t[n]).

From the definition of the morphism µa, a ∈ A, it is easy to prove the
following:

Proposition 1.11. Let w ∈ A∞ and a be its first letter. Then a is separating
for w if and only if there exists α ∈ A∞ such that w = µa(α).

For instance, the letter a is separating for the word w = abacaaacaba, and
one has w = µa(bcaacba).

We recall (cf. [9, 12, 11]) that a standard episturmian morphism of A∗ is any
composition µw ◦ σ, with w ∈ A∗ and σ : A∗ → A∗ a morphism extending to
A∗ a permutation on the alphabet A. All these morphisms are injective. The
set E of standard episturmian morphisms is a monoid under map composition.
The importance of standard episturmian morphisms, and the reason for their
name, lie in the following (see [9, 12]):

Theorem 1.12. An injective morphism ϕ : A∗ → A∗ is standard episturmian
if and only if ϕ(SEpi) ⊆ SEpi, that is, if and only if it maps every standard
episturmian word over A into a standard episturmian word over A.

A pure standard episturmian morphism is just a µw for some w ∈ A∗.
Trivially, the set of pure standard episturmian morphisms is the submonoid of
E generated by the set {µa | a ∈ A}. The following was proved in [9]:

Proposition 1.13. Let t ∈ Aω and a ∈ A. Then µa(t) is a standard epistur-
mian word if and only if so is t.

1.2 Involutory antimorphisms and pseudopalindromes

An involutory antimorphism of A∗ is any antimorphism ϑ : A∗ → A∗ such that
ϑ ◦ ϑ = id. The simplest example is the reversal operator :

R : A∗ −→ A∗

w 7−→ w̃ .
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Any involutory antimorphism ϑ satisfies ϑ = τ ◦R = R ◦ τ for some morphism
τ : A∗ → A∗ extending an involution of A. Conversely, if τ is such a morphism,
then ϑ = τ ◦R = R ◦ τ is an involutory antimorphism of A∗.

Let ϑ be an involutory antimorphism of A∗. We call ϑ-palindrome any fixed
point of ϑ, i.e., any word w such that w = ϑ(w), and denote by PALϑ the
set of all ϑ-palindromes. We observe that ε ∈ PALϑ by definition, and that
R-palindromes are exactly the usual palindromes. If one makes no reference to
the antimorphism ϑ, a ϑ-palindrome is called a pseudopalindrome.

Some general properties of pseudopalindromes, mainly related to conjugacy
and periodicity, have been studied in [8]. We mention here the following lemma,
which will be useful in the sequel:

Lemma 1.14. Let w be in PALϑ. If p is a period of w, then each factor of w
of length p is in PAL2

ϑ.

For instance, let A = {a, b} and let ϑ(a) = b, ϑ(b) = a. The word w =
babaababbaba is a ϑ-palindrome, having the periods 8 and 10. Any factor of w
of length 8 or 10 belongs to PAL2

ϑ; as an example, abaababb = (ab)(aababb) ∈
PAL2

ϑ.
For any involutory antimorphism ϑ, one can define the (right) ϑ-palindrome

closure operator: for any w ∈ A∗, w⊕ϑ denotes the shortest ϑ-palindrome having
w as a prefix.

In the following, we shall fix an involutory antimorphism ϑ of A∗, and use the
notation w̄ for ϑ(w). We shall also drop the subscript ϑ from the ϑ-palindrome
closure operator ⊕ϑ when no confusion arises. As one easily verifies (cf. [8]), if
Q is the longest ϑ-palindromic suffix of w and w = sQ, then

w⊕ = sQs̄ .

Example 1.15. Let A = {a, b, c} and ϑ be defined as ā = b, c̄ = c. If w = abacabc,
then Q = cabc and w⊕ = abacabcbab.

We can naturally define the iterated ϑ-palindrome closure operator ψϑ :
A∗ → PALϑ by ψϑ(ε) = ε and

ψϑ(ua) = (ψϑ(u)a)⊕

for u ∈ A∗, a ∈ A. For any u, v ∈ A∗ one has ψϑ(uv) ∈ ψϑ(u)A∗ ∩ A∗ψϑ(u),
so that ψϑ can be extended to infinite words too. More precisely, if ∆ =
x1x2 · · ·xn · · · ∈ Aω with xi ∈ A for i ≥ 1, then

ψϑ(∆) = lim
n→∞

ψϑ(∆[n]) .

The word ∆ is called the directive word of ψϑ(∆), and s = ψϑ(∆) the ϑ-standard
word directed by ∆. The class of ϑ-standard words was introduced in [8]; some
interesting results about such words are in [5].

We denote by Pϑ the set of unbordered ϑ-palindromes. We remark that Pϑ

is a biprefix code. This means that every word of Pϑ is neither a prefix nor a
suffix of any other element of Pϑ. We observe that PR = A. The following
result was proved in [4]:

Proposition 1.16. PAL∗ϑ = P∗ϑ.
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This can be equivalently stated as follows: every ϑ-palindrome can be uniquely
factorized by the elements of Pϑ. For instance, the ϑ-palindrome abacabcbab of
Example 1.15 is factorizable as ab · acabcb · ab, with acabcb, ab ∈ Pϑ.

Since Pϑ is a code, the map

f : Pϑ −→ A (4)
π 7−→ πf

can be extended (uniquely) to a morphism f : P∗ϑ → A∗. Moreover, since Pϑ

is a prefix code, any word in Pω
ϑ can be uniquely factorized by the elements of

Pϑ, so that f can be naturally extended to Pω
ϑ .

Proposition 1.17. Let ϕ : X∗ → A∗ be an injective morphism such that
ϕ(X) ⊆ Pϑ. Then, for any w ∈ X∗:

1. ϕ(w̃) = ϕ(w),

2. w ∈ PAL ⇐⇒ ϕ(w) ∈ PALϑ,

3. ϕ(w(+)) = ϕ(w)⊕.

Proof. The first statement is trivially true for w = ε. If w = x1 · · ·xn with
xi ∈ X for i = 1, . . . , n, then since ϕ(X) ⊆ Pϑ ⊆ PALϑ,

ϕ(w̃) = ϕ(xn) · · ·ϕ(x1) = ϕ(xn) · · ·ϕ(x1) = ϕ(w) .

As ϕ is injective, statement 2 easily follows from 1.
Finally, let ϕ(w) = vQ where v ∈ A∗ and Q is the longest ϑ-palindromic

suffix of ϕ(w). Since ϕ(w), Q ∈ P∗ϑ and Pϑ is a biprefix code, we have v ∈ P∗ϑ.
This implies, as ϕ is injective, that there exist w1, w2 ∈ X∗ such that w = w1w2,
ϕ(w1) = v, and ϕ(w2) = Q. By 2, w2 is the longest palindromic suffix of w.
Hence, by 1 :

ϕ(w(+)) = ϕ(w1w2w̃1) = vQv̄ = ϕ(w)⊕ ,

as desired.

Example 1.18. Let X = {a, b, c}, A = {a, b, c, d, e}, and ϑ be defined in A as
ā = b, c̄ = c, and d̄ = e. Let ϕ : X∗ → A∗ be the injective morphism defined by
ϕ(a) = ab, ϕ(b) = ba, ϕ(c) = dce. One has ϕ(X) ⊆ Pϑ and

ϕ
(
(abc)(+)

)
= ϕ(abcba) = abbadcebaab = (ϕ(abc))⊕ .

1.3 Standard ϑ-episturmian words

In [4] standard ϑ-episturmian words were naturally defined by substituting, in
the definition of standard episturmian words, the closure under reversal with
the closure under ϑ. Thus an infinite word s is standard ϑ-episturmian if it
satisfies the following two conditions:

1. for any w ∈ Fact s, one has w̄ ∈ Fact s,

2. for any left special factor w of s, one has w ∈ Pref s.
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We denote by SEpiϑ the set of all standard ϑ-episturmian words on the alphabet
A. The following two propositions, proved in [4], give methods for constructing
standard ϑ-episturmian words.

Proposition 1.19. Let s be a ϑ-standard word over A, and B = alph(∆(s)).
Then s is standard ϑ-episturmian if and only if

x ∈ B, x 6= x̄ =⇒ x̄ /∈ B .

Example 1.20. Let A = {a, b, c, d, e}, ∆ = (acd)ω, and ϑ be defined by ā = b,
c̄ = c, and d̄ = e. The ϑ-standard word ψϑ(∆) = abcabdeabcaba · · · is standard
ϑ-episturmian.

Proposition 1.21. Let ϕ : X∗ → A∗ be a nonerasing morphism such that

1. ϕ(x) ∈ PALϑ for all x ∈ X,

2. alphϕ(x) ∩ alphϕ(y) = ∅ if x, y ∈ X and x 6= y,

3. |ϕ(x)|a ≤ 1 for all x ∈ X and a ∈ A.

Then for any standard episturmian word t ∈ Xω, s = ϕ(t) is a standard ϑ-
episturmian word.

Example 1.22. Let A = {a, b, c, d, e}, ā = b, c̄ = c, d̄ = e, X = {x, y}, and s =
g(t), where t = xxyxxxyxxxyxxy · · · ∈ SEpi(X), ∆(t) = (xxy)ω, g(x) = acb,
and g(y) = de, so that

s = acbacbdeacbacbacbde · · · . (5)

By the previous proposition, the word s is standard ϑ-episturmian, but it is not
ϑ-standard, as a⊕ = ab /∈ Pref s.

It is easy to prove (see [4]) that every standard ϑ-episturmian word has
infinitely many ϑ-palindromic prefixes. By Proposition 1.16, they all admit a
unique factorization by the elements of Pϑ. Since Pϑ is a prefix code, this
implies the following:

Proposition 1.23. Every standard ϑ-episturmian word s admits a (unique)
factorization by the elements of Pϑ, that is,

s = π1π2 · · ·πn · · · ,

where πi ∈ Pϑ for i ≥ 1.

For a given standard ϑ-episturmian word s, such factorization will be called
canonical in the sequel. For instance, in the case of the standard ϑ-episturmian
word of Example 1.22, the canonical factorization is:

acb · acb · de · acb · acb · acb · de · · · .

The following important lemma was proved in [4]:

Lemma 1.24. Let s be a standard ϑ-episturmian word, and s = π1 · · ·πn · · ·
be its canonical factorization. For all i ≥ 1, any proper and nonempty prefix of
πi is not right special in s.
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In the following, for a given standard ϑ-episturmian word s we shall denote
by

Πs = {πn | n ≥ 1} (6)

the set of words of Pϑ appearing in its canonical factorization s = π1π2 · · · .

Theorem 1.25. Let s ∈ SEpiϑ. Then Πs is a normal code.

Proof. Any nonempty prefix p of a word of Πs does not belong to Πs, since Πs

is a biprefix code. Moreover, p /∈ RSΠs as otherwise it would be a right special
factor of s, and this is excluded by Lemma 1.24. Hence Πs is a right normal
code. Since s is closed under ϑ and Πs ⊆ PALϑ, it follows that Πs is also left
normal.

The following result shows that no two words of Πs overlap properly.

Theorem 1.26. Let s ∈ SEpiϑ. Then Πs is an overlap-free code.

Proof. If card Πs = 1 the statement is trivial since an element of Pϑ cannot
overlap properly with itself as it is unbordered. Let then π, π′ ∈ Πs be such
that π 6= π′. By contradiction, let us suppose that there exists a nonempty
u ∈ Suff π ∩ Pref π′ (which we can assume without loss of generality, since it
occurs if and only if ū ∈ Suff π′ ∩ Pref π). We have |π| ≥ 2|u| and |π′| ≥ 2|u|,
for otherwise u would overlap properly with ū and so it would have a nonempty
ϑ-palindromic prefix (or suffix), which is absurd. Then there exist v, v′ ∈ PALϑ

such that π = ūvu and π′ = uv′ū.
Without loss of generality, we can assume that π occurs before π′ in the

canonical factorization of s, so that there exists λ ∈ (Πs \ {π′})∗ such that
λπ ∈ Pref s. Since by Lemma 1.24 any proper prefix of π cannot be right
special in s, each occurrence of ū must be followed by vu; the same argument
applies to π′, so each occurrence of u in s must be followed by v′ū. Therefore
we have

s = λ(ūvuv′)ω = λ(πv′)ω .

As v′ is a ϑ-palindromic proper factor of π′, it must be in (Pϑ \ {π′})∗, as well
as πv′ and, by definition, λ. Thus we have obtained that s ∈ (Πs \ {π′})ω, and
so π′ /∈ Πs, which is clearly a contradiction. Then π and π′ cannot overlap
properly.

The following theorem, proved in [4, Theorem 5.5], shows, in particular,
that any standard ϑ-episturmian word is a morphic image, by a suitable injective
morphism, of a standard episturmian word. We report here a direct proof based
on the previous results.

Theorem 1.27. Let s be a standard ϑ-episturmian word, and f be the map
defined in (4). Then f(s) is a standard episturmian word, and the restriction
of f to Πs is injective, i.e., if πi and πj occur in the factorization of s over Pϑ,
and πf

i = πf
j , then πi = πj.

Proof. Since s ∈ SEpiϑ, by Theorems 1.25 and 1.26 the code Πs is biprefix,
overlap-free, and normal. By Proposition 1.1, the restriction to Πs of the map f
defined by (4) is injective. Let B = f(Πs) ⊆ A and denote by g : B∗ → A∗ the
injective morphism defined by g(πf ) = π for any πf ∈ B. One has s = g(t) for
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some t ∈ Bω. Let us now show that t ∈ SEpi(B). Indeed, since s has infinitely
many ϑ-palindromic prefixes, by Proposition 1.17 it follows that t has infinitely
many palindromic prefixes, so that it is closed under reversal. Let now w be a
left special factor of t, and let a, b ∈ B, a 6= b, be such that aw, bw ∈ Fact t.
Thus g(a)g(w), g(b)g(w) ∈ Fact s. Since g(a)f 6= g(b)f , we have g(a)` 6= g(b)`,
so that g(w) is a left special factor of s, and then a prefix of it. From Lemma 1.2
it follows w ∈ Pref t.

2 Characteristic morphisms

Let X be a finite alphabet. A morphism ϕ : X∗ → A∗ will be called ϑ-
characteristic if

ϕ(SEpi(X)) ⊆ SEpiϑ ,

i.e., ϕmaps any standard episturmian word over the alphabetX in a standard ϑ-
episturmian word on the alphabet A. Following this terminology, Theorem 1.12
can be reformulated by saying that an injective morphism ϕ : A∗ → A∗ is
standard episturmian if and only if it is R-characteristic.

For instance, every morphism ϕ : X∗ → A∗ satisfying the conditions of
Proposition 1.21 is ϑ-characteristic (and injective). A trivial example of a non-
injective ϑ-characteristic morphism is the constant morphism ϕ : x ∈ X 7→ a ∈
A, where a is a fixed ϑ-palindromic letter.

Let X = {x, y}, A = {a, b, c}, ϑ defined by ā = a, b̄ = c, and ϕ : X∗ → A∗

be the injective morphism such that ϕ(x) = a, ϕ(y) = bac. If t is any standard
episturmian word beginning in y2x, then s = ϕ(t) begins with bacbaca, so that a
is a left special factor of s which is not a prefix of s. Thus s is not ϑ-episturmian
and therefore ϕ is not ϑ-characteristic.

In this section we shall prove some results concerning the structure of ϑ-
characteristic morphisms.

Proposition 2.1. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. For each
x in X, ϕ(x) ∈ PAL2

ϑ.

Proof. It is clear that |ϕ(x)| is a period of each prefix of ϕ(xω). Since ϕ(xω)
is in SEpiϑ, it has infinitely many ϑ-palindromic prefixes (see [4]). Then, from
Lemma 1.14 the statement follows.

Let ϕ : X∗ → A∗ be a morphism such that ϕ(X) ⊆ P∗ϑ. For any x ∈ X, let
ϕ(x) = π

(x)
1 · · ·π(x)

rx be the unique factorization of ϕ(x) by the elements of Pϑ.
We set

Π(ϕ) = {π ∈ Pϑ | ∃x ∈ X, ∃i : 1 ≤ i ≤ rx and π = π
(x)
i } . (7)

If ϕ is a ϑ-characteristic morphism, then by Propositions 2.1 and 1.16, we
have ϕ(X) ⊆ PAL2

ϑ ⊆ P∗ϑ, so that Π(ϕ) is well defined.

Proposition 2.2. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. Then
Π(ϕ) is an overlap-free and normal code.

Proof. Let t ∈ SEpi(X) be such that alph t = X, and consider s = ϕ(t) ∈
SEpiϑ. Then the set Π(ϕ) equals Πs, as defined in (6). The result follows from
Theorems 1.25 and 1.26.
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Proposition 2.3. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. If there
exist two letters x, y ∈ X such that ϕ(x)f 6= ϕ(y)f , then ϕ(X) ⊆ PALϑ.

Proof. Set w = ϕ((x2y)ω). Clearly ϕ(x) is a right special factor of w, since it
appears followed both by ϕ(x) and ϕ(y). As w is in SEpiϑ, being the image
of the standard episturmian word (x2y)ω, we have that ϕ(x) is a left special
factor, and thus a prefix, of w. But also ϕ(x) is a prefix of w, then it must be
ϕ(x) = ϕ(x), i.e., ϕ(x) ∈ PALϑ. The same argument can be applied to ϕ(y),
setting w′ = ϕ((y2x)ω).

Now let z ∈ X. Then ϕ(z)f cannot be equal to both ϕ(x)f and ϕ(y)f .
Therefore, by applying the same argument, we obtain ϕ(z) ∈ PALϑ. From this
the assertion follows.

Proposition 2.4. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. If for
x, y ∈ X, Suff ϕ(x) ∩ Suff ϕ(y) 6= {ε}, then ϕ(xy) = ϕ(yx), that is, both ϕ(x)
and ϕ(y) are powers of a word of A∗.

Proof. If ϕ(xy) 6= ϕ(yx), since Suff ϕ(x) ∩ Suff ϕ(y) 6= {ε}, there exists a com-
mon proper suffix h of ϕ(xy) and ϕ(yx), with h 6= ε. Let h be the longest of
such suffixes. Then there exist v, u ∈ A+ such that

ϕ(xy) = vh and ϕ(yx) = uh , (8)

with v` 6= u`. Let s be a standard episturmian word whose directive word can
be written as ∆ = xy2xλ, with λ ∈ Xω, so that s = xyxyxxyxyxt, with t ∈ Xω.
Thus

ϕ(s) = ϕ(xy)ϕ(xy)α = ϕ(x)ϕ(yx)ϕ(yx)ϕ(xy)β

for some α, β ∈ Aω. By (8), it follows

ϕ(s) = vhvhα = ϕ(x)uhuhvhβ .

The underlined occurrences of hv are preceded by different letters, namely v`

and u`. Since ϕ(s) ∈ SEpiϑ, this implies hv ∈ Pref ϕ(s) and then

hv = vh . (9)

In a perfectly symmetric way, by considering an episturmian word s′ whose
directive word ∆′ has yx2y as a prefix, we obtain that uh = hu. Hence u and h
are powers of a common primitive word w; by (9), the same can be said about
v and h. Since the primitive root of a nonempty word is unique, it follows that
u and v are both powers of w. As |u| = |v| by definition, we obtain u = v and
then ϕ(xy) = ϕ(yx), which is a contradiction.

Corollary 2.5. If ϕ : X∗ → A∗ is an injective ϑ-characteristic morphism, then
ϕ(X) is a suffix code.

Proof. It is clear that if ϕ is injective, then for all x, y ∈ X,x 6= y, one has
ϕ(xy) 6= ϕ(yx); from Proposition 2.4 it follows Suff ϕ(x) ∩ Suff ϕ(y) = {ε}.
Thus, for all x, y ∈ X, if x 6= y, then ϕ(x) /∈ Suff ϕ(y), and the statement
follows.
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Proposition 2.6. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. Then for
each x, y ∈ X, either

alphϕ(x) ∩ alphϕ(y) = ∅
or

ϕ(x)f = ϕ(y)f .

Proof. Let alphϕ(x) ∩ alphϕ(y) 6= ∅ and ϕ(x)f 6= ϕ(y)f . We set p as the
longest prefix of ϕ(x) such that alph p ∩ alphϕ(y) = ∅ and c ∈ A such that
pc ∈ Pref ϕ(x). Let then p′ be the longest prefix of ϕ(y) in which c does not
appear, i.e., such that c /∈ alph p′. Since we have assumed that ϕ(x)f 6= ϕ(y)f ,
it cannot be p = p′ = ε. Let us suppose that both p 6= ε and p′ 6= ε. In this
case we have that c is left special in (ϕ(xy))ω, since it appears preceded both
by p and p′ and, from the definition of p, alph p ∩ alph p′ = ∅. We reach a
contradiction, since c should be a prefix of ϕ(xy)ω which is in SEpiϑ, and thus
a prefix of ϕ(x).

We then have that either p 6= ε and p′ = ε or p = ε and p′ 6= ε. In the first
case we set z = x and z′ = y, otherwise we set z′ = x and z = y. Thus we can
write

ϕ(z) = λcγ, ϕ(z′) = cγ′ , (10)

with λ ∈ A+, c /∈ alphλ, and γ, γ′ ∈ A∗. For each nonnegative integer n,
(znz′)ω and (z′nz)ω are standard episturmian words, so that (ϕ(znz′))ω and
(ϕ(z′nz))ω are in SEpiϑ. Moreover, since

(ϕ(zz′))ω = ϕ(z′)−1(ϕ(z′z))ω and (ϕ(z′z))ω = ϕ(z)−1(ϕ(zz′))ω ,

it is clear that (ϕ(zz′))ω and (ϕ(z′z))ω have the same set of factors, so that
each left special factor of (ϕ(zz′))ω is a left special factor of (ϕ(z′z))ω and vice
versa.

Let w be a nonempty left special factor of (ϕ(z′z))ω; then w is also a prefix.
As noted above, w has to be a left special factor (and thus a prefix) of (ϕ(zz′))ω.
Thus w is a common prefix of (ϕ(z′z))ω and (ϕ(zz′))ω, which is a contradiction
since the first word begins with c whereas the second begins with λ, which does
not contain c. Therefore ϕ(z′z)ω has no left special factor different from ε; since
each right special factor of a word in SEpiϑ is the ϑ-image of a left special factor,
it is clear that (ϕ(z′z))ω has no special factor different from ε.

Hence each factor of (ϕ(z′z))ω can be extended in a unique way both to the
left and to the right, so that by (10) we can write

(ϕ(z′z))ω = cγ′λc · · ·

and, as stated above, each occurrence of c must be followed by γ′λc, which yields
that

(ϕ(z′z))ω = (cγ′λ)ω = (ϕ(z′)λ)ω ,

so that this infinite word has the two periods |ϕ(z′z)| and |ϕ(z′)λ|. From the
theorem of Fine and Wilf, one derives ϕ(z′z)(ϕ(z′)λ) = (ϕ(z′)λ)ϕ(z′z), so that

ϕ(zz′)λ = λϕ(z′z) . (11)

The preceding equation tells us that λ is a suffix of λϕ(z′z) and so, as
|ϕ(z)| > |λ|, it must be a suffix of ϕ(z); since λ does not contain any c, it has
to be a suffix of γ, so that we can write

ϕ(z) = λcgλ (12)
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for some word g. Substituting in (11), it follows

ϕ(zz′) = λϕ(z′)λcg .

From the preceding equation, we have

(ϕ(z′2z))ω = ϕ(z′)ϕ(z′)λϕ(z′)λcg · · · (13)

From (12), ϕ(z)` = λ`. Proposition 2.4 ensures that λ` = ϕ(z)` must be different
from ϕ(z′)`, otherwise we would obtain ϕ(zz′) = ϕ(z′z) which would imply c is
a prefix of ϕ(z), which is a contradiction. Thus, from (13), we have that ϕ(z′)λ
is a left special factor of ϕ(z′2z)ω and this implies that ϕ(z′)λ is a prefix of
ϕ(z′)2ϕ(z), from which we obtain that λ is a prefix of ϕ(z′z) = cγ′ϕ(z), that is
a contradiction, since λ does not contain any occurrence of c. Thus the initial
assumption that alphϕ(x)∩alphϕ(y) 6= ∅ and ϕ(x)f 6= ϕ(y)f , leads in any case
to a contradiction.

Proposition 2.7. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. If x, y ∈ X
and ϕ(x), ϕ(y) ∈ PALϑ, then either alphϕ(x)∩alphϕ(y) = ∅ or ϕ(xy) = ϕ(yx).
In particular, if ϕ is injective and ϕ(X) ⊆ PALϑ, then for all x, y ∈ X with
x 6= y we have alphϕ(x) ∩ alphϕ(y) = ∅.

Proof. If alphϕ(x)∩alphϕ(y) 6= ∅, from Proposition 2.6 we obtain, as ϕ(x), ϕ(y) ∈
PALϑ, that ϕ(x)` = ϕ(x)f = ϕ(y)f = ϕ(y)`. Then ϕ(x)` = ϕ(y)` and, from
Proposition 2.4, we have that ϕ(xy) = ϕ(yx).

If ϕ is injective, then for all x, y ∈ X with x 6= y we have ϕ(xy) 6= ϕ(yx) so
that the assertion follows.

Corollary 2.8. Let ϕ : X∗ → A∗ be an injective ϑ-characteristic morphism
such that ϕ(X) ⊆ PALϑ and cardX ≥ 2. Then ϕ(X) ⊆ Pϑ.

Proof. Let x, y ∈ X with x 6= y. Since ϕ is injective, we have from Proposition
2.7 that alphϕ(x) ∩ alphϕ(y) = ∅. Let u be a proper border of ϕ(x). Then
there exist two nonempty words v and w such that

ϕ(x) = uv = wu.

Since alphϕ(x) ∩ alphϕ(y) = ∅, we have ϕ(y)` 6= w`; thus

ϕ(yx)ω = ϕ(y)uvϕ(y)wuϕ(y) · · ·

shows that u is a left special factor in ϕ(yx)ω, but this would imply that u is
a prefix of ϕ(yx). As alphu ∩ alphϕ(y) = ∅, it follows u = ε, i.e., ϕ(x) ∈ Pϑ.
The same argument applies to ϕ(y).

The following lemma will be useful in the next section.

Lemma 2.9. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. Then for each
x ∈ X and for any a ∈ A,

|ϕ(x)|a > 1 =⇒ |ϕ(x)|ϕ(x)f > 1.
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Proof. Let b be the first letter of ϕ(x) such that |ϕ(x)|b > 1. Then we can write

ϕ(x) = vbwbw′

with w,w′ ∈ A∗, b /∈ (alph v ∪ alphw), and |ϕ(x)|c = 1 for each c in alph v. If
v 6= ε, then we have that v` 6= (bw)`, but that means that b is left special in
ϕ(xω), which is a contradiction, since each left special factor of ϕ(xω) is a prefix
and b is not in alph v. Then it must be v = ε and b = ϕ(x)f .

3 Main results

The first result of this section is a characterization of injective ϑ-characteristic
morphisms such that the image of any letter is an unbordered ϑ-palindrome.

Theorem 3.1. Let ϕ : X∗ → A∗ be an injective morphism such that for any
x ∈ X, ϕ(x) ∈ Pϑ. Then ϕ is ϑ-characteristic if and only if the following two
conditions hold:

1. alphϕ(x) ∩ alphϕ(y) = ∅, for any x, y in X such that x 6= y.

2. for any x ∈ X and a ∈ A, |ϕ(x)|a ≤ 1.

Proof. Let ϕ be ϑ-characteristic. Since ϕ is injective, from Proposition 2.7 we
have that if x 6= y, then alphϕ(x)∩ alphϕ(y) = ∅. Thus condition 1 holds. Let
us now prove that condition 2 is satisfied. This is certainly true if |ϕ(x)| ≤ 2,
as ϕ(x) ∈ Pϑ. Let us then suppose |ϕ(x)| > 2. We can write

ϕ(x) = ax1 · · ·xnb ,

with xi ∈ A, i = 1, . . . , n, ā = b, and a 6= b.
Let us prove that for any i = 1, . . . , n, xi /∈ {a, b}. By contradiction, suppose

that b has an internal occurrence in ϕ(x), and consider its first occurrence. Since
ϕ(x) is a ϑ-palindrome, we can write

ϕ(x) = ax1 · · ·xibλ = λ̄ax̄i · · · x̄1b ,

with λ ∈ A∗, 1 ≤ i < n, and xj 6= b for j = 1, . . . , i.
We now consider the standard ϑ-episturmian word s = ϕ(xω), whose first

letter is a. We have that no letter x̄j , j = 1, . . . , i, is left special in s, as otherwise
x̄j = a that implies xj = b, which is absurd. Also b cannot be left special since
otherwise b = a. Thus it follows that xi = x̄1, xi−1 = x̄2, . . . , x1 = x̄i. Hence,
ax1 · · ·xib is a proper border of ϕ(x), which is a contradiction. From this, since
ϕ(x) is a ϑ-palindrome, one derives that there is no internal occurrence of a in
ϕ(x) as well.

Finally, any letter of ϕ(x) cannot occur more than once. This is a conse-
quence of Lemma 2.9, since otherwise the first letter of ϕ(x), namely a, would
reoccur in ϕ(x). Thus condition 2 holds.

Conversely, let us now suppose that conditions 1 and 2 hold; Proposition 1.21
ensures then that ϕ is ϑ-characteristic.

A different proof of Theorem 3.1 will be given at the end of this section, as
a consequence of a full characterization of injective ϑ-characteristic morphisms,
given in Theorem 3.13.
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Remark. In the “if” part of Theorem 3.1 the requirement ϕ(X) ⊆ Pϑ can
be replaced by ϕ(X) ⊆ PALϑ, as condition 2 implies that ϕ(x) is unbordered
for any x ∈ X, so that ϕ(X) ⊆ Pϑ. In the “only if” part, in view of Corol-
lary 2.8, one can replace ϕ(X) ⊆ Pϑ by ϕ(X) ⊆ PALϑ under the hypothesis
that cardX ≥ 2.

Example 3.2. Let X, A, ϑ, and g be defined as in Example 1.22. Then the
morphism g is ϑ-characteristic.

As an immediate consequence of Theorem 3.1, we obtain:

Corollary 3.3. Let ζ : X∗ → B∗ be an R-characteristic morphism, g : B∗ →
A∗ be an injective morphism satisfying g(B) ⊆ Pϑ and the two conditions in the
statement of Theorem 3.1. Then ϕ = g ◦ ζ is ϑ-characteristic.

Example 3.4. Let X, A, ϑ, and g be defined as in Example 1.22, and let ζ be the
endomorphism of X∗ such that ζ(x) = xy and ζ(y) = xyx. Since ζ = µxy ◦ σ,
where σ(x) = y and σ(y) = x, ζ is a standard episturmian morphism. Hence
the morphism ϕ : X∗ → A∗ given by

ϕ(x) = acbde, ϕ(y) = acbdeacb

is ϑ-characteristic, as ϕ = g ◦ ζ.

Theorem 3.5. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. Then there
exist B ⊆ A, a morphism ζ : X∗ → B∗, and a morphism g : B∗ → A∗ such
that:

1. ζ is R-characteristic,

2. g(B) = Π(ϕ), with g(b) ∈ bA∗ for all b ∈ B,

3. ϕ = g ◦ ζ.

X∗ ϕ //
ϕ|
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Figure 1: A commutative diagram describing Theorem 3.5

Proof (see Fig. 1). Set Π = Π(ϕ), as defined in (7), and let B = f(Π) ⊆ A,
where f is the morphism considered in (4). Let ϕ| : X∗ → Π∗ and f| : Π∗ → B∗

be the restrictions of ϕ and f , respectively. Setting ζ = f| ◦ ϕ| : X∗ → B∗, by
Theorem 1.27 one derives ζ(SEpi(X)) ⊆ SEpi(B), i.e., ζ is R-characteristic.

Let t ∈ SEpi(X) be such that alph t = X, and consider s = ϕ(t) ∈ SEpiϑ.
Since Π equals Πs, as defined in (6), by Theorem 1.27 the morphism f is injective
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over Π, so that f| is bijective. Set g = ι◦f−1
| , where ι : Π∗ → A∗ is the inclusion

map. Then g(B) = Π, and g(b) ∈ bA∗ for all b ∈ B. Furthermore, we have

ϕ = ι ◦ ϕ| = ι ◦ (f−1
| ◦ f|) ◦ ϕ| = (ι ◦ f−1

| ) ◦ (f| ◦ ϕ|) = g ◦ ζ

as desired.

Example 3.6. Let X = {x, y}, A = {a, b, c}, and ϑ be the antimorphism of A∗

such that ā = a and b̄ = c. The morphism ϕ : X∗ → A∗ defined by ϕ(x) = a
and ϕ(y) = abac is ϑ-characteristic (this will be clear after Theorem 3.13,
see Example 3.14), and it can be decomposed as ϕ = g ◦ ζ, where ζ : X∗ →
B∗ (with B = {a, b}) is the morphism such that ζ(x) = a and ζ(y) = ab,
while g : B∗ → A∗ is defined by g(a) = a and g(b) = bac. We remark that
ζ(SEpi(X)) ⊆ SEpi(B), but g(SEpi(B)) 6⊆ SEpiϑ as it can be verified using
Theorem 3.1. Observe that this example shows that not all ϑ-characteristic
morphisms can be constructed as in Corollary 3.3.

Proposition 3.7. Let ζ : X∗ → A∗ be an injective morphism. Then ζ is R-
characteristic if and only if it can be decomposed as ζ = µw ◦ η, where w ∈ A∗
and η : X∗ → A∗ is an injective literal morphism.

Proof. Let ζ = µw ◦ η, with w ∈ A∗ and η an injective literal morphism. Then
η is trivially R-characteristic and µw is R-characteristic too, by Theorem 1.12.
Therefore also their composition ζ is R-characteristic.

Conversely, let us first suppose that ζ(X) ⊆ a1A
∗ for some a1 ∈ A. Then

for any t ∈ SEpi(X), ζ(t) is a standard episturmian word beginning with a1,
so that by Proposition 1.5 the letter a1 is separating for ζ(t). In particular
a1 is separating for each ζ(x) (x ∈ X); by Proposition 1.11 there exists a
morphism α1 : X∗ → A∗ such that ζ = µa1 ◦α1. Since t ∈ SEpi(X), µa1(α1(t))
is a standard episturmian word over A, so that by Proposition 1.13 the word
α1(t) is also a standard episturmian word over A. Thus α1 is injective and R-
characteristic, and we can iterate the above argument to find new letters ai ∈ A
and R-characteristic morphisms αi such that ζ = µa1 ◦ · · · ◦ µai ◦ αi, as long as
all images of letters under αi have the same first letter.

If cardX > 1, since ζ is injective, we eventually obtain the following decom-
position:

ζ = µa1 ◦ µa2 ◦ · · · ◦ µan
◦ η = µw ◦ η , (14)

where a1, . . . , an ∈ A, w = a1 · · · an, and η = αn is such that η(x)f 6= η(y)f

for some x, y ∈ X. If the original requirement ζ(X) ⊆ a1A
∗ is not met by any

a1, that is, if ζ(x)f 6= ζ(y)f for some x, y ∈ X, we can still fit in (14) choosing
n = 0 and w = ε.

Let then x, y ∈ X be such that η(x)f 6= η(y)f . Since η is R-characteristic,
by Proposition 2.3 we obtain η(X) ⊆ PAL. Moreover, since η is injective, by
Corollary 2.8 we have η(X) ⊆ PR = A, so that η is an injective literal morphism.

In the case X = {x}, the lengths of the words αi(x) for i ≥ 1 are decreasing.
Hence eventually we find an n ≥ 1 such that αn(x) ∈ A and the assertion is
proved, for

ζ = µa1 ◦ · · · ◦ µan ◦ αn = µw ◦ αn ,

with w = a1 · · · an ∈ A∗ and αn : X∗ → A∗ an injective literal morphism.
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Example 3.8. Let X = {x, y}, A = {a, b, c}, and ζ : X∗ → A∗ be defined by:

ζ(x) = abacabaabacab = µa(bcbabcb) and ζ(y) = abacaba = µa(bcba) ,

so that α1(x) = bcbabcb and α1(y) = bcba. Then ζ(x) can be rewritten also as

ζ(x) = µa(α1(x)) = (µa ◦ µb)(cacb) = (µa ◦ µb ◦ µc)(ab) = µabca(b) .

In a similar way, one obtains ζ(y) = µabca(a). Hence, setting η(x) = b and
η(y) = a, the morphism ζ = µabca◦η is R-characteristic, in view of the preceding
proposition.

From Theorem 3.5 and Proposition 3.7 one derives the following:

Corollary 3.9. Every injective ϑ-characteristic morphism ϕ : X∗ → A∗ can be
decomposed as

ϕ = g ◦ µw ◦ η , (15)

where η : X∗ → B∗ is an injective literal morphism, µw : B∗ → B∗ is a pure
standard episturmian morphism (with w ∈ B∗), and g : B∗ → A∗ is an injective
morphism such that g(B) = Π(ϕ).

Remarks.

1. From the preceding result, we have in particular that if ϕ : X∗ → A∗ is
an injective ϑ-characteristic morphism, then cardX ≤ cardA.

2. Theorem 3.5 and Proposition 3.7 show that a decomposition (15) can
always be chosen so that B = alphw ∪ η(X) ⊆ A and g(b) ∈ bA∗ ∩Pϑ for
each b ∈ B.

3. Corollary 3.9 shows that the code ϕ(X), which is a suffix code by Corol-
lary 2.5, is in fact the composition (by means of g) [1] of the code µw(η(X)) ⊆
B∗ and the biprefix, overlap-free, and normal code g(B) ⊆ A∗.

4. From the proof of Proposition 3.7, one easily obtains that if cardX > 1,
the decomposition (15) is unique.

Proposition 3.10. Let ϕ : X∗ → A∗ be an injective ϑ-characteristic morphism,
decomposed as in (15), and ψ be the iterated palindrome closure operator. The
word u = g(ψ(w)) is a ϑ-palindrome such that for each x ∈ X,

ϕ(x)u = (u g(η(x)))⊕ , (16)

and ϕ(x) is either a prefix of u or equal to ug(η(x)).

Proof. Since ψ(w) is a palindrome and the injective morphism g is such that
g(B) ⊆ Pϑ, we have u ∈ PALϑ in view of Proposition 1.17. Let x ∈ X and set
b = η(x). We have

ϕ(x)u = g(µw(η(x))ψ(w)) = g(µw(b)ψ(w)).

By Propositions 1.9 and 1.17 we obtain

g(µw(b)ψ(w)) = g(ψ(wb)) = g((ψ(w)b)(+)) = (g(ψ(w)b))⊕ = (ug(b))⊕,
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and (16) follows. Thus, since g(b) is a ϑ-palindromic suffix of ug(b), we derive
|ϕ(x)| ≤ |ug(b)|. By Proposition 2.1, ϕ(x) ∈ P∗ϑ. Therefore it can be either
equal to ug(b) or a prefix of u. Indeed, if ϕ(x) = ur with r a nonempty proper
prefix of g(b) ∈ Pϑ, then r ∈ P∗ϑ, as P∗ϑ is left unitary. This gives rise to a
contradiction because Pϑ is a biprefix code.

Corollary 3.11. Under the same hypotheses and with the same notation as
in Proposition 3.10, if x1, x2 ∈ X are such that |ϕ(x1)| ≤ |ϕ(x2)|, then either
ϕ(x1) ∈ Pref ϕ(x2), or ϕ(x1) and ϕ(x2) do not overlap, i.e.,

Suff ϕ(x1) ∩ Pref ϕ(x2) = Suff ϕ(x2) ∩ Pref ϕ(x1) = {ε} .

Proof. For i = 1, 2, let us set bi = η(xi). By Proposition 3.10, ϕ(xi) is either a
prefix of u or equal to ug(bi).

If ϕ(x1) is a prefix of u, then it is a prefix of ϕ(x2) too, as |ϕ(x1)| ≤ |ϕ(x2)|.
Let us then suppose that

ϕ(xi) = ug(bi) for i = 1, 2 . (17)

Now let v be an element of Suff ϕ(x1)∩Pref ϕ(x2). Since ϕ(x2) ∈ P∗ϑ, we can
write v = v′λ, where v′ is the longest word of P∗ϑ ∩ Pref v. Then λ is a proper
prefix of a word π occurring in the unique factorization of ϕ(x2) over Pϑ. If λ
was nonempty, π would overlap with some word π′ of the factorization of ϕ(x1)
over Pϑ. This is absurd, since for any t ∈ SEpi(X) such that x1, x2 ∈ alph t,
both π and π′ would be in Πϕ(t), which is overlap-free by Theorem 1.26. Hence
λ = ε and v ∈ P∗ϑ. Therefore by (17) we have v = g(ξ), where ξ is an element
of Suff(ψ(w)b1) ∩ Pref(ψ(w)b2).

By Proposition 3.10, (17) is equivalent to (u g(bi))⊕ = ug(bi)u, i = 1, 2.
Since for i = 1, 2 the word g(bi) is an unbordered ϑ-palindrome, any ϑ-palindromic
suffix of ug(bi) longer than g(bi) can be written as g(bi)ξig(bi), with ξi a ϑ-
palindromic suffix of u. Hence (17) holds for i = 1, 2 if and only if u has
no ϑ-palindromic suffixes preceded respectively by g(b1) or g(b2). By Proposi-
tion 1.17, this implies that for i = 1, 2, ψ(w) has no palindromic suffix preceded
by bi, so that bi /∈ alphw = alphψ(w). Therefore, since b1 6= b2, the only word
in Suff(ψ(w)b1) ∩ Pref(ψ(w)b2) is ε. Hence v = g(ε) = ε.

The same argument can be used to prove that Suff ϕ(x2) ∩ Pref ϕ(x1) =
{ε}.

Example 3.12. Let X = {x, y}, A = {a, b, c, d, e}, B = {a, d}, and ϑ be defined
by ā = b, c̄ = c, and d̄ = e. As we have seen in Example 3.4, the morphism
ϕ : X∗ → A∗ defined by ϕ(x) = acbde and ϕ(y) = acbdeacb is ϑ-characteristic.
We can decompose ϕ as ϕ = g ◦ µad ◦ η, where g : B∗ → A∗ is defined by
g(a) = acb ∈ Pϑ, g(d) = de ∈ Pϑ, and η is such that η(x) = d and η(y) = a.
We have u = g(ψ(ad)) = g(ada) = acbdeacb, and

ϕ(x)u = acbdeacbdeacb = (acbdeacbde)⊕ = (u g(η(x)))⊕ .

Similarly, ϕ(y)u = (u g(η(y)))⊕. In this case, ϕ(x) is a prefix of ϕ(y).

The following basic theorem gives a characterization of all injective ϑ-charac-
teristic morphisms.
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Theorem 3.13. Let ϕ : X∗ → A∗ be an injective morphism. Then ϕ is ϑ-
characteristic if and only if it is decomposable as

ϕ = g ◦ µw ◦ η

as in (15), with B = alphw∪ η(X) and g(B) = Π ⊆ Pϑ satisfying the following
conditions:

1. Π is an overlap-free and normal code,

2. LS ({g(ψ(w))} ∪Π) ⊆ Pref g(ψ(w)),

3. if b, c ∈ A \ Suff Π and v ∈ Π∗ are such that bvc̄ ∈ FactΠ, then v =
g(ψ(w′x)), with w′ ∈ Pref w and x ∈ {ε} ∪ (B \ η(X)).

The proof of this theorem, which is rather cumbersome, will be given in
Section 5, using some results on biprefix, overlap-free, and normal codes that
will be proved in Section 4. We conclude this section by giving some examples
and a remark related to Theorem 3.13; moreover, from this theorem we derive
a different proof of Theorem 3.1.

Example 3.14. Let A = {a, b, c}, X = {x, y}, B = {a, b}, and let ϑ and ϕ : X∗ →
A∗ be defined as in Example 3.6, namely ā = a, b̄ = c, and ϕ = g ◦µa ◦ η, where
η(x) = a, η(y) = b, and g : B∗ → A∗ is defined by g(a) = a and g(b) = bac.
Then Π = g(B) = {a, bac} is an overlap-free code and satisfies:

• (Suff Π \Π) ∩ LSΠ = {ε}, so that Π is normal,

• LS({g(ψ(a))} ∪Π) = LS({a} ∪Π) = {ε} ⊆ Pref a.

The only word verifying the hypotheses of condition 3 is bac = bab̄ = g(b) ∈ Π,
with a ∈ Π∗ and b /∈ Suff Π. Since a = g(ψ(a)) and B \η(X) = ∅, also condition
3 of Theorem 3.13 is satisfied. Hence ϕ is ϑ-characteristic.

Example 3.15. Let X = {x, y}, A = {a, b, c}, ϑ be such that ā = a, b̄ = c,
and the morphism ϕ : X∗ → A∗ be defined by ϕ(x) = a and ϕ(y) = abaac.
In this case we have ϕ = g ◦ µa ◦ η, where B = {a, b}, g(a) = a, g(b) = baac,
η(x) = a, and η(y) = b. Then the morphism ϕ is not ϑ-characteristic. Indeed, if
t is any standard episturmian word starting with yxy, then ϕ(t) has the prefix
abaacaabaac, so that aa is a left special factor of ϕ(t) but not a prefix of it.

In fact, condition 3 of Theorem 3.13 is not satisfied in this case, since baac =
baab̄ = g(b), b /∈ Suff Π, aa ∈ Π∗, B \ η(X) = ∅, and

aa /∈ {g(ψ(w′)) | w′ ∈ Pref a} = {ε, a} .

If we choose X ′ = {y} with η′(y) = b, then

g(µa(η′(yω))) = (abaac)ω ∈ SEpiϑ ,

so that ϕ′ = g ◦ µa ◦ η′ is ϑ-characteristic. In this case B = alph a ∪ η′(X ′),
B \ η′(X ′) = {a}, and aa = g(ψ(aa)) = g(aa), so that condition 3 is satisfied.

Example 3.16. Let X = {x, y}, A = {a, b, c, d, e, h}, and ϑ be the antimorphism
over A defined by ā = a, b̄ = c, d̄ = e, h̄ = h. Let also w = adb ∈ A∗,
B = {a, b, d} = alphw, and η : X∗ → B∗ be defined by η(x) = a and η(y) = b.

21



Finally, set g(a) = a, g(d) = dahae, and g(b) = badahaeadahaeac. Then the
morphism ϕ = g ◦ µw ◦ η is such that

ϕ(y) = adahaeabadahaeadahaeac and ϕ(x) = ϕ(y) adahaea ,

and it is ϑ-characteristic as the code Π = g(B) and the word u = g(ψ(w)) =
g(adabada) = ϕ(x) satisfy all three conditions of Theorem 3.13.

Remark. Let us observe that Theorem 3.13 gives an effective procedure to
decide whether, for a given ϑ, an injective morphism ϕ : X∗ → A∗ is ϑ-
characteristic. The procedure runs in the following steps:

1. Check whether ϕ(X) ⊆ P∗ϑ.

2. If the previous condition is satisfied, then compute Π = Π(ϕ).

3. Verify that Π is overlap-free and normal.

4. Compute B = f(Π) and then the morphism g : B∗ → A∗ given by g(B) =
Π.

5. Since ϕ = g ◦ ζ, verify that ζ is R-characteristic, i.e., there exists w ∈ B∗
such that ζ = µw ◦ η, where η is a literal morphism from X∗ to B∗. This
can be always simply done, following the argument used in the proof of
Proposition 3.7.

6. Compute g(ψ(w)) and verify that conditions 2 and 3 of Theorem 3.13 are
satisfied. This can also be effectively done.

We now give a new proof of Theorem 3.1, based on Theorem 3.13.

Proof of Theorem 3.1. Let ϕ : X∗ → A∗ be an injective morphism such that
ϕ(X) = Π ⊆ Pϑ and satisfying conditions 1 and 2 of Theorem 3.1. In this case
we can assume w = ε, so that B = η(X), u = g(ψ(w)) = ε, and ϕ = g◦η. Hence
Π = g(B) = ϕ(X). The code Π is overlap-free by conditions 1 and 2. Since any
letter of A occurs at most once in any word of Π, we have LS({ε}∪Π) ⊆ {ε} =
Pref u, whence

(Suff Π \Π) ∩ LSΠ ⊆ {ε} ,
i.e., Π is a left normal, and therefore normal, code. Let b, c ∈ A \ Suff Π, and
v ∈ Π∗ be such that bvc̄ ∈ Factπ for some π ∈ Π. This implies v = ε = g(ψ(ε)),
because the equation v = π1 · · ·πk with π1, . . . , πk ∈ Π would violate condition 1
of Theorem 3.1. Thus all the hypotheses of Theorem 3.13 are satisfied for w = ε,
so that ϕ = g ◦ µε ◦ η is ϑ-characteristic.

Conversely, let ϕ : X∗ → A∗ be an injective ϑ-characteristic morphism such
that ϕ(X) = Π ⊆ Pϑ. We can take w = ε, B = η(X) ⊆ A and write ϕ = g ◦ η,
so that g(B) = ϕ(X) = Π. Since u = ε, by Theorem 3.13 we have

LS({ε} ∪Π) ⊆ {ε} , (18)

and, as B \ η(X) = ∅, for all b, c ∈ A \ Suff Π and v ∈ Π∗,

bvc̄ ∈ FactΠ =⇒ v = g(ψ(ε)) = ε . (19)

Moreover, since Π = Π(ϕ), we have that Π is normal and overlap-free by Propo-
sition 2.2.
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Now let a ∈ A and suppose a ∈ alphπ for some π ∈ Π. We will show that
any two occurrences of a in the words of Π coincide, so that a has exactly one
occurrence in Π. Let then π1, π2 ∈ Π be such that

π1 = λ1aρ1 and π2 = λ2aρ2

for some λ1, λ2, ρ1, ρ2 ∈ A∗, and let us first prove that λ1 = λ2.
Let s be the longest common suffix of λ1 and λ2, and let λi = λ′is for i = 1, 2.

If both λ′1 and λ′2 were nonempty, their last letters would differ by the definition
of s, and therefore sa would be in LSΠ, contradicting (18).

Next, we may assume λ′1 = ε and λ′2 6= ε, without loss of generality. Then
sa ∈ Pref π1, so that by Proposition 1.1 we obtain λ′2π1 ∈ Pref π2; in particular,
we have π1 6= π2. Let then r be the longest word of Π∗∩Suff λ′2, and set λ′2 = ξr.
Since λ′2 6= ε and Π is a biprefix code, we have ξ 6= ε. Furthermore, ξ` is not a
suffix of any word of Π, for if π′ were such a word, by Proposition 1.1 we would
derive that π′ ∈ Suff ξ, contradicting the definition of r.

Let us now write π2 = ξrπ1δ. The word δ is nonempty since Π is a biprefix
code. Let r′ be the longest word in Π∗ ∩ Pref δ and set δ = r′ζ. Since Π is a
biprefix code, ζ 6= ε. By Proposition 1.1, we derive that ζf /∈ Pref Π. By (19),
we obtain that rπ1r

′ = ε, which is absurd.
Thus λ′1 = λ′2 = ε, whence λ1 = λ2 as desired. From λ1a = λ2a it follows

πf
1 = πf

2 , so that by Proposition 1.1 we have π1 = π2 and hence ρ1 = ρ2.
Therefore, the two (generic) occurrences of a we have considered are the same.

We have thus proved that every letter of A occurs at most once among all the
words of Π = ϕ(X), so that conditions 1 and 2 of Theorem 3.1 are satisfied.

4 Some properties of normal codes

In this section, we analyse some properties of left (or right) normal codes, under
some additional requirements such as being suffix, prefix, or overlap-free. A first
noteworthy result was already given in Section 1 (cf. Proposition 1.1). We stress
that all statements of the following propositions can be applied to codes which
are biprefix, overlap-free, and normal.

Lemma 4.1. Let Z be a left normal and suffix code over A. For any a, b ∈ A,
a 6= b, λ ∈ A+, if aλ, bλ ∈ FactZ∗ and λ /∈ Pref Z∗, then aλ, bλ ∈ FactZ.

Proof. By symmetry, it suffices to prove that aλ ∈ FactZ. By hypothesis there
exist words v, ζ ∈ A∗ such that vaλζ = z1 · · · zn, with n ≥ 1 and zi ∈ Z,
i = 1, . . . , n. If n = 1, then aλ ∈ FactZ and we are done. Then suppose n > 1,
and write:

va = z1 · · · zhδ, δλζ = zh+1 · · · zn, zh+1 = δξ = z , (20)

with δ ∈ A∗, h ≥ 0, and ξ 6= ε. Let us observe that δ 6= ε, for otherwise
λ ∈ Pref Z∗, contradicting the hypothesis on λ.

If |δλ| ≤ |z|, then since a = δ`, we have aλ ∈ FactZ and we are done.
Therefore, suppose |δλ| > |z|. This implies that ξ is a proper prefix of λ, and
by (20), a proper suffix of z. Moreover, as a = δ`, we have aξ ∈ FactZ.

Since bλ ∈ FactZ∗, in a symmetric way one derives that either bλ ∈ FactZ,
or there exists ξ′ 6= ε which is a proper prefix of λ and a proper suffix of a word
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z′ ∈ Z. In the first case we have bλ ∈ FactZ, so that aξ, bξ ∈ FactZ, whence
ξ ∈ Suff Z ∩LS Z, and ξ /∈ Z since Z is a suffix code. We reach a contradiction
since ξ 6= ε and Z is left normal.

In the second case, ξ and ξ′ are both prefixes of λ. Let ξ̂ be in {ξ, ξ′} with
minimal length. Then aξ̂, bξ̂ ∈ FactZ, so that ξ̂ ∈ Suff Z ∩ LS Z. Since ξ̂ /∈ Z,
as Z is a suffix code, we reach again a contradiction because ξ̂ 6= ε and Z is left
normal. Therefore, the only possibility is that aλ ∈ FactZ.

Proposition 4.2. Let Z be a suffix, left normal, and overlap-free code over A,
and let a, b ∈ A, v ∈ A∗, λ ∈ A+ be such that a 6= b, va /∈ Z∗, vaλ ∈ Pref Z∗,
and bλ ∈ FactZ∗. Then aλ ∈ FactZ.

Proof. Since vaλ ∈ Pref Z∗, there exists ζ ∈ A∗ such that vaλζ = z1 · · · zn,
n ≥ 1, zi ∈ Z, i = 1, . . . , n. Then we can assume that (20) holds for suitable
h ≥ 0, δ ∈ A∗, and ξ ∈ A+. We have n > 1, for otherwise the statement is
trivial, and δ 6= ε since va /∈ Z∗. As δ` = a, if |δλ| ≤ |z| we obtain aλ ∈ FactZ
and we are done. Therefore assume |δλ| > |z|. In this case ξ is a proper prefix
of λ and a proper suffix of z. If λ ∈ Pref Z∗ we reach a contradiction, since
ξ ∈ Suff Z ∩ Pref Z∗ and this contradicts the hypothesis that Z is a suffix and
overlap-free code. Thus λ /∈ Pref Z∗; this implies, by the previous lemma, that
aλ ∈ FactZ.

Proposition 4.3. Let Z be a biprefix, overlap-free, and right normal code over
A. If λ ∈ Pref Z∗ \ {ε}, then there exists a unique word u = z1 · · · zk with k ≥ 1
and zi ∈ Z, i = 1, . . . , k, such that

u = z1 · · · zk = λζ, z1 · · · zk−1δ = λ , (21)

where δ ∈ A+ and ζ ∈ A∗.

Proof. Let us suppose that there exist h ≥ 1 and words z′1, . . . , z
′
h ∈ Z such that

z′1 · · · z′h = λζ ′, z′1 · · · z′h−1δ
′ = λ (22)

with ζ ′ ∈ A∗ and δ′ ∈ A+. From (21) and (22) one obtains u = z1 · · · zk =
z′1 · · · z′h−1δ

′ζ and z′1 · · · z′h = z1 · · · zk−1δζ
′, with zk = δζ and z′h = δ′ζ ′. Since Z

is a biprefix code, we derive h = k and consequently zi = z′i for i = 1, . . . , k− 1.
Indeed, if h 6= k, we would derive by cancellation that δ′ζ = ε or δζ ′ = ε, which
is absurd as δ, δ′ ∈ A+.

Hence we obtain zk = δ′ζ = δζ, whence δ = δ′. Thus δ is a common
nonempty prefix of zk and z′k. Since Z is right normal, by Proposition 1.1 we
obtain that zk is a prefix of z′k and vice versa, i.e., zk = z′k.

Proposition 4.4. Let Z be a biprefix, overlap-free, and normal code over A. If
u ∈ Z∗ \ {ε} is a proper factor of z ∈ Z, then there exist p, q ∈ Z∗, h, h′ ∈ A+

such that h` /∈ Suff Z, (h′)f /∈ Pref Z, and

z = hpuqh′ .

Proof. Since u is a proper factor of z ∈ Z, there exist ξ, ξ′ ∈ A∗ such that
z = ξuξ′; moreover, ξ and ξ′ are both nonempty as Z is a biprefix code. Let p
(resp. q) be the longest word in Suff ξ ∩ Z∗ (resp. Pref ξ′ ∩ Z∗), and write

z = ξuξ′ = hpuqh′
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for some h, h′ ∈ A∗. Since u and hp are nonempty and Z is a biprefix code,
one derives that h and h′ cannot be empty. Moreover, h` /∈ Suff Z and (h′)f /∈
Pref Z, for otherwise the maximality of p and q would be contradicted using
Proposition 1.1.

5 Proof of Theorem 3.13

In order to prove the theorem, we need the following lemma.

Lemma 5.1. Let t ∈ SEpi(B) with alph t = B, and let s = g(t) be a standard
ϑ-episturmian word over A, with g : B∗ → A∗ an injective morphism such
that g(B) ⊆ Pϑ. Suppose that b, c ∈ A \ Suff Πs and v ∈ Π∗

s are such that
bvc̄ ∈ FactΠs. Then there exists δ ∈ B∗ such that v = g(ψ(δ)).

Proof. Let π ∈ Πs be such that bvc̄ ∈ Factπ. By definition, we have Πs = g(B),
so that, since v ∈ Π∗

s, we can write v = g(ξ) for some ξ ∈ B∗. We have to
prove that ξ = ψ(δ) for some δ ∈ B∗. This is trivial for ξ = ε. Let then
ψ(δ′) be the longest prefix in ψ(B∗) of ξ, and assume by contradiction that
ξ 6= ψ(δ′), so that ψ(δ′)a ∈ Pref ξ for some a ∈ B. We shall prove that
ψ(δ′a) = (ψ(δ′)a)(+) ∈ Pref ξ, contradicting the maximality of ψ(δ′).

Since g(ψ(δ′)) is a prefix of v, we have bg(ψ(δ′)) ∈ Factπ ⊆ Fact s. Moreover
g(ψ(δ′)a) ∈ Pref v ⊆ Factπ. By Proposition 1.17 and since π is a ϑ-palindrome,
we have

g(aψ(δ′)) = g(ψ(δ′)a) ∈ Factπ .

Thus g(ψ(δ′)), being preceded in s both by b /∈ Suff Πs and by (g(a))` ∈ Suff Πs,
is a left special factor of s, and hence a prefix of it.

Suppose first that a /∈ alph δ′, so that ψ(δ′a) = ψ(δ′)aψ(δ′). Let λ be the
longest prefix of ψ(δ′) such that ψ(δ′)aλ is a prefix of ξ. Then g(ψ(δ′)aλ) is
followed in vc̄ by some letter x, i.e.,

g(ψ(δ′)aλ)x ∈ Pref(vc̄) . (23)

We claim that
g(λ)x /∈ Pref g(ψ(δ′)) . (24)

Indeed, assume the contrary. Then x is a prefix of g(λ)−1g(ψ(δ′)), which is in Π∗

since Π is a biprefix code. Hence x ∈ Pref g(d) for some d ∈ B such that g(λd) ∈
Pref g(ψ(δ′)), and then λd ∈ Pref ψ(δ′) by Lemma 1.2. As c̄ /∈ Pref Π, we obtain
x 6= c̄, so that by (23) it follows g(ψ(δ′)aλ)x ∈ Pref v. Therefore g(ψ(δ′)aλd) ∈
Pref v by Proposition 1.1, so that ψ(δ′)aλd ∈ Pref ξ by Lemma 1.2. This is a
contradiction because of our choice of λ.

Let us prove that λ = ψ(δ′). Indeed, since λ̃ ∈ Suff ψ(δ′), by (23) the word
g(λ̃aλ)x is a factor of π, and so is its image under ϑ, that is x̄g(λ̃aλ). By
contradiction, suppose |λ| < |ψ(δ′)|. By (24), x̄g(λ̃) /∈ Suff g(ψ(δ′)), so that
the suffix g(λ̃aλ) of g(ψ(δ′)aλ) is preceded by a letter which is not x̄. Thus
g(λ̃aλ) is a left special factor of π ∈ Fact s, and hence a prefix of s. As we have
previously seen, g(ψ(δ′)) is a prefix of s too, so that, as |λ| < |ψ(δ′)|, it follows
by Lemma 1.2 that λ̃a is a prefix of ψ(δ′), contradicting the hypothesis that
a /∈ alph δ′. Thus λ = ψ(δ′), so that ψ(δ′a) ∈ Pref ξ, as we claimed.
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Now let us assume a ∈ alph δ′ instead, and write δ′ = γaγ′ with a /∈ alph γ′,
so that ψ(δ′) = ψ(γ)aρ = ρ̃aψ(γ) and ψ(γ) is the longest palindromic prefix
(resp. suffix) of ψ(δ′) followed (resp. preceded) by a. Thus

ψ(δ′a) = ρ̃aψ(γ)aρ = ψ(δ′)aρ .

Let λ ∈ Pref ρ and x ∈ A be such that (23) holds and g(λ)x /∈ Pref g(ρ). With
the same argument as above, one can show that if |λ| < |ρ|, then g(λ̃aψ(γ)aλ) is
a left special factor, and then a prefix, of s. Since g(ψ(δ′)) is a prefix of s too, and
|λ̃aψ(γ)a| ≤ |ρaψ(γ)| = |ψ(δ′)|, by Lemma 1.2 we obtain λ̃aψ(γ)a ∈ Pref ψ(δ′).
Since λ̃ is a suffix of ρ̃, λ̃aψ(γ) is a suffix, and then a border, of ψ(δ′). This
is absurd since ψ(γ) is the longest border of ψ(δ′) followed by a. Thus λ = ρ,
showing that ψ(δ′a) is a prefix of ξ also in this case. The proof is complete.

We can now proceed with the proof of Theorem 3.13.

5.1 Necessity

The decomposition (15) with B = alphw∪ η(X) follows from Corollary 3.9 and
subsequent remark.

Since Π = g(B) ⊆ Pϑ and ϕ is ϑ-characteristic, one has by Theorem 3.5
that Π = Π(ϕ) as defined by (7), so that it is overlap-free and normal by
Proposition 2.2.

Let us set u = g(ψ(w)), and prove that condition 2 holds. We first suppose
that cardX ≥ 2, and that a, a′ ∈ η(X) are distinct letters. Let ∆ be an infinite
word such that alph∆ = η(X). Setting ta = ψ(wa∆) and ta′ = ψ(wa′∆), by (3)
we have

ta = µw(ψ(a∆)) and ta′ = µw(ψ(a′∆)) ,

so that, setting sy = g(ty) for y ∈ {a, a′}, we obtain

sy = g(µw(ψ(y∆))) ∈ SEpiϑ

as ψ(y∆) ∈ η(SEpi(X)) ⊆ SEpi(B) and ϕ = g ◦ µw ◦ η is ϑ-characteristic.
By Corollary 1.10 and (3), one obtains that the longest common prefix of ta
and ta′ is ψ(w). As alph ∆ = η(X) and B = alphw ∪ η(X), we have alph ta =
alph ta′ = B, so that Πsa

= Πsa′ = Π. Since g is injective, by Theorem 1.27
we have g(a)f 6= g(a′)f , so that the longest common prefix of sa and sa′ is
u = g(ψ(w)). Any word of LS({u} ∪ Π), being a left special factor of both sa

and sa′ , has to be a common prefix of sa and sa′ , and hence a prefix of u.
Now let us suppose X = {z} and denote η(z) by a. In this case we have

ϕ(SEpi(X)) = {g(µw(aω))} = {(g(µw(a)))ω} .

Let us set s = (g(µw(a)))ω ∈ SEpiϑ. By Corollary 1.10, u = g(ψ(w)) is a prefix
of s. Let λ ∈ LS({u} ∪ Π). Since Π = Πs, the word λ is a left special factor of
the ϑ-episturmian word s, so that we have λ ∈ Pref s.

If a ∈ alphw, then B = {a} ∪ alphw = alphw = alphψ(w), so that Π ⊆
Factu. This implies |λ| ≤ |u| and then λ ∈ Pref u as desired.

If a /∈ alphw, then by Proposition 3.10 we obtain ϕ(z) = g(µw(a)) = u g(a),
because ϕ(z) /∈ Pref u otherwise by Lemma 1.2 we would obtain µw(a) ∈
Pref ψ(w), that implies a ∈ alphw. Hence s = (u g(a))ω. Since Π ⊆ {g(a)} ∪
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Factu, we have |λ| ≤ |u g(a)|, so that λ ∈ Pref(u g(a)). Again, if λ is a proper
prefix of u we are done, so let us suppose that λ = uλ′ for some λ′ ∈ Pref g(a),
and that λ is a left special factor of g(a). Then the prefix λ′ of g(a) is repeated
in g(a). The longest repeated prefix p of g(a) is either a right special factor or
a border of g(a). Both possibilities imply p = ε, since g(a) is unbordered and
Π is a biprefix and normal code. As λ′ ∈ Pref p, it follows λ′ = ε. This proves
condition 2.

Finally, let us prove condition 3. Let b, c ∈ A \ Suff Π, v ∈ Π∗, and π ∈
Π be such that bvc̄ ∈ Factπ. Let t′ ∈ SEpi(X) with alph t′ = X, and set
t = µw(η(t′)), s1 = g(t). Since ϕ is ϑ-characteristic, s1 = ϕ(t′) is standard
ϑ-episturmian. By Lemma 5.1, we have v = g(ψ(δ)) for some δ ∈ B∗. If δ = ε
we are done, as condition 3 is trivially satisfied for w′ = x = ε; let us then
write δ = δ′a for some a ∈ B. The words bg(ψ(δ′)) and g(aψ(δ′)) are both
factors of the ϑ-palindrome π; indeed, ψ(δ′a) begins with ψ(δ′)a and terminates
with aψ(δ′). Hence g(ψ(δ′)) is left special in π as b /∈ Suff Π is different from
(g(a))` ∈ Suff Π. Therefore g(ψ(δ′)) is a prefix of g(ψ(w)), as we have already
proved condition 2. Since g is injective and Π is a biprefix code, by Lemma 1.2
it follows ψ(δ′) ∈ Pref ψ(w), so that δ′ ∈ Pref w by Proposition 1.6. Hence, we
can write δ = w′x with w′ ∈ Pref w and x either equal to a (if δ′a /∈ Pref w) or
to ε. It remains to show that if w′x /∈ Pref w, then x /∈ η(X).

Let us first assume that η(X) = {x}. In this case we have s1 = g(µw(η(t′))) =
g(ψ(wxω)) by (3). Since bv = bg(ψ(w′x)) ∈ Factπ, g(x) is a proper factor of
π. Then, as B = {x} ∪ alphw and g(x) 6= π, we must have π ∈ g(alphw),
so that bv ∈ Fact g(ψ(w)) as alphw = alphψ(w). By Proposition 1.7, ψ(w′x)
is a factor of ψ(wx). We can then write ψ(wx) = ζψ(w′x)ζ ′ for some ζ, ζ ′ ∈
B∗. If ζ were empty, by Proposition 1.6 we obtain w′x ∈ Pref(wx). Since
w′x /∈ Pref w we would derive w = w′, which is a contradiction since we proved
that bv = bg(ψ(w′x)) ∈ Fact g(ψ(w)). Therefore ζ 6= ε, and v is left special
in s, being preceded both by (g(ζ))` and by b /∈ Suff Π. This implies that v
is a prefix of s and then of g(ψ(w)) as |v| ≤ |g(ψ(w))|. By Lemma 1.2, it fol-
lows ψ(w′x) ∈ Pref ψ(w) and then w′x ∈ Pref w by Proposition 1.6, which is a
contradiction.

Suppose now that there exists y ∈ η(X) \ {x}, and let ∆ ∈ η(X)ω with
alph∆ = η(X). The word s2 = g(ψ(wyx∆)) is equal to g(µw(ψ(yx∆))) by (3),
and is then standard ϑ-episturmian since ϕ = g ◦ µw ◦ η is ϑ-characteristic. By
applying Proposition 1.7 to w′ and wy ∈ w′A∗, we obtain ψ(w′x) ∈ Factψ(wyx).
We can write ψ(wyx) = ζψ(w′x)ζ ′ for some ζ, ζ ′ ∈ B∗. As w′x /∈ Pref w and
x 6= y, we have by Proposition 1.6 that ψ(w′x) /∈ Pref ψ(wy), so that ζ 6= ε.
Hence v = g(ψ(w′x)) is left special in s2, being preceded both by (g(ζ))` and
by b /∈ Suff Π. This implies that v is a prefix of s2 and then of g(ψ(wy)); by
Lemma 1.2, this is absurd since ψ(w′x) /∈ Pref ψ(wy).

5.2 Sufficiency

Let t′ ∈ SEpi(η(X)) and t = µw(t′) ∈ SEpi(B). Since g(B) = Π ⊆ Pϑ, by
Proposition 1.17 it follows that g(t) has infinitely many ϑ-palindromic prefixes,
so that it is closed under ϑ.

Thus, in order to prove that g(t) ∈ SEpiϑ, it is sufficient to show that any
nonempty left special factor λ of g(t) is in Pref g(t). Since λ is left special, there
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exist a, a′ ∈ A, a 6= a′, v, v′ ∈ A∗, and r, r′ ∈ Aω, such that

g(t) = vaλr = v′a′λr′ . (25)

The word g(t) can be uniquely factorized by the elements of Π. Therefore, vaλ
and v′a′λ are in Pref Π∗. We consider three different cases.

Case 1: va /∈ Π∗, v′a′ /∈ Π∗.

Since Π is a biprefix (as it is a subset of Pϑ), overlap-free, and normal code,
by Proposition 4.2 we have aλ, a′λ ∈ FactΠ. Therefore, by condition 2 of
Theorem 3.13, it follows λ ∈ LSΠ ⊆ Pref g(ψ(w)), so that it is a prefix of g(t)
since by Corollary 1.10, ψ(w) is a prefix of t = µw(t′).

Case 2: va ∈ Π∗, v′a′ ∈ Π∗.

From (25), we have λ ∈ Pref Π∗. By Proposition 4.3, there exists a unique word
λ′ ∈ Π∗ such that λ′ = π1 · · ·πk = λζ and π1 · · ·πk−1δ = λ, with k ≥ 1, πi ∈ Π
for i = 1, . . . , k, δ ∈ A+, and ζ ∈ A∗.

Since g is injective, there exist and are unique the words τ, γ, γ′ ∈ B∗ such
that g(τ) = λ′, g(γ) = va, g(γ′) = v′a′. Moreover, we have g(γτ) = vaλ′ =
vaλζ ∈ Pref g(t) and g(γ′τ) = v′a′λ′ = v′a′λζ ∈ Pref g(t). By Lemma 1.2, we
derive γτ, γ′τ ∈ Pref t. Setting α = γ`, α′ = γ′`, we obtain ατ, α′τ ∈ Fact t, and
α 6= α′ as a 6= a′. Hence τ is a left special factor of t; since t ∈ SEpi(B), we
have τ ∈ Pref t, so that g(τ) = λ′ ∈ Pref g(t). As λ is a prefix of λ′, it follows
λ ∈ Pref g(t).

Case 3: va /∈ Π∗, v′a′ ∈ Π∗ (resp. va ∈ Π∗, v′a′ /∈ Π∗).

We shall consider only the case when va /∈ Π∗ and v′a′ ∈ Π∗, as the symmetric
case can be similarly dealt with.

Since v′a′ ∈ Π∗, by (25) we have λ ∈ Pref Π∗. By Proposition 4.3, there
exists a unique word λ′ ∈ Π∗ such that λ′ = π1 · · ·πk = λζ and π1 · · ·πk−1δ = λ,
with k ≥ 1, πi ∈ Π for i = 1, . . . , k, δ ∈ A+, and ζ ∈ A∗. By the uniqueness of
λ′, v′a′λ′ is a prefix of g(t).

By (25) we have vaπ1 · · ·πk−1δ ∈ Pref g(t). By Proposition 4.2, aλ ∈ FactΠ,
so that there exist ξ, ξ′ ∈ A∗, π ∈ Π, such that

ξaλξ′ = ξaπ1 · · ·πk−1δξ
′ = π ∈ Π .

Since δ is a nonempty prefix of πk, it follows from Proposition 1.1 that π =
ξaπ1 · · ·πkξ

′′ = ξaλ′ξ′′, with ξ′′ ∈ A∗. By Proposition 4.4, we can write

π = ξaλ′ξ′′ = hpλ′qh′

with h, h′ ∈ A+, p, q ∈ Π∗, b = h` /∈ Suff Π, and c̄ = (h′)f /∈ Pref Π.
By condition 3, we have pλ′q = g(ψ(w′x)) for some w′ ∈ Pref w and x ∈

{ε} ∪ (B \ η(X)). Since p, λ′, q ∈ Π∗ and g is injective, we derive λ′ = g(τ) for
some τ ∈ Factψ(w′x). We will show that λ′ is a prefix of g(t), which proves the
assertion as λ ∈ Pref λ′.

Suppose first that p = ε, so that a = b and τ ∈ Pref ψ(w′x). If τ ∈
Pref ψ(w′), then λ′ ∈ g(Pref ψ(w′)) ⊆ Pref g(ψ(w′)) ⊆ Pref g(ψ(w)), and we are
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done as g(ψ(w)) ∈ Pref g(t). Let us then assume x 6= ε, so that x ∈ B \ η(X),
and ψ(w′)x ∈ Pref τ . Moreover, we can assume w′x /∈ Pref w, for otherwise we
would derive λ′ ∈ Pref g(ψ(w)) again. Let ∆ ∈ η(X)ω be the directive word
of t′, so that by (3) we have t = ψ(w∆). Since w′ ∈ Pref w, we can write
w∆ = w′∆′ for some ∆′ ∈ Bω, so that t = ψ(w′∆′).

We have already observed that v′a′λ′ ∈ Pref g(t); as v′a′ ∈ Π∗, by Lemma 1.2
one derives that τ is a factor of t. Since ψ(w′)x ∈ Pref τ , it follows ψ(w′)x ∈
Factψ(w′∆′); by Proposition 1.8, we obtain x ∈ alph ∆′. This implies, since
x /∈ η(X), that w 6= w′, and we can write w = w′σxσ′ for some σ, σ′ ∈ B∗. By
Proposition 1.7, ψ(w′x) is a factor of ψ(w′σx) and hence of ψ(w), so that, since
τ ∈ Pref ψ(w′x), we have τ ∈ Factψ(w). Hence we have either τ ∈ Pref ψ(w),
so that λ′ ∈ Pref g(ψ(w)) and we are done, or there exists a letter y such that
yτ ∈ Factψ(w), so that dλ′ ∈ Fact g(ψ(w)) with d = (g(y))` ∈ Suff Π. In the
latter case, since a = b /∈ Suff Π and aλ′ ∈ FactΠ, we have by condition 2
that λ′ ∈ Pref g(ψ(w)). Since g(ψ(w)) is a prefix of g(t), in the case p = ε the
assertion is proved.

If p 6= ε, we have a ∈ Suff Π. Let then α, α′ ∈ B be such that (g(α))` = a
and (g(α′))` = a′; as a 6= a′, we have α 6= α′. Since pλ′ is a prefix of g(ψ(w′x)),
p ∈ Π∗, and p` = (g(α))` = a, by Lemma 1.2 one derives that ατ is a factor of
ψ(w′x). Moreover, as v′a′λ′ ∈ Pref g(t) and v′a′ ∈ Π∗, we derive that α′τ is a
factor of t.

Let then δ′ be any prefix of the directive word ∆ of t′, such that α′τ ∈
Factψ(wδ′). By Proposition 1.7, ψ(wδ′x) contains ψ(w′x), and hence ατ , as
a factor. Thus τ is a left special factor of ψ(wδ′x) and then of the standard
episturmian word ψ(wδ′xω); as |τ | < |ψ(wδ′)|, it follows τ ∈ Pref ψ(wδ′) and
then τ ∈ Pref t, so that λ′ ∈ Pref g(t). The proof is now complete.

6 Further results and concluding remarks

Theorem 1.27 shows that every standard ϑ-episturmian word is a morphic image,
under a suitable injective morphism, of some standard episturmian word. The
following theorem improves upon this, showing that the morphism can always
be taken to be ϑ-characteristic.

Theorem 6.1. Let s be a standard ϑ-episturmian word over A. Then there
exists X ⊆ A, t′ ∈ SEpi(X) and an injective ϑ-characteristic morphism ϕ :
X∗ → A∗ such that s = ϕ(t′).

Proof. Set Π = Πs. By Theorem 1.27, the restriction to Π of the map f : w ∈
Pϑ 7→ wf ∈ A is injective. Hence, setting B = f(Π) ⊆ A, we can define an
injective morphism g sending any letter x ∈ B to the only word of Π beginning
with x. We have s = g(t), where t = f(s) ∈ SEpi(B) by Theorem 1.27.

Let now w ∈ B∗ be the longest word such that ψ(w) ∈ Pref t and g(ψ(w)) ∈
FactΠ. Such a word certainly exists, as ε = ψ(ε) ∈ Pref t and ε = g(ψ(ε)) ∈
FactΠ. Since ψ(w) ∈ Pref t, we can write t as ψ(w∆) for some ∆ ∈ Bω; let us
set

X = alph∆ ⊆ B and t′ = ψ(∆) ∈ SEpi(X) .

By (3) we obtain s = ϕ(t′), where ϕ = g ◦ µw ◦ η and η is the inclusion map of
X in B, i.e., η(X) = X.
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Let us now show that ϕ is ϑ-characteristic. We have B = X ∪ alphw, and
g(B) = Πs ⊆ Pϑ is a biprefix code. By Theorems 1.25 and 1.26, Π is also
normal and overlap-free, so that condition 1 of Theorem 3.13 is satisfied.

Let us first prove that ϕ meets condition 3 of that theorem. Indeed, if v ∈ Π∗

and b, c ∈ A \ Suff Π are such that bvc̄ ∈ Factπ with π ∈ Π, then by Lemma 5.1
we have v = g(ψ(δ)) for some δ ∈ B∗. If δ = ε we are done; let us then write
δ = δ′a for some a ∈ B. The words bg(ψ(δ′)) and g(aψ(δ′)) are both factors of
the ϑ-palindrome π, so that g(ψ(δ′)) is left special in π as b /∈ Suff Π is different
from (g(a))`. Therefore g(ψ(δ′)) ∈ Pref g(t), so that by Lemma 1.2 we have
ψ(δ′) ∈ Pref t. Since g(ψ(δ′)) ∈ FactΠ, from the maximality condition on w
it follows |δ′| ≤ |w|. Moreover, as ψ(w) ∈ Pref t, by Proposition 1.6 it follows
δ′ ∈ Pref w. Hence, we can write δ = w′x with w′ ∈ Pref w and x either equal
to a (if δ′a /∈ Pref w) or to ε.

In order to prove condition 3, it remains to show that if w′x /∈ Pref w, then
x /∈ X. By contradiction, assume x ∈ X = alph∆ and write ∆ = ξx∆′ for some
ξ ∈ (X \ {x})∗ and ∆′ ∈ Xω. From (3), it follows t = ψ(wξx∆′). By applying
Proposition 1.7 to w′ and wξ ∈ w′B∗, we obtain ψ(w′x) ∈ Factψ(wξx); let
us write ψ(wξx) = ζψ(w′x)ζ ′ for some ζ, ζ ′ ∈ B∗. We claim that ζ 6= ε, i.e.,
ψ(w′x) /∈ Pref ψ(wξx). Indeed, assume the contrary. Then w′x ∈ Pref(wξx) by
Proposition 1.6, so that w′ = w and ξ = ε since w′x /∈ Pref w and x /∈ alph ξ.
Thus g(ψ(wx)) = g(ψ(δ)) = v ∈ FactΠ and ψ(wx) ∈ Pref t, but this contradicts
the maximality of w. Therefore ζ 6= ε, so that g(ψ(w′x)) is left special in s, being
preceded both by b /∈ Suff Π and by (g(ζ))` ∈ Suff Π. Hence g(ψ(w′x)) is a prefix
of s, and then of g(ψ(wξx)). By Lemma 1.2, we obtain ψ(w′x) ∈ Pref ψ(wξx),
a contradiction. Thus ϕ satisfies condition 3 of Theorem 3.13.

Finally, let u = g(ψ(w)) ∈ Pref s and let us prove that LS({u}∪Π) ⊆ Pref u.
Any word λ ∈ LS({u} ∪ Π) is left special in s, and hence a prefix of it. If λ is
a factor of u, then |λ| ≤ |u|, so that λ ∈ Pref u as desired.

Let then λ ∈ LSΠ, with λ 6= ε. Since λ ∈ Pref s, we have λ ∈ Pref Π∗, so
that by Proposition 4.3 there exists a unique λ′ = π1π2 · · ·πk ∈ Π∗ (with k ≥ 1
and πi ∈ Π for i = 1, . . . , k) such that λ ∈ Pref λ′ and π1 · · ·πk−1 ∈ Pref λ.
Because of its uniqueness, λ′ has to be a prefix of s. Moreover, as a consequence
of Proposition 1.1, every occurrence of λ as a factor of any π ∈ Π can be
extended to the right to λ′ ∈ Factπ, so that λ′ ∈ LSΠ. As λ′ ∈ Π∗, we can
write λ′ = g(τ) ∈ Pref g(t) for some τ ∈ B∗. By Lemma 1.2, τ is a prefix of t.

As λ′ ∈ LSΠ, it is a proper factor of some π ∈ Π. By Proposition 4.4,
we can write π = hpλ′qh′ with h, h′ ∈ A+, p, q ∈ Π∗, b = h` /∈ Suff Π, and
c̄ = (h′)f /∈ Pref Π. Therefore, as we have already proved that condition 3
of Theorem 3.13 is satisfied, pλ′q = g(ψ(w′x)) for suitable w′ ∈ Pref w and
x ∈ {ε} ∪ (B \X). As p ∈ Π∗, this implies τ ∈ Factψ(w′x).

We claim that τ ∈ Pref ψ(w), so that λ ∈ Pref λ′ is a prefix of u. Indeed,
suppose this is not the case, so that, since τ ∈ Pref t, one has ψ(w)d ∈ Pref τ
where d is the first letter of ∆. Then ψ(w)d ∈ Factψ(w′x). This is absurd
if w′x ∈ Pref w, as |ψ(w)d| > |ψ(w′x)| in that case. If w′x /∈ Pref w, since
w′ ∈ Pref w we can write w = w′yw′′ for some letter y 6= x and w′′ ∈ B∗. Then
ψ(w′)y is a prefix of ψ(w)d ∈ Factψ(w′x) ⊆ Factψ(w′xω). As y /∈ alphxω, we
reach a contradiction by Proposition 1.8. Hence all conditions of Theorem 3.13
are met, so that ϕ is ϑ-characteristic.

Let us consider the family SWϑ(N), introduced in [4], of all words w ∈ Aω
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which are closed under ϑ and such that every left special factor of w whose
length is at least N is a prefix of w. Moreover, SWϑ will denote the class of
words which are in SWϑ(N) for some N ≥ 0. One has that SWϑ(0) = SEpiϑ.
It has been proved in [4] that the family of ϑ-standard words is included in
SWϑ(3), and that SWϑ coincides with the family of ϑ-standard words with seed
introduced in [8, 5].

Proposition 6.2. Let ϕ : X∗ → A∗ be an injective morphism decomposable as
ϕ = g ◦ µw ◦ η where w ∈ B∗, B = alphw ∪ η(X), η a literal morphism, and
g is an injective morphism such that g(B) = Π ⊆ Pϑ. If Π is overlap-free and
normal, then ϕ(SEpi(X)) ⊆ SWϑ(N) with N = max{|π| | π ∈ Π}.

Proof. The proof is very similar to the sufficiency of Theorem 3.13 (see Sec-
tion 5.2). Using the same notation, suppose that λ is a left special factor of g(t)
of length |λ| ≥ N where t = µw(t′) ∈ SEpi(B) and t′ ∈ SEpi(η(X)). One has
that Cases 1 and 3 cannot occur since otherwise one would derive aλ ∈ FactΠ
that implies |λ| < N , which is a contradiction. It remains to consider Case
2. By using exactly the same argument one obtains that λ is a prefix of g(t).
Finally, since g(t) has infinitely many ϑ-palindromic prefixes one has that g(t)
is closed under ϑ.

In the previous sections we have introduced and studied ϑ-characteristic mor-
phisms and their strict link with normal and overlap-free codes, especially in the
biprefix case. Many interesting properties have been proved; in particular, the
characterization of injective ϑ-characteristic morphisms given by Theorem 3.13
is a powerful tool for constructing standard ϑ-episturmian words.

Some natural problems could be the subject of further investigation. A first
problem is to give a characterization of the endomorphisms of A∗ such that
ϕ(SEpiϑ) ⊆ SEpiϑ. A second, quite general problem is to characterize the
injective morphisms ϕ : X∗ → A∗ such that ϕ(X) ⊆ Z∗, where Z is a biprefix,
overlap-free, and normal code, with the condition that if t ∈ Xω is such that any
its left special factor is a prefix of t, then ϕ(t) ∈ Aω satisfies the same property.
Theorem 3.13 gives a characterization of these morphisms in the special case
Z ⊆ Pϑ and t closed under reversal.

Finally, we think that the classes of codes considered here (i.e., normal and
overlap-free codes, both in the biprefix and general case) and their combinatorial
properties would deserve a deeper analysis.
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