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ABSTRACT This paper develops a systematic method to design robust tracking controllers for multi-input
multi-output (MIMO) uncertain discrete-time systems with bounded parametric uncertainties, in particular
of rational multi-affine type, and generic discrete reference signals with bounded first or second discrete
derivatives, also in presence of generic disturbances with bounded first or second discrete derivatives. Theo-
retical tools and systematic methodologies are provided to effectively design robust innovative controllers for
the considered systems. Applicability and efficiency of the proposed methods are validated in two examples
via simulation and experimental tests.

INDEX TERMS Uncertain discrete-time MIMO systems, parametric uncertainties, robust tracking,
discrete-time controllers.

I. INTRODUCTION
There exist numerous discrete and continuous-time uncer-
tain systems, subject to non-standard disturbances, which
need to be efficiently regulated with discrete-time controllers,
whose main feature is to be versatile and easily realiz-
able using digital technologies. Examples of such systems
can be found among mechatronic, demographic, economic,
traffic management, environmental, agricultural, biological,
medical, and other systems (see, e.g., [1], [4], [11], [16],
[20]–[24], [36]).

Control of linear time-invariant (LTI) continuous-time
systems with discrete-time controllers is a well-studied
research topic, if reference signals and disturbances are
polynomial and/or sinusoidal ones, and the used approach
is to discretize a controlled system or a continuous-time
controller designed with continuous-time control techniques
(see, e.g., [6]–[8], [19], [25], [32]). It is well-known that
the last control approach can worsen the control system
performance or even result in unstable closed-loop systems.
Similarly, several control techniques for LTI and nonlin-
ear uncertain discrete-time systems have been proposed
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in presence of polynomial and/or sinusoidal references
and disturbances (see, e.g., [4], [5], [7]–[10], [12], [17],
[18], [25], [26], [29]–[35], [37]–[39], [41]–[45]). Uncertain
parameters of transfer matrices or time-domain representa-
tion ones of the controlled systems are also considered linear
or multi-linear (see, e.g., [2], [4], [10], [13], [14], [27]).

Note that for a continuous-time system the dependence
of its corresponding discrete-time representation matrices on
parameters is quite complex. The performance and/or control
design specifications are usually given by gains, settling time,
bandwidth, stability margins, mean-square error, or a com-
bination of the control signal energy with the mean-square
error.

This paper provides a systematic method for the robust
tracking design of MIMO uncertain discrete-time systems
with bounded parametric uncertainties, in particular, of ratio-
nal multi-affine type, and generic discrete reference signals
with bounded first or second discrete derivatives, also in
presence of generic disturbances with bounded first or second
discrete derivatives. Similar research for a class of MIMO
continuous-time systems has been conducted in [28] and [40].
Some results on robust tracking controller designwith generic
reference signals for continuous and discrete singular-input
singular-output (SISO) uncertain linear systems are provided
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in [21]. On the other hand, some results have been obtained
in [27] for MIMO uncertain discrete-time systems with
multi-linear structures with respect to parameters and con-
trollers without a proportional action, using the majorant
systems approach.

In this paper, MIMO uncertain discrete-time systems or
sampled-data plants are regulated with proportional- integral
(PI) and proportional-second order integral (PI2) discrete-
time controllers to track non-standard reference signals.
The provided results are particularly useful for mechatronic
systems (e.g., rigid and flexible Cartesian robots, rolling
mills, AGVs, conveyor belts, active suspension systems,
printing machines), whose reference signals and distur-
bances are represented by non-standard waveforms (see, e.g.,
[22], [23], [36]). A hardware-software prototype has been
constructed and used to validate utility of the proposed results
from the engineering point of view.

The paper contribution can be summarized as follows.
• The systematic control design approach is proposed
for generic uncertain LTI discrete-time or sampled-data
plants and reference signals and/or disturbances with
bounded first or second discrete derivatives.

• The proposed approach allows one to design a controller
minimizing the tracking error. Alternatively, the pro-
posed method allows one to design a controller mini-
mizing the maximum time constant.

• The innovative structure controllers with PI/PI2 con-
trol action have been developed. Comparisons of the
designed controllers to a classical feedback one are pre-
sented.

• The obtained results can be considered as a pseudo-
generalization of the Kharitonov’s results and stability
margins for the discrete-time systems.

The paper is organized as follows. In Section II, the con-
sidered class of MIMO uncertain discrete-time systems is
introduced, the synthesis problem is stated, and a theoret-
ical background is provided. Section III presents the main
analysis and synthesis results. Section IV provides a method
to effectively design robust controllers for the considered
systems. In Section V, the main proposed results are validated
in two examples via simulation and experimentally. Compar-
isons of the designed controllers to a classical feedback one
are presented in the second example. Section VI concludes
this study.

II. PROBLEM STATEMENT AND THEORETICAL
BACKGROUND
Consider an uncertain discrete-time MIMO plant described
by

xk+1 = A(p)xk + B(p)uk + E(p)dk
yk = C(p)xk + D(p)dk , (1)

where xk ∈ Rn is the system state, uk ∈ Rr is the control
input, dk ∈ Rl is a disturbance, yk ∈ Rm is the system
output, p ∈ ℘ ⊂ Rv is the vector of uncertain parame-

ters, A(p),B(p),E(p),C(p),D(p) are matrices of appropriate
dimensions.

Suppose that ℘ can be covered by a finite number N of
hyper-rectangles ℘j = [p−j , p

+

j ], and the conditions

rank
[
B(p) A(p)B(p) ... An−1(p)B (p)

]
= n

rank
[
I − A(p) B(p)
C(p) 0

]
= n+ m

rank
[
CT (p) AT (p)CT (p) ... (AT (p))n−1CT (p)

]
= n (2)

are satisfied for each p ∈ ℘.
Remark 1: The plant (1) can also represent a sampled-data

model of the continuous-time process

ẋ(t) = Ā(p)x(t)+ B̄(p)u(t)+ Ē(p)d(t)

y(t) = C(p)x(t)+ D(p)d(t). (3)

In such a case, if Ā(p) is a nonsingular matrix, then

A(p) = eĀ(p)T ,B(p) = Ā−1(p)
(
eĀ(p)T − I

)
B̄(p)

E(p) = Ā−1(p)
(
eĀ(p)T − I

)
Ē(p), (4)

where T is the sampling time.
Remark 2: The condition (2) implies that rank C = m ≤

n and rank B ≥ m, i.e., the m outputs of the plant are
independent and the number of the independent control inputs
is at least equal to the number of the outputs to be controlled.

The main objective of the paper is to control the plant (1)
to track any reference signal rk with bounded first discrete
derivative δ1rk = rk+1 − rk or bounded second discrete
derivative δ2rk = δ1(δ1rk ) = rk+2 − 2rk+1 + rk (see Fig. 1)
in presence of a disturbance dk with bounded first discrete
derivative δ1dk = dk+1 − dk or bounded second discrete
derivative δ2dk = dk+2 − 2dk+1 + dk .

FIGURE 1. A possible reference signal rk with bounded δ1rk and δ2rk .

Note that generic reference signals with bounded first or
second discrete derivatives are commonly encountered in
practice and easily realizable by digital technologies. In case
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of manufacturing systems, the first discrete derivative of is
proportional to the working velocity, while the discrete sec-
ond derivative is proportional to the acceleration.

In the following, for simplicity of notation, the explicit
dependence of A(p), B(p), E(p), C(p), D(p) on p is omitted
when unnecessary.

If the objective is to track reference signals with bounded
discrete derivatives, the plant (1) can be controlled using the
state feedback control scheme with a PI controller shown
in Fig. 2. Accordingly, in order to track reference signals
with bounded second discrete derivatives, the plant (1) can
be controlled using the state feedback control scheme with a
PI2 controller shown in Fig. 3.

FIGURE 2. State feedback control scheme with PI control action.

FIGURE 3. State feedback control scheme with PI2 control action.

The control scheme in Fig. 2 is represented as

xk+1 = Axk + Buk + Edk , uk=Kpek + Kizk + Ksxk
ek = rk − Cxk − Ddk

zk+1 = zk + ek=zk + rk − yk=zk + rk − Cxk − Ddk . (5)

Hence,

ξk+1=Ac1ξk+Bc1rk+Ec1dk , ek=Cc1ξk+rk−Ddk , (6)

where

Ac1 =
[
A+ BKt BKi
−C I

]
, Kt = Ks − KpC

Bc1 =
[
BKp
I

]
, Ec1 =

[
Et
−D

]
, Et = E − BKpD

Cc1 =
[
−C 0

]
, ξ =

[
x
z

]
. (7)

Similarly, the control scheme in Fig. 3 is represented as

ξk+1=Ac2ξk+Bc2rk+Ec2dk , ek=Cc2ξk+rk−Dd, (8)

where

Ac2 =

A+ BKt BKi1 BKi2
−C I 0
0 I I

 , Kt = Ks − KpC

Bc2 =

BKpI
0

 , Ec2 =

 Et
−D
0

 , Et = E − BKpD

Cc2 =
[
−C 0 0

]
, ξ =

 xz1
z2

 . (9)

The preliminary notation and definitions are introduced as
follows.
Let A =

{
aij
}

be a real n × m matrix, |A| is its
absolute value matrix, i.e., |A| =

{∣∣aij∣∣} and max |A| =
max

i=1,2,...,n;j=1,2,...,m

∣∣aij∣∣.
R+0 denotes the set of non-negative real numbers.

Given a ξ = [ξ1 ξ2 · · · ξn]T ∈ Rn,
_

ξ =
[
_

ξ 1
_

ξ 2 · · ·
_

ξ n

]T
∈

R+n0 , then |ξ | = [|ξ1| |ξ2| · · · |ξn|]T ≤
_

ξ =
[
_

ξ 1
_

ξ 2 · · ·
_

ξ n

]T
⇔ |ξi| ≤

_

ξ , i = 1, 2, · · · , n,⇔ ξ ∈
[
−
_

ξ ,
_

ξ
]
;max ξ =

max {ξ1, ξ2, · · · , ξn}.
Given a square matrix A ∈ Rn×n, λi(A) is the i-th

eigenvalue of A, α̂ = λmax(A) denotes max
i=1,2,...,n

‖λi(A)‖ , τ̂ =

−1/ln (λmax (A)) =−1/ln
(
α̂
)
is the maximum time constant

of A, α ≥ α̂ is an upper estimate of α̂, and τ ≥ τ̂ is an upper
estimate of τ̂ .
To design the proposed controllers, the following prelimi-

nary results are stated.
Lemma 1:GivenmatricesA ∈ Rn×n,B ∈ Rn×r ,C ∈ Rm×n,

if

rank
[
I − A B
C 0

]
= n+ m (10)

and the pair (A,B) is reachable, then the pairs(
A1 =

[
A 0
−C I

]
∈ R(n+m)×(n+m),

B1 =
[
B
0

]
∈ R(n+m)×r

)
(11)A2 =

 A 0 0
−C I 0
0 I I

 ∈ R(n+2m)×(n+2m) ,
B2 =

B0
0

 ∈ R(n+2m)×r
 (12)

are also reachable.
Proof: Let

(
F ∈ Rv×v,G ∈ Rv×ρ

)
be a pair of matrices. If

rank
([
λI − F G

])
= v, ∀λ ∈ C , (13)

where C is the space of complex numbers, the pair (F,G) is
reachable [7]. Hence, the pair (A1,B1) is reachable, if

rank
[
λIn+m − A1 B1

]
= n+ m, ∀λ ∈ C . (14)
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Since

rank
[
λIn+m − A1 B1

]
= rank

[
λIn − A 0 B
C (λ− 1)Im 0

]
= rank

[
λIn − A B 0

C 0 (λ− 1)Im

]
,

(15)

the equality (14) follows from (15) and (10), if λ = 1, and
from the reachability condition for the pair (A,B) and (15),
if λ 6= 1.
Similarly, the pair (A2,B2) is reachable, if

rank
[
λIn+2m − A2 B2

]
= n+ 2m, ∀λ ∈ C . (16)

Since

rank
[
λIn+2m − A2 B12

]
= rank

 λIn − A 0 0 B
C (λ− 1)Im 0 0
0 −I (λ− 1)Im 0


= rank

 λIn − A B 0 0
C 0 (λ− 1)Im 0
0 0 −Im (λ− 1)Im

 , (17)

the equality (16) follows from (17) and (10), if λ = 1, and
from the reachability condition for the pair (A,B) and (17),
if λ 6= 1.
Lemma 2: If r0 = 0 and d0 = 0, the controlled system (6)

can be represented as

ζk+1 = Ac1ζk + Bc1δ1rk + Ec1δ1dk
ek = Hc1ζk , Hc1 =

[
0 I

]
, (18)

or, equivalently, after applying the Zeta-transform, as

Cc1 (zI − Ac1)−1 [Bc1 Ec1]+ [I − D]

= Hc1 (zI − Ac1)−1 [Bc1 Ec1] (z− 1) , (19)

where δ1rk = rk+1 − rk , δ1dk = dk+1 − dk , ek = rk − yk is
the tracking error, and I is the m− order identity matrix.
Proof: Note that if r0 = 0 and d0 = 0, then (z− 1)Z(rk ) =

Z(δ1rk ), (z − 1)Z(dk ) = Z(δ1dk ), where Z(fk ) denotes the
Zeta-transform of fk . Setting

(zI − Ac1)−1 =
[
F1 F2
C (z− 1)I

]−1
=

[
G1 G2
G3 G4

]
, (20)

it follows that

G1=

(
F1 −

F2C
z− 1

)−1
, G3=−

C
z− 1

G1

G4=

(
I (z− 1)− CF−11 F2

)−1
, G2=−F

−1
1 F2G4. (21)

Given a matrix 0 ∈ Rm×m, it is easy to prove that

0(I (z− 1)− 0)−1 + I= (z− 1)(I (z− 1)− 0)−1. (22)

Hence,

Cc1 (zI − Ac1)−1 Bc1 + I

=CF−11 F2G4 − CG1BKp + I

=CF−11 F2
(
(z− 1)I − CF−11 F2

)−1
+ I + G3BKp(z− 1)

=

(
(z− 1)I − CF−11 F2

)−1
(z− 1)+ G3BKp(z− 1)

= (G4 + G3BKp)(z− 1)=Hc1 (zI − Ac1)−1 Bc1(z− 1) .

(23)

Similarly, using Symbolic Math Toolbox yields

Cc1(zI − Ac1)−1Ec1 − D

=
[
−CG1 −CG2

] [E − BKpD
−D

]
− D

= (z− 1)
[
G3 G4

] [E − BKpD
−D

]
= (z− 1)Hc1(zI − Ac1)−1Ec1. (24)

Lemma 3. If r0 = r1 = 0 and d0 = d1 = 0, the controlled
system (8) can be represented as

ζk+1 = Ac2ζk + Bc2δ2rk + Ec2δ2dk
ek = Hc2ζk ,Hc2 =

[
0 0 I

]
, (25)

or, equivalently, after applying the Zeta-transform, as

Cc2 (zI − Ac2)−1 [Bc2 Ec2]+ [I − D]

= Hc2 (zI − Ac2)−1 [Bc2 Ec2] (z− 1)2 , (26)

where δ2rk = rk+2 − 2rk+1 + rk , δ2dk = dk+2 − 2dk+1 +
dk , ek = rk − yk is the tracking error, and I is the m− order
identity matrix.
Proof: Note that if r0 = r1 = 0 and d0 = d1 = 0, then

(z−1)2Z(rk ) = Z(δ2rk ), (z−1)2Z(dk ) = Z(δ2dk ). The proof
follows upon verifying (26) via Symbolic Math Toolbox.
Lemma 4: If the pair of matrices

(
A ∈ Rn×n,C ∈ Rm×n

)
is

observable, then the pairs of matrices(
A1 =

[
A 0
−C I

]
∈ R(n+m)×(n+m) ,

H1 =
[
0 I

]
∈ Rm×(n+m)

)
(27)A2 =

 A 0 0
−C I 0
0 I I

 ∈ R(n+2m)×(n+2m) ,
H2 =

[
0 0 I

]
∈ Rm×(n+2m)

 (28)

are also observable.
Proof: The proof easily follows by noting that

rank
[
λI − AT1H

T
1

]
= n+ m, ∀λ ∈ C

rank
[
λI − AT2H

T
2

]
= n+ 2m, ∀λ ∈ C. (29)
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Lemma 5: Consider a nonsingular matrix function F(p) ∈
Rn̄×n̄, p ∈ ℘ =

[
p−, p+

]
⊂ Rν , defined as a ratio of a multi-

affine matrix function to a multi-affine polynomial

F(p) =

∑
i1,i2,··· ,iν∈{0,1}

Fi1,i2,··· ,iνp
i1
1 p

i2
2 · · · p

iν
ν∑

i1,i2,··· ,iν∈{0,1}
fi1,i2,··· ,iµp

i1
1 p

i2
2 · · · p

iν
ν

, (30)

where Fi1,i2,··· ,iν ∈ R
n̄×n̄, fi1,i2,··· ,iν ∈ R, and P ∈ R

n̄×n̄ is a
symmetric positive definite (p.d.) matrix. Then, themaximum
of λmax

(
Q(p)P−1

)
with respect to p ∈ ℘, where Q(p) =

FT (p)PF(p), is achieved at one of the 2ν vertices of ℘.
Proof: Note that for constants pj, j 6= i, it follows that

F(p) = (F0 + piF1)/(f0 + pif1), pi ∈ [p−i , p
+

i ]. Furthermore,
taking into account that λmax(QP−1) = max

x∈{x: xTPx=1}
xTQx

yields (31), as shown at the bottom of this page.
Therefore, defining p̂i, x̂ as the maximum points of func-

tion (32), as shown at the bottom of this page, and taking into
account that x̂TFT1 PF1x̂ ≥ 0, x̂T (F0+piF1)TP(F0+piF1)x̂ ≥
0, ∀pi, the relations (33) hold, as shown at the bottom of this
page.

It readily follows from (33) that if f1=0, then the maximum
of f (x̂, pi) is achieved at one of the vertices of the interval
[p−i , p

+

i ].
Now, consider the case f1 6= 0. If c2 = 0, thenF0x̂ = 0 and,

therefore, c1 = 0 as well. Hence, the maximum of f (x̂, pi) is
also achieved at one of the vertices of the interval [p−i , p

+

i ].
Otherwise, if c2 > 0, set z = f0 + pif1. Then,

ϕ(z) = f
(
x̂, (z− f0)/f1

)
= γ

(z− α)2 + ω2

z2
for z > 0 or z < 0, (34)

where γ > 0, α, ω ∈ R, α2+ω2
6= 0, are suitable constants.

From (34), it follows that

dϕ(z)
dz
=

2γ
z3

(
αz− α2 − ω2

)
. (35)

Hence, if α > 0, then ϕ(z) increases for z < 0, decreases
for z ∈ [0, (α2 + ω2)/α], and increases again for z >

(α2 + ω2)/α. Therefore, also in this case, the maximum of
f (x̂, pi) is achieved at one of the vertices of the interval
[p−i , p

+

i ]. The case α ≤ 0 is proved similarly.
Lemma 6: Consider a nonsingular matrix function F(p) as

that in (30), but with Fi1,i2,...,iv ∈ R
n̄×m̄ and a symmetric p.d.

matrix P ∈ Rn̄×m̄. Then, the maximum of λmax
(
FT (p)PF(p)

)
with respect to p ∈ ℘ is achieved at one of the 2ν vertices
of ℘.
Proof: Taking into account that λmax

(
FT (p)PF(p)

)
=

max
x∈{x: xT x=1}

xTFT (p)PF(p)x, the proof proceeds similarly to

the one of Lemma 5.
Lemma 7: Let A ∈ Rn̄×n̄ be a matrix with ν real distinct

eigenvalues λi, i = 1, . . . , ν, and µ = n−ν
2 distinct pairs

of complex conjugate eigenvalues λh± = αh ± jωh, h =
1, . . . , µ and let ui = i = 1, . . . , ν and uh± = uah± jubh, h =
1, . . . , µ be the associated eigenvectors. Then, denoting as Z∗

the conjugate transpose of the matrix of the eigenvectors Z =[
u1 . . . uνua1 + jub1ua1 − jub1 . . . uaµ + jubµuaµ − jubµ

]
and

as 3 = diag(λ1, . . . , λν, α1 + jω1, α1 − jω1, . . . , αµ + jωµ,
αµ − jωµ) the diagonal matrix of the eigenvalues, the matrix

P =
(
ZZ∗

)−1
=

[
ν∑
i=1

uiuTi + 2
µ∑
h=1

(
uahuTah + ubhu

T
bh

)]−1
(36)

max
pi∈[p

−

i , p
+

i ]
λmax

(
(F0 + piF1)TP(F0 + piF1)P−1

(f0 + pif1)2

)
= max

pi∈[p
−

i , p
+

i ], x∈{x: x
TPx=1}

xT (F0 + piF1)TP(F0 + piF1)x
(f0 + pif1)2

= max
pi∈[p

−

i , p
+

i ], x∈{x: x
TPx=1}

xTFT0 PF0x + x
T
(
FT0 PF1 + F

T
1 PF0

)
xpi + xTFT1 PF1xp

2
i

(f0 + pif1)2
(31)

f (x, pi) =
xTFT0 PF0x + x

T
(
FT0 PF1 + F

T
1 PF0

)
xpi + xTFT1 PF1xp

2
i

(f0 + pif1)2

∣∣∣∣∣
pi∈[p

−

i , p
+

i ], x∈{x: x
TPx=1}

(32)

max
pi∈[p

−

i , p
+

i ]
λmax

(
(F0 + piF1)TP(F0 + piF1)P−1

(f0 + pif1)2

)
= max

pi∈[p
−

i , p
+

i ]

x̂TFT0 PF0x̂ + x̂
T
(
FT0 PF1 + F

T
1 PF0

)
x̂pi + x̂TFT1 PF1x̂p

2
i

(f0 + pif1)2

= max
pi∈[p

−

i , p
+

i ]

c0 + c1pi + c2p2i
(f0 + pif1)2

c0 ≥ 0, c2 ≥ 0, c0 + c1pi + c2p2i ≥ 0, for ∀pi (33)
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is always p.d. Furthermore,

λmax

(
QP−1

)
= λ2max (A)⇒ τmax(A)

= −
2

ln
(
λmax

(
QP−1

)) , (37)

where Q = ATPA.
Note that if the matrix A has distinct eigenvalues,

the matrix P given by (36) is always p.d. and the equality
α =

√
λmax(QP−1) = λmax(A) always holds in (37), even if

not all eigenvalues of A have magnitudes less than one.

III. MAIN RESULTS
Theorem 1: Suppose that the dependence of the dynamic
matrix of the discrete-time system

xk+1 = A(p)xk , x ∈ Rn, p ∈ ℘ = [p−, p+] ⊂ Rv (38)

on uncertain parameters p is of rational multi-affine type.
If for a given p̂ ∈ ℘ the eigenvalues of the matrix
Â = A(p̂) are distinct and all with magnitude less than one,
where P̂ is the matrix obtained from (36) with A = Â, and
λmax(AT (p)P̂A(p)P−1) ≤ 1

(m̆s)2
< 1 in the 2v vertices of ℘,

then the system (38) is asymptotically stable for each p ∈ ℘,
with stability margin ms = 1

λmax(A)
≥ m̆s .

Proof. The proof follows from Lemmas 5 and 6.
Theorem 1 can be used to compute the stability mar-

gin ms and considered as a pseudo-generalization of the
Kharitonov’s results to discrete-time systems.
Theorem 2: Given the system

ζk+1 = Aci(p)ζk + Bci(p)δirk + Eci(p)δidk , ζ0 = 0

ek = Hciζk , i = 1, 2, (39)

where

δ1rk = δrk ∈ [−r̂1, r̂1] ⊂ R r , r̂1 ≥ 0
δ1dk = δdk ∈ [−d̂1, d̂1] ⊂ R r , d̂1 ≥ 0
δ2rk ∈ [−r̂2, r̂2] ⊂ R r , r̂2 ≥ 0
δ2dk ∈ [−d̂2, d̂2] ⊂ R r , d̂2 ≥ 0, (40)

and P ∈ Rn̄i×n̄i , n̄1 = n+m, n̄2 = n+2m is a symmetric p.d.
matrix. Assuming that the plant matrices have rational multi-
affine structures with respect to parameters ℘ = [p−, p+],
the following equalities hold:

τi = −1/ ln(αi)

|ek | ≤ Grir̂i + Gid d̂i =
{
grij1j2

}
r̂i +

{
gdij1j2

}
d̂i , (41)

where

ai = max
p∈Vp

√
λmax

(
ATci(p)PAci(p)P

−1
)
≥ α̂

= max
p∈℘

λmax (Aci(p))

grij1j2 =
bij1hij2
1− αi

, gdij1j2 =
eij1hij2
1− αi

bij1 = max
p∈Vp

√
bTcij1Pbcij1 , hij2 =

√
hcij2P−1h

T
cij2

eij1 = max
p∈Vp

√
ecij1TPecij1 (p) , (42)

bcij1 is the j1-th column of Bci, hij2 is the j2-th row ofHci, ecij1
is the j1-th column ofEci(p), andVp is the set of the 2ν vertices
of ℘.
Proof: The proof follows from [27] and Lemmas 2, 3,

and 6.
A more general method to obtain the maximum time con-

stant and the maximum absolute values of the system (39)
outputs is based on the following theorem.
Theorem 3: Given the system (39), then

τ̂i = −1/ln
(
max
p∈℘

λmax (Aci)
)

|ek | ≤ Grir̂i + Gid d̂i, ∀k ∈ [0, kf ], (43)

where

Gri = max
p∈℘

kf∑
h=0

∣∣∣HciAhci(p)Bci∣∣∣
Gdi = max

p∈℘

kf∑
h=0

∣∣∣HciAhci(p)Eci(p)∣∣∣. (44)

Proof: The proof follows from the inequality

|ek | ≤
k∑

h=0

∣∣∣HciAhci(p)Bci∣∣∣ |δirk−h|
+

k∑
h=0

∣∣∣HciAhci(p)Eci(p)∣∣∣ |δidk−h| . (45)

The next result is used to optimize performance of the control
system over eigenvalues of its dynamic matrix obtained with
nominal values pn of uncertain parameters.
Lemma 8: The roots of the polynomial

d(λ)= (λ2+d11λ+ d21). · · · .(λ2 + d1n̄/2λ+d2n̄/2), (46)

if n̄ is an even number (respectively, of the polynomial

d(λ) = (λ2 + d11λ+ d21). · · ·

. (λ2 + d1(n̄−1)/2λ+ d2(n̄−1)/2)(λ+ dn̄), (47)

if n̄ is an odd one), have magnitude ρ < 1, if and only if

Fd =

 F2 · · · 0
· · · · · · · · ·

0 · · · F2




d11
d21
...

d1n̄/2
d2n̄/2

 <



1
1
1
...

1
1
1


= c,

(Fd=


F2 · · · 0 0
· · · · · · · · · · · ·

0 · · · F2 0
0 · · · 0 F1




d11
d21
...

d1(n̄−1)/2
d2(n̄−1)/2

dn̄


<



1
1
1
...

1
1
1
1
1


=c), (48)
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where

F2 =

−1/ρ −1/ρ2

1/ρ −1/ρ2

0 1/ρ2

 , F1 =
[
−1/ρ
1/ρ

]
. (49)

Proof: According to the Jury criterion, the roots of the
polynomial d(λ) = λ2 + d1/ρλ + d2/ρ2 have magnitudes
less than one, if and only if 1 + d1/ρ + d2/ρ2 > 0,
1 − d1/ρ + d2/ρ2 > 0, d2/ρ2 < 1. The proof
follows.
Remark 3: A good choice for the eigenvalues of the control

system dynamicmatrixAci(pn) is given by eigenvalues having
magnitudes less or equal to a given ρ < 1 or eigenvalues
of a low-pass digital Butterworth filter with cutoff frequency
ωn ∈ (0, 1).
Remark 4: Given a reference signal rk = rc(t)|t=Tk ,

the change of variables t = τ/ρ, ρ > 1, yields
δ1
(
rc(τ/ρ)|τ=Tk

)
∼= δ1rk/ρ, δ2

(
rc(τ/ρ)|τ=Tk

)
∼= δ2rk/ρ2.

Hence, ‘‘halving the velocity’’ (i.e., assuming ρ = 2)
makes the second discrete derivative (‘‘acceleration’’) about
four times less and reduces the maximum tracking error
accordingly. ‘‘Dividing the velocity by three’’ (ρ = 3) makes
the second discrete derivative about nine times less, etc.

IV. CONTROLLER DESIGN
To design the proposed controllers, note that

Ac1 =
[
A+ BKt BKi
−C I

]
=

[
A 0
−C I

]
−

[
B
0

] [
−Kt −Ki

]
= A1 − B1K , (50)

Ac2 =

A+ BKt BKi1 BKi2
−C I 0
0 I I


=

 A 0 0
−C I 0
0 I I

−
B0
0

[−Kt −Ki1 −Ki2 ]
= A2 − B2K . (51)

Hence, since in view of Lemma 1 the pairs (A1, B1) and
(A2, B2) are reachable, the eigenvalues of Ac1 and Ac2 for
a fixed p can be assigned at will. Therefore, since in view of
Lemma 4 the control system, whose output coincides with the
tracking error ek , is observable with suitably chosen matri-
ces K and Kp, it is possible to stabilize the control system
and optimize a performance index related to the tracking
error.

In view of Theorem 2, if the plant matrices are ratio-
nal multi-affine with respect to parameters, upper estimates
of the maximum time constant τi of Aci(p) and/or the
gains grij1j2 , gdij1j2 can be obtained, upon covering ℘ with
a finite number of N hyper-rectangles ℘j = [p−j , p

+

j ],

as follows:

τi = −1/max
j

log

(
max
p∈Vpj

√
λmax

(
ATci(p)PjAci(p)P

−1
j

))

grij1j2 = max
j


max
p∈Vpj

√
bTcij1Pjbcij1

√
hcij2P

−1
j hTcij2

1− max
p∈Vpj

√
λmax

(
ATci(p)PjAci(p)P

−1
j

)


gdij1j2 = max
j


max
p∈Vpj

√
eTcij1Pjecij1 (p)

√
hcij2P

−1
j hTcij2

1− max
p∈Vpj

√
λmax

(
ATci(p)PjAci(p)P

−1
j

)
 ,
(52)

where Pj is obtained from (36) with A = Aci(p) computed
at the midpoint of the interval [p−j , p

+

j ] or a close point,
provided that con(Pj) � 1, and Vpj is the set of 2ν vertices
of ℘j. If the matrices of the plant are not rational multi-affine
with respect to parameters, time constants τi and gains grij1j2 ,
gdij1j2 can be obtained using the equations (43), (44).

It is well-known that the proportional actionmakes the con-
trol system faster and results in reducing the error ek . On the
other hand, the control magnitude may increase, for instance,
due to sudden variations of rk and/or dk . For example,
if ζ0 = 0, then u0 = Kp(r0−Dd0). Therefore, it is appropriate
to make the matrix Kp bounded,

∣∣Kp∣∣ ≤ K̂p. Note that once
the matrix K (and, therefore, the matrix Kt ) is computed and
the matrix Kp is fixed, the relation Kt = Ks − KpC implies
Ks = KpC + Kt .
Now, it is possible to design the proposed controllers

by solving optimization problems. For instance, taking into
account Lemma 8, if a desired maximum value êd is chosen
for the maximum error ê = max(Grir̂i + Gdid̂i), the design
algorithm consists in solving the following min-max condi-
tioned problem:

min
d :Fd≤c

min
Kp:|Kp|≤K̂p

max
p∈℘

(êd − ê)2

or min
ωn∈(0,1)

min
Kp:|Kp|≤K̂p

max
p∈℘

(êd − ê)2. (53)

This problem can be solved by using Matlab commands
fmincon and place (see e.g., [2]). Note that if êd = 0, then (53)
provides the controller minimizing ê.

Furthermore, it is possible to design a controller to mini-
mize

min
d :Fd≤c

min
Kp:|Kp|≤K̂p

max
p∈℘

(τ̂d − τ̂ )2

or min
ωn∈(0,1)

min
Kp:|Kp|≤K̂p

max
p∈℘

(τ̂d − τ̂ )2, (54)

where τ̂d is a desired maximum time constant, and then to
compute Gri and Gid (and, therefore, the maximum values of
r̂i and d̂i) to obtain a prefixed maximum value of ê.
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Finally, it is also possible to design a controller minimizing
a quality index of the following type:

pmax
p∈℘

(êd − ê)2 + qmax
p∈℘

(τ̂d − τ̂ )2, p, q > 0. (55)

V. EXAMPLES
The following examples demonstrate applicability and effi-
ciency of the results obtained in the previous sections.
Example 1: Consider an uncertain plant

xk+1 = A(p1, p2)xk + Buk , yk = Cxk

A(p1, p2) =
A0 + A1p1 + A2p2 + A12p1p2

p1 + p2 + p1p2

A0 =
[

0.4412 0.7856
−0.3616 0.1805

]
A1 =

[
0.2518 −0.2984
0.3246 0.3308

]
A2 =

[
0.1058 −0.1772
−0.3220 0.0376

]
A12 =

[
0.1830 −0.1370
0.1860 0.1882

]
B =

[
0
1

]
, C =

[
1 0

]
p1 ∈

[
0.45 0.55

]
, p2 ∈

[
0.45 0.55

]
(56)

regulated by the controller

zk+1 = zk + ek , ek = rk − yk , uk = Kpek + K1zk + Ksxk
Kp = 2, K1 = 0.0735,Ks = [1.9729 0.4451]. (57)

The closed-loop control system is given by

ζk+1 = Ac1(p1, p2)ζk + Bc1δ1rk
ek = [0 0 1] ζk

Ac1(p1, p2) =
[
A(p1, p2)+ B(Ks − KpC) BK1

−C 1

]
Bc1 =

[
BKp
1

]
. (58)

It is difficult to establish the asymptotic stability of the
control system (58) and even more difficult to calculate
α̂ = max

p1,p2∈[0.45, 0.55]
λmax(Ac1(p1, p2)). Numerically, it is

computed as â = 0.8742. By setting p̂1 = 0.5, p̂2 = 0.5
and using the first equality of (52) with N = 1, an upper
estimate of α̂ is calculated as α = 0.9510.
By using the first equality of (52) with N = 4 (four

rectangles), an upper estimate is found as a = 0.9047.
Example 2: Consider an uncertain unstable plant

ẋ = Acx + Bcu+ Ecd, y = Cx, A = p1, B = E = p2
p1 ∈ [9, 11], p2 ∈ [6.3, 7.7],C = 1. (59)

The objective is to design a discrete-time controller with
sampling time T = 0.05s.

The sampled-data model of the plant is given by

xk+1 = Axk + Buk + Edk , A = e0.05p1 ,

B = E = (e0.05p1 − 1)p2/p1. (60)

a) Using the classical control theory, a sub-optimal P
controller with Butterworth cutoff angular frequency ωn =
20rad/s under the constraint Kp ∈ [0, 10] and state feedback
minimizing the steady-state error corresponding to the unit
step input is obtained as

uk = Kpek + Ksxk = 1.390ek − 1.431xk . (61)

b) Using Theorem 3, a sub-optimal PI controller with
Butterworth cutoff angular frequency ωn = 20rad/s under
the constraint Kp ∈ [0, 10] and state feedback minimizing
Gr1 is obtained as

zk+1 = zk + ek , ek = rk − yk
uk = 1.900ek + 1.013zk − 2.299xk
Gr1 = 2.030. (62)

c) Using again Theorem 3, a sub-optimal controller PI2
with Butterworth poles for ωn = 20rad/s under the con-
straint Kp ∈ [0, 10] and state feedback minimizing Gr2 is
obtained as

z1k+1 = z1k + ek , z2k+1 = z2k + z1k
uk = 2.800ek + 2.972z1k + 0.810z2k − 2.694xk
Gr2 = 3.909. (63)

Figure 4 shows the errors corresponding to the unit step
input obtained with the designed control laws, assuming
p1 = 10, p2 = 7.

FIGURE 4. Time histories of unit step reference rk and corresponding
errors for controllers (61), (62), (63) with p1 = 10,p2 = 7.

Figure 5 presents the tracking errors for the unit step
input obtained with the designed control laws, assuming
p1 = 9, p2 = 7.7.
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FIGURE 5. Time histories of unit step reference rk and corresponding
errors for controllers (61), (62), (63) with p1 = 9,p2 = 7.7.

FIGURE 6. Time histories of filtered square wave reference rk and
corresponding errors for controllers (61), (62), (63) with p1 = 9,p2 = 7.7.

Figure 6 shows the tracking errors for a filtered square
wave signal obtained with the designed control laws, assum-
ing p1 = 9, p2 = 7.7. Note that the tracking errors ek1 and ek2
are almost equal to zero in the intervals where the reference
is close to constant.

FIGURE 7. Time histories of filtered sawtooth wave reference rk and
corresponding errors for controllers (61), (62), (63) with p1 = 9,p2 = 7.7.

FIGURE 8. Time histories of reference rk with max |δ1rk | = 0.149 and
max |δ2rk | = 0.0038 and corresponding errors for controllers (61), (62),
(63) with p1 = 9,p2 = 7.7.

Figure 7 shows the tracking errors for a filtered sawtooth
wave signal obtained with the designed control laws, assum-
ing p1 = 9, p2 = 7.7. Note that the tracking error ek2 is
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FIGURE 9. Experimental prototype.

FIGURE 10. Time histories of experimental error es and theoretical
error et , using controller (62).

almost equal to zero in the intervals where the reference is
close to linear.

Figure 8 shows the tracking errors for a reference signal
with max |δ1rk | = 0.149 and max |δ2rk | = 0.0038 obtained
with the designed control laws, assuming p1 = 9, p2 = 7.7.
It is theoretically obtained from (42) that Gr1max |δ1rk | =
0.3025 and Gr2max |δ2rk | = 0.0147, while it follows from
Fig. 8 that |ek1| ≤ 0.1667 and |ek2| ≤ 0.0071.
The last two cases have been experimentally validated

by using an industrial HP PC equipped with a 12-bit
input/output data acquisition board (National Instruments)
and a positive-feedback RC circuit (see Fig. 9). The Matlab
Real-Time Windows Target has been used with a 20 Hz
sampling frequency.
Using the controller (62), Figure 10 shows the time

histories of the experimental error es and theoretical
error et .

Using the controller (63), Figure 11 shows the time histo-
ries of the experimental error es and theoretical error et .

FIGURE 11. Time histories of experimental error es and theoretical
error et , using controller (62).

FIGURE 12. Time histories of rk and corresponding errors for
controllers (61), (62), (63) with p1 = 9,p2 = 7.7 after halving the
reference velocity.

Finally, if the reference ‘‘velocity’’ is halved, then the
tracking errors obtained with the controllers PI and PI2 are
reported in Figs. 11 and 12, respectively. Note that after the
transient phase the obtained errors are respectively the half
and the one-fourth of those in the previous case, in accordance
with Remark 4.

To reduce the tracking errors or increase the reference
‘‘velocity’’ without reducing the errors, it is possible to
increase ωn. However, this approach may result in higher
control signals during the transient phase.
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VI. CONCLUSION
This paper provides a novel systematic method to design
robust tracking controllers for MIMO uncertain discrete-time
systems, with bounded parametric uncertainties, in particular,
of rational multi-affine type, and discrete reference signals
with bounded first or second discrete derivatives, also in
presence of disturbances with bounded first or second dis-
crete derivatives. The ongoing research is being conducted
on robust tracking methods and fault detection techniques for
MIMO uncertain nonlinear discrete-time systems, in particu-
lar, with unmeasurable states.
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