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a b s t r a c t 

The paper illustrates the numerical procedure, based upon a Boundary Element (BE) approach, developed to 
efficiently evaluate the warping functions in the Saint Venant theory of beam-like solids having both compact 
and thin-walled sections. Specifically, Chebyshev nodes are selected as collocation points of the BE formulation 
associated with the relevant pure Neumann problem and the entries of the resulting linear system of equations 
are evaluated analytically by invoking recursive formulas. 

Assuming a polynomial interpolation for the unknown function over each boundary element, we show that 
a reduction in the numerical accuracy of the solution is achieved if the polynomial degree exceeds a given order 
strictly related to the strategy adopted to discretize the boundary. For this reason, in order to automatically cope 
both with compact and thin-walled domains, a general criterion has been established for properly selecting the 
best combination of polynomial degree and edge discretization capable of reducing the numerical error of the 
procedure below a given tolerance. 

1. Introduction 1 

The shear stress analysis in the Saint Venant theory of beam-like 2 

solids [1,2] and related one-dimensional (1D) models [3–9] represents 3 

a classical problem in the theory of elasticity. In particular, it has been 4 

recently proved [3] that a 1D beam model can be derived so as to ensure 5 

both energetic and kinematic consistency with the Saint Venant three- 6 

dimensional (3D) model. 7 

Full exploitation of the new beam model requires the evaluation of 8 

additional tensors which are defined as suitable functions of the torsion 9 

and shear warping functions defined over the cross section [3] . 10 

Hence the preliminary step to the application of the beam model 11 

presented in [3] is the solution of the following harmonic problems with 12 

pure Neumann boundary conditions, in short pure Neumann problems: 13 

14 { 

𝜑 ∇ 

2 = 0 , ∀𝐫 ∈ Σ , 
𝜑 ∇ ⋅ 𝐧 𝜕 = − 𝐫 ⟂ ⋅ 𝐧 𝜕 , ∀𝐫 ∈ 𝜕Σ , (1) 

15 { 

𝝍 ∇ 

2 = 𝐨 , ∀𝐫 ∈ Σ , 
( 𝝍 ⊗ ∇) 𝐧 𝜕 = − 𝐀𝐧 𝜕 , ∀𝐫 ∈ 𝜕Σ , (2) 

related to torsion and shear, respectively. 16 

In the previous formulas, Σ ⊂ ℝ 

2 is an arbitrarily shaped domain and 17 

𝜕Σ its boundary, ∇ denotes the gradient and ∇ 

2 the two-dimensional 18 
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(2D) Laplacian. Furthermore, the position vector 𝐫 = [ 𝑥, 𝑦 ] 𝑇 is defined 19 

in a Cartesian reference frame having the origin at the centroid G of Σ, 20 

𝐫 ⟂ = [− 𝑦, 𝑥 ] 𝑇 represents its counter-clockwise rotation, n 𝜕 is the outer 21 

unit normal to 𝜕Σ while A is the symmetric tensor defined in [10] 22 23 

𝐀 = 

1 + ̄𝜈

4 
( 𝐫 ⊗ 𝐫) + 

1 − 3 ̄𝜈
8 

( 𝐫 ⋅ 𝐫) 𝐈 , (3) 

where I is the identity tensor and 𝜈̄ the quantity defined by 24 

𝜈̄ = 

𝜈

1 + 𝜈
(4) 

as a function of the Poisson’s ratio 𝜈. 25 

Problems analogous to (1) and (2) are encountered in linear elasticity 26 

[11] , beam theory [12–15] , biomechanics of brain [16] and spine [17] , 27 

mechanics of planetary bodies [18] , convective heat transfer [19,20] . 28 

Analytical solution of the warping functions required in the Saint 29 

Venant flexure-torsion problem are possible only for very simple do- 30 

mains (circle, rectangle) by using Fourier series [1,2] or conformal map- 31 

ping [21] . 32 

In more complex cases numerical methods, such as the Complex 33 

Polynomial Method [22,23] , the Complex Variable Boundary Element 34 

Method [24–26] , the Line Element-Less Method [7,27,28] , the Finite El- 35 

ement Method [11,29–31] and the Boundary Element Method [32–34] , 36 

need to be resorted to. 37 
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With specific reference to torsion problems a thorough comparison 38 

between the first three methods has been carried out in [35] , although 39 

it is undoubted that the most general approaches to the evaluation of 40 

the warping functions are still represented by the FEM and the BEM. 41 

It is well known that the FEM requires the whole domain to be dis- 42 

cretized into two-dimensional elements (triangular or quadrilateral) so 43 

that generation and inspection of the finite element mesh can be la- 44 

borious and time consuming, especially if the geometry of the domain 45 

is not simple and/or is thin-walled. In particular mesh refinement and 46 

high element density is required at critical regions of the domain such 47 

as holes, notches or corners. Moreover, while unknown fields are com- 48 

puted quite accurately, the evaluation of the relevant derivatives is less 49 

effective, especially in regions characterized by large gradients. 50 

Conversely the Boundary Element Method (BEM) requires a 51 

boundary-only discretization, thus exhibiting improved accuracy on 52 

comparatively coarse meshes and reduces the number of unknowns by 53 

one order. 54 

During the past two decades, the Boundary Element Method has 55 

rapidly improved, and is nowadays considered as a competing method 56 

to the Finite Element Method [36] . Due to its intrinsic feature about 57 

boundary discretization, the BEM has been used very successfully for 58 

domains having low perimeter/area (surface/volume) ratios. Further- 59 

more, the method is particularly effective in computing the derivatives 60 

of the field function, e.g. stresses in solid mechanics. 61 

This motivates the adoption of a BEM technique in solving problems 62 

(1) and (2) , a strategy exploited as well for addressing torsion and flex- 63 

ure of composite beams [37] and solving several more refined problems 64 

related to isotropic and composite beams, see, e.g., [38] and references 65 

quoted therein. 66 

However, a careful scoping of the literature devoted to the solution of 67 

pure Neumann problems has shown that little attention has been paid to 68 

investigate the effects that the strategy adopted to discretize the bound- 69 

ary and to choose the polynomial degree assumed for the unknown func- 70 

tion has on the accuracy of the solution. 71 

Actually, differently from the finite element approach, a finer dis- 72 

cretization of the boundary and/or an increase of the polynomial degree 73 

over each element is not necessarily associated with a more accurate nu- 74 

merical solution. These aspects are particularly important for effectively 75 

addressing both compact and thin-walled sections and to investigate on 76 

the convenience of adopting constant shape functions over the bound- 77 

ary, a strategy usually exploited in the analysis of beam problems by 78 

BEM [33] . 79 

Moreover, the boundary element method can be affected by loss of 80 

accuracy [39] in the regions close to the boundary, a feature usually 81 

known as boundary layer effect in the BEM literature [36] . This is typi- 82 

cally due to the possibly inaccurate evaluation of nearly singular bound- 83 

ary element integrals. As a matter of fact they turn out to be regular 84 

from the analytical point of view but their actual evaluation requires to 85 

handle integrals whose magnitude can be very large as the calculation 86 

point approaches the source points embedded in the boundary integral 87 

elements. 88 

Considerable difficulties can be experienced in the evaluation of such 89 

nearly singular integrals since neither conventional Gauss quadrature 90 

rules nor the methods designed for singular integrals are applicable 91 

[40–42] . 92 

Thus, during the last two decades, a considerable effort has been de- 93 

voted to develop sophisticated computational algorithms for the accu- 94 

rate evaluation of nearly singular integrals [43,44] . Without any claim 95 

of completeness, we mention element subdivision methods [45,46] , 96 

semi-analytical methods [47–49] and the so-called nonlinear transfor- 97 

mations [20,50–53] . 98 

In this paper we present a novel solution scheme capable of produc- 99 

ing accurate and efficient solutions both for compact and thin-walled 100 

domains. It is obtained by collocating the boundary integral formula- 101 

tion that characterizes the so-called direct BEM at Chebyshev nodes, as 102 

suggested in [54] , and providing an analytical evaluation of the result- 103 

ing integrals based on recursive formulas. This last feature, in particular, 104 

completely by-passes the accurate evaluation of nearly singular bound- 105 

ary element integrals. 106 

Compared to harmonic problems with Dirichlet boundary condi- 107 

tions, the Neumann problem has three peculiar features. The first one is 108 

the so-called compatibility condition that has to be fulfilled by the data 109 

assigned on the domain boundary in order to guarantee the existence of 110 

a solution. 111 

The second one is that, to the best of the authors knowledge, no 112 

case of degenerate scale has been reported till now in the literature 113 

[55–58] for the Laplace equation with Neumann conditions. 114 

The third and more important feature is the singular linear system 115 

of equations associated with a pure Neumann problem due to the fact 116 

that its solution is defined up to an arbitrary constant. Following the 117 

analysis developed in [59] we address this problem by adding an extra 118 

condition enforcing the vanishing of the mean value of the unknown 119 

harmonic function over the domain. 120 

The coefficient matrix of the linear system resulting from the 121 

discretized boundary integral equation is fully populated and non- 122 

symmetric so that the efficiency in achieving a solution still represents 123 

one of the most challenging problems for the BEM [60] . Moreover, en- 124 

forcement of the mean zero condition makes rectangular the augmented 125 

matrix what calls for the use of a generalized inverse in the solution of 126 

the algebraic problem associated with the continuous Neumann prob- 127 

lem. 128 

Adopting a polynomial expansion of the unknown function over each 129 

element we first show how the entries of the coefficient matrix and of the 130 

load vector can be evaluated analytically by means of recursive formulas 131 

proved in the paper. 132 

A thorough numerical analysis has been carried out in order to ob- 133 

tain the best combination between the boundary discretization and the 134 

degree of the polynomial approximation for the harmonic function over 135 

each element. Actually, depending on the shape of the domain and the 136 

adopted discretization, the degree of the polynomial cannot be arbitrar- 137 

ily increased since reduction in numerical accuracy can be experienced. 138 

For this reason a suitable algorithm is proposed in order to select the op- 139 

timal degree of the polynomial approximation consistent with a given 140 

discretization. 141 

A further algorithm is illustrated in order to define the optimal com- 142 

bination of a discretization parameter and the polynomial degree able 143 

to provide a numerical error that is below a given tolerance indepen- 144 

dently from the shape of the beam section, either compact or thin- 145 

walled. 146 

The paper is organized as follows. In Section 2 the numerical strategy 147 

used for the solution of a pure Neumann problem is outlined. In partic- 148 

ular, it is shown how the differential problem is reduced to an algebraic 149 

problem requiring the evaluation of the unknown functions along the 150 

boundary. The analytical evaluation of the entries of the coefficient ma- 151 

trix related to the algebraic problem is addressed in Section 3 while 152 

Section 4 details the analytical expression of the known vector associ- 153 

ated with pure Neumann problems whose solution is required for the 154 

shear stress analysis in the Saint Venant theory. In Section 5 the role 155 

of the parameters governing the boundary discretization and the in- 156 

terpolating functions is analyzed in detail; furthermore a criterion to 157 

control the accuracy of the numerical solution is discussed. Finally, in 158 

Section 6 the results of some numerical tests are presented for both com- 159 

pact and thin-walled sections, along with a comparison with analytical 160 

solutions. 161 

2. A boundary integral solution of a pure neumann problem 162 

In order to derive a boundary element formulation of the differential 163 

problems (1) and (2) we exploit the related weak formulation based 164 

on the second Green’s identity [60] . To comprehensively address both 165 

problems, we make reference to a generic Neumann problem formulated 166 

2 
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as follows 167 { 

Γ∇ 

2 = 0 , ∀𝐫 ∈ Σ , 
Γ∇ ⋅ 𝐧 𝜕 = 𝝎 ⋅ 𝐧 𝜕 , ∀𝐫 ∈ 𝜕Σ , (5) 

where Γ: r ∈Σ↦Γ( r ) is a twice continuously differentiable scalar func- 168 

tion and 𝝎 defines the boundary conditions enforced on 𝜕Σ. 169 

Assuming a polynomial approximation for the restriction of the har- 170 

monic function Γ to the domain boundary, an algebraic problem is as- 171 

sembled in order to evaluate the coefficients defining the approximated 172 

expression of the unknown function. 173 

2.1. Weak expression of the harmonic field 174 

The weak formulation of the differential problem (5) is derived by 175 

considering an arbitrary scalar function 𝜁( r ) twice continuously differ- 176 

entiable on Σ ⊂ ℝ 

2 and applying the second Green’s identity [60] to get 177 

178 

∫Σ Γ 𝜁∇ 

2 d 𝐴 − ∫𝜕Σ Γ 𝜁∇ ⋅ 𝐧 𝜕 d 𝑠 = − ∫𝜕Σ 𝜁𝝎 ⋅ 𝐧 𝜕 d 𝑠 . (6) 

Assuming for 𝜁 the fundamental solution of the Laplace equation 179 

𝜁 = 

1 
2 𝜋

ln ‖‖𝐫 − 𝐫 ∗ ‖‖ , 𝜁∇ = 

𝐫 − 𝐫 ∗ 

2 𝜋‖𝐫 − 𝐫 ∗ ‖2 . (7) 

and recalling the properties of the Dirac delta function, Eq. (6) becomes 180 

𝑐( 𝐫 ∗ )Γ( 𝐫 ∗ ) − 

1 
2 𝜋 ∫𝜕Σ Γ( 𝐫) 

𝐫 − 𝐫 ∗ ‖𝐫 − 𝐫 ∗ ‖2 ⋅ 𝐧 𝜕 ( 𝐫) d 𝑠 
= − 

1 
2 𝜋 ∫𝜕Σ ln 

‖‖𝐫 − 𝐫 ∗ ‖‖𝝎 ( 𝐫) ⋅ 𝐧 𝜕 ( 𝐫) d 𝑠 , (8) 

where the coefficient c ( r ∗ ) depends on whether the source point r ∗ be- 181 

longs to the interior of the domain Σ, to its boundary 𝜕Σ or is an external 182 

point: 183 

𝑐( 𝐫 ∗ ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
1 , if 𝐫 ∗ ∈ Σ̊ , 
Δ𝜃
2 𝜋
, if 𝐫 ∗ ∈ 𝜕Σ , 

0 , if 𝐫 ∗ ∉ Σ , 

(9) 

being Δ𝜃 the angle between the right and the left tangent to 𝜕Σ in r ∗ . 184 

More specifically, let 𝐭 + 
𝜕 

and 𝐭 − 
𝜕 

be the unit tangent vectors directed ac- 185 

cording to the positive and the negative orientation of 𝜕Σ, respectively. 186 

In doing so, Δ𝜃 is the angle measured in a counter-clockwise direction 187 

from 𝐭 + 
𝜕 

to 𝐭 − 
𝜕 

. 188 

It is worth being remarked that Eq. (8) represents a weak solution of 189 

the Neumann problem (5) in the sense that the value of the unknown 190 

function Γ at the point r ∗ is expressed in terms of line integrals. This 191 

way of expressing the unknown function holds true either if the point 192 

r ∗ at which Γ is evaluated belongs to the interior or to the boundary of 193 

the 2D domain Σ. Conversely, it is conventionally assumed Γ( 𝐫 ∗ ) = 0 if 194 

r ∗ is outside the domain, what implies condition (9) 3 . 195 

On the other hand, the actual applicability of (8) relies on the ca- 196 

pability to evaluate the relevant line integrals, as well as on the major 197 

requirement of the field Γ to be known at least on the boundary 𝜕Σ. 198 

These issues will be addressed in the next section by introducing 199 

appropriate hypotheses on the shape of the domain Σ and the restriction 200 

of Γ on the boundary. 201 

2.2. Numerical approximation of the harmonic field 202 

Let assume Σ to be a plane domain of arbitrary polygonal shape. 203 

Its boundary 𝜕Σ is the union of C simple closed curves 𝜕Σb and the b - 204 

th boundary is a polygon having n b straight sides 𝜕Σ𝑏 𝑗 of length 𝑙 𝑏 𝑗 , 205 

connecting two successive vertices, 𝑉 𝑏 𝑗 and 𝑉 𝑏 𝑗+1 : 206 

𝜕Σ = 

𝐶 ⋃
𝑏 =1 
𝜕Σ𝑏 = 

𝐶 ⋃
𝑏 =1 

𝑛 𝑏 ⋃
𝑗=1 
𝜕Σ𝑏 𝑗 . (10) 

Fig. 1. Multiply-connected polygonal domain. 

As shown in Fig. 1 , the vertices 𝑉 𝑏 𝑗 are sorted in counter-clockwise 207 

for the outer boundary 𝜕Σ1 and in clockwise order for the inner bound- 208 

aries 𝜕Σ𝑏 , 𝑏 = 2 , … , 𝐶 . The location of the vertices in the Cartesian ref- 209 

erence system is denoted as 𝐫 𝑏 𝑗 . 210 

Since the domain is multiply-connected, the line integral on the sec- 211 

tion boundary 𝜕Σ, according to (10) , can be expressed as 212 

∫𝜕Σ( ⋅) d 𝑠 = 

𝐶 ∑
𝑏 =1 

𝑛 𝑏 ∑
𝑗=1 

∫𝜕Σ𝑏 𝑗 
( ⋅) d 𝑠 𝑏 𝑗 = 

𝑛 ∑
𝑘 =1 

∫𝜕Σ𝑘 ( ⋅) d 𝑠 𝑘 , (11) 

where the pair of indices ( b , j ) has been replaced by 𝑘 = 1 , … , 𝑛 in order 213 

to simplify the notation, n being the total number of segments defining 214 

the boundary: 215 

𝑛 = 

𝐶 ∑
𝑏 =1 
𝑛 𝑏 . 

Please observe that, in order to introduce a finer discretization of the 216 

boundary, it is possible to introduce a number of supplementary vertices 217 

dividing the k -th edge in m k elements, without changing the shape of the 218 

domain. Hence the total number N of elements along the boundary is 219 

given by 220 

𝑁 = 

𝑛 ∑
𝑘 =1 
𝑚 𝑘 , 

and the line integral expressed by (11) is further modified into 221 

∫𝜕Σ( ⋅) d 𝑠 = 

𝑛 ∑
𝑘 =1 

∫𝜕Σ𝑘 ( ⋅) d 𝑠 𝑘 = 

𝑁 ∑
𝑖 =1 

∫
𝑙 𝑖 

0 
( ⋅) d 𝑠 𝑖 = 

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 
( ⋅) d 𝜇 , (12) 

where l i is the length of the i -th element and the adimensional variable 222 

𝜇 has been introduced such that 223 

𝑠 𝑖 = 

𝑙 𝑖 

2 
(1 + 𝜇) , 𝜇 ∈ [−1 , 1] . (13) 

On account of (12) , Eq. (8) can be written as 224 

𝑐( 𝐫 ∗ )Γ( 𝐫 ∗ ) − 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 
Γ𝑖 ( 𝜇) 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ] ⋅ 𝐧 𝜕 𝑖 ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖2 d 𝜇

= − 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 
ln ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 , (14) 

where l i is the length of the i -th boundary element. 225 

We want to emphasize that (14) provides the value of the unknown 226 

function Γ at the arbitrary point r ∗ of the polygonal domain Σ. The as- 227 

sumption on the shape of the plane domain allows one to explicitly ex- 228 

press r i ( 𝜇) as linear functions of the position vectors of the vertices. 229 

3 
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Thus, the restriction of the harmonic field Γ to the boundary 𝜕Σ, repre- 230 

sented by the functions Γi ( 𝜇), is the only unknown in (14) . 231 

In order to provide an explicit expression for the unknown functions 232 

Γi ( 𝜇), we assume a polynomial approximation by setting 233 

Γ𝑖 ( 𝜇) = 

𝑞 𝑖 ∑
𝑝 =1 
𝑎 ( 𝑖 ) 
𝑝 
𝜇𝑝 −1 , 𝜇 ∈ [−1 , 1] , (15) 

where 𝑎 ( 𝑖 ) 𝑝 are the q i coefficients defining the approximating polynomial 234 

function on the i -th boundary element, 𝜇 being the adimensional local 235 

abscissa. 236 

Assumption (15) allows one to express Eq. (14) as 237 

𝑐( 𝐫 ∗ )Γ( 𝐫 ∗ ) − 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 

𝑞 𝑖 ∑
𝑝 =1 
𝑎 ( 𝑖 ) 
𝑝 
𝜇𝑝 −1 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ] ⋅ 𝐧 𝜕 𝑖 ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖2 d 𝜇

= − 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 
ln ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 , (16) 

reducing the problem of determining N unknown functions to the one 238 

of evaluating M scalars 𝑎 ( 𝑖 ) 𝑝 , being 239 

𝑀 = 

𝑁 ∑
𝑖 =1 
𝑞 𝑖 . (17) 

By means of (15) , the coefficients 𝑎 ( 𝑖 ) 𝑝 provide the unknown func- 240 

tions Γi ( 𝜇) along the boundary 𝜕Σ and, through (16) , the value of the 241 

harmonic field Γ at the point r ∗ . 242 

To evaluate the unknown coefficients, an algebraic system of M inde- 243 

pendent equations must be assembled. We will show in the next section 244 

how this purpose can be achieved by properly using expression (16) . 245 

2.3. Assembling of the algebraic system 246 

The hypotheses introduced in the previous section have reduced the 247 

problem (5) to the one of determining the coefficients 𝑎 ( 𝑖 ) 𝑝 , which define 248 

the restriction of Γ to the boundary 𝜕Σ through the polynomial approx- 249 

imation (15) . 250 

A suitable number of equations can be derived from (16) by select- 251 

ing M distinct source points r ∗ belonging to the boundary 𝜕Σ. Since for 252 

the h -th element the polynomial is defined by means of q h coefficients, 253 

the natural choice is to consider the same number of source points by 254 

selecting q h abscissae 𝜉ℎ 𝑙 : 255 

𝐫 ∗ 
ℎ 𝑙 

= 𝐫 ℎ ( 𝜉ℎ 𝑙 ) , 𝑙 = 1 , … , 𝑞 ℎ . (18) 

Eq. (16) provides the values of Γ( 𝐫 ∗ 
ℎ 𝑙 
) at the source points (18) , to be used 256 

as ordinates of the data set for the curve fitting. Hence, considering the 257 

interpolating polynomial (15) for Γh ( 𝜉) at the abscissae 𝜉ℎ 𝑙 , the following 258 

conditions are imposed: 259 

𝑞 ℎ ∑
𝑝 =1 
𝑎 ( ℎ ) 
𝑝 
𝜉
𝑝 −1 
ℎ 𝑙 

= Γ( 𝐫 ∗ 
ℎ 𝑙 
) 𝑙 = 1 , … , 𝑞 ℎ . (19) 

A convenient choice of the collocation points 𝜉ℎ 𝑙 can be obtained by 260 

following the proposal in [54] , i.e. by making reference to the Cheby- 261 

shev nodes: 262 

𝜉ℎ 𝑙 = cos 
( 

2 𝑙 − 1 
2 𝑞 ℎ 

𝜋

) 

, 𝑙 = 1 , … , 𝑞 ℎ . (20) 

Such a choice also implies that the vertices of the polygons are excluded 263 

from the boundary source points 𝐫 ∗ 
ℎ 𝑙 
, so that (9) provides 𝑐( 𝐫 ∗ 

ℎ 𝑙 
) = 1∕2 . 264 

By applying conditions (19) to the N elements of the boundary 𝜕Σ265 

and recalling the explicit expression of Γ( 𝐫 ∗ 
ℎ 𝑙 
) through (16) , the following 266 

set of M equations is obtained: 267 

1 
2 

𝑞 ℎ ∑
𝑝 =1 
𝑎 ( ℎ ) 
𝑝 
𝜉
𝑝 −1 
ℎ 𝑙 

− 

1 
4 𝜋

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 

𝑞 𝑖 ∑
𝑝 =1 
𝑎 ( 𝑖 ) 
𝑝 
𝜇𝑝 −1 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 
] ⋅ 𝐧 𝜕 𝑖 ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 

‖‖‖2 d 𝜇

= − 

1 
8 𝜋

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 , 
𝑙 = 1 , … , 𝑞 ℎ , ℎ = 1 , … , 𝑁 , (21) 

where, on the RHS of (21) , the property 268 

ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 

‖‖‖ = 

1 
2 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 
has been used to simplify the evaluation of the resulting integral, see, 269 

e.g., Sections 4.1 and 4.2 . 270 

By expressing the first term in (21) as a summation respect to i 271 

through the introduction of the Kronecker delta 𝛿hi , and then grouping 272 

the LHS respect to 𝑎 ( 𝑖 ) 𝑝 , one infers the following set of linear equations: 273 

𝑁 ∑
𝑖 =1 

𝑞 𝑖 ∑
𝑝 =1 

⎡ ⎢ ⎢ ⎢ ⎣ 4 𝜋𝛿ℎ𝑖 𝜉
𝑝 −1 
𝑖 𝑙 

− 2 𝑙 𝑖 ∫
1 

−1 
𝜇𝑝 −1 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 
] ⋅ 𝐧 𝜕 𝑖 ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 

‖‖‖2 d 𝜇
⎤ ⎥ ⎥ ⎥ ⎦ 𝑎 

( 𝑖 ) 
𝑝 

= − 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 , 
𝑙 = 1 , … , 𝑞 ℎ , ℎ = 1 , … , 𝑁 (22) 

in the unknown parameters 𝑎 ( 𝑖 ) 𝑝 . As usual in the direct BEM, the coeffi- 274 

cient matrix is not symmetric. 275 

It is important to note that the equations above are not linearly in- 276 

dependent since the solution of the Neumann problem (5) is defined up 277 

to an arbitrary constant. Hence, the system of Eq. (22) has to be sup- 278 

plemented with a further condition. This is a standard caveat in BEM 279 

formulations of Neumann problem and can be addressed in several ways 280 

[60,61] . 281 

Following the analysis developed in [59] , the approach herein 282 

adopted assumes that the mean value of Γ( r ) over the domain Σ is null: 283 

284 

∫Σ Γ d 𝐴 = 0 . (23) 

Condition (23) can be transformed into an algebraic equation with 285 

respect to the unknown parameters 𝑎 ( 𝑖 ) 𝑝 considering the equivalence (8.2) 286 

proved in the supplementary material [62] : 287 

∫Σ
[
Γ𝐫 − 

1 
2 
( 𝐫 ⋅ 𝐫) Γ∇ 

]
⋅ ∇ d 𝐴 = 0 ; 

actually, by applying the Divergence Theorem and recalling property 288 

(5) 2 , one obtains 289 

∫𝜕Σ Γ𝐫 ⋅ 𝐧 𝜕 d 𝑠 = 

1 
2 ∫𝜕Σ( 𝐫 ⋅ 𝐫) 𝝎 ⋅ 𝐧 𝜕 d 𝑠 . (24) 

The previous two integrals are evaluated by means of (12) so that, on 290 

account of the assumption (15) , one has 291 

𝑁 ∑
𝑖 =1 

𝑞 𝑖 ∑
𝑝 =1 

[ 
𝑙 𝑖 ∫

1 

−1 
𝜇𝑝 −1 𝐫 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇

] 
𝑎 ( 𝑖 ) 
𝑝 

= 

1 
2 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
[ 𝐫 𝑖 ( 𝜇) ⋅ 𝐫 𝑖 ( 𝜇)] 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 . (25) 

Eq. (22) , along with (25) , provide a linear system that can be written 292 

in matrix form as 293 

[ 𝐐 ][ 𝐚 ] = [ 𝐩 ] ⟺ 𝑄 𝑗𝑘 𝑎 𝑘 = 𝑏 𝑗 , 
𝑗 = 1 , … , 𝑀 + 1 , 
𝑘 = 1 , … , 𝑀 , 

(26) 

where M is the total number of scalar unknowns. Notice that the index 294 

k corresponds to the pair ( i , p ), while j refers to the generic equation 295 

in (22) when j ≤ M and to (25) when 𝑗 = 𝑀 + 1 . Moreover being Q a 296 

rectangular matrix, it cannot be directly inverted, but the resolution of 297 

the linear system (26) formally requires the evaluation of the pseudo- 298 

inverse 𝐐 

+ : 299 

[ 𝐚 ] = [ 𝐐 

+ ][ 𝐩 ] = 

[
( 𝐐 

𝑇 𝐐 ) −1 𝐐 

𝑇 
]
[ 𝐩 ] . 
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Observing both Eq. (22) and the additional Eq. (25) , it is clear that 300 

Q only depends on the domain Σ, through the position of the vertices 301 

defining the polygonal boundary and the adopted discretization, as well 302 

as on the shape of the functions approximating Γi ( 𝜇) on each element. 303 

This implies that, once the classes of the interpolating functions have 304 

been fixed, the coefficient matrix Q for a domain Σ is uniquely deter- 305 

mined. 306 

On the other hand, the RHS of Eqs. (22) and (25) show that the 307 

functions 𝝎 i ( 𝜇) are involved in evaluating the vector of constants p ; such 308 

functions directly derive from the boundary condition (5) 2 defining the 309 

specific Neumann problem. 310 

For this reason, in the next sections we will first describe the assem- 311 

bling of Q as a general case, and then we will analyze the assembling 312 

of the vector of constants p with reference to the Neumann problems 313 

(1) and (2) . 314 

3. Specialization of the coefficient matrix Q and evaluation of its 315 

entries 316 

In the previous section we have constructed Q as an ( 𝑀 + 1) ×𝑀317 

matrix. The first M rows represent the algebraic counterpart, expressed 318 

by Eq. (22) , of the Neumann problem (5) and yield a square submatrix. 319 

The last row is due to the additional condition (23) expressed in the 320 

form (25) . 321 

3.1. Square submatrix of Q 322 

To evaluate the first M ×M entries of the matrix Q , we consider the 323 

position vector r i ( 𝜇) of the generic point belonging to the i -th edge con- 324 

necting the vertices r i and 𝐫 𝑖 +1 ; its expression is 325 

𝐫 𝑖 ( 𝜇) = 

1 
2 
[( 𝐫 𝑖 + 𝐫 𝑖 +1 ) + 𝜇( 𝐫 𝑖 +1 − 𝐫 𝑖 )] = 

1 
2 
( 𝜷𝑖 + 𝜶𝑖 𝜇) , 𝜇 ∈ [−1 , 1] , (27) 

where we have set 326 

𝜶𝑖 = 𝐫 𝑖 +1 − 𝐫 𝑖 , 𝜷𝑖 = 𝐫 𝑖 +1 + 𝐫 𝑖 . (28) 

Moreover the outward unit normal vector can be expressed as 327 

𝐧 𝜕 𝑖 = − 

( 𝐫 𝑖 +1 − 𝐫 𝑖 ) ⟂

𝑙 𝑖 
= − 

𝜶⟂
𝑖 

𝑙 𝑖 
, (29) 

so that, introducing 328 

𝜸∗ 
𝑖 
= 

1 
2 
𝜷𝑖 − 𝐫 ∗ 

ℎ 𝑙 
(30) 

and setting 329 

𝑏 𝑖 = 

1 
4 
𝜶𝑖 ⋅ 𝜶𝑖 , (31) 

330 
𝑐 ∗ 
𝑖 
= 𝜶𝑖 ⋅ 𝜸

∗ 
𝑖 
, (32) 

331 
𝑑 ∗ 
𝑖 
= 𝜸∗ 

𝑖 
⋅ 𝜸∗ 
𝑖 
, (33) 

332 
𝑒 ∗ 
𝑖 
= 𝜶𝑖 ⋅ 𝜸

∗ 
𝑖 
⟂
, (34) 

one has 333 ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 

‖‖‖2 = 𝑏 𝑖 𝜇
2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
. (35) 

Hence the integral on the LHS of (22) becomes 334 

2 𝑙 𝑖 ∫
1 

−1 
𝜇𝑝 −1 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 
] ⋅ 𝐧 𝜕 𝑖 ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 

‖‖‖2 d 𝜇 = 2 𝑒 ∗ 
𝑖 ∫

1 

−1 

𝜇𝑝 −1 

𝑏 𝑖 𝜇
2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 

d 𝜇 , (36) 

being 335 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 
] ⋅ 𝐧 𝜕 𝑖 = − 

(
𝜸∗ 
𝑖 
+ 

1 
2 
𝜶𝑖 𝜇

)
⋅
𝜶⟂
𝑖 

𝑙 𝑖 
= 

𝑒 ∗ 
𝑖 

𝑙 𝑖 
. (37) 

Notice that in introducing the variables 𝜶i , 𝜷 i and b i the subscript i has 336 

been used since they refer to the i -th element, as well as the superscript ∗ 337 

has been added for 𝜸∗ 
𝑖 
, 𝑐 ∗ 
𝑖 
, 𝑑 ∗ 
𝑖 

and 𝑒 ∗ 
𝑖 

to recall the dependence on the 338 

source point 𝐫 ∗ 
ℎ 𝑙 

. 339 

When the point 𝐫 ∗ 
ℎ 𝑙 

is collinear with r i and 𝐫 𝑖 +1 , it turns out to be 340 

𝑒 ∗ 
𝑖 
= 0 . Moreover the discriminant of 𝑏 𝑖 𝜇

2 + 𝑐 ∗ 
𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
is null and the only 341 

root is 342 

𝜇̄ = − 

𝑐 ∗ 
𝑖 

2 𝑏 𝑖 
= 

√ 

𝑑 ∗ 
𝑖 

𝑏 𝑖 
= 2 

‖‖‖𝜸∗ 𝑖 ‖‖‖‖‖𝜶𝑖 ‖‖ , 
providing the abscissa such that 𝐫 𝑖 ( ̄𝜇) = 𝐫 ∗ 

ℎ 𝑙 
. In particular, if |𝜇̄| > 1 the 343 

source point is outside of the i -th element and the integral appearing on 344 

the RHS of (36) is well-defined. On the contrary it turns into an improper 345 

integral if |𝜇̄| ≤ 1 , i.e. when the source point belongs to the considered 346 

element; however, it can be proved that its product with 𝑒 ∗ 
𝑖 
= 0 always 347 

converges to 0 and the quantity expressed in (36) vanishes. 348 

When 𝑒 ∗ 
𝑖 
≠ 0 , i.e. 𝐫 ∗ 

ℎ 𝑙 
is not collinear with r i and 𝐫 𝑖 +1 , the discriminant 349 

of 𝑏 𝑖 𝜇
2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
turns out to be 350 

𝑐 ∗ 
𝑖 
2 − 4 𝑏 𝑖 𝑑 ∗ 𝑖 = ( 𝜶𝑖 ⋅ 𝜸∗ 𝑖 ) 

2 − ( 𝜶𝑖 ⋅ 𝜶𝑖 )( 𝜸∗ 𝑖 ⋅ 𝜸
∗ 
𝑖 
) = 

‖‖𝜶𝑖 ‖‖‖‖𝜸∗ 𝑖 ‖‖( cos 2 𝜃∗ 𝑖 − 1) < 0 , 

(38) 

being 𝜃∗ 
𝑖 

the angle between 𝜶i and 𝜸∗ 
𝑖 
. This means that the 2-nd order 351 

polynomial has not real roots and the integral in (36) is well-defined; it 352 

can be evaluated recursively by formula (9.4) obtaining 353 

2 𝑙 𝑖 ∫
1 

−1 
𝜇𝑝 −1 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 
] ⋅ 𝐧 𝜕 𝑖 ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 
ℎ 𝑙 

‖‖‖2 d 𝜇 = 2 𝑒 ∗ 
𝑖 
𝑀 𝑝 −1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) . 

Thus, from the LHS of (22) the element Q jk assumes the form 354 

4 𝜋𝛿ℎ𝑖 𝜉
𝑝 −1 
𝑖 𝑙 

− 2 𝑒 ∗ 
𝑖 
𝑀 𝑝 −1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) , (39) 

in such a way that the j -th row of Q is obtained once the pair ( h , l ) is 355 

fixed while the its k -th column corresponds to the pair ( i , p ). 356 

3.2. Additional row 357 

Recalling expressions (27) and (29) of r i ( 𝜇) and n 𝜕 i , respectively, 358 

one derives 359 

𝐫 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 = 

𝜆𝑖 

𝑙 𝑖 
, (40) 

being 360 

𝜆𝑖 = 𝐫 𝑖 +1 ⋅ 𝐫 ⟂𝑖 . (41) 

Replacing (40) in the LHS of (25) , the generic element of the last row 361 

of Q becomes 362 

𝑙 𝑖 ∫
1 

−1 
𝜇𝑝 −1 𝐫 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 = 𝜆𝑖 ∫

1 

−1 
𝜇𝑝 −1 d 𝜇 = 𝜆𝑖 𝑃 𝑝 −1 , (42) 

where 𝑃 𝑝 −1 is evaluated by means of (9.2). 363 

4. Evaluation of the known vector p 364 

It has been noticed in Section 2.3 that the constant vector p of the 365 

algebraic system (22) is strictly related to the specific Neumann problem 366 

at hand, since it derives from the boundary condition in (5) 2 . 367 

With the aim of describing how to assemble the vector p , it is explic- 368 

itly evaluated with reference to the Neumann problems (1) and (2) . 369 

4.1. Evaluation of the vector p for the harmonic scalar field 𝜑 370 

Setting 𝝎 = − 𝐫 ⟂, the general problem (5) specializes to problem 371 

(1) associated with the function 𝜑 . Accordingly, the presented procedure 372 

can be used provided that the components of the vector p in (26) are 373 

evaluated as follows. 374 
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Let us first consider the RHS of (22) , which is used to evaluate the 375 

first M elements of the column vector p : 376 

− 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇
= 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝐫 ⟂𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 . 
Vectors r i ( 𝜇) and n 𝜕 i have the expressions reported in (27) and (29) , 377 

respectively. Thus, setting 378 

𝑓 𝑖 = 𝜶𝑖 ⋅ 𝜷𝑖 , 𝑔 𝑖 = 𝜶𝑖 ⋅ 𝜶𝑖 , (43) 

one has 379 

𝐫 ⟂
𝑖 
( 𝜇) ⋅ 𝐧 𝜕 𝑖 = − 

1 
2 𝑙 𝑖 

( 𝑓 𝑖 + 𝑔 𝑖 𝜇) , (44) 

in which definitions (28) have been used. Hence, employing (35) , one 380 

has 381 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝐫 ⟂𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇
= − 

1 
2 

𝑁 ∑
𝑖 =1 

∫
1 

−1 
ln ( 𝑏 𝑖 𝜇2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
) ( 𝑓 𝑖 + 𝑔 𝑖 𝜇) d 𝜇 . 

As shown in Section 2.3 , the discriminant of the polynomial 𝑏 𝑖 𝜇
2 + 382 

𝑐 ∗ 
𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
turns out 𝑐 ∗ 

𝑖 
2 − 4 𝑏 𝑖 𝑑 ∗ 𝑖 ≤ 0 ; thus, employing formula (9.5) of the 383 

supplementary material [62] to evaluate the RHS, it is 384 

− 

1 
2 

𝑁 ∑
𝑖 =1 

∫
1 

−1 
ln ( 𝑏 𝑖 𝜇2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
) ( 𝑓 𝑖 + 𝑔 𝑖 𝜇) d 𝜇

= − 

1 
2 

𝑁 ∑
𝑖 =1 

[
𝑓 𝑖 𝐿 0 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) + 𝑔 𝑖 𝐿 1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) 
]
. (45) 

We recall that the superscript ∗ refers to dependence on the source point 385 

𝐫 ∗ 
ℎ 𝑙 

in evaluating the coefficients 𝑐 ∗ 
𝑖 
, 𝑑 ∗ 
𝑖 
. Thus, by suitably modifying the 386 

position of the source point, as specified in (18) and (20) , the first M 387 

components of the column vector p are evaluated. 388 

Notice that the last entry of the vector p , corresponding to the RHS 389 

of (24) , vanishes for the field 𝜑 : 390 

1 
2 ∫𝜕Σ( 𝐫 ⋅ 𝐫) 𝝎 ⋅ 𝐧 𝜕 d 𝑠 = − 

1 
2 ∫𝜕Σ( 𝐫 ⋅ 𝐫 ) 𝐫 

⟂ ⋅ 𝐧 𝜕 d 𝑠 = 𝐨 . (46) 

Actually, assuming that each boundary of the multiply-connected do- 391 

main is a curve parameterized with respect to its length, the tangent 392 

vector is given by 393 

𝐭 𝜕 = 

𝜕𝐫( 𝑠 ) 
𝜕𝑠 
, 

so that, being 𝐧 𝜕 = − 𝐭 ⟂
𝜕 
, one has 394 

( 𝐫 ⋅ 𝐫 ) 𝐫 ⟂ ⋅ 𝐧 𝜕 = −( 𝐫 ⋅ 𝐫) 𝐫 ⋅ 𝐭 𝜕 = −( 𝐫 ⋅ 𝐫) 𝐫 ⋅ 𝜕𝐫 
𝜕𝑠 

= − 

1 
2 
( 𝐫 ⋅ 𝐫) 𝜕( 𝐫 ⋅ 𝐫) 

𝜕𝑠 
= − 

1 
4 
𝜕( 𝐫 ⋅ 𝐫) 2 
𝜕𝑠 

. 

This means that the integrand function in (46) is an exact differential 395 

and the line integral, being evaluated along closed curves 𝜕Σb , vanishes. 396 

4.2. Evaluation of the vector p for the harmonic vector field 𝝍 397 

Although we are dealing with a vector field, the analysis presented 398 

for the general case (5) is still valid for the evaluation of the function 399 

𝝍 . Actually, it is convenient to analyze separately the two components 400 

of the vector 𝝍 , namely 𝜓 x and 𝜓 y , and consider two distinct Neumann 401 

problems: 402 { 

𝜓 𝑥 ∇ 

2 = 0 , ∀𝐫 ∈ Σ , 
𝜓 𝑥 ∇ ⋅ 𝐧 𝜕 = − 𝐚 𝑥 ⋅ 𝐧 𝜕 , ∀𝐫 ∈ 𝜕Σ , (47a) 

403 
{ 

𝜓 𝑦 ∇ 

2 = 0 , ∀𝐫 ∈ Σ , 
𝜓 𝑦 ∇ ⋅ 𝐧 𝜕 = − 𝐚 𝑦 ⋅ 𝐧 𝜕 , ∀𝐫 ∈ 𝜕Σ , (47b) 

in which a x and a y are two vectors whose components coincide with the 404 

rows of A : 405 

[ 𝐀 ] = 

[ 
𝐚 𝑇 
𝑥 

𝐚 𝑇 
𝑦 

] 
. (48) 

This ensures that 406 

𝐚 𝑥 ⋅ 𝐧 𝜕 = ( 𝐀𝐧 𝜕 ) 𝑥 , 𝐚 𝑦 ⋅ 𝐧 𝜕 = ( 𝐀𝐧 𝜕 ) 𝑦 , (49) 

so that both (47a) and (47b) stem from (5) by setting 𝝎 = − 𝐚 𝑥 and 𝝎 = 407 

− 𝐚 𝑦 , respectively. 408 

In order to evaluate the column vector p of the linear system (22) , 409 

to be associated both with (47a) and (47b) , let us first consider the ex- 410 

pression of An 𝜕 relevant to the i -th edge of the boundary. Recalling (3) , 411 

one has 412 

𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 = 

1 + ̄𝜈

4 
[
𝐫 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 

]
𝐫 𝑖 ( 𝜇) + 

1 − 3 ̄𝜈
8 

[
𝐫 𝑖 ( 𝜇) ⋅ 𝐫 𝑖 ( 𝜇) 

]
𝐧 𝜕 𝑖 , 

and, by means of (27), (29) and (40) , the following expression is ob- 413 

tained: 414 

𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 = 

1 
2 𝑙 𝑖 

[ 
1 + ̄𝜈

4 
𝜆𝑖 ( 𝜷𝑖 + 𝜶𝑖 𝜇) + 

− 

1 − 3 ̄𝜈
16 

( 𝜷𝑖 ⋅ 𝜷𝑖 + 2 𝜶𝑖 ⋅ 𝜷𝑖 𝜇 + 𝜶𝑖 ⋅ 𝜶𝑖 𝜇
2 ) 𝜶⟂
𝑖 

] 
, (50) 

where 𝜶i and 𝜷 i are defined by (28) . 415 

Component 𝜓 x Since the function 𝜓 x ( r ) is defined through the differ- 416 

ential problem (47a) , we set 𝝎 = − 𝐚 𝑥 so that, by using (49) 1 , the RHS 417 

of (22) becomes 418 

− 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇
= 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 [ 𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 ] 𝑥 d 𝜇 . 

Recalling (35) and considering the first component of the vector evalu- 419 

ated in (50) one has 420 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 [ 𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 ] 𝑥 d 𝜇

= 

1 
2 

𝑁 ∑
𝑖 =1 

∫
1 

−1 
ln ( 𝑏 𝑖 𝜇2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
) ( 𝐹 𝑖 + 𝐺 𝑖 𝜇 + 𝐻 𝑖 𝜇

2 ) d 𝜇 , 

being 421 

𝐹 𝑖 = 

1 + ̄𝜈

4 
𝜆𝑖 𝛽𝑥 𝑖 + 

1 − 3 ̄𝜈
16 

( 𝜷 𝑖 ⋅ 𝜷 𝑖 ) 𝛼𝑦 𝑖 , 

𝐺 𝑖 = 

1 + ̄𝜈

4 
𝜆𝑖 𝛼𝑥 𝑖 + 

1 − 3 ̄𝜈
8 

( 𝜶𝑖 ⋅ 𝜷 𝑖 ) 𝛼𝑦 𝑖 , 

𝐻 𝑖 = 

1 − 3 ̄𝜈
16 

( 𝜶𝑖 ⋅ 𝜶𝑖 ) 𝛼𝑦 𝑖 . (51) 

where definitions (28) of the vectors 𝜶i and 𝜷 i have been used, along 422 

with the corresponding components on x -axis and y -axis. Finally, for- 423 

mula (9.5) of the supplementary material [62] is applied to evaluate 424 

the integral: 425 

1 
2 

𝑁 ∑
𝑖 =1 

∫
1 

−1 
ln ( 𝑏 𝑖 𝜇2 + 𝑐 ∗ 

𝑖 
𝜇 + 𝑑 ∗ 

𝑖 
) ( 𝐹 𝑖 + 𝐺 𝑖 𝜇 + 𝐻 𝑖 𝜇

2 ) d 𝜇

= 

1 
2 

𝑁 ∑
𝑖 =1 

[
𝐹 𝑖 𝐿 0 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) + 𝐺 𝑖 𝐿 1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) + 𝐻 𝑖 𝐿 2 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) 
]
. (52) 

The last element of the vector p is expressed by the RHS of (25) , 426 

which is explicitly written by means of (27) and considering the first 427 

component of the vector (50) : 428 

6 
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1 
2 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
[ 𝐫 𝑖 ( 𝜇) ⋅ 𝐫 𝑖 ( 𝜇)] 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇

= − 

1 
2 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
[ 𝐫 𝑖 ( 𝜇) ⋅ 𝐫 𝑖 ( 𝜇)] [ 𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 ] 𝑥 d 𝜇

= − 

1 
16 

𝑁 ∑
𝑖 =1 

( 𝑈 𝑖 𝑃 0 + 𝑉 𝑖 𝑃 2 + 𝑊 𝑖 𝑃 4 ) , (53) 

where we have set 429 

𝑈 𝑖 = ( 𝜷𝑖 ⋅ 𝜷 𝑖 ) 𝐹 𝑖 , 𝑉 𝑖 = ( 𝜶𝑖 ⋅ 𝜶𝑖 ) 𝐹 𝑖 + 2( 𝜶𝑖 ⋅ 𝜷 𝑖 ) 𝐺 𝑖 + ( 𝜷𝑖 ⋅ 𝜷𝑖 ) 𝐻 𝑖 , 

𝑊 𝑖 = ( 𝜶𝑖 ⋅ 𝜶𝑖 ) 𝐻 𝑖 , (54) 

being the parameters F i , G i and H i evaluated through (51) . Please notice 430 

that the addends involving 𝜇 and 𝜇3 and the relevant coefficients have 431 

been omitted since, by means of formula (9.2) of the supplementary 432 

material [62] , P n vanishes when n is odd. 433 

Component 𝜓 y 434 

The field 𝜓 y ( r ) is the solution to the Neumann problem (47b) , so that 435 

we set 𝝎 = 𝐚 𝑦 . The RHS of (22) by means of (49) 2 becomes 436 

− 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇
= 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 [ 𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 ] 𝑦 d 𝜇 . 

The same strategy used for 𝜓 x is applied, obtaining the following 437 

expression 438 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
ln ‖‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ 

ℎ 𝑙 

‖‖‖2 [ 𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 ] 𝑦 d 𝜇

= 

1 
2 

𝑁 ∑
𝑖 =1 

[
𝐹 𝑖 𝐿 0 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) + 𝐺 𝑖 𝐿 1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) + 𝐻 𝑖 𝐿 2 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) 
]
, 

where the parameters F i , G i and H i this time are evaluated as 439 

𝐹 𝑖 = 

1 + ̄𝜈

4 
𝜆𝑖 𝛽𝑦 𝑖 − 

1 − 3 ̄𝜈
16 

( 𝜷𝑖 ⋅ 𝜷𝑖 ) 𝛼𝑥 𝑖 , 

𝐺 𝑖 = 

1 + ̄𝜈

4 
𝜆𝑖 𝛼𝑦 𝑖 − 

1 − 3 ̄𝜈
8 

( 𝜶𝑖 ⋅ 𝜷𝑖 ) 𝛼𝑥 𝑖 , 

𝐻 𝑖 = − 

1 − 3 ̄𝜈
16 

( 𝜶𝑖 ⋅ 𝜶𝑖 ) 𝛼𝑥 𝑖 , (55) 

since the second component of the vector (50) must be used. 440 

The last component of the vector p derives from the RHS of (25) and 441 

is estimated through a formula analogous to (53) : 442 

1 
2 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
[ 𝐫 𝑖 ( 𝜇) ⋅ 𝐫 𝑖 ( 𝜇)] 𝝎 𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇

= − 

1 
2 

𝑁 ∑
𝑖 =1 
𝑙 𝑖 ∫

1 

−1 
[ 𝐫 𝑖 ( 𝜇) ⋅ 𝐫 𝑖 ( 𝜇)] [ 𝐀 𝑖 ( 𝜇) 𝐧 𝜕 𝑖 ] 𝑦 d 𝜇

= − 

1 
16 

𝑁 ∑
𝑖 =1 

( 𝑈 𝑖 𝑃 0 + 𝑉 𝑖 𝑃 2 + 𝑊 𝑖 𝑃 4 ) , (56) 

where U i , V i and W i are evaluated by means of (54) but using the values 443 

(55) of the parameters F i , G i , H i . 444 

5. Some general issues concerning the numerical analysis 445 

Given a polygonal domain having n edges, one fixes the number m k 446 

of elements for the k -th edge along with the number of polynomial coef- 447 

ficients q i for the i -th boundary element. In line of principle, an arbitrary 448 

partition of the boundary could be used, as well as polynomial functions 449 

having different degrees for each element. However, such a choice can 450 

be reasonable only on a problem-at-hand basis. 451 

The simplest strategy is that of considering the same number q of 452 

coefficients for each element’s polynomial: 453 

𝑞 𝑖 = 𝑞 , 𝑖 = 1 , … , 𝑁 . (57) 

where N is the total number of boundary elements. 454 

However a large number of numerical experiments, only partially 455 

documented in Section 6 due to space limitations, has shown that it is 456 

convenient to adopt a partition as much uniform as possible. To this end 457 

we introduce the discretization parameter m representing the number of 458 

elements pertaining to the edge having the minimum length 𝑙 min . Hence, 459 

for the k -th edge the number of elements is evaluated as 460 

𝑚 𝑘 = 

⌈ 
𝑚 
𝑙 𝑘 

𝑙 min 

⌉ 
, 𝑘 = 1 , … , 𝑛 , (58) 

in which l k is the length of the k -th edge of the boundary and n is the 461 

total number of edges. 462 

Some preliminary tests have shown that the size of the domain can 463 

influence the numerical stability of the recursive formulas reported in 464 

section 9 of the supplementary material [62] . Such instability is due to 465 

rounding in calculating the coefficients a , b and c involved in formulas 466 

(9.3), (9.4) and (9.5) in [62] , despite their analytical validity. 467 

In order to avoid such a drawback, the vectors r k defining the domain 468 

vertices are scaled by a factor f s and then the minimum length edge is 469 

divided into m elements having a fixed length l ref : 470 

𝑓 s 𝑙 min 
𝑚 

= 𝑙 ref . (59) 

It has emerged from our tests that round-off errors do not affect the 471 

usability of the recursive formulas (9.3), (9.4) and (9.5) in [62] if the 472 

length of each boundary element is between 0.1 and 10. For this rea- 473 

son we fix 𝑙 ref = 1 , implying the length of each boundary element to be 474 

between 0.5 and 1. The procedure implementing the scaling and the dis- 475 

cretization of the boundary is summarized in the Algorithm 1. included 476 

in the supplementary material [62] . 477 

Once the domain geometry has been scaled by f s , the procedure de- 478 

scribed in Section 2 yields a solution to the Neumann problem (5) for 479 

the real domain provided that the coefficients 𝑎 ( 𝑖 ) 𝑝 , defining the interpo- 480 

lating functions Γi ( 𝜇), are divided by a suitable factor 𝑓 Γ depending on 481 

the dimensions of the field Γ. 482 

Specifically, with reference to the fields 𝜑 and 𝝍 , defined by the 483 

Neumann problems (1) and (2) , we introduce the following function 484 

scale factors: 485 

𝑓 𝜑 = 𝑓 2 s , 𝑓 𝜓 𝑥 = 𝑓 𝜓 𝑦 = 𝑓 3 s , 

since the unknown functions have the dimensions of a length to the 486 

power of 2, regarding 𝜑 , and to the power of 3, as far as the compo- 487 

nents 𝜓 x and 𝜓 y of the vector field 𝝍 are concerned. 488 

It is worth being emphasized that the assumptions on the polyno- 489 

mial degrees and the boundary discretization, defined through (57) and 490 

(58) respectively, make q and m the parameters governing the accuracy 491 

of the numerical solution to the problem (5) . In particular, we will show 492 

in Section 5.1 how these parameters influence the reliability of the nu- 493 

merical results and we will also discuss a criterion to set them. 494 

At the same time the numerical tests reported in Section 6 will pro- 495 

vide some indications on the value of m and q to be adopted with the 496 

specific reference to the harmonic fields 𝜑 and 𝝍 . 497 

5.1. Optimal choice of the parameters for the numerical solution 498 

On account of assumptions (57) and (58) , the parameters influenc- 499 

ing the numerical results in solving the Neumann problem (5) are the 500 

number of elements m of the minimum length edge and the number of 501 

coefficients q of the interpolating polynomial for each element. 502 

In principle, an improvement in the accuracy of the solution can be 503 

achieved by increasing either q or m , since in both cases the total number 504 

7 
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M of parameters describing the numerical solution would increase. In 505 

this respect we recall that definition (17) of M specifies in 506 

𝑀 = 𝑞 ⋅𝑁 , 

being N the number of boundary elements resulting from the discretiza- 507 

tion associated with m . 508 

However, some preliminary tests have shown an instability in the nu- 509 

merical procedure when, for a fixed discretization of the boundary, the 510 

degree of the interpolating polynomial increases. Moreover, the value 511 

of q above which the results become not reliable is strictly related to the 512 

input data, such as the shape of the domain. Hence it is not possible to 513 

provide a general indication about the best value to assign to the degree 514 

of the interpolating polynomials. 515 

Nevertheless, we can exploit a continuity condition of the interpolat- 516 

ing polynomials in order to obtain an index of accuracy of the solution, 517 

to be associated with the parameters q and m . 518 

We have emphasized in Section 2.3 that the Chebyshev nodes are 519 

used in evaluating the coefficients defining the polynomials Γi ( 𝜇), so 520 

that the elements’ extremities are excluded from the set of collocation 521 

points. However we recall that the function Γ is required to be at least 522 

twice continuously differentiable on Σ and once on 𝜕Σ, so that it is pos- 523 

sible to exploit the C 

0 continuity at the extremities of the elements in 524 

order to estimate the accuracy of the numerical solution. 525 

Let ΔΓi be the difference between the interpolating functions at the 526 

i -th point of the discretized boundary, i.e. a node common to two con- 527 

secutive elements: 528 

ΔΓ𝑖 = |Γ𝑖 (−1) − Γ𝑖 −1 (1) | , 𝑖 = 1 , … , 𝑁 , (60) 

being Γi ( 𝜇) the interpolating polynomial on the i -th boundary element. 529 

The average continuity error along the boundary is obtained by divid- 530 

ing the sum of the local errors ΔΓi by the total number of points N . 531 

Moreover, in order to obtain a normalized mean error, we also divide 532 

the resulting value by a proper parameter 𝛼Γ, depending on the specific 533 

Neumann problem: 534 

𝑒 = 

1 
𝛼Γ𝑁 

𝑁 ∑
𝑖 =1 

ΔΓ𝑖 . (61) 

Since 𝜑 and the components 𝜓 x and 𝜓 y of 𝝍 have the dimension of 535 

a length to the power of 2 and 3, respectively, we set 536 

𝛼𝜑 = 𝑑 2 sec , 𝛼𝜓 𝑥 = 𝛼𝜓 𝑦 = 𝑑 3 sec , (62) 

where 𝑑 sec is the characteristic dimension of the domain Σ, assumed to 537 

be represented by the square root of the area A . 538 

5.2. Convergence algorithms 539 

It has been already emphasized that, for a fixed boundary discretiza- 540 

tion defined through m , the numerical solution for the problem (5) , re- 541 

duced to the linear system (26) , cannot be found for any number q of 542 

the polynomial parameters. However, for each boundary partition, it is 543 

possible to define a limit value 𝑞 above which the numerical solution of 544 

(26) cannot be considered reliable or cannot be found at all because of 545 

the round-off approximation. 546 

Thus we are going to show that it is possible to exploit the continuity 547 

error e defined by (61) to find the limit value of q associated with a given 548 

boundary discretization. 549 

To this end let us assign a value to m , identifying a boundary dis- 550 

cretization for the domain, and estimate the accuracy of the numerical 551 

solution associated with increasing values of q . We expect that the con- 552 

tinuity error e decreases as the accuracy of the solution improves. Thus, 553 

supposing to gradually increase the degree of the interpolating polyno- 554 

mial, e decreases until it reaches a minimum at a certain value of q . The 555 

subsequent growing of e is interpreted as an indication that the limit of 556 

stability of the algorithm has been reached for the assigned value of m . 557 

We identify 𝑞 ( 𝑚 ) as the value corresponding to a minimum in e , i.e. 558 

559 { 

𝑒 ( 𝑚, 𝑞) < 𝑒 ( 𝑚, 𝑞 − 1) , ∀𝑞 ∈ {2 , … , ̄𝑞 } , 
𝑒 ( 𝑚, ̄𝑞 ) ≤ 𝑒 ( 𝑚, ̄𝑞 + 1) , 

(63) 

and 𝑒 ( 𝑚 ) as the relevant limit value of the mean continuity error: 560 

𝑒 ( 𝑚 ) = 𝑒 ( 𝑚, ̄𝑞 ) . (64) 

The numerical solutions corresponding to 𝑞 > 𝑞 are judged to be not 561 

conveniently accurate, so that a further improvement in the accuracy 562 

can be obtained only by increasing the parameter m , i.e. by applying a 563 

finer discretization of the boundary 𝜕Σ. 564 

By considering 𝑞 as a function of m , it is possible to define a border 565 

in the m - q plane which separates the stability region from the instability 566 

one. Only the points ( m , q ) within the stability region can be properly 567 

used for an accurate numerical estimation of the warping functions 𝜑 , 568 

𝜓 x and 𝜓 y . 569 

The continuity mean error is exploited not only for the determination 570 

of the stability region, but also for implementing a convergence criterion 571 

aimed at finding a sufficiently accurate numerical solution. Indeed, once 572 

an acceptable tolerance 𝜀 is fixed, several combinations of m and q can 573 

be explored until it is found a value for e which is lower than 𝜀 . 574 

In the following sections we describe three procedures that can be 575 

easily implemented for the detection of the desired solution. Actually, 576 

the numerical tests reported in Section 6 allow one to derive some guid- 577 

ance in setting the parameters m and q both for compact domains and 578 

for thin-walled domains, avoiding to perform this preliminary analysis. 579 

5.2.1. Bottom- up (BU) algorithm 580 

The simplest approach to find the limit value 𝑞 and the correspond- 581 

ing continuity error 𝑒 is to assign a value to m and progressively incre- 582 

ment q , starting from 𝑞 = 2 , until the criterion (63) is complied and the 583 

corresponding error is obtained. The procedure is summarized in the 584 

Algorithm 2, included in the supplementary material [62] . 585 

The optimal value 𝑞 is determined by examining the solutions and 586 

related errors associated with values of q in the range [2 , 𝑞 + 1] till when 587 

a change of trend is detected for the values of e . In particular, Algorithm 588 

2 is recursively invoked in the procedure related to the detection of the 589 

pair ( m , q ) providing a sufficiently accurate solution of the Neumann 590 

problem, see, e.g. Algorithm 3 in the supplementary material [62] . 591 

Specifically, we start by setting 𝑚 = 1 and estimating the limit value 592 

of q , by means of the Algorithm 2, as well as the corresponding conti- 593 

nuity error 𝑒 . If 𝑒 is greater than the fixed tolerance, m is incremented 594 

by 1 and Algorithm 2 is applied again. This procedure is recursively 595 

repeated until a pair ( m , q ) is found such that the corresponding error 596 

satisfies e ≤ 𝜀 . It has to be noted that since at each step the continuity er- 597 

ror is evaluated within the stability region, if a value for e lower than the 598 

tolerance is found, the procedure can be stopped without the detection 599 

of 𝑞 . 600 

5.2.2. Top- down (TD) algorithm 601 

The approach based on the BU algorithm requires the evaluation 602 

of all the possible solutions within the stability region, until one cor- 603 

responding to the desired accuracy is found. This procedure, although 604 

accurate, can result very slow for domains characterized by high values 605 

of 𝑞 . 606 

A more efficient algorithm can be implemented if we take into ac- 607 

count that 𝑞 decreases with respect to m : 608 

𝑞 ( 𝑚 ) ≤ 𝑞 ( 𝑚 − 1) . (65) 

This particular feature of the stability border, emerging from the nu- 609 

merical tests on several domains, is justified by the fact that the reliabil- 610 

ity of the numerical solution turns out to be undetermined when the total 611 

number of the parameters arbitrarily increases. Thus, as the number of 612 

the boundary elements increases, the maximum degree of the interpo- 613 

lating polynomial that can be efficiently associated with each element 614 

reduces. 615 

8 
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Supposing that the discretization corresponding to m has been fixed, 616 

the limit value 𝑞 ( 𝑚 − 1) provides an upper bound for the set of values 617 

containing 𝑞 ( 𝑚 ) . From this point of view, in order to find the limit value 618 

for the current discretization, it is possible to progressively reduce q 619 

starting from 𝑞 sup ( 𝑚 ) = 𝑞 ( 𝑚 − 1) until a minimum in e is found: 620 { 

𝑒 ( 𝑚, 𝑞 − 1) < 𝑒 ( 𝑚, 𝑞) , ∀𝑞 ∈ { ̄𝑞 , … , 𝑞 sup } , 
𝑒 ( 𝑚, ̄𝑞 ) ≤ 𝑒 ( 𝑚, ̄𝑞 − 1) . 

(66) 

By exploiting criterion (66) , the procedure detecting 𝑞 can by imple- 621 

mented as described in the Algorithm 4 in the supplementary material 622 

[62] . 623 

The TD algorithm can be used in place of the BU algorithm in the 624 

recursive procedure finalized to the detection of the pairs ( m , q ) such 625 

that the corresponding error satisfies the convergence criterion e ≤ 𝜀 . 626 

As shown in the Algorithm 5, see e.g. the supplementary material 627 

[62] , at the first step the BU algorithm is required since there is no 628 

information about the extension of the stability region. Once the value 629 

of 𝑞 corresponding to 𝑚 = 1 is obtained, this can be used as the upper 630 

bound of the unknown 𝑞 in the subsequent analysis to be carried out by 631 

the TD algorithm, and so on until the convergence criterion is satisfied. 632 

Please notice that Algorithm 5 only considers the pairs ( m , q ) near 633 

the border of the stability region. As a consequence, it may happen that 634 

there exists a solution satisfying the convergence criterion which is lo- 635 

cated in the interior of the stability region and that is characterized by a 636 

lower number of parameters than the ones detected by the TD algorithm. 637 

Avoiding the analysis of all points of the stability region, the TD 638 

algorithm results to be really time-saving, since the analysis of each 639 

pair ( m , q ) requires the assembling and the solution of the algebraic 640 

problem (26) , thus making the detection of a suitable solution ( m , q ) 641 

the most expensive part of the overall process. 642 

5.2.3. Pseudo- tangent procedure 643 

The procedures described by Algorithms 3 and 5 both consider a 644 

discretization of the boundary that becomes denser and denser by in- 645 

creasing by 1 the parameter m at each step, until a value allowing to 646 

find a continuity error compatible with the fixed tolerance is reached. 647 

Such a method implies the analysis of the whole stability region, with 648 

regard to the BU approach, or at least its limit line, as regards the TD 649 

approach, until a satisfactory solution is found. 650 

However, with the aim of detecting a pair ( m , q ) suitable to provide 651 

a sufficiently accurate numerical solution, we do not need to analyze 652 

all the possible discretizations. Actually our aim is to identify a value 653 

for m which provides an appropriate discretization avoiding, when it is 654 

possible, the analyses associated with the intermediate values. 655 

To this end we consider the continuity error 𝑒 at the limit of stability 656 

as a function of the discretization parameter m and let 𝜀 be the fixed 657 

tolerance. Our purpose is to find the value m 

∗ of m such that 658 

𝑒 ( 𝑚 ∗ ) ≤ 𝜀 . (67) 

Let us suppose that two consecutive points of the stability border 659 

have been detected, so that the errors 𝑒 𝑚 −1 = 𝑒 ( 𝑚 − 1) and ̄𝑒 𝑚 = 𝑒 ( 𝑚 ) have 660 

been evaluated. We replace the unknown function 𝑒 with its linear ap- 661 

proximation at the point ( 𝑚, ̄𝑒 𝑚 ) , so that condition (67) , considered with 662 

the equal sign, becomes 663 

𝑒 ( 𝑚 ∗ ) ≈ 𝑒 𝑚 − 

( 

𝑒 𝑚 −1 − 𝑒 𝑚 

1 

) 

Δ𝑚 = 𝜀 ; (68) 

this allows us to obtain the increment Δm for the parameter m as 664 

Δ𝑚 = 

⌈ 
𝑒 𝑚 − 𝜀 

𝑒 𝑚 −1 − 𝑒 𝑚 

⌉ 
, (69) 

where the ceiling function, represented through the symbol ⌈ · ⌉, has 665 

been used since m is a discrete variable. 666 

This approach can be seen as a sort of tangent method for the res- 667 

olution of Eq. (67) . However, since m is not a continuous variable, the 668 

Fig. 2. Triangular domain. 

derivative of the function 𝑒 ( 𝑚 ) is not defined, so that the linear approx- 669 

imation appearing in (68) can be interpreted as the equation of the 670 

pseudo-tangent to the stability limit line at the point ( 𝑚, ̄𝑒 𝑚 ) . 671 

Clearly, formula (68) , and hence formula (69) , has been obtained 672 

considering two consecutive values of the limit error 𝑒 ( 𝑚 ) , so it can be 673 

applied only if at the previous step the increment of m is 1. Moreover, 674 

although the overall trend of the line 𝑒 ( 𝑚 ) is a decreasing one, the con- 675 

tinuity error can locally increase, producing 𝑒 𝑚 −1 ≤ 𝑒 𝑚 . In such a case 676 

formula (69) cannot be applied and we simply set Δ𝑚 = 1 . 677 

The implementation of the pseudo-tangent procedure is described 678 

by Algorithm 6 in the supplementary material [62] . If compared to Al- 679 

gorithm 5 it is evident that the only difference is the evaluation of the 680 

increment Δm , an adjustment that, however, makes the procedure much 681 

more effective. 682 

6. Numerical tests 683 

To prove the effectiveness of the numerical procedures described in 684 

the previous sections we show the numerical results obtained with refer- 685 

ence to several domains, with special emphasis on the thin-walled ones 686 

since they undoubtedly are the most challenging ones. 687 

6.1. Triangular domain 688 

The first analysis we consider as benchmark concerns the evaluation 689 

of the 𝜑 field for the equilateral triangle shown in Fig. 2 . In such case, 690 

the warping function can be expressed in closed form (see [1] ) as 691 

𝜑 ( 𝑥, 𝑦 ) = 

1 
6 𝑎 

(
3 𝑥𝑦 2 − 𝑥 3 

)
= 

√
3 

3 𝑙 
(
3 𝑥𝑦 2 − 𝑥 3 

)
. (70) 

In order to make a comparison with the numerical solution of the 692 

problem (1) , we derive the restriction of 𝜑 at the boundary. In particular, 693 

with reference to the horizontal edge, by replacing 𝑦 = − 𝑎 in (70) , we 694 

obtain 695 

𝜑 1 ( 𝑥 ) = 

1 
6 𝑎 

(
3 𝑎 2 𝑥 − 𝑥 3 

)
, 

an expression that becomes, in terms of normalized abscissa 𝜇, 696 

𝜑 1 ( 𝜇) = 

√
3 𝑙 2 

24 
(
𝜇 − 𝜇3 

)
, 𝜇 ∈ [−1 , 1] . (71) 
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Fig. 3. Torsional warping function 𝜑 for a rectangular domain ( 𝐵 = 1 , 𝐻 = 2 ). 

Please notice that, because of the symmetries of the domain, in terms 697 

of local abscissa 𝜇 the expressions of 𝜑 2 ( 𝜇) and 𝜑 3 ( 𝜇) are the same as 698 

𝜑 1 ( 𝜇). 699 

As far as concerns the numerical solution, since it is known from 700 

(71) that 𝜑 1 ( 𝜇) is a third degree polynomial, we consider 𝑙 = 1 and 701 

we simply set 𝑚 𝑖 = 𝑚 = 1 and 𝑞 = 4 for the procedure described in 702 

Section 2.2 ; hence, the following values for the polynomial coefficients 703 

𝑎 
( 𝑖 ) 
𝑝 are obtained: 704 

𝑎 
( 𝑖 ) 
1 = 0 . 000000 , 𝑎 ( 𝑖 ) 2 = 0 . 072169 , 𝑎 ( 𝑖 ) 3 = 0 . 000000 , 𝑎 ( 𝑖 ) 4 = −0 . 072169 , 

which exactly coincide with the analytical solution (71) . 705 

It is worth noting that the example here described represents the 706 

counterpart of the standard patch test in the finite element method. Ac- 707 

tually, since the analytical solution consists of polynomial functions of 708 

degree 3, it can be completely reproduced by the numerical solution by 709 

setting 𝑞 = 4 , what implies the solution to be searched in the set of the 710 

third degree polynomials. 711 

6.2. Rectangular domain 712 

Let us evaluate the torsional warping function 𝜑 for a rectangular 713 

domain having base B and height H . 714 

Unlike the case of the equilateral triangle, for the rectangular domain 715 

the analytical solution of the field 𝜑 is not available in closed form. 716 

However it can be estimated by means of the following series expansion 717 

[1] : 718 

𝜑 ( 𝑥, 𝑦 ) = − 𝑥𝑦 + 𝐻 

2 
( 2 
𝜋

)
3 

∞∑
𝑛 =0 
𝑓 𝑛 ( 𝑥, 𝑦 ) 

= − 𝑥𝑦 + 𝐻 

2 
( 2 
𝜋

)
3 

∞∑
𝑛 =0 

(−1) 𝑛 

(2 𝑛 + 1) 3 
sinh (2 𝑛 +1) 𝜋𝑥 

𝐻 

cosh (2 𝑛 +1) 𝜋𝐵 2 𝐻 

sin (2 𝑛 + 1) 𝜋𝑦 
𝐻 

, 

(72) 

whose graphical representation is shown in Fig. 3 referring to 𝐵 = 1 and 719 

𝐻 = 2 . Please notice that in evaluating 𝜑 ( x , y ) the series appearing in 720 

(72) has been truncated at the N -th term such that 721 ||||𝐹 𝑁 ( 𝑥, 𝑦 ) − 𝐹 𝑁−1 ( 𝑥, 𝑦 ) 
𝐹 𝑁 ( 𝑥, 𝑦 ) 

|||| = 

|||| 𝑓 𝑛 ( 𝑥, 𝑦 ) 𝐹 𝑁 ( 𝑥, 𝑦 ) 
|||| ≤ 10 −16 , 

where 722 

𝐹 𝑁 ( 𝑥, 𝑦 ) = 

𝑁 ∑
𝑛 =0 
𝑓 𝑛 ( 𝑥, 𝑦 ) . 

At the same time, specializing expression (14) to the field 𝜑 one has 723 

𝑐( 𝐫 ∗ ) 𝜑 ( 𝐫 ∗ ) − 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 
𝜑 𝑖 ( 𝜇) 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ] ⋅ 𝐧 𝜕 𝑖 ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖2 d 𝜇

= 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

𝑙 𝑖 

2 ∫
1 

−1 
ln ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖𝐫 ⟂𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇 , 

yielding, on account of (15) specialized to 𝜑 i ( 𝜇), the value of the har- 724 

monic function at the arbitrary point r ∗ : 725 

𝑐( 𝐫 ∗ ) 𝜑 ( 𝐫 ∗ ) = 

1 
4 𝜋

𝑁 ∑
𝑖 =1 
𝑙 𝑖 

[ 
𝑞 𝑖 ∑
𝑝 =1 
𝑎 ( 𝑖 ) 
𝑝 ∫

1 

−1 
𝜇𝑝 −1 

[ 𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ] ⋅ 𝐧 𝜕 𝑖 ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖2 d 𝜇

+ ∫
1 

−1 
ln ‖‖𝐫 𝑖 ( 𝜇) − 𝐫 ∗ ‖‖𝐫 ⟂𝑖 ( 𝜇) ⋅ 𝐧 𝜕 𝑖 d 𝜇

] 
. (73) 

The two integrals appearing in (73) can be evaluated retracing the 726 

procedures described in Sections 3 and 4.1 , respectively. Moreover, it 727 

is worth noting that, in order to obtain the value of the field 𝜑 at r ∗ , 728 

the weak form (73) is not required if r ∗ belongs to the boundary 𝜕Σ of 729 

the domain since the polynomial approximation (15) can be directly ap- 730 

plied for each boundary element. Consequently, recalling from (9) that 731 

𝑐( 𝐫 ∗ ) = 1 for any interior point, the values of the harmonic function 𝜑 732 

are obtained as 733 

𝜑 ( 𝐫 ∗ ) = 

1 
4 𝜋

𝑁 ∑
𝑖 =1 

[ 
𝑒 ∗ 
𝑖 

𝑞 𝑖 ∑
𝑝 =1 
𝑎 ( 𝑖 ) 
𝑝 
𝑀 𝑝 −1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) + 

− 

𝑓 𝑖 

4 
𝐿 0 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) − 

𝑔 𝑖 

4 
𝐿 1 ( 𝑏 𝑖 , 𝑐 ∗ 𝑖 , 𝑑 

∗ 
𝑖 
) 

] 
, ∀𝐫 ∗ ∈ Σ̊ , (74) 

734 

𝜑 ( 𝐫 ∗ ) = 𝜑 𝑖 ( 𝜇∗ 𝑖 ) = 

𝑞 𝑖 ∑
𝑝 =1 
𝑎 ( 𝑖 ) 
𝑝 
𝜇∗ 
𝑖 
𝑝 −1 
, ∀𝐫 ∗ ∈ 𝜕Σ𝑖 , 𝑖 = 1 , … , 𝑁 . (75) 

The parameters b i , 𝑐 
∗ 
𝑖 
, 𝑑 ∗ 
𝑖 
, 𝑒 ∗ 
𝑖 
, f i and g i in (74) are evaluated by means 735 

of 31 –(34) and (43) , while M n and L n are provided by the recursive 736 

formulas (9.4) and (9.5) in [62] . Furthermore, in Eq. (75) , the abscissa 737 

𝜇∗ 
𝑖 

relevant to the point r ∗ belonging to the i -th element is expressed as 738 

739 

𝜇∗ 
𝑖 
= 

(2 𝐫 ∗ − 𝜷 𝑖 ) ⋅ 𝜶𝑖 
𝑙 2 
𝑖 

, (76) 

where 𝜶i and 𝜷 i are given by (28) and l i is the length of the i -th boundary 740 

element. 741 

In order to evaluate the coefficients 𝑎 ( 𝑖 ) 𝑝 , Algorithm 6 has been applied 742 

considering a tolerance 𝜀 = 10 −8 for the continuity error e . The conver- 743 

gence has been attained at 𝑚 = 33 , corresponding to a total number of 744 

boundary elements 𝑁 = 198 , and 𝑞 = 7 . 745 

The values provided by 74 –(75) can be compared with the ones eval- 746 

uated by using (72) , to be considered as reference 𝜑 ref ( r 
∗ ). The compari- 747 

son is shown in Fig. 4 in terms of relative error respect to 𝜑̄ , representing 748 

the mean of the absolute value of 𝜑 ref ( r 
∗ ) over the domain 749 

𝑒𝑟𝑟 ( 𝐫 ∗ ) = 

|𝜑 ( 𝐫 ∗ ) − 𝜑 ref ( 𝐫 ∗ ) |
𝜑̄ 

, (77) 

resulting at most of order of 10 −6 . 750 

6.3. Doubly-connected domain 751 

The convergence criterion for the numerical solution of the Neumann 752 

problem requires the continuity error e to be lower than a fixed tolerance 753 

𝜀 . However the extensive numerical tests that we have carried out have 754 

shown that a very large number of parameters could be required in order 755 

to reach the desired tolerance, depending on the shape of the domain. 756 

For this reason, a limit value M lim 

of the total number of parameters 757 

is introduced such that the analysis stops before that the convergence 758 

criterion on the continuity error is satisfied. In fact, once m has been 759 

fixed and the number of elements N has been derived by Algorithm 1, 760 

the limit value of q compatible with M lim 

is given by 761 

𝑞 lim = ⌊𝑀 lim ∕ 𝑁⌋ . (78) 

If the point ( m , q lim 

) is outside the stability region, the standard pro- 762 

cedure can be applied, either by means of Algorithm 2 or Algorithm 4. 763 

Otherwise, q lim 

provides the maximum value of q which actually can 764 

be considered and it can happen that e ( m , q lim 

) > 𝜀 . This means that the 765 
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Fig. 4. Relative error of 𝜑 for a rectangular domain ( 𝐵 = 1 , 𝐻 = 2 ). 

Fig. 5. Doubly-connected domain. 

continuity error e decreases too slowly and the convergence criterion 766 

e ≤ 𝜀 cannot be satisfied in accordance with M lim 

. 767 

Since the increasing of m , and consequently N , implies a progres- 768 

sive reduction of q lim 

on account of (78) , further combinations of m and 769 

q lim 

can be explored until the minimum value 𝑞 lim = 2 is reached. Ac- 770 

cordingly, the solution to be adopted is the one corresponding to the 771 

minimum value of e . 772 

An example of analysis governed by the number of parameters rather 773 

than the tolerance is given by the doubly-connected domain shown in 774 

Fig. 5 ; it has been first analyzed in [5] . 775 

By setting 𝑀 lim = 10000 , the best approximation corresponds to 𝑚 = 776 

166 and 𝑞 = 2 , with 𝑀 = 9960 and the continuity error 𝑒 = 5 . 161 𝑒 − 07 . 777 

The relevant warping function is evaluated by Eqs. (74 and 75 ) and is 778 

shown in Fig. 6 . 779 

The limit value 𝑀 = 9960 corresponds to a very accurate solution, 780 

but it has required a computational time exceeding two hours. Table 1 781 

shows the results of analyses relative to increasing values of M , along 782 

with the optimal values of m and q detected by means of Algorithm 6; 783 

the relevant values of the continuity error and the computational time 784 

are also reported. 785 

It is worth noting that t refers to the total time required to perform 786 

Algorithm 6, so that more and more pairs ( m , q ) are explored as M in- 787 

creases and an increasing number of analyses need to be completed. 788 

Please notice from Table 1 that when M is low enough the optimal 789 

solution corresponds to an increasing degree of the interpolating polyno- 790 

Fig. 6. Torsional warping function 𝜑 for to the doubly-connected domain in 
Fig. 5 . 

Table 1 

Optimal values of m and q compatible with the fixed 
values of the total number of parameters M , along 
with the continuity error e and the computational 
time t , for the field 𝜑 of the doubly-connected domain 
in Fig. 5 . 

M m q e t [s] 

60 1 2 4.914e-03 1.74e-01 

150 1 5 6.350e-04 6.88e-01 

300 2 5 1.974e-04 4.92e + 00 

600 5 4 5.936e-05 2.50e + 01 

1200 20 2 1.828e-05 1.45e + 02 

2460 41 2 5.393e-06 4.61e + 02 

4980 83 2 1.647e-06 2.34e + 03 

9960 166 2 5.161e-07 8.45e + 03 

Fig. 7. Continuity error for 𝜑 with stability border ( - - - ) relevant to the doubly- 
connected domain in Fig. 5 . 

mials; conversely, as the total number of parameters increases the best 791 

solution corresponds to a finer discretization and linear interpolating 792 

functions. 793 

Such a feature is in line with the results of Fig. 7 , in which the con- 794 

tinuity error e is shown as function of the numerical parameters m and 795 

q . In particular, the trend of the limit of stability reveals how the max- 796 

imum value of q providing reliable results decreases as the number of 797 

boundary elements increases. 798 

6.4. Thin-walled domain 799 

The analysis of the domain reported in Fig. 8 , representing a bridge 800 

cross section, provides another example of results governed by the limit 801 

𝑀 lim = 10000 rather than by the convergence of the continuity error. 802 

Again the solution corresponding to the limit value 𝑀 = 9804 is very 803 

accurate but it is very expensive in terms of computational time. The 804 

optimal parameters ( m , q ) and the relevant continuity error e for the 805 

scalar field 𝜑 are shown in Table 2 for increasing values of M , along 806 

with the required computational time. 807 
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Fig. 8. Thin-walled domain. 

Fig. 9. Warping functions 𝜑 , 𝜓 x and 𝜓 y for the thin-walled domain in Fig. 8 ( 𝜈 = 
0 . 3 ). 

The analysis has been also conducted for the vector field 𝝍 , defined 808 

by the Neumann problems (1) and (2) , respectively. The solution is ex- 809 

pressed in terms of the scalar components 𝜓 x and 𝜓 y , explicitly consid- 810 

ered in Section 4.2 , and the values 0.0, 0.2 and 0.3 have been assigned 811 

to the Poisson ratio 𝜈. 812 

For all the scalar functions the best solution is found for 𝑚 = 18 and 813 

𝑞 = 3 , corresponding to 𝑀 = 9804 , with the continuity errors reported in 814 

Table 3 . The functions 𝜑 , 𝜓 x and 𝜓 y , with reference to the case 𝜈 = 0 . 3 , 815 

are shown in Fig. 9 . 816 

Table 2 

Optimal values of m and q compatible with the fixed 
values of the total number of parameters M , along 
with the continuity error e and the computational 
time t , for the field 𝜑 of the thin-walled domain in 
Fig. 8 . 

M m q e t [s] 

382 1 2 4.757e-4 1.70e + 0 
573 1 3 2.016e-4 4.17e + 0 
1146 1 6 5.044e-5 4.35e + 1 
2204 3 4 1.600e-5 2.96e + 2 
4911 9 3 4.083e-6 1.66e + 3 
9804 18 3 1.183e-6 8.46e + 3 

Table 3 

Continuity error e associated with 𝑀 = 9804 for 
the thin-walled domain in Fig. 8 . 

𝜈 e ( 𝜑 ) e ( 𝜓 x ) e ( 𝜓 y ) 

0.0 3.691e-06 1.251e-06 

0.2 1.183e-06 3.679e-06 1.242e-06 

0.3 3.674e-06 1.239e-06 

7. Conclusions 817 

A boundary element approach has been illustrated for a pure Neu- 818 

mann problem defined over an arbitrarily shaped polygonal domain. It 819 

has been addressed to evaluate the warping functions associated with 820 

torsion and shear in Saint Venant theory and in a recently derived beam 821 

model consistent with it [3] . A polynomial approximation of the un- 822 

known function has been assumed and, with the aim of optimizing the 823 

polynomial fitting, the Chebyshev nodes have been used as collocation 824 

points. 825 

The choice of the Chebyshev nodes has also allowed us to exploit 826 

the elements’ extremities, excluded from the set of collocation nodes, as 827 

points where one can evaluate the error in the continuity of the inter- 828 

polating functions, a parameter assumed to be related to the accuracy 829 

of the numerical solution. 830 

Actually, by partitioning the domain boundary as uniformly as possi- 831 

ble, two parameters control the accuracy of the numerical solution, i.e. 832 

the number of elements relevant to the minimum length edge and the 833 

number of coefficients defining the polynomial function over each ele- 834 

ment. Expressing the continuity error as a function of such numerical 835 

parameters and imposing to be lower than a fixed tolerance, the dis- 836 

cretization of the domain boundary and the degree of the interpolating 837 

polynomials can be conveniently set. 838 

The numerical tests and the overall accordance with the results pro- 839 

vided by the specialized literature [1,5] confirm the validity of the pro- 840 

posed approach, which also has the specificity of considering a proper 841 

parameter controlling the accuracy of the numerical solution. 842 

In addition, numerical results have shown how, depending on the 843 

shape of domain, an improvement in the accuracy can be achieved by 844 

different approaches. In particular, compact domains do not require a 845 

very fine boundary discretization and the accuracy can be improved 846 

by increasing the degree of the interpolating polynomials. On the other 847 

hand, thin-walled domains show an instability in the method for high 848 

value of polynomial degree; hence, in order to obtain a sufficiently ac- 849 

curate solution it is convenient to adopt a finer discretization with linear 850 

interpolating functions. 851 

In forthcoming papers the numerical strategy developed in this pa- 852 

per will be applied to evaluate the tensors required to consistently derive 853 

beam models from Saint Venant solid model, according to the formula- 854 

tion presented in [3] , and to generate 1D finite elements that exactly 855 

recover elastic energy and displacements of the beam axis predicted by 856 

the 3D Saint Venant model. 857 
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