On the conductor of algebraic varieties with multilinear tangent cones at isolated singularities

Ferruccio Orecchia, Isabella Ramella
Dipartimento di Matematica e Appl., Università di Napoli "Federico II", Via Cintia, 80126 Napoli, Italy
orecchia@unina.itramella@unina.it

Abstract

Let A be the local ring, with maximal ideal \mathfrak{m}, of an affine algebraic variety $V \subset \mathbb{A}_{k}^{r+1}$ (over an algebraically closed field k of characteristic zero) with dimension $d+1$ and regular normalization \bar{A}. Let P be an isolated singular point of V of multiplicity e. Assume that the projectivized tangent cone W of V at P consists of a union of linear varieties $L_{i}, i=1, \ldots, e$ in generic position that is the Hilbert function of W is $\left.H_{W}(n)=\min \left\{\begin{array}{c}n+r \\ r\end{array}\right), e\binom{n+d}{d}\right\}$, for any n, i.e. maximal. Assume that these varieties are also in generic $e-1$ position that is the Hilbert function of $W-L_{i}$ is maximal for any i. Set $s=\operatorname{Min}\left\{n \in \mathbb{N} \left\lvert\,(e-1)\binom{n+d}{d}<\binom{n+r}{r}\right.\right\}$. In this paper we prove that the conductor \mathfrak{b} of A in \bar{A} is \mathfrak{m}^{s} if and only if $e \neq\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$ (the condition $e=\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$ holds in a few sporadic cases). This extends to varieties of dimension ≥ 3 the results of [1], [6] and of [8] for curves and surfaces.

A.M.S. Subject Classification : 14Q15

Key Words: Algebraic varieties, conductor, linear varieties, tangent cones

Introduction

Let A be the local ring, with maximal ideal \mathfrak{m}, of an affine equidimensional algebraic variety $V \subset \mathbb{A}_{k}^{r+1}$ (over an algebraically closed field k of characteristic zero) of dimension $d+1$ and P be a singular point of V of multiplicity e. Let \bar{A} be the normalization of A. The (ideal) conductor $\mathfrak{b}=A n n_{A}(\bar{A} / A)$ of A in \bar{A} and its relations with the singular locus of V have been studied for long time by the authors of this paper. Assume that the projectivized tangent cone $W=\operatorname{Proj}(G(A)) \subset$ \mathbb{P}_{K}^{r} of V at P is multilinear that is a reduced union of linear spaces $L_{i} \bar{A}$. If
L_{i} are in generic position that is the Hilbert function $H_{W}(n)$ of W is given by $H_{W}(n)=\min \left\{\binom{n+r}{n}, e\binom{n+d}{d}\right\}$ and the varieties of the set $W-\left\{L_{i}\right\}$ are in generic position we prove he followibg result.is regular and P is an isolated singularity of V, that is the localization $A_{\mathfrak{p}}$ is regular at any prime ideal $\mathfrak{p} \subsetneq \mathfrak{m} \mathfrak{p} \neq \mathfrak{m}$ (this is also equivalent to saying that the conductor \mathfrak{b} of A in \bar{A} has radical $\sqrt{\mathfrak{b}}=\mathfrak{m})$. Assume This is always the case for curves for which the projectivized tangent cone consists of points. If these points are in generic position it was shown in [6] that the following equality holds, $\mathfrak{b}=\mathfrak{m}^{s}$, where $s=\operatorname{Min}\left\{n \in \mathbb{N} \left\lvert\, e \leq\binom{ n+r}{r}\right.\right\}$. This result was extended in to the case of surfaces assuming that the projectivized tangent cone $W=\operatorname{Proj}(G(A)) \subset \mathbb{P}_{K}^{r}$ of V at P is multiplanar that is reduced and consisting of a union $\bigcup_{i=1}^{e} L_{i}$ of planes L_{i}. If L_{i} are generic position for any $i=1, \ldots, e$. Under these hypotheses, in [1], [6] and [8] the conductor of A in \bar{A} is proved to be a precise power of \mathfrak{m}. In this paper we compute the conductor of any such variety for which $W=\operatorname{Proj}(G(A)) \subset \mathbb{P}_{K}^{r}$ of V at P is multilinear that is a reduced union of linear spaces L_{i}. Examples of a wide class of varieties with multilinear tangent cones have been given in ([2]) for curves and in [1] in the case of surfaces. If S is a semilocal ring, with maximal ideals $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{e}$ by $G(S)$ we denote the associated graded ring $\bigoplus_{n>0}\left(\mathfrak{J}^{n} / \mathfrak{J}^{n+1}\right)$ with respect to the Jacobson radical ideal $\mathfrak{J}=\mathfrak{m}_{1} \cap \ldots \cap \mathfrak{m}_{e}$ of S. If $x \in S, x \neq 0, x \in \mathfrak{J}^{n}-\mathfrak{J}^{n+1}, n \in \mathbf{N}$ we say that x has degree n and the image $x^{*} \in \mathfrak{J}^{n} / \mathfrak{J}^{n+1}$, of x in $G(S)$ is said to be the initial form of x. If \mathfrak{a} is an ideal of S, by $G(\mathfrak{a})$ we denote the ideal of $G(S)$ generated by all the initial forms of the elements of \mathfrak{a}.

With (A, \mathfrak{m}) we denote the local ring with maximal ideal $\mathfrak{m} . k=A / \mathfrak{m}$ is the residue field of A. $H(A, n)=\operatorname{dim}_{k}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right), n \in \mathbf{N}$, denotes the Hilbert function of A and $e(A)$ is the multiplicity of A at \mathfrak{m}. The embedding dimension $\operatorname{emdim}(A)$ of A is given by $H(n, 1)$.

If $R=\bigoplus_{n \geq 0} R_{n}$ is a standard graded finitely generated algebra over a field k, of maximal homogeneous ideal $\mathfrak{n}, H(R, n)=\operatorname{dim}_{k}\left(R_{\mathfrak{n}}\right)=H\left(R_{\mathfrak{n}}, n\right)$ denotes the Hilbert function of R and $\operatorname{emdim}(R)=H(R, 1)=\operatorname{emdim}\left(R_{\mathfrak{n}}\right)$ the embedding dimension of R. The multiplicity of R is $e(R)=e\left(R_{\mathfrak{n}}\right)$. One has $e(A)=e(G(A))$ and $\operatorname{emdim}(A)=\operatorname{emdim}(G(A))$.

If B is any ring \bar{B} denotes the normalization of B. If A is a subring of B $\left.\operatorname{Ann}_{A}(B / A)\right)=\{x \in A \mid B x \subset A\}$ is the conductor of A in B (that is the largest ideal of A and B). In the following for conductor of B we mean the conductor of B in its normalization \bar{B}.

1 Multilinear projective varieties

In the rest of the paper for all undefined notions we refer to the book ([3]). We need some geometric preliminaries. Let \mathbb{P}_{k}^{r} be the projective space over an algebraically closed field k and let i and n be positive integers.

A coherent sheaf \mathcal{F} on \mathbb{P}_{k}^{r} is n-regular if $H^{i}(\mathcal{F}(n-i))=0$, for $i>0$. If \mathcal{F} is n-regular, \mathcal{F} is $n+1$ regular ([4], Lecture 14). Let $W \subset \mathbb{P}_{k}^{r}$ be a projective variety, over an algebraically closed field of characteristic zero.

Definition 1.1 W is n-regular if the sheaf \mathcal{I}_{W} associated to the homogeneous ideal $I(W)$ of W is n-regular. The number $\operatorname{reg}(W)=\min \left\{n>0 \mid \mathcal{I}_{W}\right.$ is n-regular $\}$ is called the regularity of W.

In the following we will say that W is generated in degree n if the ideal $I(W)$ can be generated by forms of degree $\leq n$.

Proposition 1.2 W is generated in degree reg (W).
Proof. See ([4], p. 99) .
Definition 1.3 W has maximal rank if, for any integer $n \geq 0$, the natural restriction map $\rho(n): H^{0}\left(\mathcal{O}_{\mathbb{P}_{k}^{r}}(n)\right) \rightarrow H^{0}\left(\mathcal{O}_{W}(n)\right)$ is injective or surjective.

Let $R=k\left[X_{0}, \ldots, X_{r}\right] / I(W)$ be the homogeneous coordinate ring of W and let $I(W)_{n}$ be the k-vector space of forms of degree n belonging to the homogeneous ideal $\left.I(W) . H_{W}(n)=\operatorname{dim}_{k}\left(R_{n}\right)=\operatorname{dim}_{K}\left(K\left[X_{0}, \ldots, X_{r}\right]_{n}\right)-\operatorname{dim}_{k}\left(I(W)_{n}\right)\right)=\binom{n+r}{n}-$ $\operatorname{dim}_{k} I(W)_{n}$ denotes the Hilbert function of W and $P_{W}(n)$ the Hilbert polynomial of W. We recall that $H_{W}(n)=P_{W}(n)$, for $n \gg 0$.

Definition 1.4 W is multilinear of dimensiond if $W=\bigcup_{i=1}^{e} L_{i}, e>1$, where L_{i} are linear varieties of the same dimension d.

Theorem 1.5 Let $W=\bigcup_{i=1}^{e} L_{i} \subset \mathbb{P}_{k}^{r}$ be a multilinear variety of dimension d. Then:
a) $H_{W}(n) \leq \min \left\{\binom{n+r}{r}, e\binom{n+d}{d}\right\}$, for any n;
b) The linear varieties L_{i} are disjoint if and only if $H_{W}(n)=e\binom{n+d}{d}$, for some $n>0$. in this case $P_{W}(n)=e\binom{n+d}{d}$ and $H_{W}\left(n^{\prime}\right)=e\binom{n^{\prime}+d}{d}$, for any $n^{\prime} \geq n$;
c) If there exists an integer $\sigma=\min \left\{n>0 \left\lvert\, H_{W}(n)=e\binom{n+d}{d}\right.\right\}+1$, then $\operatorname{reg}(W) \leq \sigma$, the ideal $I(W)$ is generated in degree σ and $H_{W}(n)=P_{W}(n)$, for any $n \geq \sigma-1$.

Proof.

a) By definition $H_{W}(n) \leq\binom{ n+r}{r}$. Let $R^{(i)}=k\left[X_{0}, \ldots, X_{r}\right] / I\left(L_{i}\right)$. Since L_{i} is a linear variety of dimension d it is isomorphic to \mathbb{P}_{K}^{d}. Hence $\operatorname{dim}_{k}\left(R_{n}^{(i)}\right)=$ $\binom{n+d}{d}$. The natural projection homomorphisms $\pi_{i}: R \rightarrow R_{i}$ induce an injective homomorphism $\Phi_{n}: R_{n} \rightarrow \bigoplus_{i}^{e} R_{n}^{(i)}$ given by $\Phi(f)=\left(\pi_{1}(f), \ldots, \pi_{q}(f)\right)$. Then $\left.H_{W}(n)=\operatorname{dim}_{k}\left(R_{n}\right) \leq \sum_{1}^{e} \operatorname{dim}_{k} R_{n}^{(i)}=e\binom{n+d}{d}\right\}$, for any n;
b) It is easily checked that the linear varieties L_{i} are disjoint if and only if the homomorphism Φ_{n} of a) is an isomorphism i.e. $H_{W}(n)=q\binom{n+d}{d}$, for some $n>0$. Furthermore if Φ_{n} is an isomorphism, $\Phi_{n^{\prime}}$ is an isomorphism, for any $n^{\prime} \geq n$. Then $P_{W}(n)=e\binom{n+r}{r}$ as claimed.
c) If there exists an integer $\sigma=\min \left\{n>0 \left\lvert\, H_{W}(n)=q\binom{n+r}{r}\right.\right\}+1$, then $\Phi_{\sigma-1}$ is an isomorphism and the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}_{k}^{r}}(\sigma-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{W}(\sigma-1)\right)$ surjects; this implies $H^{1}\left(\mathcal{I}_{W}(\sigma-1)\right)=0$ and $H^{i}\left(\mathcal{I}_{W}(\sigma-i)\right)=H^{i-1}\left(\mathcal{O}_{W}(\sigma-\right.$ $i))=H^{i-1}\left(\mathcal{I}_{\mathbb{P}_{k}^{r}}((\sigma-i))\right)=0$, for $i>0$. Hence W is σ-regular and the ideal $I(W)$ is generated in degree σ, by Proposition 1.2.

Theorem 1.6 Let W be a multilinear variety and let $\left.\alpha=\min \left\{n \left\lvert\, \begin{array}{c}n+r \\ r\end{array}\right.\right)>e\binom{n+d}{d}\right\}$. Then the following conditions are equivalent:
a) W has maximal rank;
b) $H_{W}(n)=\min \left\{\binom{n+r}{r}, e\binom{n+d}{d}\right\}$, for any n;
c) $H_{W}(\alpha-1)=\binom{\alpha+r-1}{r}$ and $H_{W}(\alpha)=e\binom{\alpha+d}{d}$
d) The linear varieties L_{i} are disjoint, $\left.\operatorname{reg}(W)\right) \leq \alpha+1$ and the ideal $I(W)$ can be generated by forms of degree α and $\alpha+1$.

Proof.
a) $\Leftrightarrow b)$ Clear, by Theorem 1.5, since $H^{0}\left(\mathcal{O}_{\mathbb{P}_{k}^{r}}(n)\right)=\binom{n+r}{r}$ and $H^{0}\left(\mathcal{O}_{W}(n)\right)=$ $e\binom{n+d}{d}$.
b) $\Leftrightarrow c$) Since $H_{W}(n)=\binom{n+r}{n}-\operatorname{dim}_{k} I(W)_{n}$, then $H_{W}(n)=\binom{n+r}{n}$ is equivalent to $I(W)_{n}=0$ and then $H_{W}(\alpha-1)=\binom{\alpha+r-1}{r}$ implies $H_{W}(n)=\binom{n+r}{r}$, for $d<\alpha$. Furthermore by Theorem 1.5, c) $H_{W}(\alpha)=e\binom{\alpha+d}{d}$ implies that W is $\alpha+1$ regular and then $H_{W}(n)=e\binom{n+d}{d}$ for any $n \geq \alpha$.
c) $\Rightarrow d)$ Since $H_{W}(\alpha)=e\binom{\alpha+d}{d}$, by Theorem 1.5 the linear varieties L_{i} are disjoint and $\operatorname{reg}(W) \leq \alpha+1$. Moreover by Proposition 1.2, W is generated in degree $\alpha+1$.
d) $\Rightarrow c)$ By theorem $1.5 H_{W}(\alpha)=e\binom{\alpha+d}{d}$ and since W has no generator of degree less than α we have $H_{W}(\alpha-1)=e\binom{\alpha+r-1}{r}$.

Definition 1.7 Let W be a multilinear variety $W=\bigcup_{i=1}^{e} L_{i}, i>1$. The varieties L_{1}, \ldots, L_{e} are in generic position (or in generic e-position) if W has maximal rank. If $1<t \leq e$ the varieties L_{1}, \ldots, L_{e} are in generic t-position if any t of them are in generic position.

In the rest of this section we show that the notion of linear varieties in generic position is an open condition.

Let $T=\left\{P_{1}, \ldots, P_{q}\right\}$ be a set of points in the projective space \mathbb{P}_{k}^{r} : Let d be a positive integer. The vector space $I(T)_{d}$ is easily given by the null space of a matrix with elements in k. In fact, if $R_{d}=\left\{f \in k\left[X_{0}, \ldots, X_{r}\right] \mid f\left(P_{i}\right)=0 . i=1, \ldots, q\right\}$, then

$$
I(T)_{d}=\left\{f \in R_{d} \mid f\left(P_{i}\right)=0, i=1, \ldots, q\right\}
$$

Denoted by $\mathcal{T}_{i}, i=1, \ldots, u$, the terms of degree d in the indeterminates X_{0}, \ldots, X_{r} ordered with respect to any term ordering, the set $S=\left\{\mathcal{T}_{1}, \ldots, \mathcal{T}_{u}\right\}$ is a basis of the k-vector space R_{d}. We now consider the $\binom{d+r}{r} \times q$ matrix:

$$
G_{d}(T)=\left(\mathcal{T}_{i}\left(P_{j}\right)\right)
$$

whose general element $\mathcal{T}_{i}\left(P_{j}\right)$ is the evaluation of the term \mathcal{T}_{i} at the point P_{j}. In [2] some elementary linear algebra is used to show that $\operatorname{dim}_{k}\left(I(T)_{d}=\binom{d+r}{r}-r k\left(G_{d}(T)\right)\right.$ (rk=rank), i.e.

$$
r k\left(G_{d}(T)\right)=H_{T}(d)
$$

Theorem 1.8 Let $W=\bigcup_{i=1}^{e} L_{i}, i>1$ be a multilinear variety of dimension d in \mathbb{P}_{k}^{r}. Let $\Phi: \mathbb{P}_{k}^{d} \rightarrow \mathbb{P}_{k}^{r}$ be a parametric representation of L_{i} with linear polynomials. Let $\alpha=\min \left\{n \left\lvert\,\binom{ n+r}{r}>e\binom{n+d}{d}\right.\right\}$. Consider $h_{i}=\binom{\alpha+d}{d}$ points $P_{i j}$ of \mathbb{P}_{k}^{d} in generic position and let $Q_{i j}=\Phi\left(P_{i j}\right)$, for any i, j. Let T be the set of all these $h=\sum_{i=1}^{e} h_{i}$ points in \mathbb{P}_{k}^{r}.Then the linear varieties L_{i} are disjoint and W has maximal rank if and only if $\left.r k\left(G_{\alpha-1}(T)\right)\right)=\binom{\alpha+r-1}{r}$ and $r k\left(G_{\alpha}(T)\right)=e\binom{\alpha+d}{d}$ i.e. if and only if these two matrices have maximal rank.

Proof. By Theorem 1.6, b) $\Leftrightarrow c) W$ has maximal rank if and only if $] H_{W}(\alpha-1)=$ $\binom{\alpha+r-1}{r}$ and $H_{W}(\alpha)=e\binom{\alpha+d}{d}$ Now by Lemma 2.1 of $H_{W}(n)=H_{T}(n)$ for any $n \leq \alpha$. Then

$$
r k\left(G_{\alpha-1}(T)\right)=H_{T}(\alpha-1)=H_{W}(\alpha-1)=\binom{\alpha+r-1}{r}
$$

and $r k\left(G_{\alpha}(T)\right)=H_{T}(\alpha)=H_{W}(\alpha)=e\binom{\alpha+d}{d}$ if and only if W has maximal rank. Remark In [9] a systematic way of finding points in generic position is given.

Corollary 1.9 Let $W=\bigcup_{i=1}^{e} L_{i}, i>1$ be a multilinear variety of dimension d in \mathbb{P}_{K}^{r} Let $\Phi: \mathbb{P}_{k}^{d} \rightarrow \mathbb{P}_{k}^{r}$ be a parametric representation of L_{i} with linear polynomials with coefficients a_{0}, \ldots, a_{u}. Then there exists an open subset $U \subset \mathbb{P}_{k}^{u}$ of such that for any $\left(a_{0}, \ldots, a_{u}\right) \in U$ the linear spaces L_{i} are disjoint and W has maximal rank.

Proof. By construction the matrices $G_{\alpha-1}(T)$ and $G_{\alpha}(T)$ have entries which are terms in $\left(a_{0}, \ldots, a_{u}\right)$ and then their maximal minors are forms in $\left(a_{0}, \ldots, a_{u}\right)$. Let $M_{1}, \ldots, M_{l}, M_{1}^{\prime}, \ldots, M_{l^{\prime}}^{\prime}$ be respectively the maximal minors of $G_{\alpha-1}(T)$ and $G_{\alpha}(T)$ of order $r k\left(G_{\alpha-1}(T)\right)$ and $r k\left(G_{\alpha}(T)\right)$. Consider the following closed sets of \mathbb{P}_{k}^{u}, $D: M_{1}=0, \ldots, M_{l}=0, D^{\prime}: M_{1}^{\prime}=0, \ldots, M_{l^{\prime}}^{\prime}=0$ and let $U=\mathbb{P}_{k}^{u}-\left(D \bigcap D^{\prime}\right)$. If $\left(a_{0}, \ldots, a_{u}\right) \in U$ then the matrices $G_{\alpha-1}(T)$ and $G_{\alpha}(T)$ have maximal rank and then W has maximal rank by Theorem 1.8

Remark The notion of maximal rank of a variety was first studied for a generic union of lines by Alexander, Hirschowitz and, for irreducible curves, by Ballico and Ellia. Then these notions where extended to a parametric smooth variety in [10] and then to a union of disjoint smooth parametric (in particular linear) varieties in [9]. in fact, in principle, one can conjecture that, fixed d and r, a general union of disjoint linear varieties of dimension d in \mathbb{P}_{k}^{r} is in generic position, except a finite number of sporadic cases. This conjecture has been proved, in [9] by computer, for and $r \leq 20$, in the case of lines and planes.

2 Conductor of multilinear varieties in generic position

In this section we compute the conductor of the homogeneous coordinate ring R of a multilinear variety $W=\bigcup_{i=1}^{e} L_{i}, i>1$, under the hypotheses that the varieties L_{1}, \ldots, L_{e} are in generic $e-1, e$ position.

First we need some general results on the conductor. Let R be a reduced ring and $\mathfrak{p}_{i}, i=1, \ldots, n$ be the minimal primes of R. Set $R_{i}=R / \mathfrak{p}_{i}$

The natural projection homomorphisms $\pi_{i}: R \rightarrow R_{i}$ induce an injective homomorphism
$\Phi: R \rightarrow \prod_{i=1}^{n} R_{i}=R^{\prime}$ given by $\Phi(f)=\left(\pi_{1}(f), \ldots, \pi_{q}(f)\right)$.
Thus we can identify R with a subring of R^{\prime}. Furthermore R^{\prime} is integral over R.
Theorem 2.1 The conductor of R in R^{\prime} is the ideal

$$
\bigcap_{i=1}^{n}\left(\mathfrak{p}_{i}+\bigcap_{j \neq i} \mathfrak{p}_{j}\right)=\bigoplus_{i=1}^{n}\left(\bigcap_{j \neq i} \mathfrak{q}_{j}\right)
$$

where \mathfrak{q}_{j} is the image of the ideal \mathfrak{p}_{j} under the homomorphism $\pi_{j}: R \rightarrow R_{j}$ (for any j). Moreover if the rings R_{i} are normal then R^{\prime} is the normalization of R.

Proof. See [6] Proposition 2.5
Theorem 2.2 Let R be the homogeneous coordinate ring of a multinear variety $W=\bigcup_{i=1}^{e} L_{i}, e>1$, of dimensiond in $\mathbb{P}_{k}^{r}, r \geq 3$ in generic $e-1 . e$ position. Let $\operatorname{emdim}(R)=r+1, \mathfrak{n}$ be the maximal homogeneous ideal of R and $\mathfrak{n}_{i}, i=1, \ldots, e$ be the maximal homogeneous ideals of \bar{R}. Set $s=\operatorname{Min}\left\{n \in \mathbb{N} \left\lvert\,(e-1)\binom{n+d}{d}<e\binom{n+r}{r}\right.\right\}$ and let \mathfrak{c} be the conductor of R. Then
a) $\mathfrak{c} \subset \mathfrak{n}^{s} \subset \bigcap_{i=1}^{e} \mathfrak{n}_{i}^{s}$
b) $\mathfrak{c}=\mathfrak{n}^{s}=\bigcap_{i=1}^{e} \mathfrak{n}_{i}^{s}$ if and only if $e \neq\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$

Proof. Let \mathfrak{p}_{i} be the minimal primes of R. then by assumption $R_{i}=R / \mathfrak{p}_{i} \cong$ $k_{i}\left[X_{0}, \ldots, X_{d}\right], k_{i}=k$ and, by Proposition, we can identify \bar{R} with the ring $\prod_{i=1}^{n} k_{i}\left[X_{0}, \ldots, X_{d}\right]$. Hence $\bigcap_{i=1}^{e} \mathfrak{n}_{i}^{s}=\bigoplus_{i=1}^{e}\left(X_{0}, \ldots, X_{d}\right)^{s} k_{i}\left[X_{0}, \ldots, X_{d}\right]$.
a) Since the varieties $\left\{L_{1}, \ldots, L_{e}\right\}-\left\{L_{i}\right\}$ are in generic position we have that the ideal $\bigcap_{j \neq i} \mathfrak{p}_{j}$ is generated by forms of degree $\geq s$ (see Theorem) and the same happens to its image in R_{i}. Hence $\bigcap_{j \neq i} \mathfrak{q}_{j} \subset\left(X_{0}, \ldots, X_{d}\right)^{s} k_{i}\left[X_{0}, \ldots, X_{d}\right]$
b) The condition $e \neq\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$ is equivalent to saying that $(e-1)\binom{s+d}{d}>$ $\binom{s+r}{r}$ or $e\binom{s+d}{d} \leq\binom{ s+r}{r}$. Since by assumption we have $(e-1)\binom{s+d}{d}<\binom{d+r}{r}$ $e \neq\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$ is equivalent to $e\binom{s+d}{d} \leq\binom{ s+r}{r}$.
$\Leftarrow)$ Fix an integer $i, 1 \leq i \leq e$. Let $\left(f_{1}, \ldots, f_{u}\right)$ be the elements of degree s of a minimal set of generators of the ideal $\bigcap_{j \neq i} \mathfrak{q}_{j}$. By the minimality $\left(f_{1}, \ldots, f_{u}\right)$ are linearly independent modulo \mathfrak{p}_{i} and their images

$$
\left(\bar{f}_{1}, \ldots, \bar{f}_{u}\right) \subset \bigcap_{j \neq i} \mathfrak{q}_{j} \subset\left(X_{0}, \ldots, X_{d}\right)^{s} k_{i}\left[X_{0}, \ldots, X_{d}\right]
$$

are linearly independent forms. But $u=H(R, s)-H\left(R / \bigcap_{j \neq i} \mathfrak{q}_{j}, s\right)$. Then if $e\binom{s+d}{d} \leq\binom{ s+r}{r}$ we have $u=e\binom{s+d}{d}-(e-1)\binom{s+d}{d}=\binom{s+d}{d}$ and $\left(\bar{f}_{1}, \ldots, \bar{f}_{u}\right)=$ $\bigcap_{j \neq i} \mathfrak{q}_{j}=\left(X_{0}, \ldots, X_{d}\right)^{s} k_{i}\left[X_{0}, \ldots, X_{d}\right]$. Then

$$
\mathfrak{c}=\bigoplus_{i=1}^{n}\left(\bigcap_{j \neq i} \mathfrak{q}_{j}\right)=\bigoplus_{i=1}^{e}\left(X_{0}, \ldots, X_{d}\right)^{s} k_{i}\left[X_{0}, \ldots, X_{d}\right]=\bigcap_{i=1}^{e} \mathfrak{n}_{i}^{s}
$$

\Rightarrow) If $e\binom{s+d}{d}>\binom{s+r}{r}$ we have

$$
u=\binom{s+r}{r}-(e-1)\binom{s+d}{d}<e\binom{s+d}{d}-(e-1)\binom{s+d}{d}=\binom{s+d}{d}
$$

and

$$
\left(\bar{f}_{1}, \ldots, \bar{f}_{u}\right)=\bigcap_{j \neq i} \mathfrak{q}_{j} \neq\left(X_{0}, \ldots, X_{d}\right)^{s} k_{i}\left[X_{0}, \ldots, X_{d}\right]
$$

3 Conductor of varieties with multilinear tangent cones

In this section we assume that (A, \mathfrak{m}) is the local ring at a singular point P of an equidimensional variety V over an algebraically closed field k of characteristic zero. (\bar{A}, \mathfrak{J}) is the normalization of $A(\mathfrak{J}$ is the Jacobson radical of $\bar{A})$. Suppose that the dimension of A is $d+1$ and $\operatorname{emdim}(A)=r+1$. Set $e(A)=e$ be the multiplicity of A. We assume also that \bar{A} is regular and P is an isolated singularity of V that is the localization $A_{\mathfrak{p}}$ is regular at any prime ideal $\mathfrak{q} \subsetneq \mathfrak{m}$. This is also equivalent to saying that the conductor \mathfrak{b} of A in \bar{A} has radical $\sqrt{\mathfrak{b}}=\mathfrak{m}$. The natural homomorphism $\mathfrak{m}^{n} / \mathfrak{m}^{n+1} \rightarrow \mathfrak{J}^{n} / \mathfrak{J}^{n+1}$ induces an homomorphism $G(A) \rightarrow G(\bar{A})$

Proposition 3.1 If $G(A)$ is reduced then $G(A) \rightarrow G(\bar{A})$ is injective.
Theorem 3.2 Let \mathfrak{b} be the conductor of A in \bar{A} and G be the conductor of $G(A)$ in $G(\bar{A})$. Then
a) $G(\mathfrak{b}) \subset G$;
b) If $G=G\left(\mathfrak{J}^{n}\right)$ for some integer n then $\mathfrak{b}=\mathfrak{m}^{n}=\mathfrak{J}^{n}$.

Proof. ([9], Theorem 2.2).
Definition 3.3 The projectivized tangent cone $W=\operatorname{Proj}(G(A))$ is multilinear if it is reduced and $W=\left\{L_{1}, \ldots, L_{e}\right\}$, where $L_{i}, i=1, \ldots, e$, are linear varieties.

Theorem 3.4 If $W=\operatorname{Proj}(G(A))$ is multilinear and has maximal rank, that is W consists of varieties in generic position, then $G(A)$ is reduced.

Proof. ([1], Theorem 3.2).
Remark If V is pure (for example irreducible) of dimension $d+1$ it is well known that $W=\operatorname{Proj}(G(A))$ is a pure variety of dimension d (see, for example, ([5], Ch.3, Section 3) hence the linear varieties $L_{i}, i=1 \ldots, e$ have the same dimension d. Furthermore the multiplicity e of the ring A is also the degree of W. In general to be multilinear doesn't imply that the affine tangent cone $\operatorname{Spec}(G(A))$ (that is the ring $G(A)$ is reduced), as it has been shown in [7].

Theorem 3.5 Let the projectivized tangent cone $W=\operatorname{Proj}(G(A))$ be multilinear and consisting of varieties in generic $e-1$, e position. Set $s=\operatorname{Min}\{n \in \mathbb{N} \mid(e-$ 1) $\left.\binom{n+d}{d}<e\binom{n+r}{r}\right\}$. Then:
a) $\mathfrak{b} \subset \mathfrak{m}^{s}$
b) $\mathfrak{b}=\mathfrak{m}^{s}$ if and only if $e \neq\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$

Proof. First we prove that $G(\bar{A})$ is the normalization of $G(A)$. The natural splitting $\left(\mathfrak{J}^{n} / \mathfrak{J}^{n+1}\right)=\bigoplus_{i=1}^{e}\left(\mathfrak{m}_{i}^{n} / \mathfrak{m}_{i}^{n+1}\right)$ induces the isomorphism $G(\bar{A}) \cong \prod_{i=1}^{e} G(\bar{A})_{\mathfrak{m}_{i}}$. But, since $\bar{A}_{\mathfrak{m}_{i}}$ is regular, we have $G\left(\bar{A}_{\mathfrak{m}_{i}}\right) \cong k_{i}\left[X_{0}, \ldots, X_{d}\right]$, where $k_{i}=k$. Then we can identify $G(\bar{A})$ with the ring $\prod_{i=1}^{e} k_{i}\left[X_{0}, \ldots, X_{d}\right]$. Now by assumption $G(A)$ is the coordinate ring of e linear varieties of dimension d. Thus if \mathfrak{p}_{i} are the minimal prime ideals of $G(A)$ we have $G(A) / \mathfrak{p}_{i} \cong k_{i}\left[X_{0}, \ldots, X_{d}\right]$. Then by Theorem 2.1 we have $\overline{G(A)}=\prod_{i=1}^{e} k_{i}\left[X_{0}, \ldots, X_{d}\right]=G(\bar{A})$

Let G be the conductor of $G(A)$ in its normalization $G(\bar{A})$.
a) By Theorem 2.2 and Theorem 3.2, we have $G(\mathfrak{b}) \subset G=G(\mathfrak{m})^{s}=G\left(\mathfrak{m}^{s}\right)$. hence $\mathfrak{b} \subset \mathfrak{m}^{s}$.
b) If $\mathfrak{b}=\mathfrak{m}^{s}$ by Theorem 3.2 $G(\mathfrak{b})=G\left(\mathfrak{m}^{s}\right)=G(\mathfrak{m})^{s} \subset G$. But $G \subset G(\mathfrak{m})^{s}$ by Theorem 2.2. Hence $G=G(\mathfrak{m})^{s}=G(\mathfrak{m})^{s} G(\bar{A})=(G(\mathfrak{m}) G(\bar{A}))^{s}=$ $\bigcap_{i=1}^{e} G\left(\mathfrak{m}_{i}\right)^{s}$, where $G\left(\mathfrak{m}_{i}\right)$ are the maximal homogeneous ideals of $G(\bar{A})$, and $e \neq\left\lfloor\binom{ s+r}{e} /\binom{s+d}{d}\right\rfloor+1 \underset{e}{1}$ by Theorem 3.5 (b). Viceversa, if $e \neq\left\lfloor\binom{ s+r}{r} /\binom{s+d}{d}\right\rfloor+1$, $G=\bigcap_{i=1}^{e} G\left(\mathfrak{m}_{i}\right)^{s}=G\left(\bigcap_{i=1}^{e} \mathfrak{m}_{i}^{s}\right)=G\left(\mathfrak{J}^{s}\right)$, by Theorem $\left.2.2, \mathrm{~b}\right)$ and the claim follows from Theorem 3.2, b).

References

[1] A. De Paris, F. Orecchia, Reduced tangent cones and conductor at multiplanar isolated singularities, Comm. Algebra 36 (2008), 2969-2978.
[2] A: V. Geramita, F. Orecchia, Minimally generating ideals defining certain tangent cones, J. Algebra 70 (1981), 116-140.
[3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No.52, Springer-Verlag, New York (1977).
[4] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies, 59 (1966).
[5] D. Mumford, The red book of varieties and schemes, Lect. Notes in Mathematics, 1358, Springer (1999).
[6] F. Orecchia, Points in generic position and conductors of curves with ordinary singularities, J. London Math. Soc. (2), 24 (1981), 85-96.
[7] F. Orecchia, Ordinary singularities of algebraic curves Can. Math. Bull. 24 (1981), 423-431.
[8] F. Orecchia, On the conductor of a surface at a point whose projectivized tangent cone is a generic union of lines. Lecture Notes in Pure and Appl. Math. 217 New York:Dekker (1999).
[9] F. Orecchia, Implicitization of a general union of parametric varieties. J. Symbolic Computation, 31 (2001), 343-356.
[10] L. Chiantini, F. Orecchia, I. Ramella Maximal rank and minimal generation of some parametric varieties. J. Pure Appl. Algebra, 186/1 (2000), 21-31.

