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Abstract: Heterogeneous Hegselmann–Krause (HK) models have been used to represent opinion
dynamics in social networks. In this framework, the concepts of coopetition and cooperosity have been
recently introduced by the authors in order to characterize different connectivity thresholds for the
agents. Inspired by this application, in this paper a sufficient condition for the asymptotic stability of
the origin in piecewise linear systems is proved. The result is based on continuous Lyapunov functions
which are piecewise differentiable in time. By considering a piecewise quadratic Lyapunov function, the
stability result is applied for the consensus in heterogeneous HK models. Examples of heterogeneous
HK models with different number of agents show the effectiveness of the proposed approach.
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1. INTRODUCTION

In Hegselmann and Krause [2002] (HK) the authors proposed
a model for the representation of opinion dynamics for in-
teracting agents in social networks. The continuous-time ver-
sion of this model describes the dynamics of each agent by
a scalar differential equation whose discontinuous right hand
side depends on the differences between the agent state with the
others, see Meng et al. [2016] and the references therein. In this
paper we refer to the interpretation of the agent state, usually
called opinion, as a measure of the intensity of his attitude
toward a particular purpose or action, see Friedkin [2015]. In
the classical HK model, the attitudes difference of each pair
of agents is weighted by the so-called influence function which
is zero if the absolute value of such difference is larger than a
given connectivity threshold, see Motsch and Tadmor [2014],
Yang et al. [2014]. Some specific influence functions are used
to represent the coopetition, an interaction between agents that
compete and cooperate at the same time. In Hu and Zheng
[2014], Valcher and Misra [2014] coopetitive networks have
been modeled as signed graphs where the positive and negative
edges represent the cooperation and competition, respectively.
A variation of the coopetitive model with sign invariant agents
attitudes has been proposed in Ceragioli et al. [2016], while
in Ceragioli and Frasca [2015] the effects of the quantization
in the information exchanged by the agents is analyzed. In our
HK model, by considering each pair of cooperating agents, we
say that the agent i is coopetitive vs j (and j is cooperose vs i)
if their cooperation contributes to increase the attitude of i (and
to decrease the attitude of j). In this sense the term cooperosity
introduced in Tangredi et al. [2016] indicates the combination
of cooperation and generosity.

We consider the stability problem of the HK model which
includes coopetition and cooperosity. The consensus stability
for the classical HK model has been widely considered in the
literature, e.g., see Blondel et al. [2010]. If the connectivity
thresholds of the agents are different, i.e., the network is het-

erogeneous, clusters or consensus are more sensitive to the
agents initial attitudes, also for the case of few agents so as
pointed out in Liang et al. [2013], Scafuti et al. [2015]. A
sufficient condition for the consensus depending on the con-
nectivity over the network is proposed in Yang et al. [2014].
The use of continuous Lyapunov functions which are piecewise
differentiable is the alternative technique considered herein.
Piecewise quadratic (PWQ) functions, see Johansson [2003],
and the copositivity approach, see Bundfuss and Dür [2008]
and Iervolino et al. [2015], are exploited in order to formu-
late the stability problem in terms of a set of linear matrix
inequalities (LMIs), whose solution provides a PWQ Lyapunov
function for the consensus.

We represent the coopetition and the cooperosity behaviors over
a heterogeneous HK dynamics with a piecewise linear (PWL)
model. A formal proof for the stability statement in Tangredi
et al. [2016] is provided in this paper. To this aim, as a prelim-
inary result, we also provide an asymptotic stability condition
for a quite general class of PWL systems. These conditions are
expressed in terms of LMIs by using a PWQ Lyapunov func-
tion. An HK example with five agents shows the effectiveness
of the theorem in a nontrivial heterogeneous scenario. More-
over, numerical results show the positive role of the cooperosity
for achieving larger consensus values and the effects of varying
the connectivity thresholds based on the agent fitness. The rest
of the paper is organized as follows. In Section 2 we recall
the heterogeneous HK model and its PWL form. A sufficient
stability condition for a quite general class of PWL systems is
proposed in Section 3. Then in Section 4 this result is applied
to the HK model by providing conditions for the consensus in
term of LMIs. The numerical results are analyzed in Section 5
and Section 6 concludes the paper.

2. HETEROGENEOUS HK MODEL

In this section the coopetition and cooperosity concepts are
recalled and used to present the HK model in a PWL form.
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tion. An HK example with five agents shows the effectiveness
of the theorem in a nontrivial heterogeneous scenario. More-
over, numerical results show the positive role of the cooperosity
for achieving larger consensus values and the effects of varying
the connectivity thresholds based on the agent fitness. The rest
of the paper is organized as follows. In Section 2 we recall
the heterogeneous HK model and its PWL form. A sufficient
stability condition for a quite general class of PWL systems is
proposed in Section 3. Then in Section 4 this result is applied
to the HK model by providing conditions for the consensus in
term of LMIs. The numerical results are analyzed in Section 5
and Section 6 concludes the paper.
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a model for the representation of opinion dynamics for in-
teracting agents in social networks. The continuous-time ver-
sion of this model describes the dynamics of each agent by
a scalar differential equation whose discontinuous right hand
side depends on the differences between the agent state with the
others, see Meng et al. [2016] and the references therein. In this
paper we refer to the interpretation of the agent state, usually
called opinion, as a measure of the intensity of his attitude
toward a particular purpose or action, see Friedkin [2015]. In
the classical HK model, the attitudes difference of each pair
of agents is weighted by the so-called influence function which
is zero if the absolute value of such difference is larger than a
given connectivity threshold, see Motsch and Tadmor [2014],
Yang et al. [2014]. Some specific influence functions are used
to represent the coopetition, an interaction between agents that
compete and cooperate at the same time. In Hu and Zheng
[2014], Valcher and Misra [2014] coopetitive networks have
been modeled as signed graphs where the positive and negative
edges represent the cooperation and competition, respectively.
A variation of the coopetitive model with sign invariant agents
attitudes has been proposed in Ceragioli et al. [2016], while
in Ceragioli and Frasca [2015] the effects of the quantization
in the information exchanged by the agents is analyzed. In our
HK model, by considering each pair of cooperating agents, we
say that the agent i is coopetitive vs j (and j is cooperose vs i)
if their cooperation contributes to increase the attitude of i (and
to decrease the attitude of j). In this sense the term cooperosity
introduced in Tangredi et al. [2016] indicates the combination
of cooperation and generosity.

We consider the stability problem of the HK model which
includes coopetition and cooperosity. The consensus stability
for the classical HK model has been widely considered in the
literature, e.g., see Blondel et al. [2010]. If the connectivity
thresholds of the agents are different, i.e., the network is het-

erogeneous, clusters or consensus are more sensitive to the
agents initial attitudes, also for the case of few agents so as
pointed out in Liang et al. [2013], Scafuti et al. [2015]. A
sufficient condition for the consensus depending on the con-
nectivity over the network is proposed in Yang et al. [2014].
The use of continuous Lyapunov functions which are piecewise
differentiable is the alternative technique considered herein.
Piecewise quadratic (PWQ) functions, see Johansson [2003],
and the copositivity approach, see Bundfuss and Dür [2008]
and Iervolino et al. [2015], are exploited in order to formu-
late the stability problem in terms of a set of linear matrix
inequalities (LMIs), whose solution provides a PWQ Lyapunov
function for the consensus.

We represent the coopetition and the cooperosity behaviors over
a heterogeneous HK dynamics with a piecewise linear (PWL)
model. A formal proof for the stability statement in Tangredi
et al. [2016] is provided in this paper. To this aim, as a prelim-
inary result, we also provide an asymptotic stability condition
for a quite general class of PWL systems. These conditions are
expressed in terms of LMIs by using a PWQ Lyapunov func-
tion. An HK example with five agents shows the effectiveness
of the theorem in a nontrivial heterogeneous scenario. More-
over, numerical results show the positive role of the cooperosity
for achieving larger consensus values and the effects of varying
the connectivity thresholds based on the agent fitness. The rest
of the paper is organized as follows. In Section 2 we recall
the heterogeneous HK model and its PWL form. A sufficient
stability condition for a quite general class of PWL systems is
proposed in Section 3. Then in Section 4 this result is applied
to the HK model by providing conditions for the consensus in
term of LMIs. The numerical results are analyzed in Section 5
and Section 6 concludes the paper.

2. HETEROGENEOUS HK MODEL

In this section the coopetition and cooperosity concepts are
recalled and used to present the HK model in a PWL form.
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a model for the representation of opinion dynamics for in-
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sion of this model describes the dynamics of each agent by
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side depends on the differences between the agent state with the
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attitudes has been proposed in Ceragioli et al. [2016], while
in Ceragioli and Frasca [2015] the effects of the quantization
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HK model, by considering each pair of cooperating agents, we
say that the agent i is coopetitive vs j (and j is cooperose vs i)
if their cooperation contributes to increase the attitude of i (and
to decrease the attitude of j). In this sense the term cooperosity
introduced in Tangredi et al. [2016] indicates the combination
of cooperation and generosity.

We consider the stability problem of the HK model which
includes coopetition and cooperosity. The consensus stability
for the classical HK model has been widely considered in the
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erogeneous, clusters or consensus are more sensitive to the
agents initial attitudes, also for the case of few agents so as
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sufficient condition for the consensus depending on the con-
nectivity over the network is proposed in Yang et al. [2014].
The use of continuous Lyapunov functions which are piecewise
differentiable is the alternative technique considered herein.
Piecewise quadratic (PWQ) functions, see Johansson [2003],
and the copositivity approach, see Bundfuss and Dür [2008]
and Iervolino et al. [2015], are exploited in order to formu-
late the stability problem in terms of a set of linear matrix
inequalities (LMIs), whose solution provides a PWQ Lyapunov
function for the consensus.

We represent the coopetition and the cooperosity behaviors over
a heterogeneous HK dynamics with a piecewise linear (PWL)
model. A formal proof for the stability statement in Tangredi
et al. [2016] is provided in this paper. To this aim, as a prelim-
inary result, we also provide an asymptotic stability condition
for a quite general class of PWL systems. These conditions are
expressed in terms of LMIs by using a PWQ Lyapunov func-
tion. An HK example with five agents shows the effectiveness
of the theorem in a nontrivial heterogeneous scenario. More-
over, numerical results show the positive role of the cooperosity
for achieving larger consensus values and the effects of varying
the connectivity thresholds based on the agent fitness. The rest
of the paper is organized as follows. In Section 2 we recall
the heterogeneous HK model and its PWL form. A sufficient
stability condition for a quite general class of PWL systems is
proposed in Section 3. Then in Section 4 this result is applied
to the HK model by providing conditions for the consensus in
term of LMIs. The numerical results are analyzed in Section 5
and Section 6 concludes the paper.
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In this section the coopetition and cooperosity concepts are
recalled and used to present the HK model in a PWL form.
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2.1 Influence functions

The classical HK model consists of a set of N autonomous
agents, whose attitudes are state variables ξi ∈ [0,1], with
corresponding dynamics described by

ξ̇i =
N

∑
j=1

φi j(ξi,ξ j)(ξ j −ξi) (1)

for i = 1, . . . ,N, where for simplicity we omit the time depen-
dence of the variables ξi. The influence function φi j(ξi,ξ j) :
[0,1]2 → {0,1} is equal to 1 when ξ j influences the attitude
evolution of the agent i, and 0 otherwise. For all agents, we
propose an influence function that depends on the difference
ξ j −ξi as follows

φi j(ξi,ξ j) =

{
1, if −dG

i j ≤ ξ j −ξi ≤ dC
i j

0, otherwise
(2)

where the constant dG
i j ∈ [0,1] (dC

i j ∈ [0,1]) is the connectivity
threshold bounding the generosity (competition) of the agent i
versus the agent j. Without loss of generality we set φii = 0.

The cooperosity and coopetition behaviours are described in
Fig. 1, see Tangredi et al. [2016] for details. If φi j = 1 and
ξ j < ξi, from (1) it follows that the term ξ j − ξi contributes
negatively to the derivative of ξi, i.e., it decreases the attitude
of i. This identifies generosity of i versus j if φ ji = 0, i.e. j is
not influenced by i (see the region G in Fig. 1), or cooperosity
if φ ji = 1 (see the region Cr in Fig. 1). Analogously, the
coopetitive (region Ct in Fig. 1) and competitive (region C in
Fig. 1) behaviours occur when ξ j > ξi. In the particular case
dG

i j = 0 for all j, then the agent i is a pure selfish, while for
dC

i j = 0 for all j the agent i is a pure altruist.

+1−1 −dC
ji dG

ji

1

ξ j −ξi

φ ji

0

−1−dG
i j dC

i j
+1

1

ξ j −ξi

φi j

0

G Cr Ct C

Fig. 1. An example of influence functions φi j and φ ji, both vs.
ξ j −ξi. The letters G, Cr, Ct and C indicate the generosity,
cooperosity, coopetitive and competitive behaviours of i
vs. j, respectively.

2.2 Benefits, costs and fitness

Each agent is characterized by a fitness which depends on
benefits and costs due to the relations with the other agents
over the network. The fitness is defined by taking inspiration
from the repeated Prisoner’s Dilemma, see Nowak [2006]. In
particular, we define the fitness of the agent i as the average

of the fitness pairs fi j evaluated over the number of the agents
connected to i:

fi =
∑N

j=1 φi j fi j

∑N
j=1 φi j

, (3)

where for simplicity the dependence on the agents attitudes has
been omitted. In the homogeneous case, i.e., dC

i j = dG
ji for all

i, j, it is easy to verify that (3) can be rewritten as
fi = βCt

i µi −σCr
i (1−µi) (4)

where

µi =
∑N

j=1 φi jstep(ξ j −ξi)

∑N
j=1 φi j

(5)

is the fraction of agents connected to the agent i who have a
larger attitude, being step(ξ ) : [−1,1]→{0,1} a function equal
to 1 for ξ ≥ 0 and 0 otherwise. Since in the homogeneous HK
model there are no intersections among the agents attitudes time
evolutions, the number of non zero elements multiplied by φi j
in the numerator of (5) depends only on the initial conditions.

Different fitness functions fi j can be considered. In Tangredi
et al. [2016] a piecewise constant function has been proposed,
while in this paper we consider the dependence on the distance
between the agents attitudes with a piecewise linear function,
see Fig. 2.

+1−1 ξ j −ξi

fi j

βCt
i j

dG
ji

βC
i j

dC
i j

−dC
ji

−σCr
i j

−dG
i j

−σG
i j

0

Fig. 2. A piecewise linear fitness fi j characterizing the relation
of the agent i with the agent j.

In the numerical analysis the effects of connectivity thresholds
depending on the fitness will be considered.

2.3 PWL form of the HK model

For each combination of the influence functions values, the
model (1) is linear time invariant and can be rewritten in the
matrix form

ξ̇ =−Lsξ (6)
with

−Ls =




−
N

∑
j=1

φ1 j φ12 . . . φ1N

φ21 −
N

∑
j=1

φ2 j . . . φ2N

...
... . . .

...

φN1 φN2 . . . −
N

∑
j=1

φN j




(7)

for s = 1, . . . ,S, and S is the total number of state space polyhe-
dral regions corresponding to all the feasible combinations of
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the influence functions values. In the general asymmetric case,
the number of functions φi j is Nφ = N(N −1).

In the case of a static graph, i.e. φi j do not depend on the agents
attitudes, the influence functions φi j are constant and equal to 1
if the corresponding agents are connected or 0 otherwise. In this
case S = 1 and the matrix L1 is the classical Laplacian matrix.
Note that in the case of our interest, the influence functions
depend on the agents relative attitudes which change in time.
Therefore the connections and the corresponding active mode s
will change accordingly.

Usually, in the heterogeneous HK model it is assumed that the
connectivity thresholds are not dependent on the direction of
the connection, see Hegselmann and Krause [2002], i.e.,

dC
i j = dG

ji , dG
i j = dC

ji, (8)
which in our vision can be interpreted as i being competitive
(generous) versus j so as j is generous (competitive) versus
i, see Fig. 1 for an interpretation. Under the assumptions (8),
the conditions φi j = φ ji hold for all i, j, and the matrices
{Ls}S

s=1 are symmetric. Therefore, from (1) it follows that the
sum of the states time derivatives is identically zero and the
agents attitudes preserve their average for any time instant. We
consider the general case where (8) do not hold.

Since we are still interested in the convergence analysis to a
consensus, it is useful to introduce a state transformation which
has the origin as an equilibrium point. Let us introduce the
attitudes differences

xi = ξi −ξN , i = 1, . . . ,N −1. (9)
Any difference of two attitudes can be written as a linear
combination of the variables (9). Indeed:

ξ j −ξi = (ξ j −ξN)− (ξi −ξN) = x j − xi (10a)
ξ j −ξN = x j (10b)

for any i = 1, . . . ,N − 1, j = 1, . . . ,N − 1. By combining (9)
and (10) together with (1), for each i = 1, . . . ,N−1 with simple
algebraic manipulations, see Tangredi et al. [2016] for details,
one can write

ẋi =−

(
N

∑
j=1

φi j +φNi

)
xi +

N−1

∑
j=1, j �=i

(φi j −φN j)x j. (11)

By collecting all (11) we obtain the HK model on relative
attitudes in the following PWL form

ẋ = Asx, x ∈ Xs (12)
with s = 1, . . . ,S, {Xs}S

s=1 provides a polyhedral partition of the
state space D= [−1,1]N−1 and

As =




−
N

∑
j=1

φ1 j −φN1 φ12 −φN2 . . . φ1N −φN,N−1

φ21 −φN1 −
N

∑
j=1

φ2 j −φN2 . . . φ2N −φN,N−1

...
... . . .

...

φN−1,1 −φN1 φN−1,2 −φN2 . . . −
N

∑
j=1

φN−1, j −φN,N−1



. (13)

Note that when all agents are connected the dynamics (12) is
characterized by the Hurwitz matrix −(N+1)IN−1. Each index
s corresponds to a polyhedral region Xs of the state space and
it can be represented by means of inequalities which depend on
φi j. Therefore in order to complete the model (12) the influence
functions must be expressed in terms of the state x∈ [−1,1]N−1.
The formulation (2) induces a partition of the state space into
polyhedral regions which can be defined in terms of their H -
representations

Xs = {x ∈ RN−1 | Hsx+gs ≤ 0} (14)

s = 1, . . . ,S, where Hs ∈R(Ns+2N−2)×(N−1) and gs ∈R(Ns+2N−2)

can be obtained by collecting the Ns independent inequalities
resulting from (2) and the transformation (9)–(10), together
with the 2(N−1) inequalities corresponding to the state bound-
aries −1 ≤ xi ≤ 1, i = 1, . . . ,N −1.

From (9) it is clear that the origin of (12) corresponds to
the consensus, i.e. all agents having the same attitude value.
Given a set of initial conditions {ξi(0)}N

i=1, with 0 ≤ ξi(0)≤ 1,
i = 1, . . . ,N, a solution of (1) can be determined from a solution
of (12). Indeed, the corresponding set {xi(0)}N−1

i=1 is uniquely
defined by (9) and a solution x(t) of (12) can be derived.
Then one can obtain a solution ξN(t) of the scalar differential
equation

ξ̇N =
N−1

∑
j=1

φN j(ξN ,x j(t)+ξN)x j(t) (15)

and, by computing ξi(t) = xi(t) + ξN(t), i = 1, . . . ,N − 1, it
follows a solution {ξi(t)}N

i=1 of (1).

3. A STABILITY CONDITION FOR PWL SYSTEMS

We now provide a sufficient condition for the asymptotic sta-
bility of the origin of a PWL system in the form (12) with
Lyapunov functions which are continuous and piecewise dif-
ferentiable along the system solutions.

Let us first present the solution concept adopted. We assume
that there are no left accumulation of switches. Given an initial
state x(0) = x0, we say that a function x(t) : [0,∞) → RN−1

is a solution of (12) in the sense of Caratheodory, if it is
absolutely continuous on each compact subinterval of [0,∞)
and satisfies (12) for almost all t ∈ [0,∞).

We are now ready to formulate the stability result, which is
obtained as a generalization to piecewise differentiable func-
tions of the reasoning adopted for the classical Lyapunov theory
in Khalil [2002],
Lemma 1. Consider the PWL system (12) where Xs ⊆ D is
a polyhedron, D ⊂ RN−1 is a compact domain, {Xs}S

s=1 is a
polyhedral partition of D and 0 ∈ int(D). Assume that (12) has
an absolutely continuous solution for each initial condition x(0)
and that D is an invariant set for (12). Let

V (x) =Vs(x), x ∈ Xs, s = 1 . . . ,S (16)
be a continuous function, with V (0) = 0 and Vs : Xs → R for
each s a continuous and differentiable function for all x ∈ Xs.
Define the upper derivative of V (x) along the solutions of (12)
as

V̇ ∗(x) = max{V̇s(x)}s∈Σ(x), x ∈
⋂

s∈Σ(x)
Xs (17)

where Σ(x) is the set of all indices s∈ {1, . . . ,S} such that x∈Xs
and V̇s(x) is the derivative of Vs(x) along the solutions of (12),
s= 1, . . . ,S. Note that if x belongs to the interior of a polyhedron
Xs̄, i.e., x ∈ int(Xs̄), then Σ(x) = s̄ and V̇ ∗(x) = V̇s̄(x). If

Vs(x)> 0, x ∈ Xs −{0}, s = 1, . . . ,S (18a)
V̇s(x)< 0, x ∈ Xs −{0}, s = 1, . . . ,S (18b)

then x = 0 is an asymptotically stable equilibrium point in D.

Proof. Clearly, the origin x= 0 is an equilibrium point for (12).
Any trajectory starting in the set D remains in D for all t ≥ 0
because it is an invariant set.
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the influence functions values. In the general asymmetric case,
the number of functions φi j is Nφ = N(N −1).

In the case of a static graph, i.e. φi j do not depend on the agents
attitudes, the influence functions φi j are constant and equal to 1
if the corresponding agents are connected or 0 otherwise. In this
case S = 1 and the matrix L1 is the classical Laplacian matrix.
Note that in the case of our interest, the influence functions
depend on the agents relative attitudes which change in time.
Therefore the connections and the corresponding active mode s
will change accordingly.

Usually, in the heterogeneous HK model it is assumed that the
connectivity thresholds are not dependent on the direction of
the connection, see Hegselmann and Krause [2002], i.e.,

dC
i j = dG

ji , dG
i j = dC

ji, (8)
which in our vision can be interpreted as i being competitive
(generous) versus j so as j is generous (competitive) versus
i, see Fig. 1 for an interpretation. Under the assumptions (8),
the conditions φi j = φ ji hold for all i, j, and the matrices
{Ls}S

s=1 are symmetric. Therefore, from (1) it follows that the
sum of the states time derivatives is identically zero and the
agents attitudes preserve their average for any time instant. We
consider the general case where (8) do not hold.

Since we are still interested in the convergence analysis to a
consensus, it is useful to introduce a state transformation which
has the origin as an equilibrium point. Let us introduce the
attitudes differences

xi = ξi −ξN , i = 1, . . . ,N −1. (9)
Any difference of two attitudes can be written as a linear
combination of the variables (9). Indeed:

ξ j −ξi = (ξ j −ξN)− (ξi −ξN) = x j − xi (10a)
ξ j −ξN = x j (10b)

for any i = 1, . . . ,N − 1, j = 1, . . . ,N − 1. By combining (9)
and (10) together with (1), for each i = 1, . . . ,N−1 with simple
algebraic manipulations, see Tangredi et al. [2016] for details,
one can write

ẋi =−

(
N

∑
j=1

φi j +φNi

)
xi +

N−1

∑
j=1, j �=i

(φi j −φN j)x j. (11)

By collecting all (11) we obtain the HK model on relative
attitudes in the following PWL form

ẋ = Asx, x ∈ Xs (12)
with s = 1, . . . ,S, {Xs}S

s=1 provides a polyhedral partition of the
state space D= [−1,1]N−1 and

As =




−
N

∑
j=1

φ1 j −φN1 φ12 −φN2 . . . φ1N −φN,N−1

φ21 −φN1 −
N

∑
j=1

φ2 j −φN2 . . . φ2N −φN,N−1

...
... . . .
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N

∑
j=1

φN−1, j −φN,N−1


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. (13)

Note that when all agents are connected the dynamics (12) is
characterized by the Hurwitz matrix −(N+1)IN−1. Each index
s corresponds to a polyhedral region Xs of the state space and
it can be represented by means of inequalities which depend on
φi j. Therefore in order to complete the model (12) the influence
functions must be expressed in terms of the state x∈ [−1,1]N−1.
The formulation (2) induces a partition of the state space into
polyhedral regions which can be defined in terms of their H -
representations

Xs = {x ∈ RN−1 | Hsx+gs ≤ 0} (14)

s = 1, . . . ,S, where Hs ∈R(Ns+2N−2)×(N−1) and gs ∈R(Ns+2N−2)

can be obtained by collecting the Ns independent inequalities
resulting from (2) and the transformation (9)–(10), together
with the 2(N−1) inequalities corresponding to the state bound-
aries −1 ≤ xi ≤ 1, i = 1, . . . ,N −1.

From (9) it is clear that the origin of (12) corresponds to
the consensus, i.e. all agents having the same attitude value.
Given a set of initial conditions {ξi(0)}N

i=1, with 0 ≤ ξi(0)≤ 1,
i = 1, . . . ,N, a solution of (1) can be determined from a solution
of (12). Indeed, the corresponding set {xi(0)}N−1

i=1 is uniquely
defined by (9) and a solution x(t) of (12) can be derived.
Then one can obtain a solution ξN(t) of the scalar differential
equation

ξ̇N =
N−1

∑
j=1

φN j(ξN ,x j(t)+ξN)x j(t) (15)

and, by computing ξi(t) = xi(t) + ξN(t), i = 1, . . . ,N − 1, it
follows a solution {ξi(t)}N

i=1 of (1).

3. A STABILITY CONDITION FOR PWL SYSTEMS

We now provide a sufficient condition for the asymptotic sta-
bility of the origin of a PWL system in the form (12) with
Lyapunov functions which are continuous and piecewise dif-
ferentiable along the system solutions.

Let us first present the solution concept adopted. We assume
that there are no left accumulation of switches. Given an initial
state x(0) = x0, we say that a function x(t) : [0,∞) → RN−1

is a solution of (12) in the sense of Caratheodory, if it is
absolutely continuous on each compact subinterval of [0,∞)
and satisfies (12) for almost all t ∈ [0,∞).

We are now ready to formulate the stability result, which is
obtained as a generalization to piecewise differentiable func-
tions of the reasoning adopted for the classical Lyapunov theory
in Khalil [2002],
Lemma 1. Consider the PWL system (12) where Xs ⊆ D is
a polyhedron, D ⊂ RN−1 is a compact domain, {Xs}S

s=1 is a
polyhedral partition of D and 0 ∈ int(D). Assume that (12) has
an absolutely continuous solution for each initial condition x(0)
and that D is an invariant set for (12). Let

V (x) =Vs(x), x ∈ Xs, s = 1 . . . ,S (16)
be a continuous function, with V (0) = 0 and Vs : Xs → R for
each s a continuous and differentiable function for all x ∈ Xs.
Define the upper derivative of V (x) along the solutions of (12)
as

V̇ ∗(x) = max{V̇s(x)}s∈Σ(x), x ∈
⋂

s∈Σ(x)
Xs (17)

where Σ(x) is the set of all indices s∈ {1, . . . ,S} such that x∈Xs
and V̇s(x) is the derivative of Vs(x) along the solutions of (12),
s= 1, . . . ,S. Note that if x belongs to the interior of a polyhedron
Xs̄, i.e., x ∈ int(Xs̄), then Σ(x) = s̄ and V̇ ∗(x) = V̇s̄(x). If

Vs(x)> 0, x ∈ Xs −{0}, s = 1, . . . ,S (18a)
V̇s(x)< 0, x ∈ Xs −{0}, s = 1, . . . ,S (18b)

then x = 0 is an asymptotically stable equilibrium point in D.

Proof. Clearly, the origin x= 0 is an equilibrium point for (12).
Any trajectory starting in the set D remains in D for all t ≥ 0
because it is an invariant set.
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Assume that x(0) �= 0. For any t > 0 denote by {ti}n
i=1 the

strictly increasing sequence of time instants in (0, t) such that
x(ti) lies on the boundary of Xs for some s, for all i. With some
abuse of notation let t0 = 0 and tn+1 = t. From (17), (18) and
the continuity of V (x(t)) one can write

V (x(t)) =V (x(0))+
n

∑
i=0

∫ ti+1

ti
V̇ ∗(x(τ))dτ

≤V (x(0))−
n

∑
i=0

γi(ti+1 − ti)

≤V (x(0))− γt, (19)

where −γi =maxt∈[ti,ti+1] V̇
∗(x(t))≤ 0 and −γ =max{−γi}n

i=0 ≤
0. Then it follows

V (x(t))≤V (x(0)), ∀t ≥ 0. (20)
To prove asymptotic stability we need to show that ‖x(t)‖ → 0
as t → ∞. Being V (0) = 0, by continuity it is sufficient to show
that V (x(t))→ 0 as t → ∞. Since V (x(t)) is positive, decreasing
and bounded from below by zero, it is

V (x(t))→ c ≥ 0 t → ∞. (21)
Suppose that c is positive and let

Ωc = {x ∈ D |V (x)≤ c}. (22)
Due to the continuity of V (x), there exists a sufficiently small
d > 0 such that Bd ⊂ Ωc, with Bd = {x ∈ D | ‖x‖ ≤ d}. Since
V (x(t))→ c, the trajectory x(t) lies outside the set Bd for all t ≥
0. Let −γd < 0 the maximum of V̇ ∗(x) over the compact set D−
int(Bd) which exists because V̇ ∗(x) is piecewise continuous.
Then

V (x(t)) =V (x(0))+
∫ t

0
V̇ ∗(x(τ))dτ

≤V (x(0))− γdt. (23)
Since the right-hand side of (23) will eventually become nega-
tive, this contradicts the assumption that c > 0.

4. CONSENSUS WITH PWQ FUNCTIONS

The result in Lemma 1 will be applied for the analysis of the
consensus in the heterogeneous HK model by using a PWQ
Lyapunov function. Each polyhedron Xs ⊂ D ⊆ [−1,1]N−1

in (14) can be equivalently represented by means of its V -
representation

Xs = conv{vs,�}λs
�=1 (24)

with s = 1, . . . ,S and conv indicates the convex hull. The
vertices {vs,�}λs

�=1 of the polyhedron Xs can be obtained from
the H -representation (14) by using numerical tools, e.g., the
tool cddmex in Matlab, see Fukuda [2016]. With reference
to the partition {Xs}S

s=1, say Σ0 the subset of indices s such
that 0 ∈ Xs and Σ1 its complement, i.e., Σ0 ∪Σ1 = {1, . . . ,S}.
For each polyhedron Xs, if s ∈ Σ0 let us define the ray matrix
Rs ∈ R(N−1)×λs as follows

Rs =
(

vs,1 · · · vs,λs

)
, (25)

while if s ∈ Σ1 the matrix R̂s ∈ RN×λs given by

R̂s =

(
vs,1 · · · vs,λs
1 · · · 1

)
. (26)

The stability analysis below is based on a piecewise function
V : RN−1 → R in the form (16) where, for each s = 1, . . . ,S the
function Vs : Xs → R is given by

Vs(x) = x�Psx+2q�s x+ rs, (27)

where Ps ∈ R(N−1)×(N−1) is a symmetric matrix, qs ∈ RN−1 is
a vector, rs is a real scalar with rs = 0 for s ∈ Σ0. Let us define
the matrix

P̂s =

(
Ps qs

q�s rs

)
. (28)

An important aspect in order to apply Lemma 1 for our stability
analysis is the continuity of (16).
Lemma 2. Consider the matrices {P̂s}S

s=1 with P̂s given by (28).
Say Xh and Xk two elements of {Xs}S

s=1 such that Xh ∩Xk �= /0
and Γhk ∈ RN×mhk , mhk < N the matrix of the common colums
of the ray matrices corresponding to Xh and Xk. If the following
conditions hold

Γ�
hk(P̂h − P̂k)Γhk = 0 (29)

for all h,k ∈ {1, . . . ,S}, such that Xh ∩ Xk �= /0, then (16) is
continuous on the common boundary between Xh and Xk.

Proof. The proof follows from Lemma 8 in Iervolino et al.
[2016].

By using Lemma 1 and Lemma 2, we now derive LMI con-
ditions for the asymptotic stability to the consensus through a
PWQ Lyapunov function. The following result was only stated
in Tangredi et al. [2016] without proof.
Theorem 3. Consider the PWL system (12), (14) with the poly-
hedra {Xs}S

s=1 expressed as (24) and the PWQ function (16)
with (27) as a candidate Lyapunov function. Assume that (12)
has an absolutely continuous solution for each initial condi-
tion x(0). Consider the matrices {Rs}s∈Σ0 with Rs ∈ R(N−1)×λs

given by (25) and the matrices {R̂s}s∈Σ1 with R̂s ∈RN×λs given
by (26). Define the matrices

Âs =

(
As 0N−1

0�N−1 0

)
(30)

with s ∈ Σ1. Consider the set of LMIs
R�

s PsRs −Ns � 0 (31a)

−R�
s (A

�
s Ps +PsAs)Rs −Ms � 0 (31b)

for all s ∈ Σ0, and
R̂�

s P̂sR̂s −Ns � 0 (32a)

−R̂�
s (Â

�
s P̂s + P̂sÂs)R̂s −Ms � 0 (32b)

for all s ∈ Σ1, and the set of inequalities

2q�s Rseh ≥ 0, 2q�s AsRseh ≥ 0 (33)
for h = 1, . . . ,λs, s ∈ Σ0. If there exist symmetric matrices
{Ps}S

s=1, {qs}S
s=1, {rs}s∈Σ1 , symmetric (entrywise) positive ma-

trices {Ns}S
s=1 and {Ms}S

s=1, such that the set of linear matrix
inequalities (31), (32) subject to the equality constraints (29)
and to the inequality constraints (33) has a solution, then the
origin is asymptotically stable for any initial condition in the
partition D= ∪S

s=1Xs, provided it is an invariant set.

Proof. Choose the PWQ function (16), (27) as a candidate
Lyapunov function. From (29) and Lemma 2 this function is
continuous. If (31a), (32a) and the first of (33) hold, from
Corollary 7 in Iervolino et al. [2016] it follows that (18a) hold.
Analogously, from (31b), (32b) and the second of (33), the
inequalities (18b) are also satisfied. Then the candidate PWQ
Lyapunov function is continuous, strictly positive and strictly
decreasing along any solution of (12). Since the polyhedral
partition D is an invariant set, from Lemma 1 every trajectory
that starts in D tends to zero asymptotically, i.e. the consensus
is asymptotically stable for any initial condition in D.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12429



11924	 Domenico Tangredi  et al. / IFAC PapersOnLine 50-1 (2017) 11920–11925

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

Fig. 3. State space for the model (12)–(14) with N = 3 and
dC

i j = dC
ji = 0.5, dG

i j = dG
ji i = 1,2,3, j = 1,2,3 with dG

12 =

0.4, dG
13 = 0.5, dG

23 = 0.3: polyhedral partition (14); a state
trajectory (black line) and some level curves of the PWQ
Lyapunov function (dotted red lines).
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Fig. 4. Time evolutions of the attitude dynamics model (1) with
N = 5, dC,G

12 = dG,C
21 = 0.25, dC,G

15 = dG,C
51 = 0.3, dC,G

25 =

dG,C
52 = 0.5, dC,G

45 = dG,C
54 = 0.15, and dC,G

i j = dC,G
ji = 0.2

for all the other pairs i, j.

5. SIMULATION RESULTS

Theorem 3 has been applied for the stability analysis of (12)–
(14) with N = 3 and different thresholds. By solving the in-
equalities (31)–(33) subject to the equality constraints (29)
with Matlab and CVX, see Grant and Boyd [2014], a PWQ
Lyapunov function has been obtained for the star-shape region
contained in the feasibility domain shown in Fig. 3. By virtue
of Proposition 2.1 in Motsch and Tadmor [2014] and by testing
the positive invariance with the approach in Johansson [2003],
the star-shape region in Fig. 3 is an invariant set, which allows
to conclude the local asymptotic stability of the consensus.

Theorem 3 has been applied also for a heterogeneous HK model
with N = 5 and initial conditions such that the assumption for
the consensus in Theorem 3.2 in Yang et al. [2014] do not
holds. We found a solution of (31)–(33) together with (29) in
the polyhedral set obtained by excluding from the state space
partition the regions with isolated agents. Fig. 4 shows the time
evolutions of the agents attitudes.

The effects of a variation of the generosity thresholds are
analyzed through a heterogeneous model with 150 agents,
starting from a homogeneous one which presents clustering,
see Fig. 5. The large number of polyhedra in this case makes
prohibitive from a computational point of view the application
of our PWQ approach. However, some insights can be argued
from the numerical results. The attitudes time evolutions in
Fig. 6 show that by introducing a random amount of generosity,
the agents eventually reach the consensus.

A variation of the thresholds as a function of the agent global
fitness fi has been also considered. In particular, by keeping
the sum dG

i j + dC
i j constant, the generosity threshold has been

varied according to dG
i j = d̄G

i j + Kp fi with Kp a positive gain
and d̄G

i j the nominal value, i.e., the generosity increases with
the fitness. The cost and benefit parameters, for the fitness
pairs fi j, have been chosen as σG

i = 1, σCr
i = 0.7, βCt

i = 0.3,
βC

i = 0.6. Fig. 7 shows the histograms of the consensus values
with N = 625 agents, for Kp ∈ [0,0.5]. The occurrences have

Fig. 5. Clustering without generosity highlighted by the time
evolutions of (1) with N = 150, initial conditions uni-
formly distributed in [0,1] and dC,G

i j = dC,G
ji = 0.25.

Fig. 6. Consensus with generosity for the same scenario as in
Fig. 5 but with dC

i j = dC
ji = 0.25 and dG

i j = dG
ji ∈ [0.24,0.26]

randomly chosen with uniform distribution.
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5. SIMULATION RESULTS

Theorem 3 has been applied for the stability analysis of (12)–
(14) with N = 3 and different thresholds. By solving the in-
equalities (31)–(33) subject to the equality constraints (29)
with Matlab and CVX, see Grant and Boyd [2014], a PWQ
Lyapunov function has been obtained for the star-shape region
contained in the feasibility domain shown in Fig. 3. By virtue
of Proposition 2.1 in Motsch and Tadmor [2014] and by testing
the positive invariance with the approach in Johansson [2003],
the star-shape region in Fig. 3 is an invariant set, which allows
to conclude the local asymptotic stability of the consensus.

Theorem 3 has been applied also for a heterogeneous HK model
with N = 5 and initial conditions such that the assumption for
the consensus in Theorem 3.2 in Yang et al. [2014] do not
holds. We found a solution of (31)–(33) together with (29) in
the polyhedral set obtained by excluding from the state space
partition the regions with isolated agents. Fig. 4 shows the time
evolutions of the agents attitudes.

The effects of a variation of the generosity thresholds are
analyzed through a heterogeneous model with 150 agents,
starting from a homogeneous one which presents clustering,
see Fig. 5. The large number of polyhedra in this case makes
prohibitive from a computational point of view the application
of our PWQ approach. However, some insights can be argued
from the numerical results. The attitudes time evolutions in
Fig. 6 show that by introducing a random amount of generosity,
the agents eventually reach the consensus.

A variation of the thresholds as a function of the agent global
fitness fi has been also considered. In particular, by keeping
the sum dG
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i j constant, the generosity threshold has been

varied according to dG
i j = d̄G

i j + Kp fi with Kp a positive gain
and d̄G

i j the nominal value, i.e., the generosity increases with
the fitness. The cost and benefit parameters, for the fitness
pairs fi j, have been chosen as σG
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i = 0.7, βCt
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i = 0.6. Fig. 7 shows the histograms of the consensus values
with N = 625 agents, for Kp ∈ [0,0.5]. The occurrences have

Fig. 5. Clustering without generosity highlighted by the time
evolutions of (1) with N = 150, initial conditions uni-
formly distributed in [0,1] and dC,G
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i j = 0.7 for all i and j.
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Fig. 8. Time evolutions of the agents attitudes for Kp = 0.4.

been computed on 50 runs with random initial conditions. Note
that by increasing the value of Kp the average of the consensus
increases. Fig. 8 shows the time evolutions for one specific run.

6. CONCLUSIONS

We have analyzed the consensus in a Hegselmann–Krause
model where the concepts of coopetition and cooperosity have
been expressed through the influence thresholds of cooperating
agents. A sufficient condition for the consensus in the heteroge-
neous opinion dynamics has been proved by using a Lyapunov
technique. Numerical results have shown the effectiveness of
the approach and how coopetition and cooperosity affect the
consensus. An investigation about the thresholds dependence
on the agent fitness has been also reported; the interesting
preliminary results will lead to future work in this direction.
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fors, M., and Altafini, C. (2016). A bounded confidence
model that preserves the signs of the opinions. In Proc. of
European Control Conference, 543–548. Aalborg, Denmark.

Friedkin, N.E. (2015). The problem of social control and
coordination of complex systems in sociology: A look at the
community cleavage problem. Control Systems Magazine,
35(3), 40–51.

Fukuda, K. (2016). CDD. Swiss Federal Institute of Technol-
ogy, https://www.inf.ethz.ch/personal/fukudak/cdd home/.

Grant, M. and Boyd, S. (2014). CVX: Matlab soft-
ware for disciplined convex programming, version 2.1.
http://cvxr.com/cvx.

Hegselmann, R. and Krause, U. (2002). Opinion dynamics
and bounded confidence models, analysis, and simulation.
Journal of Artifical Societies and Social Simulation, 5(3), 1–
33.

Hu, J. and Zheng, W.X. (2014). Emergent collective behaviours
on coopetition networks. Physics Letters A, 378(26–27),
1787–1796.

Iervolino, R., Tangredi, D., and Vasca, F. (2016). Piecewise
quadratic stability of consensus in heterogeneous opinion
dynamics. In Proc. of European Control Conference, 549–
554. Aalborg, Denmark.

Iervolino, R., Vasca, F., and Iannelli, L. (2015). Cone-
copositive piecewise quadratic Lyapunov functions for
conewise linear systems. IEEE Transactions on Automatic
Control, 60(11), 3077–3082.

Johansson, M. (2003). Piecewise Linear Control Systems - A
Computational Apporach, volume 284. Springer, Heidel-
berg, Germany.

Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall, Upper
Saddle River, New Jersey, USA, third edition.

Liang, H., Yang, Y., and Wang, X. (2013). Opinion dynamics
in networks with heterogeneous confidence and influence.
Physica A, 392(9), 2248–2256.

Meng, Z., Shi, G., Johansson, K.H., Cao, M., and Hong, Y.
(2016). Behaviors of networks with antagonistic interactions
and switching topologies. Automatica, 73, 110–116.

Motsch, S. and Tadmor, E. (2014). Heterophilious dynamics
enhances consensus. SIAM Review, 56(4), 577–621.

Nowak, M.A. (2006). Five rules for the evolution of coopera-
tion. Science, 314(5805), 1560–1563.

Scafuti, F., Aoki, T., and di Bernardo, M. (2015). Heterogeneity
induces emergent functional networks for synchronization.
Physical Review E, 91(6), 1–6.

Tangredi, D., Iervolino, R., and Vasca, F. (2016). Coopetition
and cooperosity over opinion dynamics. In H. Cherifi et al.
(eds.), Complex Networks, 397–409. Milan, Italy.

Valcher, M.E. and Misra, P. (2014). On the consensus and bipar-
tite consensus in high-order multi-agent dynamical systems
with antagonistic interactions. Systems and Control Letters,
66(1), 94–103.

Yang, Y., Dimarogonas, D., and Hu, X. (2014). Opinion con-
sensus of modified Hegselmann-Krause models. Automatica,
50(2), 622–627.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12431


