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Introduction

A growing body of evidence reported an increasing prev-
alence of obesity and obesity-related diseases reaching 
epidemic proportions (Nguyen et al. 2017; McLaughlin 
et al. 2004). Genetic background has been identified as the 
main cause of metabolic diseases along with environmen-
tal influences such as excessive food intake and the lack 
of physical activity (Baudrand et al. 2015; Haluzik et al. 
2004). However, these conditions by alone cannot account 
for the current disease trends leading to hypothesize that 
other players could take part to the pathogenesis of meta-
bolic diseases. Over recent years a class of chemicals that 
could interfere with metabolic processes has been identi-
fied. These compounds identified as obesogenic endocrine 
disruptors or “obesogens” include compounds to which the 
human population is daily exposed through their use in pesti-
cides/herbicides, industrial and household products, plastics, 
detergents, flame retardants and as ingredients in personal 
care products (Thayer et al. 2012). Of particular concern 
is the evidence that the exposure of organs involved in the 
regulation of metabolisms, such as adipose tissue, pancreas 
and liver, to metabolic disruptors during utero or neonatal 
period may have a more detrimental effect compared to the 
exposure during adulthood (Waalen 2014). This review will 
summarize the current knowledge on obesogenic endocrine 
disruptors that may contribute to the pathogenesis of obesity 
through interfering with regulatory processes in metabolism 
and in the control of adipocyte function.

Abstract Obesogenic endocrine disruptors, also known as 
obesogens, are chemicals potentially involved in weight gain 
by altering lipid homeostasis and promoting adipogenesis 
and lipid accumulation. They included compounds to which 
human population is exposed over daily life such as pesti-
cides/herbicides, industrial and household products, plastics, 
detergents and personal care products. The window of life 
during which the exposure happens could lead to different 
effects. A critical window is during utero and/or neonatal 
period in which the obesogens could cause subtle changes in 
gene expression and tissue organization or blunt other levels 
of biological organization leading to increased susceptibil-
ity to diseases in the adulthood. Some of the reasons for 
this increased sensitivity include the lack of the protective 
mechanisms that are available in adult such as DNA repair 
mechanisms, a competent immune system, detoxifying 
enzymes, liver metabolism and the blood/brain barrier still 
not fully functional in the fetus or newborn. The mechanisms 
of action of obesogens lay on their ability to increase the 
number and/or the size of the adipocytes and to alter appe-
tite, satiety and food preferences. The ability of obesogens 
to increase fat deposition results in an increased capacity 
for their own retention due to their lipophilic properties; 
thus prolonging the exposure and increasing the detrimental 
metabolic consequences.
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Basic evidence

In 2006, Grun and Blumber identified the existence of 
chemicals that could interfere with energy balance encour-
aging weight gain and obesity (Grün and Blumberg 2006). 
These disruptors were called “obesogens” and they have 
been reported to increase the susceptibility to weight gain 
in exposed individuals. The mechanisms through which the 
obesogens act have been identified in the increased adipo-
genesis and/or the increased storage in preexisting fat cells 
(Janesick and Blumberg 2011). Further, obesogens could 
also act indirectly through the change of gut microbiota, by 
altering basal metabolic rate and hormonal control of appe-
tite and satiety (Lagisz et al. 2015; Snedeker and Hay 2012). 
The association between chemicals and obesity has been 
suggested by several studies. Starting from basic viewpoint, 
the exposure to tributyltin (TBT) during pregnancy leads to 
offspring that are heavier than not exposed ones (Grun et al. 
2006). TBT is an organotin used as fungicide and it is a reti-
noid acid X receptor and PPAR-γ agonist (Grun et al. 2006). 
In the murine 3T3-L1 cell model, TBT has been reported to 
perturb key regulators of adipogenesis and lipogenic path-
ways in vivo. Moreover, in utero exposure to TBT leads to 
strikingly elevated lipid accumulation in adipose depots, 
liver and testis of neonate mice and results in increased 
epididymal adipose mass in adults (Grun et al. 2006). At 
the same manner, the exposure to diethylstilbestrol (DES) 
during neonatal period resulted in increased body weight. 
Interestingly, this effect was specific for females and did not 
appear until 4–6 months. In male mice, the exposure to DES 
was accompanied by an increased number of adipocytes in 
the gonadal fat pad of mice (Newbold et al. 2005). Recently, 
bisphenol A (BPA) has been identified as an endocrine and 
metabolic disruptor. Its presence is ubiquitous since it is a 
chemical used to make polycarbonate plastic, epoxy resins 
that line food and beverage cans, and as developer in cash 
register receipts (Rubin 2011). The effect of the exposure to 
BPA is controversial. Somm et al. (2009) reported that the 
exposure to BPA during pregnancy in rats had a determinant 
effect on the weight of offspring at weaning, thus suggesting 
that the exposure to BPA at early life plays a crucial role in 
determining adult body weight. Yang et al. (2016) demon-
strated that the exposure to BPA at increasing doses added 
to chow diet has been accompanied by an increased body 
weight and fat mass. This effect seems to be due to the dif-
ferentiation of white adipocyte progenitors from the stromal 
vascular fraction, partially through glucocorticoid receptor. 
Moreover, BPA exposure increased circulating inflammatory 
factors and the local inflammation in white adipose tissues 
in both genders and increased circulating inflammatory fac-
tors, including leptin and TNFα in lean female subjects but 
not in male. Phthalates can be found in a variety of products 
such as cosmetics, shampoos, soaps, lubricants, pesticides 

and paints. Food is the main tool responsible for the human 
exposure to phthalates that are often contained in wrapping 
materials or during the food processing (Wams 1987). Dieth-
ylhexyl phthalate (DEHP) has been reported to induce the 
expression of transcriptional factors peroxisome prolifera-
tor-activated receptor (PPAR) gamma, CCAAT/enhancer-
binding protein (C/EBP) alpha and sterol regulatory element 
binding factor 1 (Srebf1) as well as downstream target genes 
required for adipogenesis in vivo. Further perinatal exposure 
seems to have detrimental metabolic consequences in the 
offspring; in fact, body weight, adipose tissue deposition, 
serum lipids and glucose levels were significantly elevated in 
offspring at postnatal day 60 (Hao et al. 2013). At the same 
manner, mono-(2-ethylhexyl) phthalate (MEHP) induced the 
expression of PPAR-γ as well as its target genes required 
for adipogenesis in vitro. Moreover, MEHP perturbed key 
regulators of adipogenesis and lipogenic pathway in vivo. 
In utero exposure to a low dose of MEHP significantly 
increased body weight and fat pad weight in male offspring 
at postnatal day 60. In addition, serum cholesterol, TAG 
(triacylglycerol) and glucose levels were also significantly 
elevated (Hao et al. 2012). Polycyclic aromatic hydrocarbons 
(PAHs) are derived from fossil fuel burning which includes 
diesel exhaust, air pollution and cigarette smoke (Hein-
del et al. 2015). The exposure to PAHs leads to increased 
weight, fat mass and higher PPAR-γ gene expression, fatty 
acid synthase and adiponectin in mice (Yan et al. 2014). 
However, exposing adult rats to PAHs resulted in obesity, 
inflammation and insulin resistance only if they were fed 
high-fat diet, thus meaning that a second hit is necessary to 
develop metabolic diseases (Bolton et al. 2014). Further, this 
detrimental effect was more pronounced in male mice, sug-
gesting that there could be a sexual dimorphic effect (Stra-
kovsky et al. 2015). Female offspring exposed to benzo(a)
pyrene during prenatal life developed higher amount of 
visceral adipose tissue compared to the controls (Ortiz 
et al. 2013). Persistent organic pollutants (POPs) such as 
hexachlorobenzene (HCB), DDT and polychlorinated biphe-
nyls may represent a risk of developing obesity later in life 
(Ghosh et al. 2014). Reduced energy expenditure along with 
glucose intolerance, dyslipidemia and hyperinsulinemia has 
been observed in rodents that were exposed to DDT during 
prenatal life (La Merrill et al. 2014) (Fig. 1).

Clinical evidence

Several human studies suggested an association between 
obesogens and obesity. Eighty-three human studies have 
been revised to make the state of the art of the association 
between smoking and offspring’s outcomes. The mater-
nal smoking has been associated to the predisposition of 
developing obesity later in life (Behl et al. 2013). Simi-
larly, the prenatal exposure to DES resulted in childhood 
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obesity at age of 7 (Newbold et al. 2009) and increased 
risk of adult obesity (Kirchner et al. 2010). The American 
studies reported that over 91% of examined population was 
exposed to BPA, including children (Newbold et al. 2009). 
BPA has been identified as a metabolic disruptor that con-
tribute to impair weight regulation, thus promoting obesity 
and obesity-related complications such as insulin resistance, 
dyslipidemia, hypertension and peripheral arterial disease 
(Ropero et al. 2008; Hugo et al. 2008; Shankar and Teppala 
2011; Silver et al. 2011; Shankar and Teppala 2012; Shankar 
et al. 2012a). NHANES 2003–2006 study demonstrated that 
urinary BPA was associated with general and central obe-
sity. After multivariate adjustments, participants of the three 
upper quartiles had 39–62% higher odds of being abdomi-
nally obese compared to the lowest BPA quartile participants 
(Carwile and Michels 2011). A direct correlation of urinary 
BPA level and both BMI and waist circumference has been 
found in another cross-sectional study based on NHANES 
2003–2008 cycle data (Shankar et al. 2012b). This associa-
tion was not reported only in adulthood but also in child-
hood. In fact, higher urinary BPA concentrations were 
detected in children aged 6–11 based on Canadian Health 
Measure Survey 2007–2009 data (Bushnik et al. 2010).

Moreover, in the cross-sectional study in the chil-
dren from 2003 to 2004, 2005 to 2006, and 2007 to 2008 
NHANES cycles statistically significant direct correlation 
was found between urinary BPA levels and BMI in gen-
der and age adjusted models of the whole population and 
in non-Hispanic white boys, while non-significant among 
other subgroups (Bhandari et al. 2013). After multivariate 
adjustments of NHANES 2003–2008 data, the three upper 
quartiles had 10–22% higher odds of being obese compared 

to the lowest BPA quartile but only among the white race 
participants the positive statistical association remained after 
dividing in subgroups (Trasande et al. 2012). A study based 
on the data pooled from the NHANES 2003–2010 cycles 
for children reported higher odds of being obese and hav-
ing an abnormal waist circumference-to-height ratio in three 
upper quartiles in comparison with the first one (Eng et al. 
2013). The same results were achieved in China where a 
study was conducted in school-age children reporting that 
the increased BPA levels among female students entering 
puberty (9–12 years) increased the risk of developing obe-
sity (Li et al. 2013). Similarly, high levels of urinary BPA 
have been detected in the obese group of Chinese children 
(8–15 years) (Wang et al. 2012).

However, negative associations have been also reported 
between BPA and obesity in studies performed in India and 
US. These latter should be discussed carefully due to the 
small sample size that could interfere with the final results 
(Xue et al. 2015; Wolff et al. 2007).

Phthalates are one of the most studied metabolic disrup-
tors. Several observational studies suggested that phtha-
lates could be determinant in the pathogenesis of obesity. 
Most of the results come from the NHANES studies and 
surveys carried out in the USA to obtain a random sample 
of the civilian noninstitutionalized population for a given 
survey cycle. Several phthalate metabolites mono-butyl 
phthalate (MBP), mono-benzylphthalate (MBzP), mono-
(2-ethylhexyl) phthalate (MEHP), mono-ethylphthalate 
(MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) 
and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) were 
investigated in relation to waist circumference (WC) in 
adult US male enrolled in the National Health and Nutrition 

Fig. 1  Summary of mechanism 
of action of obesogenic endo-
crine disruptors. Tributyltin 
(TBT), phthalates, bisphenol A 
(BPA), diethylstilbestrol (DES), 
polycyclic aromatic hydro-
carbons (PAHs) and organic 
pollutants (POPs) have been 
displayed to possess obesogenic 
properties. The obesogenic 
activity is due to their ability to 
increase the number and/or size 
of fat cells, alter basal metabolic 
rate and hormones regulating 
appetite, satiety and food prefer-
ences
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Examination Survey (NHANES) 1999–2002. Mono-benzyl-
phthalate (MBzP), mono-(2-ethyl-5-hydroxyhexyl) phthalate 
(MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) 
and mono-ethylphthalate (MEP) levels were closely related 
to abdominal obesity, thus leading to hypothesize that they 
could contribute to the pathogenesis of abdominal obesity 
(Stahlhut et al. 2007). However, the limit of this study was 
that only males were included while Hatch et al. (2008) sub-
sequently analyzed the same NHANES database but tak-
ing into account both genders. The endpoints of interest in 
Hatch’s study were BMI and WC. They found that MBzP, 
MEOHP, MEHHP, MEP and MBP correlated to BMI and 
WC in males aged 20–59 while MEP correlated to BMI 
and WC in adolescent girls (Stahlhut et al. 2007). Based 
on the 2003–2008 National Health and Nutrition Exami-
nation Survey, a cross-sectional analysis of 2884 children 
(aged 6–19 years) was conducted (Trasande et al. 2013a, b). 
The endpoints of interest were 2000 CDC reference-based 
BMI z-scores and binary variables of overweight and obe-
sity that were defined using BMI z-score cutoffs of 85th 
and 95th percentile, respectively. The interesting result 
was that the association between anthropometric measures 
and phthalate metabolites is race/ethnicity specific. In fact, 
each log unit increase in low molecular weight metabolites 
was associated with 21 and 22% increases in odds (95% CI 
1.05–1.39 and 1.07–1.39, respectively) of overweight and 
obesity, and a 0.090-SD unit increase in BMI z-score (95% 
CI 0.003–0.18), among non-Hispanic blacks but not in other 
racial/ethnic subgroup (Trasande et al. 2013a, b). Lind et al. 
(2012) assessed data from the Prospective Investigation of 
the Vasculature in Uppsala Seniors (PIVUS) study aiming 
to investigate the association between circulating concentra-
tions of phthalates and indices of obesity. Serum phthalate 
metabolites levels were assessed at baseline, and dual-energy 
X-ray absorptiometry (DXA) and abdominal magnetic reso-
nance imaging (MRI) assessments were performed 2 years 
later. The results of Lind et al. were presented separately by 
gender. In women, mono-isobutyl phthalate MiBP (mono-
isobutyl phthalate) levels were positively correlated with 
WC, total fat mass and trunk fat mass assessed by DXA, 
as well as to subcutaneous adipose tissue assessed by MRI 
while monomethyl phthalate (MMP) concentrations were 
related to trunk fat mass and the trunk/leg ratio assessed by 
DXA, although this association was less powerful than the 
association with MiBP. This association was not confirmed 
in males. Since exposure assessment was performed 2 years 
before the outcome ascertainment, this study could not be 
considered as a truly longitudinal study; thus, the follow-up 
status of participants could not correspond to the status at 
baseline. In contrast to phthalates, limited data in humans 
are available regarding the association between TBT and 
obesity. The placental levels of TBT seem to be determinant 
for the onset of obesity only during the first three months of 

life while this association was not significant for the other 
periods of life (Rantakokko et al. 2015). At the same way, 
limited data are currently available regarding to the associa-
tion of PAHs and obesity. Rundle et al. (2012) found that 
higher body weight both at 5 and 7 years of age was asso-
ciated to PAHs exposure during prenatal life. At the same 
way, the exposure to POPs during prenatal life is associated 
with rapid growth in the first 6 months of life and obesity 
in infancy and childhood (Valvi et  al. 2014; Diamanti-
Kandarakis et al. 2009). Both the Endocrine Society and 
United States Environmental Protection Agency identified 
several endocrine disruptors that could interfere with weight 
control such as BPA, DES, organotin compounds, such as 
TBT and triphenyltin and phytoestrogens. They concluded 
that the dangerous effect of these compounds is more severe 
when it happens in perinatal time. They encouraged screen-
ing tests and research programs to draw final recommenda-
tion on endocrine disruptor exposure (https://www.epa.gov/
endocrine-disruption; Smink et al. 2008). In conclusion, data 
regarding the association of chemicals with obesity are of 
little high quality. This is due to the fact that chemicals have 
often short physiologic half-lives; thus, the single measure-
ment performed in most of the studies cannot provide infor-
mation on long-term exposure. Further, since chemicals have 
a large number of metabolites and the investigators that con-
ducted studies on chemicals measured not the effects of the 
same metabolites, it is hard to get a comparison of the results 
across the studies. Moreover, the majority of the studies are 
based upon population-based surveys or pharmacovigilance 
studies, i.e., studies that were not designed to address the 
effect of chemicals on obesity.

Mechanism of action of obesogens

Obesogens play an important role in the onset of obesity 
acting through several pathways that promote adipogenesis 
and lipid accumulation. Usually the exposure to obesogens 
during prenatal life resulted in an increasing number of adi-
pocytes. The main mechanism involved in adipogenesis acts 
through PPAR-γ function. TBT has been reported to bind 
RXR–PPAR-γ heterodimer promoting adipogenesis (Grün 
et al. 2006; Kanayama et al. 2005; Kirchner et al. 2010). 
Masuno et al. (2002) reported that BPA accelerated the con-
version of 3T3-L1 fibroblasts when incubated with insulin. 
Mono-(2-ethylhexyl) phthalate (MEHP) has been found to 
directly activate PPARgamma and promote adipogenesis 
inducing a selective activation of different PPARgamma 
target genes (Masuno et al. 2002). Benzyl butyl phthalate 
(BBP) promoted the differentiation of 3T3-L1 through the 
activation of the adipogenic pathway and metabolic distur-
bances. In particular, BBP significantly induced mRNA 
expression of transcriptional factors C/EBPα and PPARγ, 
their downstream genes, and numerous adipogenic proteins 

https://www.epa.gov/endocrine-disruption
https://www.epa.gov/endocrine-disruption
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in a dose and time-dependent manner. Furthermore, GC/MC 
metabolomic analysis revealed that BBP exposure perturbed 
the metabolic profiles that are associated with glyceroneo-
genesis and fatty acid synthesis (Feige et al. 2007). Parabens 
also have been reported to promote adipogenesis (or adi-
pocyte differentiation) in murine 3T3-L1 cells, as revealed 
by adipocyte morphology, lipid accumulation, and mRNA 
expression of adipocyte-specific markers. Further, the adi-
pogenic potency of parabens is increased with increasing 
length of the linear alkyl chain (Yin et al. 2016). Another 
mechanism that has been hypothesized to be involved in the 
pathogenesis of obesity by obesogens is the alteration of 
appetite, satiety and food preferences. BPA may exert its 
effects through developmental programming of the hypo-
thalamic melanocortin circuitry, permanently altering the 
neurobiology of metabolic homeostasis. In fact, both male 
and female BPA-exposed mice showed a reduced density of 
pro-opiomelanocortin (POMC) projections into the paraven-
tricular nucleus of the hypothalamus (PVN). BPA-exposed 
pups had, respectively, delayed and blunted postnatal leptin 
surges, and POMC projections into the PVN were rescued 
in female BPA-exposed animals given daily injections of 
supplemental leptin (Hu et al. 2013). In humans, BPA was 
associated positively with adiponectin and leptin but nega-
tively with ghrelin, following adjustments for sex, height, 
fat mass, lean mass, smoking, alcohol consumption, physi-
cal activity, energy intake and educational levels (MacKay 
et al. 2017). In 3T3-L1, adipocytes differentiated in the pres-
ence of BPA mRNA levels of leptin, interleukin 6 (IL6) and 
interferon gamma (IFNgamma) were significantly increased 
(Rönn et al. 2014). Further, methylparaben exposure by 
daily oral gavage (100 mg/kg/day) increased adiposity and 
serum leptin levels compared to the controls when fed the 
chow diet (Ariemma et al. 2016). Both leptin and ghrelin are 
secreted both by adipose tissue and regulate hunger, with 
leptin being inhibitory and ghrelin being stimulatory. An 
interesting hypothesis is based on the fact that obesogens 
could trigger a vicious pathological cycle. In fact, obeso-
gens could promote the onset of obesity. In turn, obesity is 
characterized by an increased amount of adipose tissue that 
could act as reservoir for obesogens that it is well known to 
have lipophilic properties. The prolonged exposure to obeso-
gens could result in an increased development of metabolic 
diseases. Further, obesogens could also have a local toxic-
ity. Some xenobiotics have been reported to form fatty acid 
conjugates at adipose tissue level (Hu et al. 2016). Conjugate 
mechanism has the aim to increase hydrophilicity and aid 
to the elimination of toxic substances from the body. Usu-
ally, common conjugates are with sulfate, glucuronic acid, 
glutathione or amino acids, and this result in a negation of 
biological activity (Ansari et al. 1995). However, sometimes 
it could happen that this process lead to an enhancement of 
activity. In fact, although BPA glucuronide loses estrogenic 

activity, it preserves the ability of promoting adipogenesis 
(Pugazhendhi et al. 2008). A further consideration is that 
although adipose tissue could act as reservoir, it could be 
that not all the adipose tissue could have the same ability to 
accumulate obesogens. For example, females differ dramati-
cally from male in subcutaneous fat deposition as well as 
in the endocrine function of adipocytes. These differences 
could result in a different retention of obesogens according 
to the specific fat composition laid down in the adipocytes.

Conclusions

The obesogens have a relevant role in the pathogenesis of 
obesity. Although overeating coupled with the lack of physi-
cal activity could play a key role to the onset of obesity, it 
could be that obesogens could contribute to the predisposi-
tion to develop obesity. The strength of this review is to pro-
vide the most current evidence on the association between 
obesogens and obesity although there are several limits of 
the reported studies that prevent to draw final conclusion. 
This could be due to the fact that most of the studies were 
retrospective and were not designed aiming to investigate 
the association between obesogens and obesity. Further, they 
provide a proxy evaluation of obesogens that could not be 
a parameter to assess the chronic exposure. Thus, it will be 
mandatory to perform randomized clinical trials to assess 
to the link between suspected obesogens and obesity and to 
take political action to make the population aware about the 
exposure to obesogens. Since the effect of exposure to obe-
sogens is expected to increase, future work mandate inves-
tigations into the specific disease-promoting mechanisms by 
which these toxicants work to devise targeted interventions 
to stem the global tide of metabolic deterioration.
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