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Formulations for Water Quality Enhancement
in Water Distribution Networks
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Abstract: Water distribution networks (WDNs) need to guarantee that water is delivered with adequate quality. This paper compares the
performance of 12 multiobjective procedures to limit water quality deterioration in a WDN through the optimal operation of valves. The first
objective (ObF1) is to minimize the water age, chosen as a surrogate parameter of quality deterioration, and the second objective (ObF2) is to
minimize the number of valve closures. The 12 procedures are derived from the combination of 4 different optimization algorithms and
3 formulations of ObF1, namely, to minimize the maximum, the arithmetic mean, and the demand-weighted mean water age. The opti-
mization algorithms considered are random search (RS), Loop for Optimal Valve Status Configuration (LOC), and a combination of each
of these two with the Archive-based Micro Genetic Algorithm. The procedures are tested on two networks of different complexity. Results
show how LOC is able to find near-optimal solutions using a fraction of the computational time required by a brute force search. Furthermore,
among the ObF'1 formulations, the use of the averages (either arithmetic or demand-weighted) gives better results in terms of impact on the

population served by a WDN. DOI: 10.1061/(ASCE)WR.1943-5452.0001133. © 2019 American Society of Civil Engineers.
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Introduction

Water distribution networks (WDNs) are commonly designed to
meet future situations, such as population growth and industrial
development, or to handle extraordinary events, such as urban fire.
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Therefore, utilities often have to manage oversized-pipe systems
characterized by reduced velocities and high water age, defined
as the time required for a drop of water to travel from the main
delivery point to a consumer. An increment of water residence time
can negatively impact the microbiological quality of the potable
water (USEPA 2002). In particular, a high age value implies
deteriorated water quality in terms of chlorine residual concentra-
tion reduction and of disinfection byproduct (DBP) formation,
which may have carcinogenic effects on human health.

This study proposes a methodology to optimally manage the
operational status of valves to modify a network configuration solv-
ing a multiobjective optimization (MOO) problem in order to re-
duce water quality deterioration expressed in terms of age.

Different techniques have been widely used for optimizing
WDN design and operation (Mala-Jetmarova et al. 2018). In WDN
design, optimization problems have been mainly formulated con-
sidering the minimization of construction and operational costs
and the maximization of resilience or head pressure. For example,
Cembrano et al. (2000) adopted a generalized reduced gradient to
minimize WDN operational costs, while Giustolisi et al. (2012)
addressed the same problem considering leaks and using evolu-
tionary optimization algorithms. Creaco et al. (2015) used a multi-
objective approach to optimize design and operation considering
installation and operational costs as objective functions. For the
efficient operation of a WDN, optimization problems have been
formulated mainly considering operating cost minimization
(e.g., Jamieson et al. 2007) and pump scheduling optimization
(e.g., Castro Gama et al. 2015).

Some works suggest optimizing WDN operation using valve
management with different solvers and for different purposes,
including pressure control, backflow prevention, and sectorization
for demand control (e.g., Di Nardo et al. 2014). For instance, Jowitt
and Germanopoulos (1992) proposed optimal scheduling of
pumps and valves to minimize energy consumption using linear
programming, while Carpentier and Cohen (1993) used discrete
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dynamic programming. Minimization of operational costs by valve
scheduling was solved by Ulanicki and Kennedy (1994) using an
augmented Lagrangian method. The same problem was also ad-
dressed solving one part using a projected gradient method and
the other part by a complex method (Cohen et al. 2000a, b). While
water quality has been taken into account only recently in the design
of WDNes, it has been often considered in the optimization of WDN
operation, for example, through effective booster disinfection
(e.g., Boccelli et al. 1998) or considering the minimization of re-
chlorination costs (e.g., Ostfeld and Salomons 2006; Li et al. 2015).
In optimization problems, water quality has been considered either
as objective (Fu et al. 2013; Shokoohi et al. 2017) or constrained
(Bi and Dandy 2014; Kanta et al. 2011; Andrade et al. 2016), in
terms of either chlorine residual concentration or water age.

Owing to the uncertainty related to the adoption of existing
formulations and to the relative reaction coefficients used to model
water quality parameters (for example, to predict DBP formation
or chlorine decay), it is preferable to use a more general and less
uncertain parameter such as age, as has been done in other studies
(Fu et al. 2013; Shokoohi et al. 2017). Instead of using chlorine
(Bi and Dandy 2014; Kanta et al. 2011; Andrade et al. 2016) or
DBP concentrations (Quintiliani et al. 2018), in this study water
age is chosen as the parameter since many aspects of water quality
deterioration depend on it (Machell and Boxall 2014). Moreover,
defining and evaluating water age is not a trivial task. In this paper,
water age is computed following the common approach of estimat-
ing it as the flow-weighted average age value of merged flow at a
node, even if such an approach has some limitations. Other en-
hanced approaches could be adopted (Machell et al. 2009; Zhao
et al. 2018) as alternatives to the presented methodology.

Depending on the flow velocities in the system, water age can be
modified by varying the fluxes through tank- level regulation,
changing the network configuration using valves, or opening hy-
drants to increase discharges. As in Prasad and Walters (2006),
the methodology presented in this paper minimizes water age by
means of valve management. In fact, this option makes it possible
to intervene without losing a precious resource, and the valves can
be reopened during critical scenarios. Since reopening may cause
the release of accumulated material, in the proposed procedure their
movements are intended as a long-term operation for the reconfig-
uration of the fluxes in the network, and not necessarily as a real-
time management procedure.

In Prasad and Walters (2006), the optimization of pipe closures
to minimize residence time was formulated as a single-objective
problem solved using genetic algorithms. The novelty of the
presented contribution consists of three main aspects: first, the
adoption of a multiobjective optimization problem formulation,
introducing a second objective function; second, the evaluation
of different optimization algorithms, from the simplest random
search (RS) to the advanced evolutionary algorithm Archive-based
Micro Genetic Algorithm (AMGA?2) (Tiwari et al. 2011); third,
the application of a new algorithm suitable for this specific prob-
lem, namely, Loop for Optimal valve status Configuration (LOC).
The same three objective functions proposed by Prasad and
Walters (20006) are evaluated, and their effectiveness is investigated.
Considering 4 different optimization algorithms (with the third
and fourth ones being a combination of AMGA2 with RS and
LOC) and the 3 objective functions, 12 different procedures are
obtained and compared. They are applied to two distribution net-
works of different complexity: the example network used by Prasad
and Walters (2006) and a real network system in Kentucky (Jolly
et al. 2012).

The paper is structured as follows. First, the formulation of
the optimization problem is presented and then the general
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methodology is described. Next, the two considered networks
are introduced, followed by the analysis of results and discussion.
Finally, conclusions are presented and future works discussed.

Definition of Optimization Problem

Objective Functions

Two objective functions are considered in the optimization problem
formulation. The first one (ObF1) aims to minimize water age at
demand nodes, and the following three formulations are explored
one at a time (Prasad and Walters 2006):

Maximum Water Age, MaWA, represents the maximum age that
occurs during the simulation period across all demand nodes:

ObFI = min{MaWA}
=min{max{WA;,} Vi=1...T,,t=0...TST} (1)

Mean Water Age, MeWA, represents the arithmetic average of
the ages at all nodes:

| T, TST
ODFI1 = min{MeWA} = min{—z Z WAi.r} (2)
T+ Taep 5= =5

* Demand-weighted Mean Water Age, DeMeWA, represents the
average of the ages calculated assigning at each node a weight
equals the demand requested at each time step:

Z,‘TL Z;F:SS" WA, * Qi.t}

T TST
Dot D0 i

ObF1 = min{DeMeWA} = min{

(3)

where WA; , = water age at ith node at time step #; 7, = number
of demand nodes of network; T, = number of time steps
into which total simulation time (TST) is divided; and ¢; , = de-
mand requested at ith node at time step 7. The three proposed
formulations of Egs. (1)—(3) represent different ways to ap-
proach water quality evaluation. For example, with reference
to DBP formation, the use of Eq. (1) implies that more attention
is given to the maximum concentration at those nodes far from
the disinfection points. The minimization of the mean water age
[Eq. (2)] considers the behavior of the network in average, with-
out controlling the extreme values. Finally, Eq. (3) is based not
only on the DBP concentrations but also takes into account the
quantity of users exposed to higher values. To provide recom-
mendations on the selection of the most suitable formulation, a
comparison of performances of the three ObF 1 formulations is
presented.

The second objective function, ObF2, minimizes the number of

valve closures (NoC):

ObF2 = min{NoC} (4)

NoC is defined as the number of valves to be closed to reroute
the flow in the network. The aim of ObF2 is to contain interven-
tions in the network to reduce investment costs for placing new
valves and to limit their movement. In fact, if only the ObFI ob-
jective is considered, solutions with a huge number of valve oper-
ations may be generated, implying an unacceptable effort by the
water utility. Moreover, the valves could be successively reopened
if required for a change in system functioning. However, this may
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cause the release of accumulated material behind the closed section,
an aspect that is addressed by minimizing the number of closures.

Decision Variables and Constraints

It is assumed that every pipe in the network has a potential shut-off
valve. The decision variables in the optimization problem are the
valves’ status, represented at that stage by binary values (open or
close) (Alfonso et al. 2010). Further investigations will consider the
effects of percentages/degrees of valve closures or openings (Kang
and Lansey 2009; Ostfeld and Salomons 2006).

The constraints are fixed considering that the operational status
of the valves needs to guarantee the required service also in terms of
pressure. Hence, the considered constraints are as follows: (1) any
valve configuration status must guarantee the supply of water to all
nodes, i.e., nodes cannot be disconnected; (2) the pressure P;, at
each ith node at each time ¢ should be within a fixed range:

Pmin<Pi.t<Pmax (5)

Methodology

Procedures

Twelve different procedures combining different optimization algo-
rithms and formulations are compared (Table 1). The four algo-
rithms used, described in detail in the following sections, are
RS, LOC, and a combination of each of these two with AMGA?2,
a multiobjective evolutionary algorithm based on genetic algo-
rithms. The first objective function is MaWA [Eq. (1)], MeWA
[Eq. (2)], or DeMeWA [Eq. (3)], while the second objective func-
tion is always NoC [Eq. (4)]. The results are provided as Pareto
fronts and maps to compare the different procedures.

Simulation Setup

EPANET (Rossman 2000) is used as a WDN model for hydraulic

and quality simulation (water age evaluation). Since the aim of

this paper is to present a new and general methodology to reduce
water age, at the present stage some simplifying hypotheses are
considered:

* Even if in real WDN users are placed along pipes, demands are
assumed to be concentrated in nodes. For the mean pipe length
of the presented networks the corresponding approximation of
water age is on the order of less than 1 s. Further investigations
will consider demands distributed along pipes as in Farina et al.
(2014) and Menapace et al. (2018).

Table 1. Optimization procedures combining ObFI formulations and
optimization algorithms

e The pressure-driven approach is not used because the minimum
pressure value in the constraint [Eq. (5)] is fixed in order to guar-
antee demand-driven functioning.

» Leakages are neglected even if they represent a component of
demands. Their effect will be analyzed in future research.

* To verify the existence of disconnected nodes, a procedure im-
plemented in EPANET is used. However, other methods could
be adopted (e.g., Creaco et al. 2012).

* For water age evaluation complete mixing at nodes is assumed
and dispersion is neglected. Although this assumption is ques-
tionable (Machell et al. 2009), its correction requires more com-
plex computations, and for this reason they are still adopted in
the majority of simulation tools and applications (Boccelli et al.
1998; Di Cristo and Leopardi 2008; Seyoum and Tanyimboh
2017).

* Input data uncertainty (Di Cristo et al. 2015) is not consid-
ered herein, but the same authors presented a robust optimiza-
tion with respect to demand uncertainty in Marquez-Calvo
et al. (2018).

A standard model-based optimization framework, commonly
used in the literature (e.g., Alfonso et al. 2010; Quintiliani et al.
2017), is adopted. An application compiled in C++ using the library
of functions of the EPANET Programmer’s Toolkit (Rossman
1999) was developed to set up the valve configurations in the input
file and to run the hydraulic and water quality engines. The outputs
of the application used by the optimization algorithm are ObFI and
ObF2 values.

All objective functions are evaluated with respect to the original
status of the network, i.e., with all valves open, corresponding to
ObF2 = 0. This means that the “do-nothing” solution is always
included in the Pareto front. In this way, a comparison is made
on how much ObFI improves for different configurations with
respect to the original status.

Optimization Algorithms

To describe the RS and LOC algorithms, the Class P network is
defined as a network that has P pipes that can be closed through
valve operation.

Random Search

Given a maximum number N of objective function evaluations and
a maximum number P of valves to close, M = N/P network con-
figurations belonging to the same class are considered. The RS
algorithm generates M random network configurations for each
class and selects the one with the lowest ObF 1. The procedure stops
when all P classes have been analyzed.

Loop for Optimal Valve Status Configuration

LOC is an algorithm specifically designed to solve the stated prob-
lem, which is based on procedures that find the best possible sol-
ution incrementally at each step, similarly to greedy algorithms

Procedure ObF1 Optimizer (e.g., Alfonso et al. 2013; Banik et al. 2017a, b). As in the previous
case, LOC is used to find P configurations of a network.
P1 MaWA RS . . . ..
P MaWA LOC Starting from Class 0, corresponding to an initial condition
P3 MaWA RS-AMGA?2 Where all Valve§ of the network are open, LOC investigates al.l pos-
P4 MaWA LOC-AMGA2 sible configurations and selects the valve that produces the highest
P5 MeWA RS ObDF1 reduction in the entire network when it is closed. Then it is
P6 MeWA LOC removed from the set of “Remaining Valves” and added to the set of
P7 MeWA RS-AMGA?2 “Best Configurations.” To set the second valve to close, the algo-
P8 MeWA LOC-AMGA2 rithm considers the configurations with the valves previously
P9 DeMeWA RS closed, selecting within the “Remaining Valves” set the valve that
P10 DeMeWA LOC offers the ObFI highest reduction. This valve is added to the
P11 DeMeWA RS-AMGA2 “Best Configuration” set. The procedure stops when the P class
P12 DeMeWA LOC-AMGA2
has been reached.
© ASCE 04019061-3 J. Water Resour. Plann. Manage.
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LOC uses a predetermined, limited number of function evalu-
ations to find a (suboptimal) Pareto front. This number of evalua-
tions is given by the expression

NP
Ne= Y i (6)
i=NP—P+1

where Ne = number of function evaluations; NP = total number of
pipes of network; and P = maximum number of valves to close.

AMGA2

The AMGA?2 by Tiwari et al. (2011) is a multiobjective evolution-
ary algorithm to find optimal solutions. It is considered a steady-
state genetic algorithm because its main Pareto front has a small
number of solutions, although other good solutions are stored in
an archive. To produce the next generation of populations, it uses
all solutions in the main Pareto front mated with some of the so-
lutions in the archive. To decide which solutions to include in the
new Pareto front, two criteria are used: the degree of dominance of
the solution and the diversity of the solution. In this way two goals
are reached, namely, a small number of function evaluations and the
advantage of the diversity of solutions in the archive. The good
solutions that are not selected for the new Pareto front are included
in the archive. To maintain the archive, the solutions crowding a
specific region of the solution space are eliminated using the
nearest-neighbor search strategy.

Some experiments, not reported in this paper, demonstrated that
AMGA? alone was not able to find a satisfactory number of solu-
tions because most of the generated networks were characterized
by disconnected nodes. To deal with this problem, Prasad and
Walters (2006) modified their algorithm to avoid the generation
of networks with disconnections. In contrast, in this work the
search space is reduced to minimize the generation of networks
with disconnected nodes by combining AMGA?2 with either RS
or LOC (named RS-AMGA2 and LOC-AMGA?2, respectively).
In this way, two objectives are met. First, some sets of candidate
valves to be used as decision variables by AMGA?2 are generated,
drastically reducing the search space. Second, a reference initial
population is given to AMGA?2, improving its efficiency.

Performance Indicators

To measure the improvement of RS and LOC algorithms by com-
bining them with AMGA2, the following index of improvement
(Iol) is used:

1
e
(1)
k,h

101(FLF) = [y S0 €L F) ™)

~

where F and F; = solution of Pareto fronts of AMGA2 (subscript
k) and of each of its counterpart LOC or RS (subscript j), respec-
tively, for a fixed value of ObF2 (NoC); C = set containing all
couples (Fy, F;) and |C(Fk,Fj)| as its cardinality; f,(clz = value
of ObFI of hth tuple in Pareto front k; and fjl,zl = value of
ObF] of mth tuple in Pareto front j.

In other words, considering a solution with the same number of
operations NoC (ObF2), Eq. (7) estimates the ratio of the ObFI
value of the solution in the counterpart to the ObF1 value of the
solution with AMGAZ2. The summation of all these ratios is divided
by the number of solutions with the same ObF2 to consider a
global value representing the efficiency of the procedures, regard-
less of the ObFI formulation used. Then, the weighted average of
the ol (WAIol) is evaluated:
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WAILoI(F,.F,)
_ 1
> o1 |C(Frobrns Fjonrn)|

X Z C(Frovr1y Fiobrn)| * 101 (Froprr) Fjobrn)]  (8)
ObF1

where ), r; = summation of sets C for all ObFI formulations.

To compare the performances of different ObFI formulations,
the differences between the initial condition values and the opti-
mized ones of the following parameters are computed in each
node:

MaWA; = max{WA,,V t=0...TST}; forMaWA as ObF1

9)
1 TST
MeWA; = ( WA,) for MeWA as ObF1 (10)
step y—( ;
TST WA,
DeMeWA,; = (%) for DeMeWA as ObFI (11)
=0 4t i

In particular, MaWA;, MeWA;, and DeMeWA; = maximum,
arithmetic mean, and demand-weighted mean of ages observed
at ith node during TST, respectively. A negative value of the differ-
ences between the initial condition values and the optimized ones,
indicated as AMaWA;, AMeWa;, and ADeMeWA;, means a re-
duction of the age formulation value at the ith node.

To evaluate the quality of the solutions, the average (1) and stan-
dard deviation (o) of the variations AMaWA;, AMeWA;, and
ADeMeWA; observed in all nodes of the network are computed.
Negative values of i indicate an average reduction of the age in the
network. A higher negative average indicates a better performance;
a lower standard deviation indicates good homogeneity in the varia-
tion age in the network.

Case Studies

Two distribution networks with different characteristics are selected
to explore the performance of the proposed procedures: Network
PWO06 by Prasad and Walters (2006) and Network J14 from the
database developed by the Kentucky Infrastructure Authority
(Jolly et al. 2012).

The PW06 network [Fig. 1(a)] has 47 pipes and 33 demand no-
des, with elevations that vary between 10 and 30 m, and it is sup-
plied from a single source (reservoir). The demands assigned in the
nodes are the same as those in the original paper.

Network J14 [Fig. 1(b)] has the following characteristics:
377 demand nodes with elevations between 200 and 274 m,
3 tanks, 473 pipes with a total length of about 104 km, and 5 pump
stations. The system is supplied from four sources, one at a head
of 274 m and the others at around 200 m. In the schematization
[Fig. 1(b)], while two sources are visible, the others are indicated
as INLET 1 and INLET 2, located respectively at 12 and 62 km
from the WDN. In all nodes, the same demand pattern is assigned,
characterized by a 1-h time step multiplier with two picks of request
around 10:00 a.m. and 9:00 p.m.

In both cases, the simulations were run long enough to guaran-
tee stability of the hydraulic conditions. The latter was achieved
after 72 h of simulation for Network PW06 and 168 h of simulation
for Network J14.

J. Water Resour. Plann. Manage.
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Legend Legend
@ Reservoir  Nodes Elevations (m) Diameter (mm)  Nodes Elevations (m)

Diameter (mm) 10 — 50 210
200 15 — 250 215
250 20 — 600 220
- 300 25 A Tanks 225
— 350 30 ® Reservoirs 230
— 400 35 235
— 450 40 240
— 500 Il 45 0 245
— 600 B so0 250
— 650 B ss B 255
— 700 B 60 B 260
B 65 B 265
I 70 B 270

s

Il 80

Fig. 1. Distribution network schemes: (a) PWO06 (data from Prasad and Walters 2006); and (b) J14 (data from Jolly et al. 2012).
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(d) MaWA (h) (e) MeWA (h) (f) DeMeWA (h)

Fig. 2. Results in terms of Pareto fronts for (a—c) PWO06 (data from Prasad and Walters 2006); and (d—f) J14 (data from Jolly et al. 2012): (a and d)
Procedures P1-P4; (b and e) Procedures P5-P8; and (c and f) Procedures P9-P12.

Analysis of Results and Discussion Table 2. Values of WAIol for both case studies

The LOC algorithm requires a predefined number of evaluations, Performance indicator Ja PWo6
Ne [Eq. (6)]. In contrast, the other algorithms do not use a pre- WAlol (Fpocamcazs Froc) 1.021 1.007
determined Ne, which means that their performance depends di- xﬁgog (g RS-AMGA?2> Ii rs) } (l)i?) 183(2)
rectly on the required function evaluations. The analysis of the of (Frs amgaz: Froc) : :
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performance is done considering the fixed Ne of LOC as the
baseline.

As described in more detail in the following paragraphs, Fig. 2
shows the results of the procedures listed in Table 1 in terms of
Pareto fronts for both case studies, while Table 2 reports the values
of the indicator WAIoI [Eq. (8)] used to evaluate the performances
of the optimization algorithms.

PWO06 Network

In PWO06 the required number of function evaluations is Ne = 425
[Eq. (6)] to obtain a 10-point Pareto front. The values used as pres-
sure thresholds in the constraint of Eq. (5), expressed in terms of
piezometric height, are P, = 100 m and P ;, = 10 m.

For PW06, the solutions reported in terms of Pareto fronts in
Figs. 2(a—c) show that for all considered ObFI formulations,
LOC generates a better front than that from RS. Moreover, RS
and RS-AMGA?2 algorithms are able to find a limited number
of solutions with respect to LOC and LOC-AMGAZ2.

AMGAZ? barely improves the Pareto front found by LOC. How-
ever, its improvement over RS is significant. In fact, the use of
AMGA? in combination with RS makes it possible to reach the
same ObF'] values of RS by operating fewer valves. Moreover, this
combination is also slightly better than LOC and LOC-AMGA2
solutions. This is confirmed by the WAIol values reported in
Table 2, which suggest that the addition of AMGA2 produces
an improvement of 6.0% and 0.7% with respect to the solutions
of RS and LOC, respectively, while the Pareto front of RS-AMGA?2
is about 2% better than the one from LOC.

Fig. 3 represents for all procedures the heat maps showing
the frequency of the valves included in the solutions of the Pareto
front; a darker dot indicates that the valve is more often
considered. A RS algorithm (P1-P5-P9) is characterized by the
use of a large number of valves in the network, which is not con-
venient in the operational context. The application of AMGA?2 after
RS (P3-P7-P11) improves the solutions, focusing on only five
or six valves to operate. LOC algorithm has better behavior also
without having to apply AMGA?2 afterwards. Moreover, LOC

5 Objective function
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,E Maximum water age Mean water age Demand weighted mean water
S (MaW4) (MeWA4) age (DeMeWA)
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Fig. 3. Heat maps showing frequency of valve closure from solutions of Procedures P1 to P12 for Network PW06 (data from Prasad and Walters

2006).
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and LOC-AMGAZ2 consider almost the same valves, mainly placed
on the largest diameters.

To compare the performances of different ObFI formulations,
the average (u) and standard deviation (o) of the variation
AMaWa;, AMeWa;, and ADeMeW a; for the optimized solutions
obtained with LOC and LOC-AMGA2 for NoC = 5 are computed.
This NoC number was selected considering that additional closures
reduce ObF1 only marginally. For all cases, the obtained p values
are negative, showing for all formulations a reduction in the
average age with respect to the original condition. Insignificant
differences have been observed among considered age formulations
and between LOC and LOC-AMGA? results.

The performance of each ObFI is also estimated extracting the
optimal network configurations and evaluating how well they per-
formed for the remaining ObF1 formulations. It is observed that the
use of each of the ObF1 formulations implies, on average, a reduc-
tion in the values of the other objective functions, when compared
with the do-nothing option, almost reaching the values obtained
when they are used as the optimization target.

J14 Network

For the J14 network, assuming that a maximum of 20 valves can
be operated, the number of function evaluations, Ne, is 9270.

The values used as pressure thresholds in the constraint of Eq. (5),
expressed in terms of piezometric height, are P, = 100 m and
Pin = 10 m.

The Pareto fronts obtained for the J14 network are presented
in Figs. 2(d-f), where the comparison among the different
algorithms shows a similar tendency of what is obtained for
the PWO06 case. In particular, LOC generates a better Pareto front
than RS; AMGA?2 improves slightly the solutions of LOC,
while those of RS are improved significantly. The WAIol values
(Table 2) indicate that by adding AMGA2, LOC is improved
by approximately 2% and RS by approximately 13%. Finally,
RS-AMGA?2 produces an improvement of about 1% with respect
to LOC.

In summary, the results suggest that the LOC algorithm produ-
ces a better Pareto front than RS. Also, although the combination
RS-AMGAZ2 works better than LOC, it requires more function eval-
uations. The improvement that AMGA?2 offers over LOC is neg-
ligible, whereas for RS it is more significant.

Fig. 4 shows the heat maps to provide a spatial indication of
where and how frequently the pipes were selected by different pro-
cedures (Table 1). As expected, the solutions using the RS algo-
rithm (P1, P5, and P9) do not focus on specific sectors of the
network because the closures are randomly spread over the whole
system. Independently of the selected ObFI, around 33% of the
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Fig. 4. Heat maps showing frequency of valve closure from solutions of Procedures P1 to P12 for Network J14 (data from Jolly et al. 2012).
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valves are included in at least one solution, meaning RS requires a
large number of valves to be operated.

The solutions obtained with the RS-AMGA2, LOC, and LOC-
AMGA? algorithms are characterized by a reduced selection of
valves to close, varying from 3% to 4.2% among all the possible
decision variables. This confirms again that AMGA?2 performs sig-
nificantly better than RS. A closer look at the valves selected in
each experiment reveals that RS-AMGA?2 individuates different
areas with respect to LOC and LOC-AMGAZ2. For the latter algo-
rithms the considered valves are concentrated in specific areas of
the network involving mainly the larger diameters located in the
southern part of the system.

The average (u) and standard deviation (o) of the variation
AMaWA;, AMeWA;, and ADeMeWA,; calculated between the in-
itial values and those for the solutions of LOC and LOC-AMGA?2
with NoC = 10 are reported in Table 3. The NoC number has been
again selected considering that additional closures reduce ObF1
only marginally. AMaWA; has a positive 4, indicating an average
increase of MaWA; in the network, suggesting a bad performance
of MaWA; as ObF1. Both AMeWA; and ADeMeWA; have neg-
ative 1 values and lower o with respect to AMaWA;. ADeMeWA,;
is characterized by the highest negative average and the lowest stan-
dard deviation, which indicate its better performance as ObFI. No
differences are observed between the LOC and LOC-AMGA2
results.

Regarding the performance of the ObFI formulations,
extracting the optimal network configurations and evaluating
how well they performed for the remaining set of ObFI not se-
lected, the results show mixed behaviors. Considering the configu-
ration valve sets obtained using MaWA as ObF1, this leads to
almost no improvements for the other formulations with respect
to the case of NoC = 0. This has serious consequences for the ma-
jority of users, because minimizing MaWA does not imply a dimin-
ution of the residence time for a large part of the WDN. The
solutions obtained with MeWA do not modify the values of MaWA
but improve those of DeMeWA. This means that the majority of
users would have a partial improvement, but not those with high

Table 3. Average (1) and standard deviation (o) of variations of MaWA,,
MeWA;, and DeMeWA; in the J14 network (NoC = 10)

LOC LOC-AMGA2
Formulation Iz o I o
AMaWA; 12.96 40.52 10.03 38.14
AMeWA; —16.83 33.86 —16.83 33.86
ADeMeWA; —25.97 29.94 —25.97 29.94
-©-LOC
12 12
10 10
*
8 8
@) @)
§ 6 § 6
4 4
2 2
0 0
0 2 4 6 8 10 12 14 16 18 0 1
(a) MaWA (h) (b)

water residence time. Similarly, for the solution with DeMeWA,
MaWA remains, on average, near the zero-closure values regardless
of the number of closures, while MeWA is reduced to optimal lev-
els. This means that most users would have access to water with a
reduced age.

Performance of LOC Algorithm

To evaluate the performance of the LOC algorithm, its results are
compared with the method proposed by Prasad and Walters (2006)
and the brute-force search (BFS) procedure. Those tests were
executed considering the PWO06 network and fixing a constraint
of 15 m as the minimum head in the network in accordance with
the value used by Prasad and Walters (2000).

A comparison of the results obtained by Prasad and Walters
(2006) with those of LOC is shown in Fig. 5. For the MaWA func-
tion, LOC finds several solutions that achieve a similar reduction in
water age with fewer pipe closures. Using the objective function
MeWA [Fig. 5(b)], the LOC solution with 9 closures is as good
as the solution of Prasad and Walters (2006) with 11 closures.
For DeMeWA [Fig. 5(c)], LOC with 10 operations marginally
dominates the solution by Prasad and Walters (2006). Unfortu-
nately, Prasad and Walters (2006) do not make any reference to
the number of evaluations required to obtain their results so the
efficiency of the algorithms cannot be compared.

A further experiment was designed to prove that the LOC
method is suitable for finding a close-to-optimal solution. An ex-
haustive search of all solutions was carried out with a BFS in the
smallest network, PWO06, taking into account DeMeWA as ObF1I.
To reduce the execution time, an array of 28 CPU cores was used
to perform the simulations in parallel. Both BFS and LOC were
run for eight pipe closures to achieve the DeMeWA maximum
reduction.

The solution found by BFS reduced the water age down to
2.8735 h, and it was available after 16.6 days of computational ef-
fort. Remarkably, the solution found by LOC reduced the water age
down to 2.8736 h, requiring only 3 s. This demonstrates the effi-
ciency of the proposed LOC algorithm.

To ensure the reliability of this comparison, the experiment was
repeated considering different pipe closures, from one to seven. The
results are reported in Table 4. In all cases LOC performed as well
as BFS, with an advantage of several orders of magnitude in terms
of computational time. Unfortunately, it was not feasible to run
BES for NoC =9, 10, and 11. Indeed, these would take 55,
145, and 299 days, respectively, because the required number of
simulations are 5.44 x 108, 1.44 x 10°, and 2.97 x 10°, respec-
tively. Moreover, when LOC runs for X closures, the solutions
for X —1,X —2, ..., 1are immediately available, contrasting with

¢ Prasad and Walters (2006)

12
*
10
8
Q
o 6
=
4
2
0
3 4 5 0 1 2 3 4 5
MeWA (h) (c) DeMeWA (h)

Fig. 5. Comparison of LOC and data from Prasad and Walters (2006) solutions using: (a) MaWA; (b) MeWA; and (c) DeMeWA.
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Table 4. Comparison between BFS and LOC solutions for PW06 network

DeMeWA (h) found

Number of simulations

Computational time (days) required

Number of

closures (NoC) BFS LOC BSF LOC BFS LOC

1 4.1482 4.1482 4.70 x 10! 4.70 x 10! 473 x 107° 473 x 107°
2 3.8869 3.8869 1.07 x 103 9.30 x 10! 1.07 x 1074 9.36 x 107°
3 3.6402 3.6402 1.55 x 10* 1.38 x 102 1.56 x 1073 1.39 x 107
4 3.3797 34119 1.61 x 10° 1.82 x 10? 1.62 x 1072 1.83 x 107
5 3.1795 3.2528 1.28 x 10° 2.25 x 102 1.29 x 107! 2.27 x 1073
6 3.0672 3.1072 8.02 x 10° 2.67 x 10? 8.07 x 107! 2.69 x 1073
7 2.9670 2.9670 4.03 x 107 3.08 x 10? 4.06 x 10° 3.10 x 1075
8 2.8735 2.8736 1.65 x 103 3.48 x 102 1.66 x 10! 3.50 x 1073

BFS, which requires a separate experiment for each number of
closures.

Conclusions

The present paper compares the performances of 12 multiobjective
optimization procedures to optimize valve management in WDN5s
for improving water quality, evaluated in terms of water age. The
procedures derive from the combination of four different algo-
rithms (RS, LOC, RS-AMGA2, and LOC-AMGA?2) and of three
water quality objective function formulations (MaWA, MeWA and
DeMeWA). Two distribution networks of different complexity are
considered.

The results show that the proposed LOC algorithm always pro-
duces better solutions with respect to RS, obtaining lower age val-
ues with the same number of closures. Moreover, heat maps show
that LOC considers candidate valves concentrated in specific areas
of the network, which is an advantage for operators. Its codification
is very simple, and it produces a good compromise between the
quality of the Pareto front and the required number of function
evaluations.

The alternatives LOC-AMGA?2 and RS-AMGA?2 offer only a
marginal improvement with respect to the solutions found by
LOC, at the expense of having double function evaluations. This
implies that, for this particular optimization problem, the LOC
algorithm is the most convenient. The heat maps obtained with
LOC show also that the operation on the larger pipes are more ef-
ficient for the reduction of water age. The comparison of LOC with
BFS demonstrates that, despite its simplicity, LOC achieves near-
optimal results with very small computational effort, which justifies
its use in large networks.

Regarding the comparison among the ObFI formulations, the
analysis of the average and standard deviation of the variations
AMaWA;, AMeWA;, and ADeMeWA; observed in all nodes in-
dicates similar performances for the smaller Network PW06. For
the more complex J14, the results suggest better performances
of MeWA and DeMeWA, indicating that the latter is the best
one. The evaluation of the different ObFI shows that the minimi-
zation of MaWA does not improve MeWA and DeMeWA, meaning
most water consumers would be affected at the expense of improv-
ing the water quality of a few. In conclusion, the use of averages, in
particular the demand-weighted average, is recommended, because
it would bring better water quality to most users.

Data Availability Statement

The data of the models of WDNSs analyzed in the paper, the com-
plete results of the simulations, and an executable file of the code
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generated to solve the optimization problem are available from the
corresponding author by request.
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