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Abstract Growing biological media develop resid-

ual stresses to make compatible elastic and inelastic

growth-induced deformations, which in turn remodel

the tissue properties modifying the actual elastic

moduli and transforming an initially isotropic and

homogeneous material into a spatially inhomogeneous

and anisotropic one. This process is crucial in solid

tumor growth mechanobiology, the residual stresses

directly influencing tumor aggressiveness, nutrients

walkway, necrosis and angiogenesis. With this in

mind, we here analyze the problem of a hyperelastic

sphere undergoing finite heterogeneous growth, in

cases of different boundary conditions and spherical

symmetry. By following an analytical approach, we

obtain the explicit expression of the tangent elasticity

tensor at any point of the material body as a function of

the prescribed growth, by involving a small-on-large

procedure and exploiting exact solutions for layered

media. The results allowed to gain several new

insights into how growth-guided mechanical stresses

and remodeling processes can influence the solid

tumor development. In particular, we highlight that—

under hypotheses consistent with mechanical and

physiological conditions—auxetic (negative Poisson

ratio) transformations of the elastic response of

selected growing mass districts could occur and

contribute to explain some not yet completely under-

stood phenomena associated to solid tumors. The

general approach proposed in the present work could

be also helpfully employed to conceive composite

materials where ad hoc pre-stress distributions can be

designed to obtain auxetic or other selected mechan-

ical properties.

Keywords Tangent stiffness � Growth �
Remodeling � Tumor � Auxetic

1 Introduction

Volumetric growth leads to adaptation processes that

progressively transform the structure of a biological

tissue through the co-evolution of stresses and

mechanical properties, which arises in response to

both mechanical stimuli and internal tissue activities

resulting from physical as well as biochemical signals

[8]. Mass accretion and structural remodeling, usually

approached in literature through the use of finite

deformations [9, 11, 24], can trigger processes of

disparate nature that cooperate in order to drive tissue

adaptation under mutable conditions. In this sense,

soft tissues can be seen as complex composite
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materials in which living constituents are responsible

for the temporal and spatial evolution of the material

properties. Also, the interplay of growth, remodeling

and repair processes occurring at the micro-scale,

together with the associated mechanical stresses,

becomes critical to discriminate the overall behavior

and the functionality of the tissue [6]. Among these

factors, the accumulation of growth-induced (residual)

stress and the evaluation of the actual properties of the

grown tissue are of particular interest from a biome-

chanical standpoint to fully characterize material

remodeling. In fact, elastic deformation and residual

stress—defined as the self-balanced stress field gen-

erating in a free traction body due to incompatible

growth [37]—alter the initial tissue properties. On the

other hand, abnormal stress levels can deviate the host

tissue properties with respect to homeostatic condi-

tions, by so compromising the microenvironmental

physiology. This is the case of solid tumors, within

which compressive stress seems to concur in many

physiological events, such as the formation of hypoxic

regions and vascular collapse [4, 44], directly involved

in the nucleation of necrotic cores [21], peripheral

migration and lymphangiogenesis associated to metas-

tasis [27, 31, 42]. Stress gradients in biological media

also rule nutrients supply, by driving the diffusion of

chemicals within the fluid phase as well as macro-

molecules extravasation throughout the interstitium,

in this way influencing cells proliferation, reconfigu-

ration and motility. A vast literature has been

dedicated to the investigation of tumor mechanical

micro-environment to establish the nature of intratu-

moral residual stresses [2, 6, 37–39] and the related

effects that they have on tumor progression. The

mechanical characterization of these systems indeed

represents a key aspect to envisage novel engineering-

based strategies for reducing tumor aggressiveness,

for example by enhancing intratumoral drug inflow,

inhibiting peritumoral convective flow [18] or by

selectively targeting tumor and healthy cells on the

basis of their different mechanical properties at the

single-cell scale level [14].

The presence of residual stress in grown tissues can

be easily observed by means of experimental methods

[7, 15]. However, ex vivo mechanical tests on excised

tissue samples cannot reveal in what extent residual

stress affects the intrinsic moduli. In this regard, the

first part of the present work is aimed to individuate the

way in which the resident growth-induced stress and

growth-associated deformation determine the evolu-

tion of the elastic behavior of a growing body. In

particular, the material remodeling of an initially

isotropic mass has been investigated in terms of its

tangent elastic properties, by revealing the onset of

possible stress-induced inhomogeneity and aniso-

tropy. The current expression of the elasticity tensor

has been evaluated by exploiting a small-on-large

approach [41], by tracing the mechanical response of a

grown and stressed sample due to incremental super-

imposed deformations according to some literature

formulations [5, 20, 25, 32]. These strategies have

been adopted, for example, to characterize the kine-

matic hardening of elasto-plastic materials at finite

strains [25] and also in biomechanical contexts [26] to

study growth induced instabilities [19] or to investi-

gate the fluid-structure interactions in hyperelastic

blood vessels [3], in which the level of stress

influences the structural integrity of the walls and

supports the in vivo pressure regimes [28].

The growth-dependent moduli are here taken as a

proxy to describe the alterations of the mechanical

environment in spheroidal solid tumors, by discussing

how they concur in tumor development. In addition,

the variation of stress-induced heterogeneities in

presence of high stress levels, typical of hyperprolif-

erating tumors, has been analyzed in order to inves-

tigate possible unexpected material behaviors at

advanced growth stages. In this regard, we have

shown that growth—or, more in general, pre-stretch—

can induce the formation of auxetic (Negative Poisson

Ratio, NPR) phases, as a result of the interplay

between nonlinear elastic deformation and energy

storing in the form of residual stress. This counter-

intuitive outcome is here specialized to the growth of

solid tumor spheres to investigate the implications that

the formation of a NPR coating can have on tumor

progression, but it could be exploited for conceiving

NPR bulky composites based on the design of the pre-

stress in 3D-printed materials [47]. Therefore, in the

second part of the work, we propose an analytical

strategy according to which the remodeled body is

treated as a sort of Functionally Graded Material

(FGM), constituted by concentric hollow spheres with

homogeneous stiffness. This strategy was already

successfully applied to study spatially inhomogeneous

composites for different engineering applications, e.g.

for thermo-elastic analysis of FGM cylinders [12, 13].

By following this way, the overall mechanical
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behavior of a growing remodeled body can be

helpfully managed through the standard formalism

and methods of linear elasticity.

2 Finite growth and remodeling of hyperelastic

bodies

2.1 The effect of heterogeneous growth

on residual stresses in spherical bodies

Growth is classically treated in the framework of finite

elasticity as an independent inelastic contribution to

the overall deformation of the body. According to this

approach, the body mass elements grow by obeying

their intrinsic biological programs that determine a

variation of their volume and density, commonly

accompanied by non-zero internal stress that elasti-

cally restores the compatibility of the grown tissue.

The kinematics of a growing mass can be described by

providing a multiplicative decomposition of the

deformation gradient into the product of distinct

aliquots, each of them mapping the body material

points on a different configuration. More in detail, in

an initially undeformed body Bi with volume V i,

usually denoted as reference configuration, the mate-

rial points X 2 Bi are mapped at any time t onto a

current (spatial) configuration x 2 Bt by means of the

one-to-one correspondence x ¼ v X; tð Þ. Conse-

quently, the motion of the body is completely

governed by the total deformation gradient F, which

connects the differential position vectors of the two

configurations, related to the displacement of the

reference points u X; tð Þ 2 C2 Bið Þ through the com-

patibility equation:

F ¼ ox X; tð Þ
oX

¼ Iþ u X; tð Þ � rX ð2:1Þ

where � and rX are respectively the dyadic product

and the nabla vector with respect to material coordi-

nates. In order to accomplish the presence of growth,

the deformation gradient is assumed to be the multi-

plicative combination of a growth and an elastic term

associated either to adaptation or to response to

external loads [9, 33], i.e.

F ¼ Fl Fe Fg ð2:2Þ

In absence of external loads, Fl ¼ I and the elastic and

the growth parts of the deformation are the sole ones to

eventually stress the body. Then, the body first

undergoes traction-free growth that maps the refer-

ence body material points X on an intermediate

configuration, say Bg, in which they occupy the

position xg X; tð Þ 2 Bg. Non-homogeneous growth

generally takes place in an incompatible manner

[37], and elastic deformation is hence necessary to

make compatible the independently grown elements,

by exerting suitable self-equilibrated stresses. There-

fore, the elastic strain Fe deforms the grown volume

elements by mapping the points xg 2 Bg onto the

actual configuration x 2 B, by accounting for the

presence of growth-induced stresses (see Fig. 1).

In this work, the growth of a spherical body has

been considered to model the development of spher-

ical solid tumors, with the aim of studying how

intratumoral stresses modify tissue properties, also

leading to some nonstandard elastic behaviors. Solid

tumors growth is the macroscopic result of unpre-

dictable degenerating phenomena according to which

malignant cells evade their natural program and

undergo uncontrolled proliferation in one or more

anatomic sites. These processes, that generally cannot

be captured by means of a priori assigned growth

curves, have been recently described by coupling the

macroscopic growth kinematics with evolutionary

competitive equations, capable of predicting the most

relevant interactions occurring among healthy and

tumor cell species that inhabit the tissue [6, 11]. The

mechanobiology of tumor physiology has been largely

investigated to provide an engineering-based interpre-

tation of the most of biochemical and physical events

underlying tumor formation and development. In

particular, attention has been focused on the prediction

of solid tumor growth and the characterization of

growth-induced stresses and stress gradients, which

actively influence some adverse mechanisms favoring

tumor invasion and opposition to treatment [4, 38, 39].

For these reasons, the evaluation of intratumoral

stresses as well as the prediction of the growth-

induced remodeling of tumor tissue properties is

diriment to envisage new mechanics-based strategies

for attacking solid tumors. Considering the problem of

a hyperelastic spherical solid tumor, a spherically

symmetric geometry is introduced, so that X ¼
fR;H;Ug and the field variables depend only on
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R. A spherical body is modeled by considering a thick

spherical shell with an external radius Re and an inner

radius Ri ! 0þ. Furthermore, spherical symmetry

ensures that the deformation gradient F can be

conveniently referred to its principal coordinates. By

indicating with x ¼ fr; h;/g the current coordinates,

one has:

F ¼ Diagfkr kh k/g ¼ Diag
or

oR

r

R

r

R

� �

ð2:3Þ

with k/ ¼ kh. The hypothesis of isotropic growth

implies that Fg ¼ kg I, kg representing the growth

stretch. Accordingly, also the elastic tensor Fe is

diagonal:

Fe ¼ FF�1
g ¼ Diag

kr
kg

kh
kg

kh
kg

� �
; Je ¼ JJ�1

g

ð2:4Þ

where J ¼ detF, Je ¼ detFe and Jg ¼ detFg are the

Jacobians of the transformations. In particular, Jg ¼
dVg=dV i ¼ k3g denotes the volume change due to

growth, while Je measures elastic volumetric defor-

mation in presence of a compressible tissue.

Suitable constitutive assumptions are required to

describe the tissue hyperelastic response and, in

particular, a compressible version of the neo-Hookean

strain energy density has been adopted [36, 45]:

we Feð Þ ¼ l
2

J�2=3
e Fe : Fe � 3

� �
þ j

2
log Jeð Þ2 ð2:5Þ

here l and j are the initial material parameters

representing the shear and the bulk modulus, respec-

tively. They are related to the isotropic Young

modulus E and Poisson’s ratio m by means of the

well-known relations l ¼ E=2ð1þ mÞ and

j ¼ E=3ð1� 2mÞ. Standard thermodynamic consider-

ations lead to the following expression for the Piola–

Kirchhoff (nominal) and the Cauchy (actual) stress

[28]:

Fig. 1 Hand-made sketch illustrating the kinematics of growth

at finite strains obeying a multiplicative decomposition of the

deformation gradient F. This provides a growth part Fg, which

maps material points onto an intermediate and generally

incompatible configuration, and an elastic part Fe, which drives

the body to the current compatible, grown and remodeled

configuration
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P ¼ Jg
owe

oFe

F�T
g and r ¼ J�1

e

owe

oFe

FT
e ð2:6Þ

that, with reference to the neo-Hookean potential

(2.5), assume the form:

P ¼ Jg jðlog JeÞIþ lJ
�2

3
e be �

1

3
ðFe : FeÞ

� �� 	
F�T

¼ JrF�T

ð2:7Þ

the two stress measures being connected through the

Nanson’s formula [10], while be ¼ FeF
T
e is the left

Cauchy–Green tensor. By supposing vanishing body

forces and the velocity of growth to be much slower

than that of the elastic wave in the body, the quasi-

static balance of linear momentum is given by [10]:

rX � P ¼ 0; 8X 2 Bi

and

rx � r ¼ 0; 8 x 2 B

ð2:8Þ

The hypothesis of spherical symmetry implies the

respect of the sole equilibrium equation along the

radial direction:

dPRR

dR
þ 2

R
PRR � PUUð Þ ¼ 0;

and

drrr
dr

þ 2

r
rrr � r//

 �

¼ 0

ð2:9Þ

By focusing on the steady-state problem of a freely

growing sphere, residual stresses are induced exclu-

sively by heterogeneous growth [43]. For the sake of

simplicity, a radially varying growth profile has been

assigned, by means of the following parametric

expression:

kgðRÞ ¼ g1 þ ðg0 � g1Þ 1� R

Re

� �m� �
ð2:10Þ

The casem ¼ 2 gives a parabolic trend already used in

literature to reproduce the growth of spherical tumors

[2], and returns a volumetric growth profile that

qualitatively recalls the profiles of tumor fronts often

recurring in tumor multiphase models [34], see Fig. 2.

This trend also retraces progressive wave-like distri-

butions of cancer volume fractions recently obtained

via numerical simulations of tumor growth that

provided a more elaborated coupling between poro-

mechanical and multi-species competitive equations

[6, 11]. As shown in Fig. 2, this profile identifies an

inner bulk growth zone, where the space is almost

entirely occupied by the hyper-proliferating tumor

cells with maximum growth, and a transition zone in

which, at a certain time t, there is only partial

infiltration of the tumor, the growth pattern then

decaying approaching the homeostatic host region. In

Eq. (2.10), the values of the inner and peripheral

growth stretch values, g0 [ g1, need to be specified in

accord with the aforementioned considerations. The

corresponding elastic stretches and the stresses have

been then computed by means of relations (2.4) and

(2.6), respectively, and the integration of the equilib-

rium equation (2.9) has been performed numerically

with the aid of the NDSolve package provided by the

commercial software Mathematica�[46].

2.2 Growth-induced modification of tangent

stiffness

Residual stresses and growth promote material remod-

eling processes that alter the initial isotropic behavior,

by inducing a non-homogeneous and anisotropic

elastic response. The tangent stiffness matrix of the

grown sphere has been evaluated by using a small-on-

large approach. This strategy provides that a small

strain (the one related to the testing of the material

properties starting from the current configuration) is

superimposed to the (large) finite deformation expe-

rienced by the body and due to growth: this allows to

express the updated moduli as explicit functions of the

stress and of the stretch achieved after growth, in line

the literature [3, 17, 26, 32, 41]. The motion applied to

Fig. 2 Qualitative behavior of the growth volume ratio, for

g0 ¼ 3 and g1 ¼ 1
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the stressed body perturbs its current configuration by

means of a deformation gradient Fs ¼ IþHs, where

Hs ¼ us � rx is the gradient of the additional

displacement field us due to either traction or inelastic

strains. The displacement gradient Ú of its symmetric

and skew-symmetric parts, i.e. Hs ¼ Es þ Xs, respec-

tively representing the infinitesimal strain and the

rotation tensors under the assumption of small defor-

mations. Therefore, the additional deformation mul-

tiplies the one related to the growth process, so that the

new small-on-large deformation gradient reads as

F ¼ FsF0 ¼ FsFe0Fg0, the subscript 0 being here used

to denote the pre-stressed reference body on which

tangent moduli are computed. Starting from the

constitutive equations (2.6), and by also assuming

that Js ’ 1, the updated Cauchy stress reads as:

r ¼ J�1
0 FsF0 S0 þ

oS

oC

��
C0

: ðC� C0Þ
� �

FT
0F

T
s

¼ Fs r0 þ 4J�1
e0 F0

o2we

oCoC

����
C0

: ðFT
0EsF0Þ

 !
FT
0

" #
FT
s

ð2:11Þ

where S ¼ F�1P is the second Piola–Kirchhoff stress

and the relation ðC� C0Þ ¼ 2FT
0EsF0 has been used.

Since Fs ¼ IþHs, the hypothesis of small displace-

ment gradient Hs leads to

r ’ r0 þ I� r0 þ r0 � Ið Þ : Hs

þ 4J�1
e0 F0 �F0ð Þ : o2we

oCoC

����
C0

: ðFT
0 �FT

0 Þ
" #

: Es

ð2:12Þ

Differentiation with respect to Es gives the expression

of the tangent stiffness

C ¼ or
oEs

����
Fs!I

’ 1

2
I� r0 þ I� r0 þ r0 � Iþþr0 � Ið Þ

þ 4J�1
e0 ðFe0 �Fe0Þ :

o2we

oCeoCe

����
Ce0

: ðFT
e0 �FT

e0Þ

’ Lðr0Þ þ E0

ð2:13Þ

that results to be a linear function of the residual stress,

added up to a term that accounts for the the material

stiffness tensor evaluated along the grown and

stretched material fibers of the body, this structure

somehow generalizing the well-known computation of

the elastic modulus of a cord under constant tension.

Also, in Eq. (2.13), the nonstandard tensor products �
and � are respectively defined as ½A�B�ijkl ¼ AikBjl

and ½A�B�ijkl ¼ AilBjk [22, 23]. Then, this Kirchhoff-

type stiffness can be re-organized in the more conve-

nient Voigt 6� 6 notation, since small-on-large

computation allows the preservation of major and

minor symmetries of the tangent operator. By consid-

ering the neo-Hookean law (2.5), the term E0 in

equation (2.13) results

E0 ¼
2

Je0
j

1

2
I� I� ðlog Je0ÞS

� �
þ

�

� l
3
J
�2

3

e0 be0 � Iþ I� be0ð Þ

þ l
3
J
�2

3

e0 ðbe0 : IÞ Sþ 1

3
I� I

� �	 ð2:14Þ

in which S ¼ I� Iþ I� Ið Þ=2 is the fourth-order

identity tensor accounting for the symmetry of the

deformation tensor Es [22, 23]. Recalling constitutive

equations (2.7), the equations (2.13) and (2.14) can be

specialized to obtain the following independent tan-

gent moduli:

Crrrr ¼ j J�1
e0 þ 4

9
l J

�5
3

e0 2k2er0 þ k2e/0

� �

Crr// ¼ Crrhh ¼ j J�1
e0 � 2

9
l J

�5
3

e0 2k2er0 þ k2e/0

� �

C//// ¼ Chhhh ¼ j J�1
e0 þ 2

9
l J

�5
3

e0 k2er0 þ 5k2e/0

� �

Chh// ¼ j J�1
e0 þ 2

9
l J

�5
3

e0 k2er0 � 4k2e/0

� �

Cr/r/ ¼ Crhrh ¼ l J
�5

3

e0 k2er0 þ k2e/0

� �

ð2:15Þ

As shown by Eq. (2.15), with reference to the problem

of a symmetric, initially isotropic sphere, the growth

deformation and the associated residual stresses give

back a tangent stiffness that exhibits transverse

isotropy with respect to the radial direction, along

which the remodeled moduli vary as explicit functions

of the two elastic stretches. It can be easily shown that

the matrix C is a positive-definite matrix for any

kei0 [ 0 under the assumption of small superimposed

strain, and it reduces to the isotropic virgin elasticity

tensor for vanishing elastic stretches. When the tissue
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is finitely stretched by the growth, these functions

instead allow to evaluate the local properties of the

sphere and then to investigate its effective response

under applied tractions. It is worth to highlight that the

possibility of measuring such properties could be

utilized, at least in principle, to gain information about

the level of residual stress harbored within the mass,

generally revealed by means of indirect and invasive

techniques [6, 39]. For instance, information about

these local properties (and consequently about the

stresses) could be obtained from elastographic anal-

yses, since Eq. (2.15) have a strict connection to the

local density of the tissue. In fact, mass conservation

principle under pure volumetric growth implies that

.i ¼ q Je, .i and q being respectively the initial and

the current densities, which are related to the elastic

moduli in Eq. (2.15) through the tissue bulk response:

j0 ¼
1

9
I : C : I ¼ j

Je0
¼ jq0

.i
ð2:16Þ

Furthermore, by computing the compliance matrix

D ¼ ½C��1
, the two Poisson’s Ratios (PRs) can be

respectively given by mr/ ¼ �D12=D11 and

mr/ ¼ �D23=D33, where Dij ¼ ½D�ij, with expression

mr/ ¼
3J

2=3
e0 ð1þ mÞ � ð1� 2mÞð2k2er0 þ k2e/0Þ

6J
2=3
e0 ð1þ mÞ þ ð1� 2mÞð2k2er0 þ k2e/0Þ

ð2:17Þ

m/h ¼
3k3er0ð1þ mÞ � ð1� 2mÞJ1=3e0 ð2k2er0 þ k2e/0Þ

3ð1þ mÞðk3er0 þ Je0Þ þ ð1� 2mÞJ1=3e0 ð2k2er0 þ k2e/0Þ
ð2:18Þ

while the Young moduli are given by Er ¼ D�1
11 and

E/ ¼ D�1
22 . In order to investigate the structural

response of the heterogeneous remodeled sphere and

to gain information about the effects of further

incremental growth steps, an analytical strategy is

proposed in what follows, based on the possibility of

treating the grown body as a functionally-graded

multilayer material (FGM), by considering a FG-

sphere made of concentric and transversely isotropic

layers with piece-wise constant moduli.

3 Characterization of the functionally graded

grown sphere

At any fixed growth stage, the sphere exhibits the

remodeled stiffness moduli given by the Eq. (2.15). In

order to compute the small strain field and the updated

Cauchy stress starting from the obtained radially

varying stiffness matrix, the body is here treated as a

functionally graded compound sphere, in which each

layer exhibits transverse isotropy, the normal to the

plane of isotropy being coaxial with the radial

direction. By thus partitioning the domain into a

sufficiently large number of layers, the FG-sphere can

well approximate the continuous heterogeneous

sphere. This strategy of solution allows to reduce the

differential problem of the radially inhomogeneous

sphere to an algebraic one of a n-layer transversely

isotropic sphere. In particular, the assumed spherical

symmetry allows to consider a unique displacement

u
ðiÞ
r ðrÞ in the generic i-th layer, this producing the

following nonzero components of the strain Es:

�ðiÞrr ¼ d u
ðiÞ
r ðrÞ
dr

� xðiÞ
r �aðrÞ;

�
ðiÞ
hh ¼ �

ðiÞ
// ¼ r�1uðiÞr ðrÞ � xðiÞ

/ �aðrÞ i ¼ 1; :::; n

ð3:1Þ

where �aðrÞ denotes an inelastic added strain field and

xðiÞ
j are the anisotropy coefficients of the i-th layer.

The layer-specific elastic constants C
ðiÞ
ijhk can be

obtained by averaging the varying moduli CijhkðrÞ ¼
C½ �ijhk given by the Eq. (2.13) within each interval

ri � r� riþ1:

C
ðiÞ
ijhk ¼

1

riþ1 � ri

Z riþ1

ri

CijhkðqÞ dq; ð3:2Þ

The components of the stress rs ¼ C : Es can be

instead evaluated through the Hooke’s generalized

law, i.e.

rðiÞrr ¼ C
ðiÞ
rrrr �

ðiÞ
rr þ 2C

ðiÞ
rr//�

ðiÞ
//; ð3:3Þ

rðiÞ// ¼ rðiÞhh ¼ C
ðiÞ
rr//�

ðiÞ
rr þ ðCðiÞ

//// þ C
ðiÞ
hh//Þ�

ðiÞ
//

ð3:4Þ

the total stress r then reading as r ’ r0 þ rs, in

absence of rigid rotations because of spherical
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symmetry. This hypothesis also allows to re-consider

the sole radial equilibrium equation in each layer.

Since the residual stress r0 is already self-equilibrated
in force of the equation (2.9), equilibrium additionally

requires that

drðiÞrr
dr

þ 2

r
rðiÞrr � rðiÞ//

� �
¼ 0 ð3:5Þ

Finally, by virtue of Eqs. (3.3), (3.2) and (3.1), the

equilibrium can be written in terms of displacements

as:

d2u
ðiÞ
r ðrÞ
dr2

þ 2

r

du
ðiÞ
r ðrÞ
dr

� aðiÞ
u
ðiÞ
r ðrÞ
r2

¼ EaðrÞ ð3:6Þ

representing a non-homogeneous Euler-like differen-

tial equation in which

EaðrÞ ¼
1

C
ðiÞ
rrrr

kðiÞr
d�aðrÞ
dr

þ 2ðkðiÞr � k
ðiÞ
/ Þ�aðrÞ

� �

ð3:7Þ

aðiÞ ¼ 2
C
ðiÞ
//// þ C

ðiÞ
hh// � C

ðiÞ
rr//

C
ðiÞ
rrrr

ð3:8Þ

kðiÞr ¼ xðiÞ
r C

ðiÞ
rrrr þ 2xðiÞ

/ C
ðiÞ
rr// ð3:9Þ

k
ðiÞ
/ ¼ xðiÞ

r C
ðiÞ
rr// þ xðiÞ

/ ðCðiÞ
//// þ C

ðiÞ
hh//Þ ð3:10Þ

are coefficients depending upon the elastic moduli of

the i-th material. By denoting with

bðiÞ ¼ 1

4
þ 2

C
ðiÞ
//// þ C

ðiÞ
hh// � C

ðiÞ
rr//

C
ðiÞ
rrrr

" #1
2

ð3:11Þ

the solution of Eq. (3.6) is

uðiÞr ðrÞ ¼ r�1=2 AðiÞ þI
ðiÞ
þ ðrÞ

� �
r b

ðiÞ
h

þ BðiÞ �IðiÞ
� ðrÞ

� �
r�bðiÞ

i ð3:12Þ

Herein, AðiÞ and BðiÞ are integration constants while

I
ðiÞ
þ ðrÞ ¼

Z r

ri

1

2bðiÞ
q

3
2
�bðiÞ EaðqÞdq ð3:13Þ

IðiÞ
� ðrÞ ¼

Z r

ri

1

2bðiÞ
q

3
2
þbðiÞ EaðqÞdq ð3:14Þ

let to find the particular solution of the problem. To

obtain the unknowns AðiÞ and BðiÞ, the conditions

requiring the continuity of radial stresses and dis-

placements at the interfaces are introduced:

u
ði�1Þ
r

���
r¼ri

¼ u
ðiÞ
r

���
r¼ri

rði�1Þ
rr

���
r¼ri

¼ rðiÞrr
���
r¼ri

8><
>: ; i ¼ 2; :::; n ð3:15Þ

The boundary conditions instead provide null dis-

placement on the vanishing internal inclusion r1 ! 0,

while, on the outer surface, stress-prescribed or

displacement-prescribed conditions can be alterna-

tively considered by imposing either an external

pressure p or an assigned displacement du, i.e.:

u
ð1Þ
r

���
r¼r1

¼ 0

rðnÞrr

���
r¼rnþ1

¼ p or u
ðnÞ
r

���
r¼rnþ1

¼ du

8><
>: ð3:16Þ

Then, by rearranging the 2n boundary conditions

(3.15) and (3.16) by collecting the unknowns into a

vector with structure

X ¼ Að1Þ Bð1Þ � � � AðnÞ BðnÞ
 �T
2n�1

, a linear system of

equations can be written down as

Mc � X ¼ Lc þ La ð3:17Þ

where the subscript c ¼ fp; dg discriminates between

the traction- and displacement-prescribed problems,

i.e. Lp ¼ 0 0 � � � 0 p½ �T2n�1 is the external loads

vector, Ld ¼ 0 0 � � � 0 du½ �T2n�1 is the applied dis-

placements vector, while Mp and Md are the related

2n� 2n coefficient matrices, containing the sole

geometric and constitutive information about the

layers. Furthermore, La represents a vector containing

all the terms deriving from the assigned inelastic

strain. With the aim of discussing numerical strategies

for inverting the matrix Mc, it is worth to notice the

possibility of obtaining computational advantages by

partitioningMc bymeans of a block tridiagonal matrix

procedure, e.g. by realizing a special block matrix

having square matrices (blocks) in the lower, main and

upper diagonal, being all other blocks zero matrices. In

this way, more efficient solution algorithms, such as
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LU factorization or Thomas method, can be applied to

compute the solution:

X ¼ M�1
c � Lc þ La


 �
; c ¼ fp; dg ð3:18Þ

With the help of this procedure, we analytically

studied the effects that incipient growth produces on

the heterogeneous remodeled sphere under different

conditions. In particular, by identifying the inelastic

strain with an incremental growth contribution and by

preserving the hypothesis of isotropic growth, lin-

earization of kg ¼ J1=3g implies

xðiÞ
r ¼ xðiÞ

/ ¼ x ¼ 1

3
8i ¼ 1; . . .; n

and

�aðrÞ ’ J�gðrÞ � 1

ð3:19Þ

where J�gðrÞ ¼ ðk�gðrÞÞ
3

is the additional growth

stretch, which is assumed to have the same functional

form of Eq. (2.10) and different growth parameters.

Moreover, a straightforward evaluation of the effec-

tive properties in terms of bulk modulus can be given

by means of standard homogenization methods. In

fact, once obtained the constants of integration from

equation (3.18) (for c ¼ p), an estimation of the

overall bulk modulus for the multilayer FGM tumor

sphere can be determined through the relation [29]:

j ¼ p

3 u
ðnÞ
r ðrnþ1Þ r�1

nþ1

ð3:20Þ

4 Results and discussion

4.1 Growth-induced stresses and implications

on the growth potential

By first considering the growth of an hyperelastic

unloaded sphere, numerical results have been obtained

by integrating the equilibrium equation (2.9)1, by

imposing a traction-free external boundary and van-

ishing displacement at Ri ! 0. Once the growth

stretch function (2.10) is prescribed, the resulting

growth-associated Cauchy stresses can be analyzed

with reference to Fig. 3a. The sphere is subjected to

hydrostatic compression in the internal zone, the radial

stress vanishing towards the periphery. On the

contrary, the hoop stress passes from negative

(compressive) to positive (tensile) values, which put

in tension the external layers of the body. In this way,

the outer layers deform to accommodate the internal

thrust arising from the inner bulk growth. This stress

distribution has different implications on tumor micro-

environmental physiology. In fact, high intratumoral

compression is directly involved into the collapse of

blood and lymphatic vessels, this provoking

undernourishment of inner tumor districts and their

subsequent necrosis. Also, internal stresses constitute

a mechanical hurdle that contrasts the inflow of

substances and drives centrifugal fluid diversion, a

fact that contemporary impedes drugs infiltration and

promotes tumor progression, by delivering nutrients at

the tumor front. In the outermost zone, occupied by the

host-tumor region, the layers stretch circumferentially

to follow the severe development of the internal core.

The positive tension also induces a local increase of

the areal perfusion, which further enhances the growth

potential of the cells that migrate towards less

compressed and more supplied sectors. In fact, the

Darcy-type flux q, governing the transport of macro-

molecules in a certain district of the sphere, can be

considered proportional to the local surface deforma-

tion, which directly affects the pore permeability, and

to the gradient of the hydrostatic stress

rhyd0 ¼ trðr0Þ=3, according to the relation

g�1q / J�1FrXðrhyd0Þ, g representing a reference

hydraulic conductivity. As shown in Fig. 3b, there is

an actual correspondence between the flux variable

and the distribution of specific surface growth, which

can be taken in the form dSg ’ dVg=dRg / Jg R
2. The

two functions achieve their maximum in the region of

coexistence of tumor and host, not yet completely

invaded by the growing tumor phase, showing how the

spherical cell layers are more prone to expand in

presence of available nutrients and favorable stress

conditions, e.g. lower hydrostatic compressions. For

all these reasons, a deeper investigation of the actual

mechanical behavior of such systems in terms of

growth-induced material remodeling and mechanical

characterization of the tumor proliferating parench-

yma—that determines the outward tumor progres-

sion—could be helpfully exploited to build up new

mechanics-based strategies apt to selectively attack

the tumor masses.
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4.2 Remodeled moduli, growth-induced stiffening

and unusual findings

Once the stresses and the stretches due to growth are

obtained, relations (2.15) were applied to determine

the remodeled tangent properties of the sphere.

Because of the spherical symmetry of the problem,

the shear modulus (2.15)5 was not taken into account.

Figure 4a reports the trend of tangent moduli Cijhk,

given by Eq. (2.15)1�4 and normalized with respect to

the corresponding reference isotropic elasticity con-

stants Ci
ijhk ¼ l ðdihdjk þ dik djhÞ þ ðj� 2l=3Þdij dhk,

as a function of the current radius r, normalized with

respect to the initial sphere radius Re. All the

remodeled moduli exhibit a growth-induced stiffening

in correspondence of the internal region interested by

the bulk tumor growth, while, in the outermost

transition region, the remodeled tissue softens since

the elastic stiffness decreases if comparison with the

corresponding initial moduli. A similar behavior is

also exhibited by the radial and circumferential Young

moduli in Fig. 4b, obtained from the compliance

matrix. This is in accord with experimental findings

showing that solid tumors are stiffer than their

surrounding host [6, 38, 40, 45]. It could be inferred

that this effect is used by tumor as a strategy for

boosting its own development, since a stiffness

gradient can actually work as a mechanical signaling

pathway which may increase the migration potential

of cancer cells. In fact, it has been experimentally

observed that some cancer cells lineages, which

mostly proliferate in the form of solid tumor spheroids

in soft tissues, prefer softer environments for direc-

tional invasion. This suggests that a higher compliance

of the surrounding host tissue might promote the

migration of tumor cells invasion out of their stiffer

primary location [16]. This was indeed confirmed in

case of some types of breast cancer cells (MBA-MB-

231, BT549, MCF7), pancreatic cancer cells

(mPanc96, HPSC) and lung cancer cells (H60,

A549) [16, 35, 40], despite there are cell phenotypes

that seem instead to exhibit an opposite behavior, by

preferring substrates with higher rigidity to initiate

invasion [1, 30]. As a matter of fact, we can establish

that a positive feedback occurs between bulk growth

and invasion, since the mass growth would seem to

affect the tumor mechanobiology by per se creating

the conditions for activating mechanotaxis, by mod-

ifying the properties of the environment in which it is

expanding.

Significant implications can be also derived from

the analysis of the remodeled Poisson ratios, presented

in Sect. 2.2. Figure 5a shows the trend of the PRs mr/
and m/h (given by the Eq. (2.17)) for prescribed

Fig. 3 a Cauchy stresses in the grown and deformed sphere.

b Relation between hydrostatic stress, normalized Darcy flow

and variation of surface growth. The plot shows how increased

pressure gradients drive nutrient walkways in the periphery of

the tumor, by promoting the growth of external cell layers
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internal growth and mechanical parameters (i.e.

g0 ¼ 3, g1 ¼ 1 and m ¼ 1=3). More specifically, while

the PR mr/ weakly varies with respect to the reference

PR, the Poisson coefficient m/h in the isotropy plane

exhibits a more counter-intuitive and unseen behavior.

In fact, by starting from the initial value at the tumor

center, where a good degree of isotropy occurs, this PR

decreases as it approaches the tumor periphery, by

determining the conditions to have an auxetic behavior

within a sort of coating placed at the outermost strata.

The stretch-dependent formation of auxetic phases is

analyzed more in detail in Fig. 5b, illustrating the

behavior of the two tangent PRs, from Eq. (2.17), as a

function of the ratio ker0=ke/0. Herein, the tranversely
isotropic PRs tend to the initial one under purely

volumetric deformation, i.e. mij ¼ m when ker0 ¼ ke/0,
this happening at the tumor center as well, where cells

experience hydrostatic compression. However, if the

stretches ratio differs from one, the PRs can assume

negative values as a function of the initial Poisson

coefficient and the achieved deformation level. For

example, in the case of a compressible solid tumor, the

outer layers present a high circumferential dilation and

radial contraction, this leading the PR m/h to belong to
the auxetic region highlighted in the left side

of Fig. 5b. The unexpected formation of a NPR

coating could have a high inference in the mechanical

characterization of tumor micro-environment and in

the study of tumor physiology. A more compliant

external phase with NPR could in fact accommodate

the internal expansion of the sphere and therein

increase surface permeability since, cooperating with

both resident tensile hoop stresses and dilating

stretches, it could contribute to enlarge micropores,

vessel capillary cross sections and interstitial spaces,

by so advantaging migrotion of cancer cells. Indepen-

dently from this effect, which is in literature mostly

associated to the action of tensile stress peaks occur-

ring at the tumor-host interface [18, 38], the NPR

region could have further influences on tumor pro-

gression. The development of an auxetic interface

might represent a mechanical strategy for tumors to

prolong the survival. As the spherical mass progres-

sively expands, resources in fact lack in the tumor

interior and the stress-induced hypoxia contributes to

create apoptotic regions and eventual necrotic cores

[6, 21]. Therefore, at advanced growth stages, the peri-

tumoral vascularization and lymphangiogenesis

become fundamental processes to further promote

the proliferation of cells that reside on the peripheral

tumor rings. In this particular situation, the local tissue

properties can have a key role because, as shown in

Fig. 5c, the growth-induced formation of an auxetic

coating anticipates and induces a change-in-sign of the

hydrostatic stress gradient and, consequently, of the

associated flux at the external boundary. In this way,

back-flow phenomena could be kindled at the

Fig. 4 a Remodeled tangent stiffness constants in the hetero-

geneous sphere, b development of the corresponding radial and

circumferential Young moduli. Tangent moduli are normalized

with respect to the initial isotropic moduli, while, in the

horizontal axis, the coordinate r is normalized with respect to the

reference tumor radius Re
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interface, thanks to which the severely grownmass can

mechanically drive the intake of new resources from

the exterior, also enhanced by the locally augmented

permeability, so ensuring the survival of leading

cancer cells through the penetration and the diffusion

of metabolites. On the other hand, this outcome could

be exploited, at least theoretically, to envisage new

engineered infiltration strategies aimed to induce a

Fig. 5 a Representation of the remodeled Poisson coefficients,

with emphasis on the formation of the in-plane auxetic coating,

b Tangent Poisson Ratios mh/ (in red) and mr/ (in blue) as a

function of the ratio between the elastic stretches ker0=ke/0 and

of the initial PR m, providing the formation of NPR regions,

c development of the auxetic coating at later growth stages and

NPR-induced back-flow phenomena (in the inset). (Color figure

online)
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planned cyto-toxicity of the peripheral tumor envi-

ronment in a way to increase the efficiency of

chemicals delivery.

Apart the possible interest into tumor mechanobi-

ology, it is worth to highlight that all the above

considerations can be applied to more general situa-

tions. In fact, the outcomes demonstrated that the

nonlinear deformation of a generic hyperelastic mate-

rial and the elastic energy stored in the form of residual

stress induced by inhomogeneous pre-stretch of any

kind, lead to have—under some conditions—auxetic

phases. In principle, materials with these properties

could be artificially obtained by for instance building

up functionally graded multilayer composites consti-

tuted of hollow spheres with ad hoc induced pre-stress,

so designing the needed Poisson ratios on the basis of

analytical approaches.

4.3 Additional growth and effective properties

of the FGM sphere

The remodeled grown sphere with radially varying

properties has been properly modeled as a functionally

graded material, constituted of layers that exhibit a

homogeneous and transversely isotropic stiffness

matrix, which can be calculated from Eq. (3.2),

according to the strategy discussed in Sect. 3. The

deformed sphere has been partitioned in n ¼ 150

layers with equal thicknesses, provided that sharp

gradients of the variable stiffness constants and of the

residual stress were avoided within each layer (in such

a case, a denser subdivision is required). For the

example at hand, Fig. 6 shows how the heterogeneous

bulk modulus of the sphere is well approximated by

the discrete variation of the bulk moduli of the FG

structure, which also permits to analytically compute

the homogenized bulk modulus by means of the

Eq. (3.20) in presence of an external pressure p. If only

the external pressure is applied, the spherical body will

mostly respond obeying a Reuss-like system and,

because of the illustrated external softening and under

linear assumptions, it is expected that the actual

average bulk modulus is smaller than the initial one

(see Fig. 6).

Then, additional growth deformation has been

prescribed through Eq. (3.19), by assigning suitable in-

cremental growth parameters (the values g�0 ¼ 1:2 and

g�1 ¼ 1:1 have been adopted in the presented results).

The two limit cases of unconfined growth and fully

confined growth have been analyzed, respectively

obtained by using rðnÞrr ¼ 0 and u
ðnÞ
r ¼ 0 at r ¼ rnþ1 as

outer boundary conditions. The added heterogeneous

growth profile induces an amplification of the internal

stresses in a way that also depends on the inhomoge-

neous stiffness of the FGM. In particular, Fig. 7 shows

how the pre-stress accumulated in the grown sphere

(solid lines) modifies after the application of an

incremental growth deformation. The stress compo-

nents of the functionally graded sphere have been

updated into each layer of the FGM both in unconfined

and confined conditions, and then plotted together in

order to return the overall stress profiles, by highlight-

ing the established partition of the multilayer sphere.

As shown in Fig. 7, in the displacement-prescribed

case, the residual stress is affected by an almost

entirely hydrostatic compression, determined as a

reaction to the external confinement. On the other

hand, in the unconfined condition, the stress amplifi-

cation is more pronounced in the central region, where

a higher growth deformation has been assigned and the

remodeled layers result stiffer. In both the cases,

heterogeneous properties can induce the accumulation

of deviatoric stress (here represented in terms of von

Mises stress in Fig. 7), which can potentially initiate

yield phenomena by implying a further plastic-like

tissue remodeling processes and cell re-organization,

accompanied by a re-distribution of the stress within

the spherical body.Fig. 6 Evaluation of the composite bulk modulus in the FGM

sphere. Data are normalized by the initial Young modulus

E (g0 ¼ 3, g1 ¼ 1, m ¼ 1=3, n ¼ 150 layers)
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5 Conclusions

The nonlinear model here presented exploits the

coupling between growth-induced stresses and defor-

mation of a hyperelastic material to analyze the

remodeling of a growing medium and study how

tangent stiffness matrix accordingly changes. By

approaching the problem in a fully general nonlinear

framework, we obtained the explicit form of the

tangent elastic moduli as functions of the growth

profile and the associated residual stresses, demon-

strating how, in case of spherical symmetry, the

remodeling of the mechanical properties lead to a

radially inhomogeneous and transversely isotropic

material. Interestingly, we also found that, by setting

some initial values compatible with mechanical and

physiological conditions, outermost strata of the

growing sphere can become auxetic, so exhibiting

negative Poisson ratios whose magnitudes depend on

the corresponding values they had in the reference

stress-free configuration and on the actual strain level.

In particular, we highlighted that the occurrence of this

unseen growth-induced auxetic district in solid tumors

parenchyma could have possible relevant implications

on tumor development, by for example favoring back-

flow of nutrients and fluids at host-tumor interface

which could be helpfully used to both better under-

standing solid tumor mechanobiology and planning

drug delivery. Since the results were obtained by

following analytical strategies, we also discussed the

possibility of exploiting the method and the outcomes

for envisaging new classes of composite materials

with planned pre-stress designed to induce auxetic or

other needed mechanical behaviors.
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