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ABSTRACT
The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut
activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing
evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes which may be
related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal
microbiota includes trillions of microorganisms but its composition and function may be adversely
affected in type 2 diabetes. The intestinal microbiota may be responsible of the secretion of molecules
that may impair insulin secretion/action. At the same time, intestinal milieu regulates the secretion of
hormones such as GLP-1, GIP, ghrelin, gastrin, somatostatin, CCK, serotonin, peptide YY, GLP-2, all of which
importantly influence metabolism in general and in particular glucose metabolism. Thus, the aim of this
paper is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes,
taking into account both hormonal and microbiological aspects.
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Introduction

The gut is traditionally seen as an organ that mediates nutrients
digestion and absorption through the release of hormonal and
neural regulatory signals in response to nutrient intake (Breen
et al., 2013). Recent results indicate that gut can sense nutrient
influx and, in turn, adjust endogenous glucose production and
food intake, thus maintaining metabolic homeostasis in the
face of nutritional challenge (Breen et al., 2013). A number of
modifications in gastrointestinal function, reported in obese
subjects, may potentially be dependent of the gastrointestinal
adaptation to high nutrient exposure (Little et al., 2007). Surgi-
cal manipulation of the intestine (as after gastric bypass opera-
tions) has been demonstrated to have dramatic effect on
glucose metabolism, independent of weight loss, leading to the
hypothesis that gut produces and releases key factors for the
regulation of glucose metabolism (Rubino et al., 2012). In addi-
tion, recent evidence highlights the role of gut microbiota as an
important environmental factor in the pathogenesis of type 2
diabetes (T2D; Burcelin et al., 2011; Nicholson et al., 2012).
The human microbiota is composed of trillions of microorgan-
isms, including more than 2000 species of commensal bacterial
organisms which are thought to contribute importantly to met-
abolic homeostasis (Neish 2009). Both the composition and
function of the gut microbiota have been reported to be affected
in subjects with diabetes. Moreover, the endocrine functions of
the gut also seem to be affected in T2D. In T2D individuals,

including those with prediabetes, meal-stimulated GLP-1 secre-
tion is generally impaired (Faerch et al., 2015). In rats, hyper-
glycaemia downregulates GLP-1 receptor expression on b cells
resulting in “GLP-1 resistance.” Thus, the diabetic b cells dis-
play a resistance to physiological levels of endogenous GLP-1
(Hojberg et al., 2009). Moreover, a relevant number of T2D
subjects exhibit a normal GLP-1 secretion, particularly after an
oral glucose tolerance test (OGTT), despite an impaired insulin
secretion, suggesting resistance to GLP-1 in human (Knop
et al., 2007; Bagger et al., 2011). Additional studies in T2D sub-
jects have revealed an impairment of both GIP secretion and
function, as well (Crockett et al., 1976; Meier et al., 2004).

Thus, the aim of this review is to focus on the gut, evaluating
both microbiological and hormonal changes that may take part
in the complex interplay that leads to the onset of T2D.

T2D and gut microbiota

T2D is an increasingly prevalent chronic metabolic disorder
characterized by hyperglycemia. The WHO’s first global report
on diabetes shows that 422 million adults were living with dia-
betes in 2014 (Global report on diabetes; World Health Organi-
zation, Geneva, 2016). This condition is known to result in
gastrointestinal dysbiosis involving both compositional and
functional changes in the gut microbiota (He et al., 2015). In
fact, the gut microbiota represents a key factor in the regulation
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of different metabolic pathways (Cani et al., 2014) playing an
important role in glucose hemostasis and T2D pathogenesis
(Sekhar and Unnikrishnan, 2015; Egshatyan et al., 2016).

T2Ds and gut microbiota: Evidence from experimental
animal studies

Experimental animal studies suggest that metabolic disorders,
including diabetes, are associated with changes in the composi-
tion and metabolic function of gut microbiota. B€ackhed et al.
hypothesized that gut microbiota might contribute to altera-
tions in glucose metabolism performing experiments in germ-
free mice (Backhed et al., 2004). Next, several studies reported
significant differences between gut microbiota between diabetic
and nondiabetic animals. In particular, diabetic obese leptin-
resistant mice (db/db) showed a significantly higher abundance
of Firmicutes, Proteobacteria, and Fibrobacteres phyla com-
pared to lean mice (Geurts et al., 2011). Other studies in mice
have corroborated these results (Turnbaugh et al., 2008, 2009;
Hildebrandt et al., 2009; Fleissner et al., 2010). Interestingly,
some probiotic strains are able to modulate the glucose homeo-
stasis, and hence to improve T2D management (Panwar et al.,
2013). Several mechanisms have been proposed to explain the
possible relationships between probiotics, glycemic control,
and other diabetes-related outcomes. Recently, it has been
hypothesized that the positive effects of probiotics on glucose
metabolism could be mediated by the increased expression of
insulin signaling proteins, the improvement in adipokine pro-
file, and the prevention of weight gain and glucose intolerance
(Mazidi et al., 2016; Figure 1). More specifically, Yakovlieva
et al. studied rats assigned to receive a standard diet (Con,

control group), fructose-enriched diet (Fr group), standard diet
with probiotics given twice a week (Pro group), and fructose-
enriched diet with probiotics given twice a week (ProCFr
group). Probiotics were Bulgarian Lactobacillus strains, Lacto-
bacillus brevis 15, and Lactobacillusplantarum 13. They found
that the highest elevation of blood glucose levels was observed
in the Fr group, followed by the ProCFr group, whereas the
Pro group showed the lowest levels (0.60 mmol/L; Yakovlieva
et al., 2015). In addition, Bifidobacterium animalis ssp. lactis
420 has been shown to reduce fat mass and glucose intolerance
in both obese and diabetic mice (Stenman et al., 2014). Simi-
larly, Le et al. found that in C57BL/6J mice with streptozoto-
cin-induced diabetes oral administration of Bifidobacterium
spp. reduced blood glucose levels and increased the protein
expressions of insulin receptor b, insulin receptor substrate 1,
protein kinase B (Akt/PKB), IKKa, and IkBa. Also, Bifidobac-
terium spp. induced the adiponectin expression and decreased
both macrophage chemoattractant protein-1 and interleukin-6
expression (Le et al., 2015).

Type 2 diabetes and gut microbiota: Evidence from
experimental humans studies

Several studies have shown that the composition of the gut
microbiota differs between T2D patients and nondiabetic indi-
viduals (Karlsson et al., 2013b). In particular, T2D in humans
is associated with modifications of the normal local distribution
of microbial communities characterized by the presence of a
low percentage of bacterial Firmicutes and Clostridia species
(Larsen et al., 2010). In addition, it has been suggested that
butyrate produced by certain bacteria prevents translocation of

Figure 1. Gut microbiota is crucial in understanding the pathophysiology of several metabolic diseases including that of T2D (Figure 1). The gut microbiota play an impor-
tant role in the onset of type 2 diabetes by influencing proinflammatory activity, body weight, NAFLD and insulin resistance.NAFLD: Non-alcoholic fatty liver disease.
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endotoxic compounds derived from the gut microbiota, which
have been shown to drive insulin resistance (Utzschneider
et al., 2016). In 2016, Pedersen et al. found that in 277 nondia-
betic Danish individuals levels of branched-chain amino acids
(BCAAs), which are increased in the serum metabolome of
insulin-resistant individuals, correlate with a gut microbiome
that has an enriched biosynthetic potential for BCAAs and is
deprived of genes encoding bacterial inward transporters for
these amino acids. Prevotella copri and Bacteroides vulgatus are
identified as the main species driving the association between
biosynthesis of BCAAs and insulin resistance (Pedersen et al.,
2016). A direct link between an altered gut microbiota and
T2D was recently provided also by experiments of transplanta-
tion with intestinal microbiota from lean healthy donors. In
particular, Vrieze et al. (2012) reported the increase in insulin
sensitivity and levels of butyrate-producing bacteria increased
in patients with the metabolic syndrome after infusion of
microbiota from lean healthy donors. The infusion of micro-
biota from lean healthy to diabetic subjects was associated to
the improvement of metabolic control in T2D (Kootte et al.,
2012). A recent meta-analysis, which assessed the effect of pro-
biotic supplementation on metabolic profiles in T2D by consid-
ering 12 randomized controlled trials, showed that probiotics
could alleviate fasting blood glucose and increase high-density
lipoprotein-cholesterol, whereas no significant differences in
low-density lipoprotein-cholesterol, total cholesterol, triglycer-
ide, HbA1c, and HOMA index between the treatment group
and the control group was found (Li et al., 2016).

Recent metagenomics approaches have investigated whether
the gut microbiota is altered in patients with T2D. Shotgun
sequencing of the gut metagenome revealed that butyrate-pro-
ducing bacteria, known to be anti-inflammatory, as well as clos-
tridial cluster XIVa including Roseburia spp. and
Faecalibacterium spp., are less abundant in T2D patients than
in healthy control subjects (Li et al., 2016; Karlsson et al.,
2013a, 2013b; Figure 1).

Endocrine regulation

The intestinal endocrine cells produce hormones involved in
regulation of digestion, metabolism, and appetite. The incretin
hormones glucagon-like peptide 1 (GLP-1) and glucose-depen-
dent insulinotropic polypeptide (GIP) stimulate insulin secre-
tion and regulate postprandial glucose excursions, whereas
GLP-1, cholecystokinin (CCK), and peptide YY (PYY) inhibit
appetite and food intake. In contrast, ghrelin, secreted from the

stomach acts as a nutrient sensor signaling to the brain,
increasing the motivation to eat (Muller et al., 2016). The incre-
tin hormones are required to maintain an adequate islet num-
ber in adulthood and to maintain normal b-cell responses to
glucose both in vitro and in vivo; in fact, it is estimated that up
to 70% of the insulin secretion in response to an oral glucose
load is mediated by the actions of the incretin hormones, an
observation referred to as the “incretin effect”; moreover, it is
well known that in patients with T2D, the incretin effect is
clearly reduced (Nauck et al., 1986). An intestinal epithelial-
specific ablation of Isl1, a transcription factor expressed specifi-
cally in a number of intestinal endocrine cells, including incre-
tin-expressing cells, results in loss of GLP-1, GIP, CCK, and
somatostatin (SST)-expressing cells and an increase in 5-HT
(serotonin)-producing cells. This dramatic change in hormonal
milieu results in impaired glucose tolerance when the animals
are challenged only with oral and not with intraperitoneal glu-
cose, indicating loss of the incretin effect (Terry et al., 2014).
Thus, any derangement of the enteroendocrine system might
lead to or accelerate the development of T2D (Table 1).

CCK

CCK is a peptide hormone produced in the gut and brain with
important effects on digestion and appetide regulation. Selec-
tive agonists of CCK receptor have been shown to significantly
reduce glycated hemoglobin and food intake in a high-fat (HF)
fed mouse model (Irwin et al., 2013) especially when coadmi-
nistered with exendin-4 (Irwin et al., 2013) or GIP (Irwin et al.,
2013). CCK-1 receptor deficient Otsuka Long Evans Tokush-
ima Fatty (OLETF) rats represent an animal model of hyper-
phagia, which leads to obesity and diabetes. In previous studies,
these animals exhibited increased oil and sucrose intake pre-
sumable driven by both deficits in both peripheral satiation
mechanisms and altered oro-sensory sensitivity (De Jonghe
et al., 2005). Noteworthy, CCK has been shown to be expressed
also in pancreatic b-cells, but only in models of obesity and
insulin resistance (Lavine et al., 2015); moreover, CCK
appeared the most upregulated gene in obese pancreatic islets
(Lavine et al., 2010). Interestingly, b-cell proliferation, upregu-
lation of distinct set of cell-cycle regulators in islets, and signals
induced by CCK may partially be independent by its own
receptors (Lavine et al., 2008). Together this could suggest that
CCK signaling impairment should be analyzed in order to
highlight possible mechanistic association with development of
T2D. It has been demonstrated that in humans CCK delays

Table 1. Summary of the gastrointestinal hormones acting on glucose metabolism.

Source Food intake Gastric emptying speed Insulin secretion Glucagone secretion b-Cell mass HbA1c

CCK I-cells # # " ? " #
Gastrin Gastric parietal cells # ? " ? " #
Ghrelin Stomach " ¡ # ? "? "?
GIP K-cells ¡ ? " " ¡/" ¡
GLP-1 L-cells # # " # " #
GLP-2 L-cells ? # ¡ " ? ?
PYY L-cells # ? " ? ? ?
Somatostatin Gastric and Intestinal delta cells ? #/"? # # ? ?
Serotonin Intestinal enterochromaffin cells #? ? # ? ? #?
Bile acids Gall bladder — ? ? ? ? #?
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gastric emptying and slows the delivery of glucose to the duo-
denum, thus reducing postprandial hyperglycemia (Liddle
et al., 1988). In addition, CCK seems to reduce meal duration
and the quantity of the ingested food, consistently with the
hypothesis that CCK is an endogenous signal for postprandial
satiety (Kissileff et al., 1981). This is also in accordance with the
relationship found in dialysis patients of fasting CCK with vari-
ability of the hunger and fullness scores (Wright et al., 2004).
In addition, in healthy subjects, it has been shown that CCK
infusion augmented arginine-stimulated insulin levels, thus
demonstrating that physiological concentrations of CCK poten-
tiate amino acid-induced insulin secretion in man (Rushakoff
et al., 1987), although a role for CCK in regulation of insulin
secretion is not supported by all studies. Also, in T2D, effects of
the hormone on the regulation of postprandial hyperglycemia
and on the secretion of insulin have been reported (Rushakoff
et al., 1993; Ahr�en et al., 2000). Dysregulation of the CCK
response to test meal has been described in patients with T2D,
even if contradictory results have also been reported. In fact,
some authors showed that the ingestion of a test meal in dia-
betic subjects caused a significantly greater increase of plasma
CCK than in healthy ones (Nakano et al., 1986). Conversely,
other authors found that the plasma CCK response to feeding
was blunted in the patients compared to the one of controls
(Rushakoff et al., 1993). In addition, a possible involvement of
this hormone in the metabolic disorders leading to T2D was
also supported by the correlation of CCK with leptin and insu-
lin in T2D patients (Milewicz et al., 2000).

Gastrin

The gastrointestinal peptide gastrin is an important regulator of
the release of gastric acid from the gastric parietal cells and has
been reported to play an important role in b-cell regeneration.
In fact, in rat and mouse models, gastrin treatment significantly
increased b-cell mass, increased b-cell neogenesis, and resulted
in b-cell mass expansion, dedifferentiation, and reprogram-
ming of regenerative ductal cells, improving glucose tolerance
(Suarez-Pinzon et al., 2008; Tellez et al. 2011, 2014; Sasaki
et al., 2015). The effects of treatment with gastrin on b-cell
appear even more pronounced when combined with either
GLP-1R agonists (Suarez-Pinzon et al., 2008; Fosgerau et al.,
2013) or epidermal growth factor (Rooman et al., 2004; Song
et al., 2015). Interestingly, overexpression of GLP-1R, together
with gastrin and exendin-4, synergistically promoted b-cell
neogenesis accompanied by the formation of islet-like clusters
(Sasaki et al., 2015). In humans, gastrin-releasing peptide seems
to produce a significant reduction in calorie intake together
with less hunger and early fullness in the premeal period (Gutz-
willer et al., 1994). In addition, in healthy subjects, gastrin
administration results in the increase of insulin concentration
(Rehfeld et al., 1971; Rehfeld et al., 1973; Dupre et al., 1969).
This favorable effect has been also indirectly evaluated in some
studies by testing the possible anti-diabetic effect of proton-
pump inhibitors, which increase gastrin levels. In particular, a
12-week, randomized, double-blind, placebo-controlled admin-
istration of pantoprazole in patients with T2D, showed signifi-
cantly increased plasma gastrin and insulin levels and
improved b-cell function, along with a significant decrease in

HbA1c. Of note, the decrease in HbA1c correlated with the
increase of gastrin and insulin (Singh et al., 2012). Similarly,
another clinical trial, which assessed drug-na€ıve adults (30- to
60-years of age) with T2D, found significant increases in late
and total insulin secretion after pantoprazole administration
together with a significant decrease in HbA1c (Gonzalez-Ortiz
et al., 2015). A beneficial effect of proton-pump inhibitors is
also supported by other clinical studies (Mefford et al., 2012;
Inci et al., 2014 ). A study evaluating patients with T2Ds and
autonomic neuropathy, diabetic patients without autonomic
neuropathy, and healthy subjects found that gastrin plasma
concentrations were basally higher in patients with diabetes
with autonomic neuropathy. After food intake, gastrin plasma
concentrations increased within 30 minutes in all groups but to
a greater extent in patients with diabetes with autonomic neu-
ropathy, thus suggesting that in patients with T2Ds with auto-
nomic neuropathy, food is emptying more slowly from the
stomac resulting in increased plasma gastrin level responses
(Migdalis et al., 2001). It is likely that there are differences in
the responses to food ingestion between these groups because
of vagal damage associated with autonomic neuropathy (Mig-
dalis et al., 2001). In addition, in patients with T2D, during
food intake the levels of gastrin rise, whereas they do not
change during glucose tolerance test. A rise of the level of gas-
trin in diabetic subjects during a test breakfast was accompa-
nied by changes in the level of insulin, but peak values were
lower than during OGTT (Starosel’tseva et al., 1988).

Ghrelin

Circulating ghrelin is produced predominantly in the stomach
and to a lesser extent in the intestine, pancreas, and brain.
Ghrelin, initially identified as a potent stimulator of growth
hormone release and food intake, has been shown to suppress
glucose-induced insulin release (Tong et al., 2010). Ghrelin is
O-octanoylated at Ser3 (acylated ghrelin) by the enzyme ghre-
lin O-acyltransferase (GOAT), a posttranslational modification
required for its actions through growth hormone secretagogue
receptor 1a (GHS-R1a). However, as only 5–20% of circulating
ghrelin is acylated, unacylated ghrelin (UnAG, also called
desacyl-ghrelin) remains the major circulating form (Kojima,
2005). Ghrelin is a peptide hormone that has unique orexigenic
properties. By acting on the GHS-R1a, ghrelin induces a short-
term increase in food consumption, which ultimately induces a
positive energy balance and increases fat deposition (Camilleri
et al., 2009). Ghrelin also seems to promote the survival of pan-
creatic b-cells by mechanisms other than ghrelin-receptor acti-
vation; administration of ghrelin, in fact, reduced apoptosis in
a pancreatic b-cell line via MAPK–PI3K pathways (Zhang
et al., 2007). Ghrelin and unacylated ghrelin also promoted
proliferation and inhibited b-cell apoptosis in a b-cell line and
in human islets of Langerhans via cAMP–PKA, ERK1–ERK2,
and PI3K–Akt signaling pathways (Granata et al., 2007). How-
ever, ablation of ghrelin signaling has been associated to an
improvement of glucose tolerance and enhances insulin secre-
tion in leptin-deficient ob/ob mice (Sun et al., 2006). Several
lines of evidence indicate that unacylated-ghrelin counteracts
the effects of ghrelin on insulin secretion. Negative findings
from studies of isolated mouse and rat pancreatic islet cells
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suggest that unacylated ghrelin regulates glucose metabolism
without affecting hormone secretion by the pancreas. From
studies of a combination of acylated and unacylated ghrelin in
10-fold higher conentrations given to isolated islet cells of
rodents suggested that the un-acylated form inhibits the ability
of ghrelin to reduce insulin secretion (Vamvini et al., 2016).
Finally, unacylated-ghrelin has been reported to inhibit glucose
output from isolated pig hepatocytes and to counteract the
stimulatory effect of ghrelin on hepatocyte glucose output
(Gauna et al., 2005).

In a randomized double-blind cross-over study in nine
healthy volunteers, intravenous ghrelin infusions were demon-
strated to increase food intake from a free-choice buffet com-
pared with saline infusion. Similarly, visual analogue scores for
appetite were greater during ghrelin compared to saline infu-
sion (Wren et al., 2001). In addition, in 10 healthy subjects,
plasma ghrelin levels increased nearly twofold immediately
before each meal and fell to trough levels within 1 hour after
eating, thus suggesting that ghrelin plays a physiological role in
meal initiation (Cummings et al., 2007). Also, in healthy sub-
jects, the consumption of food for pleasure was characterized
by preceeding increases in peripheral ghrelin levels (Monte-
leone et al., 2012) and the increase in evening ghrelin during
sleep restriction was correlated with higher consumption of cal-
ories from sweets (Broussard et al., 2016). As far as glucose
homeostasis is concerned, in healthy humans, ghrelin seems to
have hyperglycemic effect and to lower insulin secretion. In
fact, ghrelin administration to healthy young volunteers
induced a prompt increase in glucose levels and a decrease in
serum insulin levels (Broglio et al., 2001). Also, in young volun-
teers 16-hour-acylated ghrelin infusion (from 21:00 to 13:00)
increased the glucose responses to both dinner and breakfast
and blunted the early insulin response to dinner (Broglio et al.,
2008). Similar findings were made in a large population-based
study comprising 2082 subjects with no serious metabolic, car-
diovascular, or endocrine diseases in which correlation analyses
showed a significant negative relationship between circulating
ghrelin and insulin levels (Amini et al., 2012). However, in
T2D subjects, ghrelin concentrations were found to be signifi-
cantly lower compared with those of nondiabetic subjects (Erd-
mann et al., 2005) and were negatively associated with fasting
insulin as well as prevalence of T2D and insulin resistance
(Poykko et al., 2003). Also, in T2D, negative correlations of
plasma ghrelin with BMI, visceral, subcutaneous and total fat
area (Katsuki et al., 2004), and glycated hemoglobin (Ueno
et al., 2007) were demonstrated, suggesting a suppressing effect
of these factors on ghrelin levels. In addition, insulin reduces
plasma ghrelin to a lesser extent in T2D patients before insulin
therapy compared to nondiabetic patients (Anderwald et al.,
2003).

Glucose-dependent insulinotropic peptide

Enteroendocrine K cells secrete the incretin hormone glucose-
dependent insulinotropic peptide (GIP), and are predominately
located in the duodenum and the proximal small intestine. GIP
is a peptide hormone which potentiates glucose-stimulated
insulin secretion during a meal. Although GLP-1 decreases glu-
cagon levels, GIP enhances glucagon secretion at least at lower

plasma glucose levels (Christensen et al., 2015). GIP exert its
effects by binding to their specific receptors, the GIP receptor,
which belong to the G-protein–coupled receptor family. Recep-
tor binding activates and increases the level of intracellular
cAMP in pancreatic b cells, thereby stimulating insulin secre-
tion glucose-dependently (Yabe and Seino, 2011). GIP has the
potential to ameliorate glucose intolerance even after STZ-
induced b-cell damage by increasing insulin secretion rather
than by promoting b-cell survival (Iida et al., 2016). Moreover,
GIP, given to achieve supraphysiological plasma levels, has
been shown to have an early, short-lived insulinotropic effect
in T2D. However, because glucagon secretion may also be
enhanced (in spite of diabetic hyperglycemia), the glucose-low-
ering effect of GIP is abolished. In this way, GIP may actually
worsen hyperglycemia post-prandially (Chia et al., 2009). These
findings make it unlikely that GIP or GIP receptor agonists
would be suitable in treating the hyperglycemia of patients with
T2D (Chia et al., 2009). However, several studies regarding GIP
have focused on its insulinotropic actions and other b-cell
functions, and long-term administration of DPP-IV-resistant
GIP analogues showed marked improvements in glucose toler-
ance in normal and diabetic rats, as well as in HF fed mice
(Hinke et al. 2002; Gault et al., 2011; Kim et al., 2012). In addi-
tion, subcutaneous administration of D-Ala2-GIP1-30 to
Zucker diabetic fatty rats had potent antidiabetic effects that
included reduced b-cell apoptosis and improved b-cell function
and glycemic control (Widenmaier et al., 2010). In diabetic
mice, a novel N- and C-terminally modified GIP analogue
(AC163794) improved HbA1c through enhanced insulino-
tropic action, partial restoration of pancreatic insulin content
and improved insulin sensitivity with no adverse effects on fat
storage and metabolism. These studies support the potential
use of the GIP analogue for the treatment of T2D (Tatarkiewicz
et al., 2014). The role of GIP in regulating glucose homeostasis
has been also assessed in diphtheria toxin-expressing (DT)
mice that specifically lack GIP-producing cells (Pedersen et al.,
2013; Zhang et al., 2013, 2015). In these studies, even though
Pedersen et al. suggested that K cells are less involved in acute
regulation of mouse glucose metabolism than L cells and
a-cells, Zhang et al. demonstrated a lack of incretin response,
even with a preserved GLP-1 release. Moreover, with HF feed-
ing, DT mice remained lean but developed T2DM, whereas
wild-type mice developed obesity but not diabetes. Metabolo-
mics evaluation identified increased b-hydroxypyruvate as a
possible mediator of T2D development. In fact, in vitro,
b-hydroxypyruvate altered excitatory properties of myenteric
neurons and reduced islet insulin content but not glucose-stim-
ulated insulin secretion. Thus, K cells may maintain long-term
function of neurons and b-cells by regulating b-hydroxypyru-
vate levels (Zhang et al., 2013, 2015). Studies showing that
homozygous GIP receptor knockout (KO) mice (GIPRKO)
were resistant to obesity when fed a HF diet (Miyawaki et al.,
2002) and the presence of K-cell hyperplasia and elevated GIP
and insulin levels in HF fed rodents, led to the suggestion that
GIP may contribute to the development of obesity, with associ-
ated insulin resistance and glucose intolerance (Irwin and Flatt,
2009; Gniuli et al., 2010). Consequently, it has been proposed
that GIP antagonist treatment, reducing circulating GIP levels
with K-cell ablation (Althage et al., 2008) or vaccination against
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GIP (Fulurija et al., 2008) may be beneficial treatments for obe-
sity. However, the question as to whether long-term elevation
of GIP production causes detrimental pro-obesity effects has
not been directly addressed and we have therefore examined
responses of transgenic overexpression of GIP mice to HF diet
feeding. The results demonstrate that, in contrast to expecta-
tions, transgenic overexpression of GIP had major beneficial
effects on both glucose and fat metabolism (Kim et al., 2012).

In healthy subjects, GIP has been shown to minimally affect
gastric half-emptying time, hunger, desire to eat, or satiety
(Edholm et al., 2010). The peptide seems to contribute impor-
tantly to the incretin effects in concert with the several-fold
increase of its plasma levels after the administration of oral glu-
cose in healthy volunteers (Nauck et al., 1993). In healthy sub-
jects, robust evidence supports that GIP infusion induces
insulin increase (Sarson et al., 1984; Meier et al., 2004; Asmar
et al., 2010). In contrast, in T2D, a loss of incretin activity of
GIP occurs. In fact, in subjects with T2D, following GIP infu-
sion, insulin and c-peptide increased far less than in normal
subjects (Jones et al., 1987; Nauck et al., 1993). Also, dimin-
ished GIP effects were found in first-degree relatives of patients
with T2D compared with controls (Meier et al., 2001). These
findings have suggested the hypothesis that a specific defect in
GIP action, possibly at the level of the GIP receptor, might pre-
cede the development of T2D (Meier et al., 2004). However, the
preservation of a relative sensitivity of insulin secretion to GIP
bolus in patients with T2D, even though at a lower level of
b-cell function, renders this hypothesis unlikely (Vilsboll et al.,
2002). In addition, GIP has been shown to have glucagono-
tropic activities, both in healthy subjects and in type 2 diabetic
subjects (Gault et al., 2011; Meier et al., 2003). In T2D, basal
GIP levels have been reported to be higher (Crockett et al.,
1976) or equal (Skrha et al., 2010) compared to those of control
subjects. In addition, the area under curve of GIP during meal
stimulation has in some studies been found to be significantly
lower in subjects with T2D than in nondiabetic subjects, thus
indicating an impaired GIP secretion and effect in T2D (Groop
et al., 1985; Skrha et al., 2010).

GLP-1

In healthy humans, the incretin glucagon-like peptide 1 (GLP-1)
is secreted after eating and lowers glucose concentrations by
augmenting insulin secretion and suppressing glucagon release.
Additional effects of GLP-1 include retardation of gastric emp-
tying, suppression of appetite and possibly preservation of b-cell
survival, e.g., by inhibiting apoptosis. L-cell density and turnover
do not seem to differ between patients with and without diabe-
tes. Thus, alterations in the number of GLP-1 producing cells
do not seem to explain the reduced incretin effect in patients
with T2D (Kampmann et al., 2016). Chronic consumption of a
HF diet did not change the pharmacokinetics of Ex4 but
increased intestinal GLP-1R expression and decreased hindbrain
GLP-1R expression (Mul et al., 2013). To determine whether
the ability of endogenous GLP-1 to promote satiation is
impaired by HF maintenance, we examined the response to
exendin 3 (Lavine et al., 2010; Bagger et al., 2011; Ex9), a GLP-1
receptor antagonist. In rats maintained on a low-fat diet (LF-
rats), Ex9 increased intake significantly, but HF-maintained rats

had reduced food intake in response to Ex9. These data support
the suggestion that maintenance on HF diet reduces the
anorexic effects of GLP-1 receptor activation, and this phenome-
non may contribute to overconsumption of HF foods (Williams
et al., 2011). GLP-1 and its analogs may preserve pancreatic
b-cell mass by promoting resistance to cytokine-mediated apo-
ptosis (Natalicchio et al., 2010, 2013). We provided evidence
that the GLP-1 receptor agonist, exendin-4, protects insulin-
secreting cells from TNFa-induced apoptosis by inhibiting JNK
signaling and the consequent proapoptotic response. In addi-
tion, exendin-4 increased expression of IRS-2 and the activity of
the IRS/Akt survival pathway in insulinoma cell lines, confirm-
ing the existence of a cross-talk between G protein–coupled
receptors and tyrosine kinase receptors (Natalicchio et al.,
2010). Administration of GLP-1 was associated with prolifer-
ative and antiapoptotic effects in both endocrine and exocrine
compartments of the pancreas (Bulotta et al., 2004; Farilla et al.,
2002), and significantly reduced apoptotic b cells in experimen-
tal diabetes models (Li et al., 2003). In an earlier study, Ling
et al. (2001) showed that GLP-1 receptor (GLP-1R) KO mice
display normal b-cell mass. However, b-cell recovery after par-
tial pancreatectomy appear reduced in GLP-1R KO mice (De
Leon et al., 2003), possible due to a diminished GLP-1 effect on
b-cell mitogenesis; moreover, a loss of the action of both GLP-1
and GIP receptors (double incretin receptor KO mice) resulted
in impairment of b-cell function both in vivo and in vitro in a
process that appears to be independent of the intestinally
secreted incretin hormones (Omar et al., 2016). It has been
demonstrated that b-cell mass in leptin-receptor deficient ob/ob
mice that also are GLP-1R-deficient was comparable to that of
ob/ob controls (Scrocchi et al., 2000), suggesting that although
leptin and GLP-1 actions overlap in the brain and endocrine
pancreas, disruption of GLP-1 signaling does not modify the
response to leptin or the phenotype of leptin deficiency in the
ob/ob mouse. This may occur because leptin-resistant and
leptin-deficient animals have reduced intestinal GLP-1 secretion
and plasma GLP-1 concentrations (Anini et al., 2003). Because
obesity is linked to abnormal leptin signaling, it could be argued
that leptin may modulate GLP-1 secretion. Therefore, obesity
emerges as leptin resistance state and a relatively GLP-1-defi-
cient state, where there is insufficient endogenous GLP-1 to
expand b-cell mass. In T2DM, GLP-1 secretion is generally
impaired, and this defect appears to be a consequence rather
than a cause of impaired glucose homeostasis. Glucotoxicity
diminishes the secretory responsiveness of GLP-1-secreting cells
to acute glucose stimulation. We conclude that the loss of the
incretin effect, as observed in T2DM patients, could at least par-
tially depend on impaired glucose regulation, which is typical in
diabetes patients (Urbano et al., 2016). Changes in the pattern
of gut hormone secretion after bariatric surgery are thought to
play a major role for the beneficial effect of this operation on
glucose homeostasis, but the mechanisms leading to both
changed hormone secretion and beneficial effects remain
unclear. High concentrations of GLP-1 are encountered in the
immediate postprandial period in patients with upper gastroin-
testinal surgery including gastric bypass surgery (De Luis et al.,
2012; Vella, 2013). Noteworthy, in nonobese diabetic rodents, a
stomach-sparing bypass of the duodenum and 20% of the
jejunum did not cause weight loss, but improved fasting glucose,
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insulin action, and oral glucose tolerance (Rubino et al., 2005).
When foregut exposure to nutrients was reversed after RYGB,
the improvement in glucose metabolism was abrogated
(Shimizu et al., 2014). This has been interpreted to support that
exposure of the foregut to intraluminal calories leads to elabora-
tion of a diabetogenic mediator, unidentified so far. According
to an alternative hypothesis the increased and earlier delivery of
calories to the jejunum/ileum increases entero-endocrine secre-
tion, most notably that of GLP-1, which consequently leads to
improved insulin secretion and several other beneficial effects
on glucose metabolism (Cummings et al., 2007). Numbers of
incretin-immunoreactive cells appear significantly increased in
the Roux and common limbs, but not the biliopancreatic limb
in RYGB rats compared with sham-operated, obese rats fed HF
diet, and chow-fed controls. This increase was mostly accounted
for by general hyperplasia of all intestinal wall layers and less to
increased density of expression (Mumphrey et al., 2013). How-
ever, whether changes in the number of hormone-secreting
enteroendocrine cells, or changes in the releasing stimuli, or
both, are important, needs to be elucidated. In a patient with
diabetes operated with gastric bypass feeding of the same meal
on two consecutive days, one day via the oral route (i.e. follow-
ing the bypass) and on the second day via a gastrostomy cathe-
ter, and exaggerated hormone secretion and diabetes resolution
was observed only on the first day, supporting that it is the sur-
gical rerouting rather than adaptive increases that are responsi-
ble (Dirksen et al., 2010). Both in healthy subjects and people
with T2D, GLP-1 decelerate gastric emptying, thus contributing
to slow down the absorbed amount of glucose after meal inges-
tion (Willms et al., 1996; Nauck et al., 1997; Wettergren et al.,
2010). GLP-1 inhibits antro-duodenal contractility and stimu-
lated the tonic and phasic motility of the pylorus (Schirra et al.,
2000). Moreover, GLP-1 has been demonstrated to enhance
insulin release and significantly reduce peak plasma glucose con-
centrations during an intravenous glucose load in normal volun-
teers (Kreymann et al., 1987). In addition, this hormone lowers
plasma glucagon concentrations (Kreymann et al., 1987).
Indeed, a normalization of glucose concentration by GLP-1 may
be observed in T2D subjects; in addition, in these patients, a sig-
nificant improvement in the insulin secretory response to glu-
cose has been described (Rachman et al., 1996, 1997). A
reduction of plasma glucagon concentration has also been
shown in T2D subjects (Nauck et al., 1993). In addition, GLP-1
reduces food intake, and elicits satiety and fullness in healthy
subjects and patients with T2D (Flint et al., 1998; Gutzwiller
et al., 1999; Meier et al., 2002). In patients with T2D, fasting
intact GLP-1 levels have been found to be lower (Legakis et al.,
2003; Lastya et al., 2014) or equal (Lee et al., 2010) than those
of healthy subjects. However, the meal-related glucagon-like
peptide-1 response in T2D is decreased compared to control
subjects (Toft-Nielsen et al., 2001; Visboll et al., 2001). Reduc-
tion of GLP-1 response in T2D compared to individuals with
normal glucose tolerance is also evident after OGTT (Bagger
et al., 2011; Faerch et al., 2015).

GLP-2

GLP-2 is formed from proglucagon in the intestinal L-cells and
is secreted postprandially in parallel with the insulinotropic

hormone GLP-1, which in addition acts to inhibit gastrointesti-
nal motility by inhibiting central parasympathetic outflow.
However, even though it may play a role the regulation of glu-
cose homeostasis (Bahrami et al., 2010; Shi et al., 2013), GLP-2
does not seem to modulate insulin secretion (Schmidt et al.,
1985; Orskov et al., 1988). Moreover, recent studies have shown
that perfusion of isolated rat pancreas with GLP-2 resulted in
increased glucagon secretion with no effect on insulin or SDT
secretion (Sorensen et al., 2003). The actions of GLP-2 are
transduced by the GLP-2 receptor (GLP-2R), which is localized
mainly in the neurons of the enteric nervous system, indicating
an indirect mechanism of action and in subepithelial myofibro-
blasts (Baldassano and Amato, 2014); however, consistent with
a direct effect of GLP-2 in islets, GLP-2R mRNA transcripts
were detected by real-time polymerase chain reaction (PCR),
and GLP-2R immunoreactivity was detected in both rat and
human pancreatic a cells (De Heer et al., 2007). However, in
healthy men, GLP-2 administration led to a marked increase in
glucagon concentrations both in the fasting state and during
the meal study (Meier et al., 2006). Indeed, in obese subjects an
inverse relationship between the GLP-2 secretion and insulin
sensitivity was reported (Geloneze et al., 2013). In addition,
GLP-2 seems also to have an influence on lipids, as it has been
shown to cause the release of chylomicrons (and therefore
apoB-48 and lipids) in healthy men (Dash et al., 2014). How-
ever, the contribution of endogenous GLP-2 to explaining the
variance in postprandial TG excursion has been demonstrated
to be minor (Matikainen et al., 2016). A study carried out in
T2D subjects involving intravenous glucose infusion (IIGI) iso-
glycemic to the excursions after an OGTT plus a concomitant
intravenous GLP-2 infusion elicited glucagon responses in the
midrange between IIGI alone and the OGTT, thus suggesting
that GLP-2 may play a role, even if not predominant, in the
inappropriate glucagon response to orally ingested glucose in
T2D (Lund et al., 2011). There was no difference between dia-
betic and control subjects regarding the basal values of GLP-2
in a cohort of postmenopausal women with osteopenia or oste-
oporosis. GLP-2 levels varied throughout the mixed meal toler-
ance test in both groups, increasing from baseline to time-point
30 minutes. However, intergroup comparison of response
curves showed that the GLP-2 dynamics were similar in both
groups throughout the test (Lopes et al., 2015).

Peptide YY

The gut hormone peptide YY (PYY) belongs to the neuropep-
tide Y (NPY) family along with pancreatic polypeptide (PPY;
Larhammar 1996). PYY, PPY, and NPY mediate their effects
through Y receptors, of which there are several types (Y1, Y2,
Y4, and Y5; Herzog, 2003). PYY is released from at least most
of the L-cells of the gut, following food intake and appears to
regulate intestinal function and possibly also glucose homeosta-
sis, but the extent and the mechanisms underlying these effects
are unclear (Cox et al., 2010). PYY may be expressed in the
a-cells of the islet at certain developmental periods, but its role
in control of islet function including insulin secretion is not
clear (Shi et al., 2015). PYY is best known for its important role
in appetite regulation, but recent pharmacological studies have
suggested that PYY is also involved in regulating energy
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balance and glucose homeostasis. Published reports have sug-
gested that low circulating PYY concentrations may causally
contribute to the development of hyperinsulinemia and obesity.
In mice on a normal diet, PYY KO significantly increased body-
weight, fat mass (Batterham et al., 2003; Boey et al., 2006) and
basal and glucose-induced serum insulin levels (Batterham
et al., 2003). However, upregulation of PYY in islet b-cells leads
to an increase in serum insulin levels as well as improved glu-
cose tolerance (Shi et al., 2015). Interestingly, PYY-overproduc-
ing mice show increased lean mass and reduced fat mass with
no significant changes in food intake or body weight. Energy
expenditure is also increased accompanied by increased respi-
ratory exchange ratio (Shi et al., 2015). Interestingly, food com-
position seems to influence PYY release from the
enteroendocrine L cells because either fatty acids (Forbes et al.,
2015; Psichas et al., 2015) or amino acids (Joshi et al., 2013)
have been shown to elicit PYY release. Free fatty acid receptor
2 (FFA2) has been demonstrated to be a mediator of release of
glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) when
activated by short-chain fatty acids (SCFAs). For instance, pro-
pionate did not significantly stimulate gut hormone release in
FFA2¡/¡ mice (Psichas et al., 2015). Furthermore, glutamine
stimulates the corelease of endogenous GLP-1 and PYY from
mucosal L-cells possibly by activating a calcium-sensing recep-
tor-mediated mechanism (Joshi et al., 2013). Following both
gastric bypass and sleeve gastrectomy, a significant meal-
induced increase in PYY and GLP-1 could be demonstrated
(Eickhoff et al., 2015) contributing to improvement in overall
glycemic control in lean diabetic rodents. Studies carried out in
humans suggest that PYY might be involved in the regulation
of food intake. In fact, administration of PYY active form, i.e.
PYY 3-36, together with GLP-1 has been shown to reduce total
energy intake and fullness at meal onset (Steinert et al., 2010).
Also, another study reported that postprandial changes in PYY
(area under the curve) were positively associated with post-
prandial changes in ratings of satiety (Guo et al., 2006). PYY
seems not to have a direct and significant influence on insulin
and glucose levels as demonstrated by studies which have tested
the infusion of PYY in healthy subjects (Adrian et al., 1986;
Ahren and Larsson, 1996; Batterham et al., 2003). However, in
T2D, it has also been reported that fasting PYY 3-36 levels are
significantly higher than controls (English et al., 2006; Ukkola
et al., 2011); however, peptide YY significantly increased post-
prandially or after oral lipid emulsion administration in normal
subjects but did not rise in patients with T2D (English et al.,
2006; Fernandez-Garcia et al., 2014). Also, high fasting peptide
YY levels have been found to be associated with high body
mass index, hemoglobin A1c, glycemia, serum insulin, and
with higher prevalence of diabetes (Ukkola et al., 2011).

Somatostatin

SST derived from islet delta cells exerts a tonic inhibitory influence
on insulin and glucagon secretion, which may facilitate the islet
response to cholinergic activation because acetyl choline inhibits
SST secretion (Holst et al., 1983). In addition, delta-cell SST is
implicated in the nutrient-induced suppression of glucagon secre-
tion (Hauge-Evans et al., 2009). The inhibitory effect of SST (SST)
on insulin secretion in vivo is attributed to a direct effect on

pancreatic b cells, but this is inconsistent with some in vitro results
in which exogenous SST is ineffective in inhibiting secretion from
isolated islets. SST does not suppress insulin secretion by a centrally
mediated effect but acts peripherally on islet cells (Hauge-Evans
et al., 2015). SST inhibition of glucagon release in mouse islets is
primarily mediated via SSTR2, one of the five somatstatin receptor
subtypes, whereas insulin secretion may be regulated primarily via
SSTR5, although all of the SST receptors may inhibit insulin secre-
tion (Strowski et al., 2000). SST appears to inhibit adenylate cyclase
activity via the inhibitory G-protein Gi but may activate potassium
permeability, thereby reducing accumulation of intracellular Ca2C,
disrupting glucose-induced stimulus-secretion coupling (Pace and
Tarvin, 1981). Thus, SST induces hyperpolarization and a decrease
in the incidence of spike activity, which may prevent glucose from
eliciting a normal secretory response (Pace et al., 1977) by inhibit-
ing the rise in [Ca2C]i in pancreatic b-cells (Ma et al., 1996). A basic
defect in the glucose sensing of the SST cell in diabetes has not been
found yet (Trimble et al., 1981). Contradictory results about SST’s
role in gastric emptying have been reported in healthy subjects, as
both increasing, delaying and neutral effects have been described
(Long et al., 1982; Jonderko et al., 1989; Foxx-Orenstein et al.,
2003). Regarding satiety, in humans, SST analogues have been
found to decrease the sensation of fullness after a satiating meal
(Foxx-Orenstein et al., 2003), but other authors found evidence for
a satiety effect of SST (Lieverese et al., 1995). In healthy subjects,
SST suppresses plasma growth hormone, glucagon, and insulin
leading to an increase in plasma glucose (Christensen et al., 1978).
Also, SST has been shown to abolish the responses of glucagon and
insulin to an alimentary stimulus, causing an early decrease of
plasma glucose followed by a hyperglycemic phase (Marco et al.,
1983). Similarly, in T2D, SST suppresses plasma insulin and gluca-
gon (Ward et al., 1977). Continuous infusion of SST has been dem-
onstrated to cause a late-rise of plasma glucose despite continuing
hypoglucagonemia (Tamborlane et al., 1977). In patients with
T2D, basal levels of SST have been reported to be higher than
(Miyazaki et al., 1986) or equal to (D’Alessio et al., 1990) those of
healthy subjects. In healthy subjects, SST-like immunoreactivity
has been shown to increase aftermeal or oral administration of glu-
cose, whereas lesser or absent increase of the hormone has been
described in subjects with T2D (Itoh et al., 1983; Grill et al., 1984;
Miyazaki et al., 1986; Gutniak et al., 1989). In addition, in human
T2D islets the SST receptor subtype composition differed from that
of the controls in SST, pancreatic polypeptide, and glucagon cells
(Portela-Gomes et al. 2010).

Serotonin

More than 90% of circulating serotonin or 5-hydroxytript-
amine (5-HT) is produced by intestinal enterochromaffin cells
(ECs), and as detailed further on, 5-HT modulates bowel motor
and secretory activities (Julio-Pieper et al. 2012).

5-HT has been demonstrated to induce a dose-related
increase of plasma glucagon after administration to overnight
fasted rats, whereas a blood glucose and insulin increase has
been observed as early as 10-minute post-injection in a non-
dose-related manner. These results suggest that the 5HT-
induced changes in blood glucose and insulin possibly may be
secondary to a release of epinephrine and/or norepinephrine
(Jacoby and Bryce, 1978). Furthermore, hypothalamic 5HT1A
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receptors appear to play an important role in the regulation of
satiety, glycemia, and endocrine status. A 5HT1A agonist (8-
OH-DPAT) administered centrally and peripherally to C57/Bl6
mice elicited a dose- and time-dependent increases in glucose
and corticosterone without insulin level variation; furthermore,
intracerebroventricular co-administration of a 5HT1A receptor
antagonist LY439934 with 5HT1A receptor agonist 8-hydroxy-
2-(di-n-propylamino) tetralin (8-OH-DPAT) prevented the
increase in plasma glucose, establishing this response as a cen-
trally-mediated response in mice (Gehlert and Shaw, 2014).
Therefore, 5HT1A receptors regulate glucose through brain
mechanisms, but not through regulation of the hypothalamic–
pituitary axis, whereas antagonism of brain 5HT1A receptors
may be molecular targets of novel antidiabetic agents. RT-PCR
analysis demonstrated specific expression of 5HT-4 receptors
in muscle, but not in the liver or fat tissues (Ueno et al., 2002).
A 5HT-4 receptor agonist (Mosapride) has been shown to
lower fasting blood glucose and fructosamine concentrations,
possibly by increasing glucotransporter GLUT4 recruitment in
plasma membrane from intracellular pool (Nam et al., 2010).
In humans, contradictory results exist regarding the role of 5-
HT in regulating food intake. Depletion of the 5-HT precursor,
i.e. tryptophan, has been associated with an increase in caloric
intake (Weltzin et al., 1995). However, in a study assessing 192
subjects, those with greater BMI levels showed significantly ele-
vated levels of 5-HIAA, the primary 5-HT metabolite, in cere-
brospinal fluid compared to the levels of subjects with lower
values (Markianos et al., 2013). However, the administration of
5-HT agonists, like dexfenfluramine, fenfluramine, and lorca-
serin, is associated with reduced weight (Guy-Grand et al.,
1989; Weintraub et al., 1992; Fidler et al., 2011). As far as glyce-
mic metabolism is concerned, although in healthy individuals
no significant variation has been reported in fasting plasma glu-
cose or insulin after dexfenfluramine administration (Glaser
et al., 1992), in patients with T2D treatment with fenfluramine
and dexfenfluramine increased insulin sensitivity, reduced
hepatic glucose production and decreased visceral fat mass
(Pestell et al., 1989; Scheen et al., 1991; Stewart et al., 1993;
Proietto et al., 1994; Marks et al., 1996). Similarly, mosapride, a
5HT-4 receptor agonist, has been shown to improve glycemic
control and insulin levels in patients with T2D and impaired
glucose tolerance (Ueno et al., 2002; Nam et al., 2010). Con-
versely, 5-HT receptor antagonists, like metergoline and meth-
ysergide, seem to have hyperglycemic properties (Wozniak and
Linnoila, 1991). Involvement of 5-HT in the neurobiology of
diabetes has been demonstrated by the detection of significantly
greater 5-HT(1A) receptor binding in mesial temporal cortex,
including hippocampus of subjects with T2D compared to con-
trols (Price et al., 2002). In addition, a positive correlation
between plasma 5-HIAA concentration and changes in urinary
albumin excretion was found in T2D, thus possibly indicating a
relationship with nephropathy in male patients with T2D melli-
tus and high plasma 5-HIAA concentration (Fukui et al., 2009).
In addition, polymorphisms of 5-HT receptors and transport-
ers have been found to be associated with T2D (Kring et al.,
2009; Iordanidou et al., 2010). Furthermore, some investigators
reported that 5-HT inhibits insulin and glucagon secretion in
human nondiabetic islets in vitro and that this inhibition of
insulin release, mediated by 5-HT, is lost in human T2D islets,

thus suggesting that loss of inhibition of insulin secretion by 5-
HT, as evident in T2D islets, may either contribute to islet dys-
function in T2D or occur as a consequence of already dysfunc-
tional islets (Bennet et al., 2015).

Bile acids

Bile acids are secreted into the intestine from the gall bladder in
response to a meal and acutely activate intestinal farnesoid X
receptor (FXR). In mice with diet-induced obesity and targeted
genetic disruption of FXR, subjected to vertical sleeve gastrec-
tomy surgery the ability of bariatric surgery to reduce body
weight and improve glucose tolerance was substantially
reduced. These data suggest that bile acids and FXR signalling
should be considered important molecular underpinnings for
the beneficial effects of this type of weight-loss surgery. Treat-
ment of diet-induced obese mice with FXR agonist has been
shown to induce a better metabolic profile that includes
reduced weight gain, decreased inflammation, browning of
WAT and increased insulin sensitization (Fang et al., 2015).

Increased fasting serum levels of 7a-hydroxy-4-cholesten-3-
one were found in patients with metabolic syndrome and T2D
compared to controls without T2D or metabolic syndrome
(Steiner et al., 2011). Moreover, subjects with T2D compared to
normoglycaemic individuals have been shown to have a higher
postprandial peak change in total bile acids and peak total gly-
cine conjugated bile acids, but similar peak levels of total tau-
rine conjugated bile acids (Vincent et al., 2013), indicating a
role of the composition of bile acids in glucose metabolism reg-
ulation. Thus, the beneficial effects of FXR agonism bile sug-
gests intestinal FXR therapy as a promising approach in the
treatment of insulin resistance and T2D.

Conclusions

T2D is one of the human diseases with the more severe, short- and
long-term, influence on human health and with a dramatic impact
on social and economic aspects of lifestyle. The gut could represent
a potential player in the treatment of T2D. In fact, by selectively
stimulating the growth of beneficial bacteria in the gut, it has been
shown unequivocally to benefit glucose metabolism. Furthermore,
prebiotics and probiotics that are usually used tomodify the intesti-
nal microbiota are free from the side effects associated with many
traditional drug therapies, along with a reasonable cost, thus they
could be used on large scale for prevention and/or treatment of
T2D. However, several gut hormones have been shown to have
insulinotropic properties and may be important for normal insulin
secretion, particularly after meal ingestion. Because blunted insulin
secretion is a main cause of T2D, the gut hormones having insuli-
notropic property are considered as the promising future therapy
of T2D.
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