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Abstract: We present a new seasonal forecasting method based on F'-transform (fuzzy transform of
order 1) applied on weather datasets. The objective of this research is to improve the performances
of the fuzzy transform-based prediction method applied to seasonal time series. The time series’
trend is obtained via polynomial fitting: then, the dataset is partitioned in S seasonal subsets and
the direct F'-transform components for each seasonal subset are calculated as well. The inverse F'-
transforms are used to predict the value of the weather parameter in the future. We test our method
on heat index datasets obtained from daily weather data measured from weather stations of the
Campania Region (Italy) during the months of July and August from 2003 to 2017. We compare the
results obtained with the statistics Autoregressive Integrated Moving Average (ARIMA), Automatic
Design of Artificial Neural Networks (ADANN), and the seasonal F-transform methods, showing
that the best results are just given by our approach.
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1. Introduction

Today, seasonal time series forecasting represents a crucial activity in many fields such as
macroeconomics, finance and marketing, and weather and climate analysis. In particular, predicting
the evolution of weather parameters as climate change effects represents a crucial activity for the
purpose of planning and designing resilient actions to safeguard landscape, biodiversity, and the
health of citizens. One of the processes for the evolution of the climate of an area of study is to analyze
continuously measured data from weather stations and to capture and monitor changes in seasonal
values of climate parameters. In this analysis, a significant role is played by seasonal time series
forecasting algorithms applied to weather data.

Time series forecasting techniques are applied to time-measured data in order to predict future
trends of a variable. A characteristic detectable in many time series is seasonality, consisting in a
regularly repeating pattern of highs and lows related to specific time periods such as seasons, months,
weeks, and so on.

A seasonal behavior is present, generally, in time series of weather variables: it consists of
variations that are found with similar intensity in the same periods. For example, the warmest daily
temperature is recorded periodically in the summer season.

A cyclical behavior, on the other hand, can drift over time because the time between periods is
not precise. For example, the wettest day in a geographical area can often be recorded in autumn, but
sometimes, it occurs also in other seasons of the year.
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Anirregular behavior is observed in time series which present short-term oscillations. Normally,
they are caused by a stationary stochastic process.

Many algorithms were proposed in the literature to analyze seasonal and cyclical time series.
Treatments of this approaches are in References [1-4]. The most famous time series forecasting
statistical method is the Box-Jenkins approach that applied Autoregressive Integrated Moving
Average (ARIMA) models [1-4]. A specific model, called Seasonal ARIMA or SARIMA [5], is used
when the time series exhibits seasonality.

ARIMA models cannot capture nonlinear tendencies generally present in a time series: some soft
computing approaches have been presented in the literature for capturing nonlinear characteristics
in seasonal time series.

Artificial Neural Networks (ANN) can be applied as nonlinear auto-regression models to
capture nonlinear characteristics in the data. Some authors propose a multilayer Feed Forward
Network (FNN) method [6,7] in which the output value y: of a parameter y at time t is given by a
function of the values yt1, yt2, ..., yenp of the measured values at time ¢t -1, t -2, ..., t — ND, where
ND is the number of input nodes. Other authors propose seasonal time series forecasting methods
based on Time Lagged Neural Networks (TLNN) architecture [8-11]. In a TLNN, the input nodes are
the time series values at some particular lags. For example, in a time series with monthly seasonal
periods, the neural network used for forecasting the parameter value at time t can contain input nodes
corresponding to the lagged values at the time t -1, ¢ -2, ..., t — 12.

The main problem of the ANN-based forecasting method is the choice of appropriate values for
the network parameters on which the accuracy of the results depends heavily.

Also, Support Vector Machine-based (SVM) approaches are used to capture nonlinear
characteristics in time series forecasting. SVM uses a kernel function to transform the input variables
into a multidimensional feature space; then, the Lagrange multipliers are used for finding the best
hyperplane to model the data in the feature space [12]. Some authors propose seasonal forecasting
methods based on Least Squares Support Vector Machine models [13-15]. LSSVM [16] is a variation
of SVM that involves least square optimization solutions in a kernel-based SVM regression model.

The main advantage of SVM-based methods is that that the solution is unique and there is no
risk to move towards local minima, but some problems remain as the choice of the kernel parameters
influences the structure of the feature space, affecting the final solution.

In order to overcome these difficulties in Reference [17], a hybrid adaptive ANN method, called
ADANN (Automatic Design of Artificial Neural Networks), is proposed by applying a genetic
algorithm for evolution of the ANN topology and the back-propagation parameter. The authors
compare this algorithm with SARIMA- and SVM-based algorithms on various time series, showing
that the best results in terms of accuracy are obtained by using the ADANN algorithm, even if it
requires more computational effort than the previous ones.

The Fuzzy Transform (F-transform) technique [18] was applied by some authors in times series
forecasting. In Reference [19], the authors use the multidimensional inverse F-transform as a
regression function in a time series analysis. In Reference [20], a hybrid method integrating fuzzy
transform, pattern recognition, and fuzzy natural logic techniques is proposed in order to predict the
trend and the seasonal behavior of seasonal time series.

In References [21,22], a novel forecasting algorithm is proposed by using the direct and inverse
F-transform, called the Time Series Seasonal F-transform (TESS). In the TESS, a polynomial fitting is
applied to evaluate the trend of the time series. Then, the dataset is de-treated by subtracting the
trend from it and the de-treated dataset is partitioned in s seasonal subsets. Finally, the inverse F-
transform is calculated on each seasonal subset. The authors test the TESS algorithm on whether the
time series shows that it improves the performances of the seasonal ARIMA and F-Transform
forecasting methods.

The aim of our research is to improve the performance of the TESS algorithm. In this work, we
apply the inverse F'-transform [23] as a regression function to manage seasonal time series: the F!-
transform represents a refinement of the F-transform for approximating a function. We have
implemented a variation of the TFSS method in which we used the F'-transform to forecast seasonal
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time series. We test our method to forecast seasonal time series of the climatic Heat Index (HI)
parameter calculated by the daily weather data measured from a set of weather stations. In our
experiments, we compare the performances of our method with the ones obtained by using the TSSF,
Seasonal Arima, and ADANN methods. In Reference [23], the authors show that SVM and ADANN
have the same performances. For this reason, in our experiments carried out in this research, we do
not use the SVM method but only the ADANN method

In Section 2, we introduce the F'-transform concept; in Section 3, we present our seasonal time
series forecasting methods. In Section 4, we show the results of the tests; conclusions and future
prospects are contained in Section 5.

2. Fi-Transform

2.1. Direct and Inverse Fuzzy Transform

Let [a,b] be a closed interval of real numbers, and x1, x2, ..., x» (n 22 ) be points of [a,b], called
nodes, such that x1 =4 <x2<... <xx=b. The family of fuzzy sets Ay, ..., Ax: [a,b] — [0,1], called basic
functions [18], is a fuzzy partition of [4,b] if the following holds:

(1) Ai(xiy=1foreveryi=12,...,n;

(2) Ai(x)=0ifxisin Jxixi[fori=2,..,n-1;

(3) Ai(x) is a continuous function on [a,b];

(4) Ai(x) strictly increases on [xi-1, xi] for i =2, ..., n and strictly decreases on [xixi] fori=1,...,n-1;

(5) Ai(x)+...+Au(x)=1for every x in [a,b].
The fuzzy sets {A1(x), ..., An(x)} form an h-uniform fuzzy partition of [a,b] if

6) n=23and xi=a+ h(i-1), where h=0 -a)/(n-1)and i =1, 2, ..., n (that is, the nodes are
equidistant);

(7) Ai(xi-x)=Ai(xi+x) forevery x in [0,h] and i =2, ..., n - 1;

(8) Ai(x)=Ai(x—h)for every xin [xi, xis1]and i=1,2, ..., n—1.

Let f(x) be a function defined in [a,b]. Here, we are only interested in the discrete case, that is, in
functions f, assuming determined values in the set P of points p1, ..., pmof [a,b]. The set P is called
sufficiently dense with respect to the fixed partition {A1, Az, ..., Ax} if, for any indexiin{1, ..., n}, there
exists at least an index j in {1, ..., m} such that Ai(pj) >0

If P is sufficiently dense with respect to the fixed fuzzy partition {A1, Az, ..., As}, we can define
the n-tuple {Fi, P, ..., Fu} as the discrete direct F-transform of f with respect to the basic functions {A1,
Az, ..., An} [18], with the following components:

if (p)A4,(p,)
= E— (1)

ﬁAk(p,-)

for k=1, ..., n. Similarly, we define the discrete inverse F-transform of f with respect to the basic
functions {A1, A, ..., Ax} by setting

£ ()= Fod (p) @)

k=1

The following theorem holds (Reference [18]):

Theorem 1.
Let f(x) be a function assigned on the set of points P ={ps, ..., pu} of [a,b]. Then, for every & >0, there exists
an integer n(e) and a related fuzzy partition {Ai, Az, ..., Ane} such that forany j=1, ..., m

F(p)) -1 (p)| < & ©
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2.2. F-Fuzzy Transform
Let {Ai(x), ..., Au(x)} be an uniform fuzzy partition of [a,b] and f(x)eL,([a,b], where L [a,b]

denotes the Hilbert space of square integrable functions on [4,b]. We consider the linear subspace

lla[a,b] of L,[a,b] with orthogonal basis given by the following polynomials:

Sp(x) =1
1 4)
Sp(x)=x-x,
where the coefficients C,? and Cllf are given by
(r.5) [ £G4, (o)ax
CO _ Tk [ _ X 5
k_<S0 S0> - X1l ()
k>Nl [ J. Ak (x)dx

Xk-1
and
Nks1

(£.5!) [ £0x=x,) A (x)dx

G =T = 6)
<S"’S" >k I A, (x)(x—x, ) dx

k-1

The following theorem holds (Reference [23], Theorem 3).

Theorem 2.
Let f(x) el,z([a,b])and {A(x) k=1, ..., n} be a h-uniform fuzzy partition of [a,b]. Moreover, let f and Az,

Az,..., Aube functions four times continuously differentiable on [a,b]. Then, the following approximation holds
true:

¢l = f'(x,)+0(h) k=1,..n -
!
where f (xk) is the derivative of the function f in the point xx.

From Theorem 2 descends the following corollary (Reference [23], Corollary 1).

Corollary 1. Let f(x) Ellz([a,b])und {Ax(x) k=1, ..., n} be a generalized fuzzy partition of [a,b]. Moreover,

let f and Ak be four times continuously differentiable on [a,b]. Then, for each k =1, ..., n, we have the
following:

f(x)=Fl(x)+0(h*) X S XS Xy, 8)
where
Fl(x)=¢/ +c(x—x) )

is the kth component of the F'-transform of f with respect to A, k=1, ..., n.
Let {Ax(x) k=1, ..., n} be an h-uniform fuzzy partition of [a,b] and (x1, f(x1)),..., (xn, f(xn)) be a discrete set
of n points of the function f. Equations (2) and (3) can approximate f in the discrete case as
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m

3 £(x)4,(x)
e =g (10)
Z A, (xf)
and
3 £ - x) A (x)
o) == (11)

Z(Xi_xk)zAk (xi)

i=0
0 1
respectively. The discrete approximation of C; and C, with Equations (10) and (11) are used to calculate the

discrete Fl-transform components in Equation (8) and to approximate the function f(x) in Equation (7). The

0
parameter C, is given by the kth component of the discrete direct F-transform (Equation (1)).
We define the discrete inverse F'-transform of f:

S F ()4, (x)
e = — (12)
z_ Ak (x)

The following theorem holds:

Theorem 3.
Let {Ax(x) k=1, ..., n} be an h-uniform generalized fuzzy partition of [a,b], and let f: (%) be the inverse

Fl-transform of f given by Equation (12). Moreover, let f, A1, As, ..., Anbe functions four times differentiable
on [a,b]. Then, for any x €[a,b], the following holds:

f(x)= f(x)=+0(h*) (13)

Proof of Theorem 3.

i Fl(x) A4, (x) f(x)i: A, (x) ‘an Fl x4, (x)
S~ £, ()= f(x) -+~ =
24 () > 4,

> 4@/ - F W)

Z}: 4, (x)

By Theorem 3, we can use the inverse F'-transform to approximate the function f in a point x €
[a,b]. O

=0(h*) by corollary 1.

3. The Time Series Seasonal Forecasting F' Fuzzy Transform Method (TSSF1)

Let {(t®, yoM), (@, 10@) ... (™), yotm)} be a time series formed by a set of M measures of a parameter
yo at different times; we suppose that this time series shows seasonality.

As in TFSS, we apply a polynomial fitting to approximate the trend of the time series; then, we
partition the time series in s seasonal subsets.



Sensors 2019, 19, 3611 7 of 15

To approximate the seasonality, we calculated the direct F'-transform of each subset and
approximate the seasonal functionality with the inverse F'-transform.

After assessing the functional trend of the phenomenon in time, we subtract the trend from the
data, obtaining the de-treated dataset:

y(i) = y(()i) — trend(t(i)) i=1,...,.m (14)

It is partitioned in S subsets, with S as the seasonal period. Each subset represents the seasonal
fluctuations with respect to the trend.

Let {(t®, y®), (&, y@) ... (tmg) , ym9)}, s =1, 2, ..., S be the sth subset given by ms couples of de-
treated data where t), t®, ... t™s) are defined in a domain [ts_’ r J Let {A1, Ao, ..., Aus} be an h-uniform

generalized fuzzy partition sufficiently dense with respect to this subset, where A1, As, ..., Axs are four
times differentiable in the domain [;‘;,;: J

We calculate the direct Fi-transform components (Equation (9)), F, (t)=c, +c;(¢t—t,), where

> 4
i=0 k

C;? — - =1, veu, Ns (15)
2 A"
i=0
where
>SN =) 4,0)
C/lc _ =0 - =1,...,ns (16)

Z (=t 4.

i=0

We approximate the seasonal fluctuation at time ¢ with the following inverse F'-transform:

3 FN0)4,(t)
PAN( = — (17)
Z_Ak (t)

To forecast the value of the parameter yo at time f in the hth season, we apply the following
formula:

Fo(6) = f,, (t) +trend () (18)

where J,(f) is the approximation of the parameter yo at time t, fn1 (t) is the sth seasonal

s

fluctuation at time ¢, and trend(t) is the trend of yo at time .
For creating the h-uniform fuzzy partition of the sth subset, we take the following basic
functions:

V1
0.5-(1+cos—(t—t if te [t,,t
40y |05 eosm=0) [t,t,]
0 otherwise
T
0.5-(1+cos—(t—t¢ if te [t_.t,.
Ay 05 o e=1) [t 8] )
0 otherwise
T
0.5-(14+cos—(t—t¢ if telt, .t
4, =5 Creosia=n) [t 2:1, ]

0 otherwise
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L=t

where t1=ts, t2, ... tss=ts* are the nodes, j, —
s nS _1

,and t,=t, +h (k-1) k=1, ..., ns.

To obtain the optimal number of nodes #s, we implement the process applied in Reference [17]:
the value of ns is initially set to 3. Then, we calculate the direct F!-transform components via
Equations (15) and (16) and the Mean Absolute Deviation Mean (MAD-MEAN) index, given by

371 0-0)
MAD-MEAN == (20)

zm" 10)
1
i=1 y

where the value f,i (l‘(i)) i=1,2, ..., msis calculated by Equation (17). The MAD-MEAN index

represents a good accuracy metric in time series analyses, as proved in Reference [24].

If the MAD-MEAN index is greater than a specified threshold, the algorithm stops and
Equation (18) is used to assess the value of yo at time t; otherwise, the process is iterated by creating
an h-uniform fuzzy partition, where ns = ns + 1. At any iteration, if the subset is not sufficiently dense

with respect to the fuzzy partition, the algorithm stops; else, the values of C,? and C}C L k=1,2, ..., ns

by Equations (15) and (16) are calculated.
Table 1 shows the algorithm in pseudocode. The output of the algorithm are the polynomial

coefficients to be used to obtain the trend at time t and the F'-transform components C,? and C,l{ , SO

to calculate the assess of the value ¥, (t) attime t via Equation (18).

Table 1. Pseudocode of the Time Series Seasonal Forecasting F1 Fuzzy Transform (TSSF1) algorithm.

1) Calculate the trend using a polynomial fitting

2)  Store the polynomial coefficients

3) Subtract to the data the trend value obtaining a new dataset

4) Partition the dataset into subsets; each data subset contains the measured data in a season.
5) For each seasonal subset

6) n:=3

7) stop: = FALSE

8) WHILE (stop = FALSE)

9) Set the h-uniform fuzzy partition (19)

10) IF the subset is sufficiently dense with respect to the fuzzy partition
11) Calculate the direct F'-transform components by (15) and (16)
12) Storec®and ck!  k=1,2, ..., 1s

13) Calculate the MAD-MEAN index (20)

14) n:=n+1

15) IF MAD-MEAN > Threshold THEN

16) stop: =TRUE

17) END IF

18) ELSE

19) stop: =TRUE

20) END IF

21) END WHILE

22) NEXT

Figure 1 is a schematized TSSF1 algorithm.
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| Trend assessment |

il | I|H ! trend(t)
;W)’WikﬂwwW!l“ e

y? =y’ —trend(t”) i=1...m

i

t
Seasonal time series

’ Seasonal subsest decomposition ‘
{2y APy ) {aO )Py )@y}

I

Seasonal subset 1

| Find the best h-uniform fuzzy partition | | Find the best h-uniform fuzzy partition |

| Calculate F!-transform components | I Calculate F!-transform components |

! ! !

f1(0) 1o @)
\ /

Fo () = f, (1) +trend (1)

Figure 1. Schema of the TSSF1 algorithm.

4. Experimental Results

We test the TSSF1 algorithm on a dataset of daily weather data collected from weather stations.
The dataset is composed by daily weather data collected from the weather stations managed by the
Italian Air Force located in the Campania Region: they are the weather stations of Capo Palinuro,
Capri, Grazzanise, Napoli Capodichino, Salerno Pontecagnano, and Trevico.

Our aim is to analyze the seasonality of the Heat Index (HI) [25], an index function of the
maximum daily air temperature and of the daily relative humidity. HI index measures the
physiological discomfort caused by the presence of high temperatures and high humidity levels.

The HI takes into account several factors, such as vapor pressure, actual wind speed, sample
size, internal body temperature, and sweating rate, represented by numerical coefficients. The
calculation of HI is based on the following formula obtained by multiple regression analysis carried
out in Reference [26] (NWS-NOAA, 2):

HI =¢,+¢,T +¢,RH +¢,T-RH +¢,T* —c,RH” +¢,T* -RH +¢,T-RH® +¢,7*-RH®  (21)

with T = air temperature and RH = relative humidity (%). The values of the coefficients c, ..., co are
shown in Appendix A.

This formula applies only in the case of temperatures above 27 °C and relative humidities above
40%, conditions often verified during the summer. For temperatures below 25 °C, with low humidity
(<30%), it can be assumed that the heat index coincides with the actual temperature, without
significant effects due to humidity.

The table in Appendix B shows the classification of the heat wave health hazard levels based on
HI values carried out by the United States National Weather Service-National Oceanic Atmospheric
Administration (NWS-NOAA, 2).

The training datasets are given by HI values measured in degrees Celsius and calculated by the
daily max temperature and the relative humidity recorded in the months July and August from 1
July 2003 to 31 August 2017, comprising a period of 918 days. The season is given by the number of
weeks, so we partition each dataset in k =9 subsets.

Following the TSSF algorithm, we calculate the trend fitting the data with a polynomial of 9th

9
degree y = Z a, -t '; then, a threshold value of 5 for the MAD-MEAN index is set.
i=0
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Figure 2 shows the trend obtained from the dataset of the station of Capodichino. The day is
represented on the abscissa using the corresponding progressive identifier.

40
38
36

34 I
32 | | |] | | I

30 | | ‘ —y
28 { \ i Y trend
e i |
24 L I L A | I
22 |
20 : : : . ; ; : . ; :

Figure 2. Trend of the heat index (HI) in the months of July and August (from 1 July 2003 to 16 August
2017) obtained from the Napoli Capodichino station dataset by using a ninth-degree
polynomial fitting.

We compare the results obtained via SARIMA, ADANN, TSSF, and TSSF1. We use the Forecast
Pro tool [27] to apply the SARIMA algorithm. The ADANN method is applied by implementing the
ADANN algorithm in References [17,28,29]; based on the experimental tests we have carried out, we
apply a GA algorithm with a stopping criterion of 200 generations to search the optimal number of
the input and hidden layer nodes. The TSSF method is applied implementing the TSSF algorithm in
Reference [22].

Shown below is the HI index time series from the dataset of the Napoli Capodichino station
obtained by applying the SARIMA (Figure 3), ADANN (Figure 4), TSSF (Figure 5), and TSSF1
(Figure 6) algorithms.

We compare the results obtained via SARIMA (Figure 3).

43

38

33

28

23

18 T T T T T T T T T !
0 100 200 300 400 500 600 700 800 900 1000

Figure 3. Plot of HI index time series from the Napoli Capodichino station dataset obtained by using
the Seasonal Autoregressive Integrated Moving Average (ARIMA) algorithm.
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Figure 4. Plot of HI index time series from the Napoli Capodichino station dataset obtained by using
the Automatic Design of Artificial Neural Networks (ADANN) algorithm.
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23
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Figure 5. Plot of HI index time series from the Napoli Capodichino station dataset obtained by using
the TSSF algorithm.

43

38 |

33

-
L] HMMJMJ i B —

28 i 7 P ———TSSF1

“'“WW“ Ui G Ty T
[

18 T T T T T T T T T d
0 100 200 300 400 500 600 700 800 900 1000

23

Figure 6. Plot of HI index time series from the Napoli Capodichino station dataset obtained by using
the TSSF1 algorithm.

To measure the performances of the algorithms in addition to the MAD-MEAN index, we
calculate also the well-known time series accuracy indexes: Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and Mean Absolute Deviation (MAD).

In Table 2, the measures of the four accuracy indexes obtained from all the datasets of the
weather stations are shown. For each dataset, the ARIMA, ADANN, TSSF, and TSSF1 algorithms are
applied as well.
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Table 2. Accuracy measures for HI index time series from all the weather station datasets obtained
by using ARIMA, ADANN, TSSF, and TSSF1.

Station Forecasting Method RMSE MAPE MAD MAD-MEAN
ARIMA 165 556 154 495
Capo Palinuro ADANN 143 522 124 438
TSSF 149 537 134 456
TSSF1 143 522 126 437
ARIMA 175 563  1.64 5.00
Canri ADANN 153 528 136 441
aprt TSSF 159 543 147 4.60
TSSF1 152 530 137 441
ARIMA 172 559 161 496
Crazpanise ADANN 150 530 138 4.49
TSSF 161 547 145 458
TSSF1 153 529 136 445
ARIMA 168 548 141 493
. . ADANN 146 514 117 435
Napoli Capodichino TSSF 152 529 126 454
TSSF1 145 516  1.18 435
ARIMA 174 563 161 498
Sulerno ADANN 152 534 138 451
TSSF 163 551 145 4.60
TSSF1 155 533 136 4.47
ARIMA 162 543 135 487
Pontecagnano ADANN 141 507 113 430
TSSF 151 516 120 445
TSSF1 139 506 113 429
ARIMA 176 567 162 5.01
Trevico ADANN 156 536 139 450
TSSF 164 554 147 4.65
TSSF1 155 536 138 451

The results in Table 2 show that, for all the datasets, the performance of the TSSF1 algorithm are
better than that of the Spatial ARIMA and TSSF algorithms and comparable with that of the ADANN
algorithm. In fact, both the measured values of the MAD-MEAN index and those of the RMSE, MAD,
and MAPE indices obtained by using the TSSF1 method are very similar to the values obtained using
the ADANN method; on the other hand, the ADANN method has a higher computational complexity
with respect to the TSSF1 algorithm due to the use of the GA algorithm necessary for determine the
optimal number of nodes of the input layer and the hidden layer..

In order to measure the forecasting performances of the results for any weather station, we create
a test dataset given HI values related to the period 1 July 2018-31 August 2018; then, we calculate the
RMSE of the forecasted values obtained by using the SARIMA, ADANN, TSSF, and TSSF1
algorithms. In Table 3, we show the RMSE measured in the 9 methods for each parameter.
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Table 3. RMSE of the test dataset for the HI index time series from all the weather station datasets
obtained by using ARIMA, ADANN, TSSF, and TSSF1.

Station RMSE
ARIMA ADANN TSSF TSSF1

Capo Palinuro 1.28 1.01 1.19 0.99
Capri 1.33 1.02 1.22 1.02
Grazzanise 1.35 1.04 1.24 1.05
Napoli Capodichino 1.35 1.04 1.22 1.03
Salerno 1.36 1.05 1.24 1.05
Pontecagnano 1.32 1.03 1.20 1.04

As well as the results in Table 2, the results in Table 3 show that the forecasting performances of
the TSSF1 algorithm are comparable with that of the ADANN algorithm and better than that of the
SARIMA and TSSF algorithms. This trend is confirmed for all six datasets used in this
comparison test.

5. Conclusions

We propose a novel seasonal time series forecasting algorithm based on the direct and inverse
F1-transform. The aim of this research is to improve the performance of the TSSF algorithm, a seasonal
time series forecasting method based on direct and inverse F-transform. As in TSSF, we apply a
polynomial fitting to extract the trend and partition the training dataset in S subsets, where S is the
number of seasons. For each subset, the direct F'-transform components are calculated and the
inverse F!-transform is used to predict the value of an assigned output as well.

We test our algorithm on datasets of the daily heat index in the months of July and August
calculated by using the daily max temperature and humidity values measured from the six Italian
weather stations of Capo Palinuro, Capri, Grazzanise, Napoli Capodichino, Salerno Pontecagnano,
and Trevico starting from 1 July 2003 and up to 31 August 2017. We compare the accuracy and the
forecasting performances of our method with the ones obtained by using the Seasonal ARIMA
ADANN and TSSF methods; the results show that the proposed method has better performances
than those obtained using Seasonal-ARIMA and TSSF and performances comparable with those
obtained by using the ADANN algorithm, with the advantage of being more efficient than ADANN
in terms of computational complexity; in fact, compared to the TSSF1 algorithm, which has a
quadratic dependence on the size of the dataset, ADANN has longer execution times, since in
ADANN, two hundred generations are needed to obtain the optimal number of input and hidden
layer nodes.

In the future, we intend to optimize the performance of the TESS1 algorithm, parallelizing the
calculation processes of the direct F-transform components on each seasonal subset and
implementing an efficient algorithm for optimizing the MAD-MEAN index threshold.
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F.D.M. and S.S.; data curation, F.D.M. and S.S.; writing—original draft preparation, F.D.M. and S.S.; writing—
review and editing, F.D.M. and S.S.; visualization, F.D.M. and S.S.; supervision, F.D.M. and S.S.
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Appendix A

Table A1. Parameters used to calculate the heat index, setting the unit measure of the temperature in
°C or °F (Reference [19]).

Parameter °C °F

cl -8.78469475556 -42.379

2 1.61139411 2.04901523
c3 2.33854883889  10.14333127
c4 —0.14611605  —-0.22475541
c5 -0.012308094 -0.00683783
c6 —0.0164248277778 -0.05481717
c7 0.002211732 0.00122874
c8 0.00072546 0.00085282
9 -0.000003582 -0.00000199

Table A2. Classification of the heat wave health hazard levels based on HI values (NWS-NOAA, 2).

Alert Level Heat Index Possible Heat Disturbances for Vulnerable People
. 80 °F (27 °C) < HI Possible tiredness following prolonged exposure to the sun
Caution . ..
<89 °F (32°C) and/or physical activity
Extreme 90 °F (32 °C) <HI Possible sunstroke, heat cramps with prolonged exposure,
caution <104 °F (40 °C) and/or physical activity
105 °F (41 °C) < Probably sunstroke, heat cramps, or heat exhaustion; possible
Danger HI< 129 °F (54 heat stroke with prolonged exposure to the sun and/or
°C) physical activity
High HI>130 °F (54 High probability of heat stroke or sunstroke caused by
danger °C) continuous exposure to the sun
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