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Abstract: Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating
neuronal excitability and representing an attractive target for pharmacological therapy against
hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor
potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing
substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels
of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is
yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized
sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms.
In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects
of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5
channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i).
The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like
current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar
extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 µM) was
higher than that of ICA-27243 (IC50~5 µM) and (S)-1 (IC50~7 µM). Altogether, these results suggest
that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated
pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits.

Keywords: F11 cells; retigabine; XE991; capsaicin; bradykinin

1. Introduction

The Kv7 (KCNQ) subfamily of voltage-gated K+ channel subunits includes five members (from
Kv7.1 to Kv7.5), each showing specific tissue distribution and functional roles [1]. While Kv7.1 subunits
are mainly distributed in cardiac cells [2], all other Kv7 subunits are expressed in neuronal cells,
where they represent the molecular basis for the M-current (IKM) [3–5], a repolarizing K+-selective
current playing a pivotal role in excitability control [6]. Analogously to other voltage-gated K+

channels subunits, Kv7 subunits show a topological arrangement in which a core domain with six
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transmembrane segments (S1 to S6) is flanked by intracellularly located N- and C-termini. Within the
core domain, the first four transmembrane segments (S1 to S4) form the voltage sensing domain (VSD),
while S5, S6, and the intervening linker contribute to the formation of the pore region and selectivity
filter; the N- and C-termini provide binding sites for several molecules critically influencing channel
assembly, regulation, subcellular trafficking, and function [7–12]. Functional Kv7 channels assemble as
tetramers of identical (homomers) or compatible (heteromers) subunits [1,5]; therefore, a large number
of Kv7 channels of different molecular composition can be assembled in each individual cells at specific
developmental stages, a phenomenon likely contributing to the adaptation of cellular responses to
changes in environmental conditions or pathophysiological events [13,14].

Due to their role in neuronal excitability control, Kv7 channels are currently regarded as critical
players in hyperexcitability diseases such as epilepsy, mania, ADHD (Attention-Deficit/Hyperactivity
Disorder), addiction to psychostimulants, and depression. Moreover, neuronal hyperexcitability also
plays a critical pathogenetic role in the development of pain states accompanying nerve crushing,
inflammatory states, central, and/or peripheral neuropathies, also when the latter are caused by
exposure to clinically-used drugs such as antineoplastics [15,16]. As a matter of fact, the pan-Kv7
channel opener flupirtine is effective in several animal models of nociception [17,18], and has been used
clinically as a non-opioid analgesic in humans, before being withdrawn from the market in 2018 because
of severe drug-induced hepatotoxic responses. Consistent with their prominent role in pain states, Kv7
channels are expressed in nociceptive neurons of the ganglia and of the spinal cord; their inhibition
mediates a significant part of the nociceptive effects of inflammatory and pain-inducing mediators such
as exogenous proteases and bradykinin (BK) [19,20]. A decreased expression of Kv7 channels has been
shown to contribute to neuropathic hyperalgesia following partial sciatic nerve ligation in rats [13];
moreover, drug-induced activation of Kv7 channels inhibit C and Aδ fiber-mediated responses of dorsal
horn neurons evoked by natural or electrical afferent stimulation [21] and counteracts receptor-induced
M current inhibition in nociceptors during inflammatory pain [22]. Intriguingly, Kv7 channels are also
present on axons of unmyelinated, including nociceptive, peripheral human nerve fibers: activation of
these channels reduces the ectopic generation of action potentials occurring during neuropathic pain
states [23]. Notably, a functional interaction has been demonstrated between Kv7 and transient receptor
potential vanilloid 1 (TRPV1) channels [24], expressed predominantly in peripheral nociceptors [25]
and activated by TRPV1-mediated pain-inducing substances such as the endogenous inflammatory
mediator BK or the exogenous burning agent capsaicin (CAP).

However, whether Kv7 channels of specific molecular composition provide a dominant
contribution in BK- or CAP-evoked responses is yet unknown. To answer this question, in the
present study, we have first confirmed the expression of transcripts encoding for all Kv7 members
and functional IKM in mouse neuroblastoma/rat dorsal root ganglionic hybrid neurons (F11 cells) [26],
a cellular model widely used to assess nociceptive molecular mechanisms in which the expression
and function of TRPV1 channels has been previously reported [27]. In these cells, Ca2+-imaging
experiments were subsequently performed to assess the possible participation of Kv7 channels in the
changes of intracellular Ca2+ concentrations ([Ca2+]i) triggered by BK or CAP; to this aim, the ability
of the pan-Kv7 activator retigabine (RTG), a structural analogue of flupirtine [15,18], in inhibiting
BK- and CAP-evoked [Ca2+]i responses in F11 cells was compared to that of ICA-27243, a relatively
selective Kv7.2/Kv7.3 opener [28], and of (S)-1, a relatively selective Kv7.4/Kv7.5 opener [29].

The results obtained confirmed that Kv7.2, Kv7.3, and Kv7.4 transcripts are expressed in
differentiated F11 cells, where a current having the biophysical and pharmacological characteristics of
an M-current can be functionally identified. Moreover, all three tested Kv7 openers reduced BK- and
CAP-induced [Ca2+]i responses, an effect fully reversed by co-exposure to the selective Kv7 blocker
XE991 [30]. In particular, the potency of RTG was higher than that of ICA-27243 or (S)-1, whereas the
maximal inhibitory effect was similar among all three drugs. Collectively, the present results show that
drug-induced activation of Kv7 channels can significantly inhibit cellular responses underlying pain
sensation, confirming the role of this subfamily of K+ channels as critical target for novel pain treatment
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strategies; pharmacological data also suggest a possible, previously-unrecognized, contribution of
channels containing Kv7.4 subunits in blunting [Ca2+]i rises triggered by TRPV1-dependent endogenous
and/or exogenous pain-inducing stimuli.

2. Results

2.1. Biochemical and Functional Evidence for Kv7 Expression in F11 Cells

F11 cells, a hybrid cell line obtained from the fusion of differentiated mouse neuroblastoma
cells and primary cells from rat dorsal root ganglia, are widely used to investigate the molecular
mechanisms triggered by nociceptive stimuli. In fact, these cells express both neuronal (α-tubulin III,
NF-160, and NeuN) and nociceptive (delta-opioid, prostaglandin, and BK receptors) markers [31],
which display the strongest [Ca2+]i responses to BK among neuronal cell lines [32], and synthesize and
release a substance P-like compound [33,34]. When differentiated (see the Methods section for details),
F11 cells exhibit a mature neuronal morphology, with long neurites and an increased expression of
BK receptors and voltage-gated calcium channels (VGCCs) [33]. Moreover, transient [Ca2+]i increases
were observed upon exposure not only to BK, but also CAP in F11 cells, both being markedly reduced
by TRPV1 antagonists [27].

To investigate the possible role of Kv7 channels in TRPV1-activating pain-inducing stimuli, the
expression of all KCNQ genes in undifferentiated F11 cells was first analyzed. As shown in the left
panel of Figure 1A, semi-quantitative RT-PCR experiments revealed the presence of amplicons of
the expected size for KCNQ2 (489 bp), KCNQ3 (238 bp), or KCNQ4 (98 bp) mRNAs, as previously
reported in dorsal root ganglion neurons (DRG) [21], whereas the amplicons for KCNQ1 (143 bp)
and KCNQ5 (99 bp) were very faint or undetectable, respectively. Since KCNQ5 mRNA expression
has been previously described in rat DRGs [21], more stringent experimental conditions were used
to reveal KCNQ5-specific transcripts; as a matter of fact, when 5 µg (instead of 1 µg) of total RNA
in the retrotranscription reaction were used, a KCNQ5-specific band was clearly detected, as also
confirmed by the results obtained with a second primer pair (amplicon expected size of 564 bp) directed
toward a different region of KCNQ5 mRNA (right panel of Figure 1A). Given the lower intensity of
the bands corresponding to KCNQ1 and KCNQ5 mRNAs when compared to that of the other Kv7
family members, quantitative PCR experiments were subsequently performed to investigate KCNQ2,
KCNQ3, and KCNQ4 transcript expression in control and differentiated F11 cells. As reported in
Figure 1B, all tested KCNQ mRNAs were detected in undifferentiated F11 cells, with KCNQ4 being the
most abundant (Ct ~ 25), followed by KCNQ2 (Ct ~ 28) and KCNQ3 (Ct ~ 34); transcripts encoding for
all three Kv7 subunits were significantly increased upon F11 cell differentiation.

Given these results, perforated patch-clamp recordings were performed to investigate whether a
functional IKM was detectable in differentiated F11 cells; to this aim, a standard voltage protocol was
adopted in which cells were held at a steady depolarized potential sufficient to activate the M-current,
followed by hyperpolarizing voltage steps to reveal IKM deactivation (see the Methods section for
details). Using this protocol, the contamination by other voltage-gated currents is minimized since these
are largely inactivated at the depolarizing holding voltage, while the contribution of non-inactivating
currents such as IKM is maximized [35]. As shown in Figure 1C, this protocol allowed the identification
of a slowly-deactivating current corresponding to the IKM tails during the hyperpolarizing steps.
The observation that these currents were significantly potentiated upon exposure to the Kv7 activator
RTG (20 µM) [15] and inhibited by the Kv7 blocker XE991 (10 µM) [30] (Figure 1C,D) strongly suggests
their molecular identity as Kv7-mediated IKM.
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Figure 1. Biochemical and functional evidence of Kv7 expression in F11 cells. (A) Representative 
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undifferentiated F11 cells and primers designed on conserved sequence regions of KCNQ1 (Q1), 

KCNQ2 (Q2), KCNQ3 (Q3), KCNQ4 (Q4), KCNQ5 (Q5) mRNAs of both mouse and rat genes. Arrows 

indicate the molecular mass of DNA marker. “A” and “B” in subscripts indicate two distinct primer 

pairs designed on distinct regions of KCNQ5 mRNA; the housekeeping GAPDH gene was used as 

control (CTL). Black boxes indicate expected amplicons for each reaction. The image is representative of 

data obtained from three separate experiments. (B) Quantification of KCNQ mRNAs detected in real-

time PCR performed using primers for KCNQ2, KCNQ3 or KCNQ4 genes, as indicated, from total RNAs 

extracted from undifferentiated (white bars) or differentiated (black bars) F11 cells. Asterisks indicate 

values significantly different (p < 0.05) versus respective controls. cDNAs samples were amplified in 

triplicate in each one-assay run (n = 4). (C) Representative current traces recorded from differentiated 

F11 cells upon the application to the voltage protocol shown below the first set of traces, in control 

solution (CTL) or upon exposure to the indicated drugs. Red traces correspond to currents recorded at 

−50 mV in all tested conditions. (D) Quantification (n = 3–5) of currents measured in cells recorded as in 

C and expressed as % of currents measured in the same cell at −30 mV before drug exposure. 

2.2. Kv7 Activators Reduce BK-evoked [Ca2+]i Responses in F11 Cells 

Figure 1. Biochemical and functional evidence of Kv7 expression in F11 cells. (A) Representative images
of electrophoretic separations of RT-PCR reactions using total RNA extracted from undifferentiated
F11 cells and primers designed on conserved sequence regions of KCNQ1 (Q1), KCNQ2 (Q2), KCNQ3
(Q3), KCNQ4 (Q4), KCNQ5 (Q5) mRNAs of both mouse and rat genes. Arrows indicate the molecular
mass of DNA marker. “A” and “B” in subscripts indicate two distinct primer pairs designed on
distinct regions of KCNQ5 mRNA; the housekeeping GAPDH gene was used as control (CTL). Black
boxes indicate expected amplicons for each reaction. The image is representative of data obtained
from three separate experiments. (B) Quantification of KCNQ mRNAs detected in real-time PCR
performed using primers for KCNQ2, KCNQ3 or KCNQ4 genes, as indicated, from total RNAs extracted
from undifferentiated (white bars) or differentiated (black bars) F11 cells. Asterisks indicate values
significantly different (p < 0.05) versus respective controls. cDNAs samples were amplified in triplicate
in each one-assay run (n = 4). (C) Representative current traces recorded from differentiated F11 cells
upon the application to the voltage protocol shown below the first set of traces, in control solution
(CTL) or upon exposure to the indicated drugs. Red traces correspond to currents recorded at −50 mV
in all tested conditions. (D) Quantification (n = 3–5) of currents measured in cells recorded as in C and
expressed as % of currents measured in the same cell at −30 mV before drug exposure.
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2.2. Kv7 Activators Reduce BK-evoked [Ca2+]i Responses in F11 Cells

Having found a significant expression and function of Kv7 channels in differentiated F11 cells,
their possible role in the modulation of BK-induced [Ca2+]i responses was then investigated. As already
reported [27,36] and shown here in Figure 2A, three subsequent 20-s exposures to BK (250 nM) applied
every 20 min induced identical transient increases in [Ca2+]i in about 84% (574/682) of cells tested.
BK-triggered [Ca2+]i increases were mostly dependent on extracellular Ca2+ influx and were also largely
prevented upon exposure to the canonical TRPV1 antagonist capsazepine (CPZ), thus confirming a
critical role for TRPV1 channels in BK-induced [Ca2+]i responses [27]. BK-induced [Ca2+]i increases
were dose-dependently reduced by the pan-Kv7 opener RTG (0.1–20 µM; Figure 2B–E), showing an
IC50 of 1.04 ± 0.47 µM. In addition, the Kv7 blocker XE991 (10 µM) was unable per se to modify both
resting [Ca2+]i and BK-triggered [Ca2+]i responses, but completely reversed the inhibitory effects of
RTG on BK-induced [Ca2+]i increases (Figure 2B–E).

As previously introduced, RTG is a pan-Kv7 activator with little selectivity among channels
formed by distinct combinations of Kv7 subunits. In attempt to dissect the contribution played by
channels formed by specific Kv7 subunits in the observed functional effects of RTG, the effects of
ICA-27243 [28], a benzamide derivative provided of a certain degree of selectivity for Kv7.2/Kv7.3
channels [37], were also investigated. On the other hand, to verify the possible contribution of
heteromeric channels composed of Kv7.4/Kv7.5 subunits, the rather selective Kv7.4/Kv7.5 activator
(S)-1 [29], was also investigated. Exposure of F11 cells to ICA-27243 (1–20 µM; Figure 2C–E) or to (S)-1
(1–30 µM; Figure 2D–E) dose-dependently counteracted BK-induced [Ca2+]i rises, with a maximal
efficacy identical to that of RTG (~ 60% maximal blockade), although their potency was lower than that
of RTG (IC50s were 5.3 ± 1.9 µM and 7.7 ± 5.6 µM for ICA-27243 and (S)-1, respectively; p < 0.05 versus
RTG; p > 0.05 between ICA-27243 and (S)-1).
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Figure 2. Effects of Kv7 modulators on bradykinin (BK)-induced [Ca2+]i responses in differentiated F11
cells. (A–D) Representative traces showing the effect of three subsequent exposures to BK (250 nM) on
[Ca2+]i in differentiated F11 cells in control conditions (A) or after exposure to 10 µM of the indicated
drugs (B–D). The length of the bars indicates the duration of each drug exposure. (E) Quantification of
the effects of the indicated drugs (whose concentrations are reported in µM at the bottom of the panel)
on the BK-induced [Ca2+]i responses. Data are expressed as percent of [Ca2+]i increase prompted by
the first BK exposure. Each bar is the mean ± SEM of separate determinations (indicated as n values at
the bottom of the panel) performed in at least three experimental sessions. *, **, or *** = p < 0.05 versus
the immediately lower concentrations tested of the same drug.



Int. J. Mol. Sci. 2019, 20, 4322 7 of 14

2.3. Kv7 Activators Reduce CAP-evoked [Ca2+]i Responses in F11 Cells

To verify whether Kv7 subunits activation also opposes [Ca2+]i rises triggered by direct-acting
TRPV1 agonists, the effects of Kv7 activators in F11 cells exposed to the canonical TRPV1 agonist
CAP [38] were also investigated (Figure 3). As previously reported [27], the kinetics of [Ca2+]i changes
induced by CAP were markedly different from those elicited by BK: in fact, although [Ca2+]i increases
were similarly fast, [Ca2+]i decay after stimulus removal was markedly slower for CAP, causing [Ca2+]i

to remain higher than basal for several minutes (Figure 3A) and triggering strong desensitization of
the TRPV1 channels, such that multiple CAP applications failed to trigger [Ca2+]i responses of similar
amplitude (as in the case of BK). Because of these differences in the kinetics of TRPV1 agonist-induced
[Ca2+]i response, a protocol in which each cell was challenged with a single CAP exposure, both in
control condition or after exposure for 7–8 min to the Kv7 agonists. CAP-induced [Ca2+]i rises were
significantly blocked upon co-exposure to the TRPV1 antagonist CPZ, when used at a concentration
(1µM) and application times (<1 min) that do not affect VGCCs in DRG neurons [39]; as expected, higher
concentrations of the canonical TRPV1-antagonist CPZ (10 µM) almost completely (>90%) inhibited
CAP-induced [Ca2+]i changes (Figure 3E). Notably, CAP-induced [Ca2+]i rises were dose-dependently
inhibited by RTG (1–10 µM; Figure 3E), with about 50% inhibition of the maximal response achieved
at the concentration of 1 µM; the simultaneous exposure to the Kv7 blocker XE991 fully abolished
10 µM RTG-induced inhibition of CAP-triggered [Ca2+]i responses (Figure 3E). Notably, CAP-induced
[Ca2+]i rises were also blocked by a similar extent by 3 µM ICA-27243 (Figure 3C–E) and 10 µM (S)-1
(Figure 3D–E).

As anticipated, in the presently-described experiments, different cells were exposed to CAP or
to CAP+Kv7 modulators; therefore, given that only a fraction (30/72; 40%) of F11 cells responded to
CAP in control conditions, the possibility exists that the Kv7 modulators influenced the percentage
of CAP-responsive cells. However, this hypothesis seems unlikely since a similar percentage of F11
cells responded to CAP when exposed to RTG (17/43, 40%), ICA-27243 (17/41, 41%), and (S)-1 (20/52
(38%), respectively.
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3. Discussion 

Figure 3. Effects of Kv7 modulators on capsaicin (CAP)-induced [Ca2+]i responses in differentiated
F11 cells. (A–D) Representative traces showing the effect of a single exposure to CAP (50 µM) on
[Ca2+]i in F11 cells incubated in control conditions (A) or after exposure to 10 µM of the indicated
drugs (B–D). The length of the bars indicates the duration of each drug exposure. (E) Quantification of
the effects of the indicated drugs (whose concentrations are reported in µM at the bottom of the panel)
on CAP-induced [Ca2+]i responses. Data are expressed as percent of CAP-induced [Ca2+]i increases in
control solution. Each bar is the mean ± SEM of separate determinations (indicated as n values at the
bottom of this panel) performed in at least three experimental sessions. * or ** = p < 0.05 versus the
immediately lower concentrations tested of the same drug.
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3. Discussion

Neuropathic pain, caused by a lesion or disease affecting the somatosensory nervous system, has
a considerable impact on patients’ quality of life, and is associated with a high economic burden on the
individual and society, affecting 7–10% of the general population [40]. Peripheral neuropathic pain
is due to altered function and sensitization of neurons within the peripheral nociceptive system (i.e.,
nociceptive neurons), the sensory system responsible for the perception of pain and the transduction of
pain signals to the spinal cord [41]. At each of these sites along the various components of nociceptive
pathways, neuronal excitability is controlled by a myriad of ion channels, each with an exquisite
distribution pattern and specific functional properties. In particular, changes in expression and/or
function of Kv7 channels in sensory neurons play a critical pathogenetic role in the development
of pain states accompanying nerve crushing, inflammatory states, and central and/or peripheral
neuropathies [15,16]. In addition, a functional interaction has been demonstrated between Kv7
channels and transient receptor potential vanilloid 1 (TRPV1) channels [24], expressed predominantly
in peripheral nociceptors [25] and activated by TRPV1-mediated pain-inducing substances such as the
endogenous inflammatory mediator BK or the exogenous burning agent capsaicin (CAP); however,
whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or
CAP-evoked responses is yet unknown.

The results of the present study revealed that transcripts for all five members of the Kv7 family
could be detected in F11 cells, a hybrid cell line obtained from the fusion of differentiated mouse
neuroblastoma cells and primary cells from rat dorsal root ganglia which has been widely used to
investigate the molecular mechanisms triggered by nociceptive stimuli [31,33,34,42] and which is
known to express functional TRPV1 channels [27]. Exposure of F11 cells to differentiating experimental
conditions caused a substantial increase in the expression of Kv7.2, Kv7.3, and particularly Kv7.4.
Patch-clamp recordings also allowed to detect a slowly-deactivating current which was potentiated
or inhibited, respectively, upon exposure to Kv7 activators or blockers, strongly suggesting that the
recorded current corresponded to Kv7-mediated IKM.

Bradykinin is a well-known endogenously-produced pain-inducing substance; among the
mechanisms by which BK induces hyperalgesia are TRPV1 sensitization and inhibition of M-type K+

channels. Both these effects participate to BK-induced hyperexcitability of nociceptive neurons and
facilitation of ascending nociceptive signals. In differentiated F11 cells, BK reversibly triggers transient
increases in [Ca2+]i; in primary afferent DRG neurons, these transients largely depend on phospholipase
C (PLC) activation causing TRPV1 channels sensitization [43], as well as on Ca2+-dependent inhibition
of M-type K+ channels and opening of Ca2+-activated Cl– channels [20]. In agreement with these
hypotheses, BK-induced responses were significantly blunted in F11 cells by incubation in Ca2+-free
solutions or by the canonical TRPV1 antagonist capsazepine [27]. BK-induced [Ca2+]i increases were
dose-dependently reduced by the pan-Kv7 opener RTG, with an IC50 of 1.04 ± 0.47 µM, a value close
to the IC50s measured for RTG-induced activation of heterologously expressed Kv7 subunits and
on native IKM [44]; these results are in close agreement with the marked ability of RTG to attenuate
nocifensive behavior triggered by intraplantar injection of BK in rats [20].

In the same cellular model, ICA-27243 [28], a benzamide derivative showing antiepileptic activity
in a broad range of rodent seizure models and provided of a certain degree of selectivity for Kv7.2/Kv7.3
channels [37], was also investigated; notably, while RTG activates Kv7.2/Kv7.3 channels by binding
to the S5-S6 pore domain, ICA-27243 binds to a pocket located in the VSD [45]. The results obtained
revealed an IC50 of about 5 µM for ICA-27243-induced inhibition of [Ca2+]i transients evoked by BK
exposure; this value is 10 times higher than that reported on heterologously-expressed Kv7.2/Kv7.3
channels, being instead in the range of that for ICA-27243-induced activation of Kv7.4 currents [28,37,45].

On the other hand, the rather selective Kv7.4/Kv7.5 activator (S)-1 [29], an orally bioavailable
acrylamide derivative showing activity in a rat cortical spreading depression model of human
migraine [46] and which binds to the same pore pocket used by pan-Kv7 activators [29],
dose-dependently counteracted BK-induced [Ca2+]i rises, showing a maximal efficacy identical



Int. J. Mol. Sci. 2019, 20, 4322 10 of 14

to that of RTG and ICA-27243 (~60% maximal blockade), but an IC50 of about 7 µM, thus showing a
potency identical to that shown by this drug for the activation of Kv7.4-mediated currents [29]. Thus,
although the selectivity of both compounds among Kv7 subunits is only relative, the present data
suggest a possible, previously-unrecognized, contribution of Kv7.4 subunits in blunting BK-induced
[Ca2+]i rises.

As previously mentioned, BK-triggered nociceptor activation is mediated, at least in part, by TRPV1
activation. To investigate whether IKM activators may block [Ca2+]i rises triggered by direct-acting
TRPV1 agonists, the effects of Kv7 activators in F11 cells exposed to the canonical TRPV1 agonist
CAP [38] were also investigated. The results obtained showed that, similarly to BK-induced responses,
CAP-induced [Ca2+]i responses were dose-dependently inhibited by RTG, ICA-27243, and (S)-1, thus
providing a strong pharmacological evidence for a critical inhibitory contribution of Kv7 subunits
in the control of [Ca2+]i responses triggered in differentiated F11 cells not only by indirect (BK), but
also direct (CAP) TRPV1-activating stimuli. Moreover, similarly to the data obtained for BK, the rank
order of potency for the presently investigated pharmacological tools (RTG > ICA-27243 > (S)-1),
suggests a rank order of potency consistent with a potential role for Kv7.4 subunits in CAP-evoked
[Ca2+]i responses.

Altogether, the present results show that the pharmacological activation of neuronal Kv7 channels
significantly inhibits pain-evoking cellular responses in peripheral sensory neurons, confirming the
role of these channels as critical pharmacological targets for novel treatment strategies against pain
states. Pharmacological tools provided of a better selectivity profile for Kv7 channels of specific
molecular compositions will be needed to achieve a precise molecular identification of the molecular
steps participating in nociceptor activation by endogenous and/or exogenous pain-inducing stimuli.

4. Materials and Methods

4.1. Cell Cultures

Cell cultures were maintained as previously described [27]. Briefly, F11 cells were grown in
DMEM medium supplemented with 10% FBS, 100 U/mL penicillin/streptomycin and 2 mM l-glutamine.
The cells were kept in a humidified atmosphere at 37 ◦C with 5% CO2 in 100 mm plastic Petri dishes.
Differentiation of F11 cells was achieved by exposure for at least 72 h to a medium containing a lower
FBS concentration (2%) and 10 µM retinoic acid [34].

For Ca2+ imaging and electrophysiological experiments, F11 cells were plated on glass coverslips
(Carolina Biological Supply Co., Burlington, NC, USA) coated with poly-l-lysine (Sigma, Milan, Italy).

4.2. RNA Extraction and Semiquantitative PCR

Total RNA was isolated from undifferentiated or differentiated F11 cells using TRI-Reagent
(Sigma-Aldrich, Milan, Italy), following manufacturer’s instructions. RNA samples were treated with
0.1 U/mL DNase-I (Sigma-Aldrich) for 15 min at room temperature (RT; 20–22 ◦C). Final preparation of
RNA was considered DNA- and protein-free if the OD values ratio at 260/280 nm was >1.7. cDNA
was synthesized by reverse transcription using 1–5 µg of isolated RNA as a template, 2.5 U/mL of
MuLV high-capacity reverse transcriptase (Applied Biosystem, Monza, Italy) in a buffer containing 4
mM dNTP mix, 2.5 mM Random Primers, 1 U/mL RNase Inhibitor at 37 ◦C for 120 min. After MuLV
reverse transcriptase inactivation (10 min incubation at 95 ◦C), the cDNA obtained was amplified
in PCR gold buffer, containing 1.5 mM MgCl2, 0.8 mM dNTP mix, 0.5–1 mM forward and reverse
primers (designed on highly-conserved sequences between mouse and rat Kv7 isoforms; [47]) and
0.1–0.25 U/mL AmpliTaq Gold (Applied Biosystem, Monza, Italy). The PCR amplification protocol
was: denaturation at 95 ◦C for 1 min, annealing at 52 ◦C for 1 min, elongation at 72 ◦C for 1 min
(30–35 cycles). To exclude the presence of genomic DNA, PCR amplification was also performed on
RNA samples in which cDNA was omitted. PCR products were analyzed by electrophoretic separation



Int. J. Mol. Sci. 2019, 20, 4322 11 of 14

on 2% agarose gel in 0.5% TBE. Acquisition and analysis of images was performed on a Gel DOC XR
System (Bio-Rad laboratories, Hercules, CA, USA).

4.3. Quantitative Reverse-Transcription PCR (qRT-PCR)

cDNA was analyzed by qRT-PCR with the SYBR Green PCR Master Mix (Bio-Rad Laboratories
Inc., Hercules, CA, USA). The qRT-PCR was carried out in a Mastercycler ep Realplex (Eppendorf,
Milan, Italy). Relative mRNA expression was determined by the ∆∆Ct method [47] using GAPDH as
endogenous control. Serial cDNA dilutions were analyzed to ensure the linearity of the PCR reaction
and to evaluate its efficiency.

4.4. [Ca2+]i Measurements

Measurements of [Ca2+]i were performed as previously reported [27]. Briefly, F11 cells were
plated on glass coverslips and loaded with 3 mM Fura-2 acetoxymethyl ester (Fura-2 AM) for 1 h at
RT in darkness in a standard solution containing (in mM): 160 NaCl, 5.5 KCl, 1.5 CaCl2, 1.2 MgSO4,
10 HEPES, 10 glucose, pH 7.4 adjusted with NaOH. Thereafter, the coverslips were washed twice
with PBS to remove extracellular dye and placed in a perfusion chamber onto the stage of an inverted
Leica DM IRB fluorescence microscope equipped with a 40× oil objective lens. Cells were perfused
throughout the experiments with a medium of the above-mentioned composition with or without
specific drugs, as specified in each experiment. Fluorescence images were acquired using a digital
imaging system, composed of a cool-SNAP ES camera (Roper Scientific, Ottobrunn, Germany),
DeltaRAM XTM Microscope Illuminator (Photon Technology International, Birmingham, NJ, USA) and
MetaFluor Imaging System software (Molecular Device, Sunnyvale, CA, USA). Cells were alternatively
illuminated at wavelengths of 340 nm and 380 nm by a 100 W Xenon lamp; the emitted light was
passed through a 512-nm barrier filter. Fura-2 fluorescence was recorded every 3–4 s, and fluorescence
intensity values converted in Ca2+ concentrations assuming a Kd of 224 nM [48]. In each experiment,
background fluorescence was recorded in a field devoid of cells and subtracted from the measured
emission of each channel. Only cells with basal [Ca2+]i in the range of 90–120 nM were analyzed.

4.5. Whole-cell Electrophysiology

Currents from differentiated F11 cells were recorded by perforated whole-cell recordings (using
nystatin) at RT using an Axopatch 200A amplifier (Molecular Devices, Union City, CA, USA) with glass
micropipettes of 3–5 MΩ resistance. The extracellular solution contained (in mM): 138 NaCl, 2 CaCl2,
5.4 KCl, 1 MgCl2, 10 glucose, and 10 HEPES, pH 7.4 adjusted with NaOH. The pipette (intracellular)
solution contained (mM): 140 KCl, 2 MgCl2, 10 EGTA, 10 HEPES, 5 Mg-ATP, pH 7.4 adjusted with
KOH. pCLAMP software (version 10.2; Molecular Devices, Union City, CA, USA) was used for data
acquisition and analysis. Currents were leak subtracted off-line; currents recorded in the presence of
indicated drugs were normalized to those measured from the same cell in control solution.

4.6. Statistics

Data are expressed as the mean ± SEM. Statistically significant differences between the data
(p < 0.05) were evaluated with the Student’s t-test or by the ANOVA, when multiple groups were
compared, by using STAT software, version 1.0 (author Glantz SA).
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