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Abstract 24 

This study focused on continuous-flow hydrogen production by Thermotoga 25 

neapolitana at a hydraulic retention time (HRT) decreasing from 24 to 5 h. At each HRT 26 

reduction, the hydrogen yield (HY) immediately dropped, but recovered during 27 

prolonged cultivation at constant HRT. The final HY in each operating period decreased 28 

from 3.4 (± 0.1) to 2.0 (± 0.0) mol H2/mol glucose when reducing the HRT from 24 to 7 29 

h. Simultaneously, the hydrogen production rate (HPR) and the liquid phase hydrogen 30 

concentration (H2aq) increased from 82 (± 1) to 192 (± 4) mL/L/h and from 9.1 (± 0.3) to 31 

15.6 (± 0.7) mL/L, respectively. Additionally, the effluent glucose concentration 32 

increased from 2.1 (± 0.1) to above 10 mM. Recirculating H2-rich biogas prevented the 33 

supersaturation of H2aq reaching a value of 9.3 (± 0.7) mL/L, resulting in complete 34 

glucose consumption and the highest HPR of 277 mL/L/h at an HRT of 5 h. 35 

 36 

Key words: Thermotoga neapolitana, hydrogen, continuous-flow dark fermentation, 37 

acetic acid, hydraulic retention time, gas recirculation 38 
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Abbreviations 47 

AA  Acetic acid 48 

BMY Biomass yield 49 

CDW Cell dry weight 50 

CSTR Continuously stirred tank reactor 51 

GaR Biogas recirculation 52 

HPR Hydrogen production rate 53 

HY Hydrogen yield 54 

LA  Lactic acid 55 

1 Introduction 56 

Dark fermentation is a sustainable process capable of converting organic matter to the 57 

clean and environmentally friendly energy carrier hydrogen (Lee et al., 2011; Ntaikou 58 

et al., 2010; Sivagurunathan et al., 2016). While being considered the most promising 59 

amongst the biological processes due to the independence from light and the simple 60 

reactor operation (Arimi et al., 2015; Balachandar et al., 2013), dark fermentation still 61 

faces major limitations. Amongst others, low hydrogen production rates (HPR) and 62 

hydrogen yields (HY) are two of the most fundamental drawbacks in order to obtain an 63 

economically viable process (de Vrije et al., 2007; Gupta et al., 2013; Lee et al., 2011).  64 

In dark fermentation, the HY is closely connected to the culture used (Balachandar et 65 

al., 2013; Ghimire et al., 2015), with high yields being achieved by selecting a suitable 66 

production organism (O-Thong et al., 2008). Thermophilic strains are advantageous 67 

over mesophilic strains providing the highest HYs (Elsharnouby et al., 2013; Gupta et 68 
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al., 2016; Lee et al., 2011). Moreover, most other non-H2 producing microorganisms 69 

competing for substrate or consuming the produced hydrogen are inhibited by 70 

elevated temperatures (Hawkes et al., 2007; Yasin et al., 2013).  71 

Thermotoga neapolitana (briefly T. neapolitana) is a hyperthermophilic bacterium 72 

which has been extensively studied for the production of hydrogen (Pawar and van 73 

Niel, 2013; Pradhan et al., 2015). Besides achieving exceptional yields approaching the 74 

theoretical value of 4 mol H2/mol glucose (d'Ippolito et al., 2010; Munro et al., 2009), 75 

this bacterium is capable to simultaneously metabolize (Eriksen et al., 2008) a wide 76 

range of substrates (Huber and Hannig, 2006; Pradhan et al., 2015). So far, T. 77 

neapolitana has exclusively been investigated in batch and fed batch operation 78 

(Pradhan et al., 2015). However, continuous-flow conditions are generally preferred 79 

for an industrial application (Kumar et al., 2014; Ntaikou et al., 2010) due to the more 80 

energy efficient reactor operation (Lin et al., 2012; Show et al., 2011). Furthermore, 81 

continuous mode allows the culture to reach an acclimatized steady state which has 82 

shown to provide better process stability and higher hydrogen yields (Elsharnouby et 83 

al., 2013; Hawkes et al., 2007).  84 

In continuous operation, the hydraulic retention time (HRT) is a major factor affecting 85 

the reactor performance of dark fermentation (Arimi et al., 2015; Sivagurunathan et 86 

al., 2016). At constant reactor volume and substrate removal efficiency, a decrease of 87 

the HRT represents an acceleration of the process. Consequently, the same amount of 88 

substrate can be metabolized in a shorter period of time, which considerably reduces 89 

the bioreactor size and capital costs (Hawkes et al., 2007). Furthermore, decreasing the 90 
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HRT has shown to increase the HPR (Palomo-Briones et al., 2017; Whang et al., 2011; 91 

Zhang et al., 2013), additionally improving the economic viability of the process. Low 92 

HRTs are also advantageous as they selectively wash out from the system unwanted 93 

microorganisms such as hydrogen consumers, which exhibit lower growth rates 94 

compared to the hydrogen producing bacteria (Ghimire et al., 2015; Hawkes et al., 95 

2007). The minimum accomplishable HRT is thereby determined by the growth rate of 96 

the slower desired culture. An excessive shortening of the HRT generally leads to an 97 

incomplete substrate consumption or the complete washout of the culture (Ghimire et 98 

al., 2015; Lin et al., 2012). Hence, the optimization of the HRT, i.e. the proper 99 

bioreactor sizing, is essential for the establishment of a continuous production process.  100 

Another crucial factor in dark fermentation is end product inhibition. T. neapolitana 101 

metabolism results in the production of mainly acetic acid (through the H2- producing 102 

pathway) and lactic acid (through the competing pathway) (Pradhan et al., 2015), 103 

which can be inhibitory at high concentrations (Dreschke et al., 2019c). Furthermore, 104 

also the accumulation of hydrogen in the system hampers the efficiency of the process 105 

(Balachandar et al., 2013; Verhaart et al., 2010). Verhaart et al. (2010) explain in detail 106 

how high H2 concentrations negatively affect the thermodynamics of hydrogen 107 

production in dark fermentation. To determine the effect of H2 on the process, the 108 

relevant parameter which directly acts on the microbial culture is the concentration of 109 

liquid phase hydrogen (H2aq), which is often wrongly considered to be in equilibrium 110 

with the easily measurable hydrogen partial pressure in the gas phase (Ghimire et al., 111 

2015; Ntaikou et al., 2010). However, an increasing amount of studies have reported 112 

the supersaturation of H2aq and demonstrated its considerable impact on dark 113 
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fermentation (Gupta et al., 2016; Kraemer and Bagley, 2006; Ljunggren et al., 2011). 114 

Especially, the positive correlation between H2aq and HPR (Dreschke et al., 2019a; 115 

Dreschke et al., 2019b; Pauss et al., 1990) highlights the importance to prevent H2aq 116 

accumulation in order to achieve high H2 productivities in dark fermentation.  117 

In the present study, T. neapolitana was used in a continuous-flow biohydrogen 118 

production process. We investigated the effect of a decreasing HRT on the dark 119 

fermentation performance and H2aq build-up. Furthermore, the use of H2-rich biogas 120 

recirculation was tested for its potential to counteract the supersaturation of H2aq at 121 

the lowest HRTs. This study represents a preliminary study, aiming to gain a broader 122 

understanding of the hyperthermophilic, pure culture, continuous dark fermentation 123 

under controlled process conditions with the goal to establish a technology, which is 124 

capable of treating a real carbohydrate rich waste and efficiently converting it to 125 

hydrogen. 126 

2 Material and methods 127 

2.1 Bacterial culture and medium 128 

A pure culture of T. neapolitana was obtained from DSMZ (Deutsche Sammlung von 129 

Mikroorganismen und Zellkulturen, Braunschweig, Germany). The medium 130 

composition was based on a modified ATCC 1977 medium described by Dreschke et al. 131 

(2018) containing the following components (in g/L): 10 NaCl; 5 glucose (equals 27.8 132 

mM); 2 yeast extract; 2 tryptone; 1 cysteine; 1 NH4Cl; 0.3 K2HPO4; 0.3 KH2PO4; 0.2 133 

MgCl2∙6H2O; 0.1 KCl; 0.1 CaCl2∙2H2O; 0.001 resazurin dissolved in distilled water, 134 

supplemented with 10 mL/L of vitamin and 10 mL/L of trace element solutions (DSM 135 
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medium 141). The pH adjusted medium (pH 7.5) was prepared in 10 L Schott Duran 136 

bottles before autoclaving at 110°C for 5 min. Subsequently, the headspace of the 137 

Schott Duran bottles was sparged with N2 for 10 min to remove oxygen and 138 

subsequently stored anaerobically at 4 °C. 139 

2.2 Experimental conditions 140 

The experiment was conducted in a 3-L fully controlled continuously stirred tank 141 

reactor (CSTR) (Applikon Biotechnology, the Netherlands) with a working volume of 2 142 

L. The reactor was kept at a constant temperature of 80 °C and maintained at pH 7 by 143 

automatic addition of 5M NaOH, while a 500 rpm stirring was applied. The produced 144 

biogas was continuously released from the headspace of the reactor to prevent 145 

pressure build-up. To grow and acclimatize T. neapolitana, the reactor was operated in 146 

batch mode for approximately 16 h after the inoculation with 6% (v/v) of storage 147 

culture. Subsequently, the feeding was initiated at a flow rate of 83.3 mL/h resulting in 148 

an HRT of 24 h. The working volume was controlled using a level probe.  149 

To investigate the effect of the HRT on dark fermentation by T. neapolitana, different 150 

operating conditions were used as described in Table 1. The HRT was gradually 151 

decreased from 24 to 5 h, whereas H2-rich biogas recirculation (GaR) was added at the 152 

lowest HRTs (i.e. 7 and 5 h) to evaluate the impact of H2aq on the process performance. 153 

GaR refers to the recirculation of the produced biogas from the headspace to a 154 

distribution device at the base of the reactor at a flow-rate of 350 mL/h via a peristaltic 155 

pump (Watson-Marlow, United Kingdom). 156 
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2.3 Sampling and analytical methods 157 

To determine the concentration of glucose, acetic acid (AA) and lactic acid (LA), 2 mL of 158 

liquid sample was taken twice a day. Furthermore, 20 mL samples were withdrawn 159 

from the reactor for the determination of H2aq, while 200 mL of effluent was used for 160 

the analysis of cell dry weight (CDW) as described by Dreschke et al. (2019b). The 161 

biogas production was quantified by measuring the time to fill a 500 mL water 162 

displacement system. The procedures for liquid sample processing (glucose, AA and LA 163 

concentration) and the determination of the hydrogen concentration in the biogas 164 

were as described previously (Dreschke et al., 2019b). Glucose, LA and AA were 165 

determined via HPLC (Prominence LC-20A Series, Shimadzu, Japan), whereas the 166 

concentration of hydrogen in the biogas was analyzed via GC (Varian 3400, USA). The 167 

conversion from volumetric to molar hydrogen production was performed by applying 168 

the ideal gas law (O-Thong et al., 2008).  169 

3 Results and Discussion 170 

3.1 Response of T. neapolitana to the HRT decrease 171 

Fig. 1 shows the reactor performance at a decreasing HRT from 24 to 7 h. In 6 days of 172 

operation at an HRT of 24 h, we obtained an HY of 3.4 (± 0.1) mol H2/mol glucose, a 173 

biomass yield (BMY) of 28.6 (± 0.7) mg CDW/mol glucose and an HPR of 82 (± 1) 174 

mL/L/h which induced a H2aq of 9.1 (± 0.3) mL/L (Fig. 2A and B). Besides H2, glucose was 175 

metabolized to AA (i.e. 44.0 (± 0.8) mM) and LA (i.e. 5.6 (± 0.8) mM) at an HRT of 24 h. 176 

A residual glucose concentration of 2.1 (± 0.1) mM remained in the effluent. 177 
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The reduction of HRT from 24 to 20 h induced an immediate decrease of the HY from 178 

approximately 3.4 mol H2/mol glucose on day 6 to 2.0 mol H2/mol glucose on day 7 179 

(Table 1). A concomitant shift of the end product formation from AA to LA and a 180 

temporary increase of the residual glucose concentration to 5.2 mM (Fig. 1A) were 181 

observed. At the same time, the HPR declined from approximately 82 to 70 mL/L/h 182 

(Table 1), while the BMY remained relatively unaffected reaching 30.0 (± 1.4) mg 183 

CDW/mol glucose (Fig. 2A). Subsequent to the change of HRT from 24 to 20 h, the 184 

process recovered from day 7 to 21, as depicted by the HY increasing to approximately 185 

2.8 mol H2/mol glucose (Fig. 1A, Table 1), the shift of end products back from LA to AA 186 

(Fig. 1A) and the increase of HPR to 96 mL/L/h (Fig. 1B, Table 1). A complete glucose 187 

consumption was observed from day 13 onwards (Fig. 1A). 188 

A similar response to a decreasing HRT was observed by Kim et al. (2012) using 189 

anaerobic digester sludge as inoculum in a CSTR at a constant organic loading rate of 190 

40 g glucose/L/day. Decreasing the HRT from 24 to 12 h temporarily decreased the 191 

glucose consumption and HY from approximately 95 to 40% and from 0.8 to 0.5 mol 192 

H2/mol glucose, respectively. After 5 and 7 days of cultivation, the process recovered 193 

reaching 90% of glucose consumption and an HY of 1.2 mol H2/mol glucose. Peintner 194 

et al. (2010) investigated the use of a pure Caldicellulosiruptor owensensis culture in a 195 

trickling bed bioreactor. They observed a drastic shift from AA to LA formation and 196 

cessation of hydrogen production in the first day after reducing the HRT from 7.5 to 5 197 

h. In the subsequent days, the process recovered resulting in a stable hydrogen 198 

production and an increase of the AA/LA ratio.  199 
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The above described response, i.e. a drop of process efficiency and the ensuing 200 

recovery of the process performance, was subsequently observed at each stepwise 201 

HRT reduction (Fig. 1A). To allow a more detailed analysis, the recovery at each 202 

individual operating condition was described using a linear regression (Fig. 1A and B, 203 

Fig. 2A and B). This allowed the calculation of the initial and end value of the HY and 204 

HPR at each HRT, as reported in Table 1. The stoichiometric sum of LA, AA and residual 205 

glucose in the effluent constituted for 95 (± 5)% of the initial glucose feed throughout 206 

the entire experiment (Fig. 1A). The hydrogen concentration, i.e. 67.2 (± 2.4)%, in the 207 

produced biogas remained constant along the 129 days of operation (data not shown) 208 

and, hence, unaffected by the change of operating condition. 209 

3.2 T. neapolitana metabolism at decreasing HRT 210 

The decrease of HY described in section 3.1 strongly indicates that the reduction of the 211 

HRT induced a shock response. The glucose degradation by T. neapolitana is 212 

dominated by 2 pathways defined by their final products, either AA or LA (Pradhan et 213 

al., 2015). Only the AA pathway leads to the formation of hydrogen, as demonstrated 214 

by the increase of HY when AA simultaneously increased (Fig. 1A and 3A). The AA 215 

pathway also results in an additional energy gain of two moles ATP/mol glucose, 216 

although this requires a high redox potential (Eo' = -414 mV). This is demonstrated by 217 

the Gibbs free energy under standard conditions for the reduction of H+ by the internal 218 

electron carrier NADH to LA (ΔG0 = -25.0 kJ/mol) or to AA and H2 (ΔG0 = +18.1 kJ/mol) 219 

(Balachandar et al., 2013), rendering the AA pathway energetically more challenging 220 

than the LA pathway. Hence, the metabolism of T. neapolitana shifts towards the LA 221 

pathway as a response to unfavorable or changeable conditions, allowing the organism 222 
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to continue the fermentation, however with a lower energy yield. This phenomenon 223 

was observed at each decrease of HRT in this study (Fig. 1A) or previously at elevated 224 

hydrogen (d'Ippolito et al., 2010; Dreschke et al., 2019b) and AA (Dreschke et al., 225 

2019c) concentrations. The subsequent recovery during each operating phase is 226 

assumed to be an acclimatization (i.e. an improvement of the culture metabolic 227 

abilities allowing it to tolerate more stressing conditions after a certain operational 228 

time Dreschke et al., 2019c) of T. neapolitana at stable environmental conditions, 229 

driven by the higher energy yield of the AA pathway. Accordingly, Dreschke et al. 230 

(2019c) observed a 47% increase of the HY over 130 days of continuous flow 231 

cultivation increasing the feed glucose (i.e. 11.1-41.6 mM) and AA (i.e. 0-240 mM) 232 

concentrations at a constant HRT. The described change in metabolism implies the 233 

synthesis of new enzymes, indicating why acclimatization is a slow process occurring 234 

exclusively during a prolonged cultivation at stable conditions. 235 

3.3 Impact of HRT on hydrogen yield and production rate 236 

As mentioned in section 3.1, the efficiency of the process considerably improved 237 

throughout each operating phase. For a better comparison of the reactor performance 238 

at different HRTs, an average value of HY and HPR in the final 3 days of each operating 239 

condition is given in Fig. 2. The HY gradually decreased from 3.4 (± 0.1) to 2.0 (± 0.0) 240 

mol H2/mol glucose when the HRT was reduced from 24 to 7 h (Fig. 2A). At the same 241 

time, the HPR increased from 82 (± 1) to 192 (± 4) mL/L/h, despite the decline of the 242 

increasing HPR is generally observed when lowering the HRT and considered to be 243 

caused by the higher loading rate (Barca et al., 2015).  244 
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de Vrije et al. (2007) used Caldicellulosiruptor saccharolyticus in a CSTR at 72.5 (± 0.5) 245 

°C using 10.7 mM as feed glucose. In their study, lowering the HRT from 11.1 to 3.3 h 246 

decreased the HY from 4.0 (± 0.1) to 3.3 (± 0.1) mol H2/mol glucose while increasing 247 

the HPR from 4.0 (± 0.3) to 9.9 (± 0.5) mmol/L/h. Similarly, Xing et al. (2008) reported 248 

an increase of HPR and a decrease of HY when reducing the HRT from 10 to 1.7 h using 249 

Ethanoligenens harbinense YUAN-3 in a CSTR with 1 g/L of feed glucose concentration. 250 

Jo et al. (2008) used Clostridium tyrobutyricum JM1 in a fixed bed bioreactor at 37°C. 251 

Reducing the HRT from 24 to 2 h increased the HPR by approximately 7 times up to a 252 

maximum of 7.2 L H2/L/d with a glucose conversion efficiency of 97%. The further 253 

decrease to an HRT of 1 h induced a sharp drop of conversion efficiency to 41% and an 254 

HPR of approximately 2.2 L/L/d. The HY of C. tyrobutyricum JM1 was not discussed in 255 

detail by Jo et al. (2008).  256 

3.4 Correlation of HPR and H2aq at decreasing HRT 257 

Similar to the HPR, also the H2aq increased with decreasing HRT (Fig. 2B). At an HRT of 258 

24 h, the H2aq was 9.1 (± 0.3) mL/L (Fig. 2B), i.e. lower than 9.7 mL/L which is the liquid 259 

phase concentration in thermodynamic equilibrium with a gas phase containing 65% 260 

H2 at 80 °C, as suggested by Henry´s law (Dreschke et al., 2019b). The applied 500 rpm 261 

agitation provided a sufficient gas-liquid mass transfer to efficiently remove hydrogen 262 

from the liquid phase as previously reported (Dreschke et al., 2019b). However, when 263 

the HRT was reduced to 7 h and the HPR increased to 192 (± 4) mL/L/h (Fig. 2B), the 264 

same agitation could not maintain the gas-liquid equilibrium leading to a 265 

supersaturated H2aq of 15.6 (± 0.7) mL/L. The H2aq was directly correlated to the HPR 266 

(Fig. 2B) under all operating conditions until day 103, i.e. prior to applying GaR.  267 
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The importance of the gas-liquid mass transfer on the process has been demonstrated 268 

in previous studies (Beckers et al., 2015; Dreschke et al., 2019b; Kraemer and Bagley, 269 

2006; Pauss et al., 1990). When adequate gas-liquid mass transfer is provided, H2aq 270 

remains in equilibrium with the gas phase preventing the supersaturation of H2aq 271 

(Dreschke et al., 2019b; Pauss et al., 1990). If, however, the gas-liquid mass transfer is 272 

limited, hydrogen accumulates in the liquid phase depending on the HPR as 273 

theoretically and experimentally demonstrated by Pauss et al. (1990) using mixed 274 

cultures and observed by Dreschke et al. (2019b) using T. neapolitana. Hydrogen is a 275 

well-known inhibitor of dark fermentation, acting on the yield as well as the dark 276 

fermentation rate (Dreschke et al., 2019b). Due to this inhibition of HPR by H2aq, both 277 

parameters reciprocally impact each other, resulting in a process performance which is 278 

primarily determined by the mass transfer of the system.  279 

In this study, the response of T. neapolitana at each stepwise HRT decrease might have 280 

been induced by a rapid increase of H2aq, caused by the increase of the HPR. We 281 

assume that T. neapolitana reduced the hydrogen yield to prevent high H2aq 282 

concentrations. This hypothesis is supported by the low impact of an HRT change on 283 

HPR which is directly correlated to H2aq.  284 

3.5 Application of GaR 285 

At low HRTs, the glucose consumption efficiency was impaired. In particular, the 286 

residual glucose concentration remained above 5 mM and 10 mM for approximately 6 287 

and 10 days when the HRT was reduced from 13 to 10 h and from 10 to 7 h (Fig. 1A), 288 

respectively. An incomplete substrate consumption is commonly observed when 289 

decreasing the HRT below a certain threshold value (Kumar et al., 2014; Palomo-290 
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Briones et al., 2017; Whang et al., 2011). At an HRT of 7 h, glucose consumption 291 

improved from day 98 onwards. The additionally consumed fraction of glucose was 292 

primarily metabolized via the non-hydrogen-producing LA pathway, as demonstrated 293 

by the sharp LA increase in the reactor (Fig. 1A). The higher H2aq concentrations 294 

observed at an HRT of 7 h (Fig. 3B) likely hampered the dark fermentation yield and 295 

rate. 296 

Therefore, GaR was initiated on day 104 to improve the gas-liquid mass transfer and 297 

discern whether the reduced performance was due to the inhibition by accumulated 298 

H2aq, or a kinetic limitation of the culture. The use of GaR immediately decreased the 299 

H2aq, maintaining it at 9.3 (± 0.7) mL/L independent from the HPR (Fig. 3B). GaR initially 300 

induced a slight decrease of HY and HPR from approximately 2.1 to 1.7 mol H2/mol 301 

glucose and 207 to 158 mL/L/h, respectively (Table 1). This is assumed to be caused by 302 

the response of T. neapolitana to the change of environmental conditions discussed in 303 

section 3.2. As previously observed, the process recovered, reaching an HY of 2.3 304 

mol/mol glucose and a HPR of 216 mL/L/h (Table 1) after 13 days of operation, i.e. 7% 305 

higher than the values obtained at an HRT of 7 h in the absence of GaR. Furthermore, 306 

glucose was completely consumed throughout the operating period, while the AA 307 

concentration increased from approximately 28 to 33 mM and the LA concentration 308 

decreased from approximately 24 to 19 mM from day 104 to 117 (Fig. 3A). 309 

To confirm that this higher process performance was only due to a low H2aq at HRT 7 h, 310 

the GaR was stopped on day 118. The cessation of GaR drastically decreased the HY 311 

from 1.9 to 0.2 mol H2/mol glucose, simultaneously shifting from AA to LA production 312 

(Fig. 3A) and reducing the HPR from 184 to 15 mL/L/h (Table 1). It is not entirely clear 313 
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why returning to an HRT of 7 h in the absence of GaR induced such a substantial 314 

difference in the process performance. The primary difference of the two phases was 315 

the velocity at which the environmental conditions were changed. Until day 103, T. 316 

neapolitana slowly acclimatized to increasing levels of H2aq, whereas the deactivation 317 

of GaR immediately changed the gas-liquid mass transfer after cultivation at low H2aq 318 

for 13 days. We assume that the considerable reduction of HPR was a shock response 319 

by T. neapolitana triggered by elevated levels of H2aq, which subsequently decreased 320 

again to 11.9 mL/L on day 118 when H2aq was first measured after the GaR stop (Fig. 321 

3B). Despite the absence of GaR, H2aq declined even further until day 121 (Fig. 3B and 322 

C), due to the collapse of the hydrogen production with the HPR decreasing to 15 323 

ml/L/h in this phase (Table 1).  324 

On day 121, GaR was applied again to continue investigating the impact of the HRT on 325 

T. neapolitana at low H2aq concentrations at an HRT of 7 h. The process immediately 326 

recovered, as depicted by the increase of HPR and HY (Fig. 3A and C, Table 1). On day 327 

124, the HRT was reduced to 5 h in the presence of GaR to determine whether a low 328 

H2aq would permit a further increase of the process velocity. In contrast to the previous 329 

HRT reductions to 10 and 7 h, glucose continued to be completely degraded to 2.1 (± 330 

0.6) mM in the presence of GaR (Fig. 3A) and the process continued to recover with 331 

the HY increasing from 1.8 to 2.0 mol H2/mol glucose in 5 days of cultivation (Table 1). 332 

This resulted in an HPR of 277 mL/L/h at the end of the operating period (Table 1), i.e. 333 

the highest obtained under all the process conditions tested.  334 

We demonstrate that the increase of HPR leads to an increase of H2aq and inevitably 335 

inhibition. GaR is a successful technique preventing H2aq supersaturation, allowing high 336 
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glucose consumption and HPR even at an HRT of 5 h. However, the mechanisms acting 337 

on the culture are not entirely clear, as the initiation and stopping of GaR seem to 338 

induce a response of T. neapolitana similar to that observed at changes of H2aq 339 

(Dreschke et al., 2019b) or HRT (Fig. 1). Further long-term investigations using real 340 

waste in non-axenic conditions are necessary to determine the real potential of this 341 

technique. Such investigations would also allow the much-needed evaluation, whether 342 

the thermophilic process is energetically justified and the advantages (e.g. higher 343 

yields and process rates, waste treatment, and facilitated control due to lower 344 

contamination) outweigh the additional heating expenses. The presented process is 345 

especially suited for one of the many industrial processes, which simultaneously 346 

produce waste heat together with organic waste thereby eliminating or reducing the 347 

costs for heating. 348 

3.6 Effect of HRT on biomass yield, concentration and agglomeration 349 

Contrary to the HY, the biomass concentration was not negatively affected by the HRT 350 

decrease, but gradually increased throughout the initial 101 days of operation from 351 

0.67 (± 0.02) to 0.89 (± 0.05) g CDW/L (Fig. 1B). Interestingly, the biomass 352 

concentration remained in the same range (Fig. 1B), despite the considerably lower 353 

glucose consumption when decreasing the HRT from 10 to 7 h (Fig. 1A). This explains 354 

the steady increase of BMY from 28.6 (± 0.7) to 39.7 (± 2.9) mg CDW/mol glucose 355 

between the HRT 24 and 10 h, followed by the sharp increase to 57.6 (± 5.1) mg 356 

CDW/mol glucose at an HRT of 7 h (Fig. 2A). The results suggest that the biomass 357 

concentrations in a T. neapolitana cultivation is only marginally influenced by the HRT 358 

or the glucose consumption but increases slightly with acclimatization. Contrary to a 359 
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change in HRT, the shock applied by the deactivation of GaR on day 118 induced a 360 

notable decrease of the biomass concentration, however exhibiting a considerably 361 

lower impact than that observed on the HY and the HPR. 362 

A restrained growth by T. neapolitana to approximately 0.7 g CDW/L has previously 363 

been observed, when the biomass concentration remained unaffected by an increase 364 

of feed glucose concentration from 22.2 to 41.6 mM in continuous operation at an HRT 365 

of 24 h (Dreschke et al., 2019c). 366 

Such growth limitation is common for hyperthermophilic suspended cultures (Lee et 367 

al., 2011) and considered a major obstacle for their application in large scale hydrogen 368 

production (Gupta et al., 2016). However, in the present study, we noticed the 369 

formation of biomass agglomerates attached to the stainless-steel baffles inside the 370 

reactor. After 111 days of cultivation, the whitish agglomerates were approximately 2-371 

4 mm in diameter, protruding roughly 1 mm from the surface of attachment. T. 372 

neapolitana has previously been reported to form aggregates in batch (Eriksen et al., 373 

2011) or grow attached to solid surfaces in repeated fed-batch (Basile et al., 2012) 374 

cultivation. Furthermore, based on the hydrogen yield and acid production it can be 375 

assumed that despite the nonsterile conditions no relevant contamination occurred as 376 

it has been demonstrated in previous experiments after 110 d of continuous operation 377 

(Dreschke et al., 2019c). This strongly suggests the application of T. neapolitana in an 378 

advanced bioreactor system exploiting self-aggregation or biofilm formation to 379 

counteract low biomass concentrations. Such systems not only increase the biomass 380 

concentration, but generally allow lower HRTs resulting in higher HPRs (Cheng et al., 381 
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2010; Ghimire et al., 2015; Show and Lee, 2013), while being considered more stable 382 

and resistant against unfavorable environmental conditions (Cheng et al., 2010). 383 

Conclusion 384 

 HY decreased from 3.4 (± 0.1) to 2.0 (± 0.0) mol H2/mol glucose when 385 

decreasing the HRT from 24 to 7 h. In contrast, the HPR increased, reaching a 386 

maximum of 277 mL/L/h at an HRT of 5 h including GaR. 387 

 Each HRT reduction induced a shift from the AA to the LA pathway, a drop of 388 

the HY and an impaired glucose consumption at an HRT of 10 and 7 h. 389 

However, a prolonged cultivation at constant HRT allowed T. neapolitana to 390 

acclimatize, as indicated by an increase of the HY. 391 

 The H2aq positively correlated with the HPR reaching 15.6 (± 0.7) mL/L at 192 (± 392 

4) mL/L/h. 393 

 The use of GaR effectively prevented the supersaturation of H2aq, allowing a 394 

complete glucose consumption by T. neapolitana at an HRT as low as 5 h.  395 

 396 
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Fig. 1: Continuous dark fermentation of glucose (feed concentration 27.8 mM) by T. 421 

neapolitana at decreasing HRT from 24 to 7 h. Hydrogen yield (HY) and cumulative 422 

composition of the liquid phase, i.e. residual glucose (Glu), acetic acid (AA) and lactic acid (LA) 423 

(A) as well as biomass concentration and hydrogen production rate (HPR) (B). 424 

Fig. 2: Mean values of the 3 final days of each operational phase of the hydrogen yield (HY) 425 

and the biomass yield (BMY) (A) and hydrogen concentration in the liquid phase (H2aq) and 426 

hydrogen production rate (HPR) (B) at decreasing HRT from 24 to 7 h during the continuous 427 

dark fermentation of 27.8 mM Glu by T. neapolitana.  428 

Fig. 3: Continuous dark fermentation of 27.8 mM of glucose (Glu) by T. neapolitana at an HRT 429 

of 7 and 5 h, including or excluding recirculation of the H2-rich biogas (GaR). Hydrogen yield 430 

and composition of the digestate, i.e. residual Glu, acetic acid (AA) and lactic acid (LA) 431 

concentration (A), concentration of hydrogen in the liquid phase (H2aq) (B) as well as hydrogen 432 

production rate (HPR) and biomass concentration (C). 433 
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Fig. S1: Photograph of a stainless-steel baffle inside the reactor after 111 days of operation showing the 

formation of attached biomass agglomerates of up to approximately 4 mm in diameter.  
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Table 1: Biohydrogen production by T. neapolitana in continuous dark fermentation of 27.8 mM feed 

glucose at decreasing HRT excluding or including H2-rich biogas recirculation (GaR). Hydrogen yield (HY) 

and hydrogen production rate (HPR) are provided at the start and the end of each operating condition, 

calculated via the linear regression of each phase, as depicted in Fig. 1A and B as well as Fig. 2A and B. 

HRT [h] GaR Operating period  

[d] 

HY 

[mol H2/mol glucose] 

HPR 

[mL/L/h] 

   start end start end 

24 - 0 – 6 3.4 3.4 81 82 

20 - 7 – 21 2.0 2.8 70 96 

16 - 22 – 44 2.0 2.8 87 120 

13 - 45 – 73 2.2 2.3 114 118 

10 - 74 – 87 1.9 2.5 132 171 

7 - 88 – 103 1.5 2.1 146 207 

7  + 104 – 117 1.7 2.3 158 216 

7 - 118 – 121 1.9 0.2 184 15 

7 + 122 – 123 1.5 2.4 142 235 

5 + 124 – 129 1.8 2.0 243 277 
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