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Abstract
We introduce and study higher order Jacobian ideals, higher order andmixedHessians, higher
order polar maps, and higher order Milnor algebras associated to a reduced projective hyper-
surface. We relate these higher order objects to some standard graded Artinian Gorenstein
algebras, and we study the corresponding Hilbert functions and Lefschetz properties.
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1 Introduction

In Algebraic Geometry and Commutative Algebra, the Jacobian ideal of a homogeneous
reduced form f ∈ R = C[x0, . . . , xn], denoted by J ( f ) = (

∂ f
∂x0

, . . . ,
∂ f
∂x0

), plays several
key roles. Let X = V ( f ) ⊂ P

n be the associated hypersurface in the projective space. The
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A. Dimca et al.

linear system associated to the Jacobian ideal defines the polar map ϕX : P
n ��� P

n , also
called the gradient map, whose image is the polar image of X , denoted by ZX = ϕ(Pn).
The restriction of the polar map to the hypersurface is the Gauss map of X , GX = ϕX |X ,
whose image is the dual variety of X . The base locus of these maps is the singular
scheme of the hypersurface X , see [32]. The Milnor algebra of f , also called the Jaco-
bian ring of f , is the quotient M( f ) = R/J ( f ). This graded algebra is closely related
to the Hodge filtration on the cohomology of X and the period map, see [9,13,33]. The
aim of this paper is to construct higher order versions of these classical objects, explicit
some relations among them and extend some classical results to this higher order con-
text.

In the second section we give some definitions of Artinian Gorenstein algebras, Hessians,
Lefschetz properties, Jacobian ideals and Milnor algebras, and review some known results.
The standard Artinian Gorenstein algebra A( f ), associated to f , is given by Macaulay
Matlis duality: the ring Q = C[X0, . . . , Xn] acts on R via the identification Xi = ∂

∂xi
, and

we define A( f ) = Q/Ann( f ), see [27]. Since the Jacobian matrix associated to the polar
map is the Hessian matrix of f , see [32, Chapter 7], one gets that ϕX is a dominant map,
that is ZX = P

n , if and only if the Hessian determinant hess f �= 0. A description of the
forms f with hess f = 0 is given by the Gordan–Noether criterion, and can be found, for
example, in [4,14,15,20,32]. The new results in the second sections are Propositions 2.22
and 2.23, dealing with the Lefschetz properties of smooth cubic surfaces in P

3 and smooth
quartic curves in P

2.
In the third section we introduced the higher order Jacobian ideals J k( f ) and the corre-

spondingMilnor algebras Mk( f ). In the local situation, that is for a hypersurface singularity,
higherMilnor algebras and higher Tjurina algebras have been introduced byGreuel and Pham
in [19], but these objects are distinct from ours. The Gauss map G of a smooth hypersurface
is a birational morphism, see for instance [21,35]. The natural k-th order version of smooth-
ness is the hypothesis that all the points of X have multiplicity at most k. In Theorem 3.2 we
prove that this condition is equivalent to the k-th orderMilnor algebra Mk( f ) being Artinian,
generalizing a classical result for non singular hypersurfaces, and a second order result that
can be found in [11]. We also discuss when the Hessian of the form f belongs to the Jacobian
ideal J ( f ), see Proposition 3.6 and Question 3.7.

In the fourth section we first show that the k-th order Milnor algebra Mk( f ) determines
the hypersurface V ( f ) up-to projective equivalence, for a generic f and any k ≤ d/2 − 1,
see Theorem 4.1. In the rather long Example 4.2, we look at quartic curves in P

2, both
smooth and singular, and we compute the Hilbert functions for our graded algebras Mk( f )
and A( f ) as well as the minimal resolutions as a graded Q-module for A( f ) in many
cases.

In the fifth section, we construct the k-th polar map ϕk
X and we prove, in Theorem 5.2, a

higher order version of the Gordan–Noether criterion for the degeneracy of this k-th polar
map. In this setting, we use the mixed Hessians developed in [16], generalizing higher order
Hessians introduced in [27]. In Corollaries 5.3 and 5.5, we give sufficient conditions for the
non degeneracy of ϕk

X and Theorem 5.7 give also some information about the degree of the
k-th polar map. In [7], the author showed that the natural higher order related dual map,
ψk

X = ϕk
X |X , is a finite map. In Theorem 5.7, we assume that the k-th Milnor algebra is

Artinian to prove that ϕk
X is finite.

We would like to thank the referee for his very careful reading of our manuscript and for
his suggestions which greatly improved the presentation of our results.
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2 Preliminaries

2.1 Artinian Gorenstein algebras andmixed Hessians

In this section we give a brief account of Artinian Gorenstein algebras and Macaulay-Matlis
duality.

Definition 2.1 Let R = C[x0, . . . , xn] be a polynomial ring with the usual grading and
I ⊂ R be a homogeneous Artinian ideal and suppose, without loss of generality that I1 = 0.

Then the graded Artinian C-algebra A = R/I =
d⊕

i=0

Ai is standard, i.e. it is generated in

degree 1 as an algebra. Since A is Artinian, under the hypothesis I1 = 0, we call n + 1 the
codimension of A, by abuse of notation. Setting hi (A) = dimC Ai , theHilbert vector of A is
Hilb(A) = (1, h1(A), . . . , hd(A)). The Hilbert vector is sometimes conveniently expressed
as the Hilbert function of A, given by the formula

H(A, t) =
d∑

k=0

hk(A)tk . (1)

The Hilbert vector Hilb(A) is said to be unimodal if there exists an integer t ≥ 1 such
that 1 ≤ h1(A) ≤ · · · ≤ ht (A) ≥ ht+1(A) ≥ · · · ≥ hd(A). Moreover the Hilbert vector
Hilb(A) = (1, h1(A), . . . , hd(A)) is said to be symmetric if hd−i (A) = hi (A) for every
i = 0, 1, . . . , � d

2 �. The next Definition is based in a well known equivalence that can be
found in [27, Prop. 2.1].

Definition 2.2 A standard graded Artinian algebra A as above is Gorenstein if and only if
hd(A) = 1 and the restriction of the multiplication of the algebra in complementary degree,
that is Ak × Ad−k → Ad , is a perfect paring for k = 0, 1, . . . , d , see [27]. If A j = 0 for
j > d , then d is called the socle degree of A.

It follows that the Hilbert vector Hilb(A) of a graded Artinian Gorenstein C−algebra A is
symmetric. The converse is not true, and Hilb(A) is not always unimodal for A Artinian
Gorenstein.

Example 2.3 The first example of a non unimodal Hilbert vector Hilb(A) of a Gorenstein
algebra A was given by Stanley in [34], namely

(1, 13, 12, 13, 1).

This algebra A has codimension 13 and socle degree 4. In [3] we can find the first known
example of a non unimodal Gorenstein Hilbert function in codimension 5, namely

(1, 5, 12, 22, 35, 51, 70, 91, 90, 91, 70, 51, 35, 22, 12, 5, 1).

All Gorenstein h-vectors are unimodal in codimension ≤ 3, see [34]. To the best of the
authors knowledge, it is not known if there is a non unimodal Hilbert vector of a Gorenstein
algebra in codimension 4, see [31].

Since our approach is algebro-geometric-differential, we recall a differentiable version of
the Macaulay-Matlis duality which is equivalent to polarity in characteristic zero. We denote
by Rd = C[x0, . . . , xn]d the C−vector space of homogeneous polynomials of degree d . We
denote by Q = C[X0, . . . , Xn] the ring of differential operators of R, where Xi := ∂

∂xi
for
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i = 0, . . . , n. We denote by Qk = C[X0, . . . , Xn]k the C−vector space of homogeneous
differential operators of R of degree k.
For each integer k, with d ≥ k ≥ 0 there exist natural C−bilinear maps Rd × Qk → Rd−k

defined by differentiation:

( f , α) → fα := α( f ).

Let f ∈ R be a homogeneous polynomial of degree deg f = d ≥ 1, we define the annihilator
ideal of f by

Ann( f ) := {α ∈ Q|α( f ) = 0} ⊂ Q.

Note that Ann( f )1 �= 0 if and only if X = V ( f ) ⊂ P
n is a cone, that is, up-to a linear

change of coordinates, the polynomial f depends only of x1, . . . , xn . We assume from now
on that V ( f ) is not a cone, and hence that Ann( f )1 = 0. Since Ann( f ) is a homogeneous
ideal of Q, we can define

A( f ) = Q

Ann( f )
.

Then A( f ) is the standard graded Artinian Gorenstein C-algebra associated to f , given by
the Macaulay-Matlis duality, and it satisfies

{
A( f ) j = 0 for j > d

A( f )d = C
.

A proof of this result can be found in [27, Theorem 2.1].

Example 2.4 Take fF = xd0 +· · ·+xdn , the Fermat type polynomial of degree d . In this case the
ideal Ann( f ) is generated by Xi X j for 0 ≤ i < j ≤ n and by Xd

0 − Xd
j for j = 1, 2, . . . , n.

The graded part of degree k of A is Ak = 〈Xk
0, X

k
1, . . . , X

k
n〉 for k = 1, . . . , d − 1, and

A j = 〈x j
0 〉 for j = 0 and j = d . This determines the Hilbert vector

Hilb(A( fF )) = (1, n + 1, . . . , n + 1, 1).

Definition 2.5 Let A = ⊕d
i=0Ai be an Artinian graded C−algebra with Ad �= 0.

(1) The algebra A is said to have the Weak Lefschetz property, briefly WLP, if there exists
an element L ∈ A1 such that the multiplication map •L : Ai → Ai+1 is of maximal
rank for 0 ≤ i ≤ d − 1.

(2) The algebra A is said to have the Strong Lefschetz property, briefly SLP, if there exists
an element L ∈ A1 such that the multiplication map Lk : Ai → Ai+k is of maximal
rank for 0 ≤ i ≤ d and 0 ≤ k ≤ d − i .

(3) We say that A has the Strong Lefschetz property in the narrow sense, if there is L ∈ A1

such that the linear map •Ld−2k : Ak → Ad−k is an isomorphism for all k ≤ d/2.

Remark 2.6 In the case of standard graded Artinian Gorenstein algebra the two conditions
SLP and SLP in the narrow sense are equivalent.

Example 2.7 This example is due to Stanley [34] and Watanabe [38]. It is considered to be
the starting point of the research area of Lefschetz properties for graded algebras. Nowadays
there are lots of different proofs for it. Consider the graded Artinian Gorenstein algebra

A = C[X0, . . . , Xn]
(Xa0

0 , . . . , Xan
n )

= C[X0]
(Xa0

0 )
⊗ · · · ⊗ C[Xn]

(Xan
n )

,
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with integers ai > 0 for all i = 0, . . . , n. It is a monomial complete intersection. Since the
cohomology of the complex projective space is H∗(Pm, C) = C[x]/(xm+1), and the Segre
product commutes with the tensor product by Künneth Theorem for cohomology, we have:

H∗(Pa0−1 × · · · × P
an−1, C) = C[X0, . . . , Xn]

(Xa0
0 , . . . , Xan

n )
.

By theHardLefschetz Theorem applied to the smooth projective variety (Pa0−1×· · ·×P
an−1,

we know that A has the SLP.

The standard graded Artinian Gorenstein algebra A( f ) associated to a form f is a natural
model for the cohomology algebras of spaces in several categories. For smooth projective
varieties, the Hard Lefschetz theorem inspired what is now called Lefschetz properties for
the algebra A( f ). As we show below, the geometric properties of the higher order objects
introduced in this paper are intrinsicly connected with such Lefschetz properties, see Theo-
rem 5.2.

2.2 Hessians and Lefschetz properties

We recall the following classical results involving the usual Hessian. Cones are trivial forms
with vanishing Hessian and are characterized by the fact that ZX ⊂ H = P

n−1 ⊂ P
n is a

degenerate variety. Hesse claimed in [23] that a reduced hypersurface has vanishing Hessian
if and only if it is a cone. Gordan–Noether proved that the claim is true for n ≤ 3 and false
for n ≥ 4 and this is part of the so called Gordan–Noether theory, see [4,14,18,20,32,38].
More precisely, let f ∈ Rd be a reduced form and let X = V ( f ) ⊂ P

n be the associated
hypersurface. Consider the polar map associated to f :

ϕX : P
n ��� (Pn)∗.

It is also called the gradient map of X = V ( f ) ⊂ P
n , and it is defined by

ϕX (p) = ( fx0(p) : · · · : fxn (p)),

where fxi = ∂ f
∂xi

. The image Z = ZX of P
n under the polar map ϕX is called the polar image

of X .

Proposition 2.8 [18] Let f ∈ C[x0, . . . , xn] be a reduced polynomial and consider X =
V ( f ) ⊂ P

n. Then

(i) X is a cone if and only if Z ⊂ H = P
n−1 is degenerated, which is equivalent to say that

fx0 , . . . , fxn are linearly dependent;
(ii) hess f = 0 if and only if Z � P

n, or equivalently fx0 , . . . , fxn are algebraically depen-
dent.

Theorem 2.9 [18] Let X = V ( f ) ⊂ P
n, n ≤ 3, be a hypersurface such that hess f = 0.

Then X is a cone.

Theorem 2.10 [18] For each n ≥ 4 and d ≥ 3 there exist irreducible hypersurfaces X =
V ( f ) ⊂ P

n, of degree deg( f ) = d, not cones, such that hess f = 0.

Nowwe recall a generalization of a construction that can be found in [27]. Set A = A( f ),
let k ≤ l be two integers, take L ∈ A1 and let us consider the linear map

•Ll−k : Ak → Al .
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Let Bk = (α1, . . . , αr ) be a basis of the vector space Ak , and Bl = (β1, . . . , βs) be a basis
of the vector space Al .

Definition 2.11 We call mixed Hessian of f of mixed order (k, l) with respect to the basis
Bk and Bl the matrix:

Hess(k,l)f := [αiβ j ( f )]
Moreover, we define Hesskf = Hess(k,k)f , hesskf = det(Hesskf ) and hess f = hess1f .

Note that A( f )1 = Q1 by our assumption, which implies that Hess f = Hess1f is the usual
Hessianmatrix of the polynomial f andhess f is the usualHessian of f . Since A isGorenstein,
there is an isomorphism A∗

k � Ad−k . Therefore, given the basis Bk = (α1, . . . , αr ) of Ak

and a basis θ of Ad � C, we get the dual basis B∗
k = (β∗

1 , . . . , β∗
s ), of Ad−k in the following

way

β∗
i β j ( f ) = δi jθ.

Definition 2.12 We call dual mixed Hessian matrix the matrix

Hess(k
∗,l)( f ) := [(β∗

i )α j ( f )]
Note that rk Hess(k

∗,l) = rk Hess(d−k,l).
If L = a0X0 + · · · + an Xn ∈ Q1, we set L⊥ = (a0, . . . , an) ∈ C

n+1.

The next result can be found in [17] and it is a generalization of the main result of [27].

Theorem 2.13 [17] With the previous notation, let M be the matrix associated to the map
•Ll−k : Ak → Al with respect to the bases Bk and Bl . Then

M = (l − k)!Hess(l∗,k)( f )(L⊥).

Corollary 2.14 For a generic L, one has the following.

(1) The map •Ld : A0 → Ad is an isomorphism.
(2) The map •Ld−2 : A1 → Ad−1 is an isomorphism if and only if hess f �= 0.
(3) If d = 2k is even, then hesskf �= 0.

(4) A has the SLP if and only if hesskf �= 0 for all k ≤ d/2.

Using Theorems 2.9 and 2.13 and we get the following.

Corollary 2.15 All standard graded Artinian algebras A of codim A ≤ 4 and of socle degree
= 3, 4 have the SLP.

Corollary 2.16 [14] For each pair (n, d) /∈ {(3, 3), (3, 4)} with N ≥ 3 and with d ≥ 3,
there exist standard graded Artinian Gorenstein algebras A = ⊕d

i=0Ai of codimension
dim A1 = n + 1 ≥ 4 and socle degree d that do not satisfy the Strong Lefschetz Property.
Furthermore, for each L ∈ A1 we can choose arbitrarily the level k where the map

•Ld−2k : Ak → Ad−k

is not an isomorphism.

Remark 2.17 For algebras of codimension 2, SLP hold in general. Therefore, for Gorenstein
algebras, it means that the higher Hessians are not zero. This result is a first step in order to
generalize Theorem 2.9. The issue is that in codimension 3 the problem is open, that is, we
do not know if there is an AG algebra failing SLP. A generalizaion of Theorem 2.10 can be
found in [14]. In this work we give a generalization of Proposition 2.8, see Theorem 5.2.
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2.3 Jacobian ideals andMilnor algebras

Let R = C[x0, . . . , xn] be the polynomial ring in n + 1 variables with complex coefficients,
endowed with the usual grading. Let f ∈ Rd be a homogeneous polynomial of degree d
such that the hypersurface X = V ( f ) ⊂ P

n is reduced. Let J ( f ) be the Jacobian ideal of
f , generated by the partial derivatives fxi , of f with respect to xi for i = 0, . . . , n. If X is
smooth, then the ideal J ( f ) is generated by a regular sequence, and M( f ) = R/J ( f ) is a
Gorenstein Artinian algebra. Moreover we have

dimC M( f ) < +∞ ⇔ V ( f ) is a smooth,

and the corresponding Hilbert function is given by

H(M( f ); t) =
(
1 − td−1

1 − t

)n+1

. (2)

In particular, the socle degree of M( f ) is (d − 2)(n + 1).
Assume now that X ⊂ P

n is singular, but reduced. In this case the Jacobian algebra is not
of finite length, in particular it is not Artinian. It contains information on the structure of the
singularities and on the global geometry of X .The following results can be found in [26].

Proposition 2.18 Let V : f = 0 be a hypersurface in P
n of degree d > 2, such that its

singular locus Vs has dimension at most n − 3. Then M( f ) has the WLP in degree d − 2.

Proposition 2.19 Let V : f = 0 be a hypersurface in P
n of degree d > 2, such that its

singular locus Vs has dimension at most n − 3. Then for every positive integer k < d − 1
M( f ) has the SLP in degree d − k − 1 at range k.

Theorem 2.20 Let V : f = 0 be a general hypersurface, then M( f ) has the SLP.

In view of the above result, it is natural to ask the following.

Question 2.21 Is it true for any homogeneous polynomial f with V ( f ) smooth?

We have the following results in relation with this question.

Proposition 2.22 Let V : f = 0 be any smooth surface in P
3 of degree d = 3. Then M( f )

has the SLP.

Proof Since M( f ) is Artinian Gorenstein, by [27, Theorem 2.1] we have

M( f ) ∼= Q/Ann(g),

for some homogeneous polynomial g, where

deg(g) = socle degree of M( f ) = (n + 1)(d − 2) = 4

and hessg �= 0, by Theorem 2.9. Indeed, otherwise V (g) would be a cone, in contradiction
with dim M( f )1 = 4. By Corollaries 2.14 and 2.15, M( f ) has the SLP. ��
Proposition 2.23 Let V : f = 0 be a smooth curve in P

2 of even degree d = 2d ′. Then the
multiplication by the square of a generic linear form 	 ∈ R1 induces an isomorphism

	2 : M( f )3d ′−4 → M( f )3d ′−2.

In particular, when d = 4, the Milnor algebra M( f ) has the SLP.
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Proof Note that the socle degree ofM( f ) is in this case T = 3(d−2) = 6d ′−6.As explained
in [12,Remark 3.7], a linear form 	 such that the abovemap is not an isomorphismcorresponds
exactly to the fact that the associated line L : 	 = 0 in P

2 is a jumping line of the second kind
for the rank two vector bundle T 〈V 〉 on P

2, where T 〈V 〉 is the sheaf of logarithmic vector
fields along V as considered for instance in [1,10,28]. Then a key result [24, Theorem 3.2.2]
ofK.Hulek implies that the set of jumping lines of second kind is a curve in the dual projective
plane (P2)∗ of all lines. When d = 4, this yields an isomorphism 	2 : M( f )2 → M( f )4.
The other isomorphisms necessary for the SLP follows from Corollary 2.14. ��
Remark 2.24 For any smooth curve V : f = 0 in P

2, the associated Milnor algebra M( f )
has the WLP, as follows from the more general results in [22]. In addition, for a singular,
reduced curve V : f = 0 in P

2, the associated Milnor algebra M( f ) is no longer Artinian
or Gorenstein, but a partial WLP still holds, see [8, Corollary 4.4].

3 Higher order Jacobian ideals andMilnor algebras

Let us consider the k-th order Jacobian ideal of f ∈ R to be J k = J k( f ) = (Qk ∗ f ) = (Ak ∗
f ), the ideal generated by the k-th order partial derivatives of f . Then J k is a homogeneous
ideal and we define Mk = Mk( f ) = R/J k to be the k-th order Milnor algebra of f . For
k = 1, the ideal J 1 is just the usual Jacobian ideal J ( f ) of f and M1 is the usual Milnor
algebra M( f ) as defined in the previous section.

Remark 3.1 For k = 2, the ideal J 2( f ) is the ideal in R spanned by all the second order
partial derivatives of f . Euler formula implies that J ( f ) ⊂ J 2( f ), when d = deg( f ) ≥ 2. It
follows that M2( f ) coincides with the graded first Hessian algebra H1( f ) of the polynomial
f , as defined in [11]. It follows from [11, Theorem 1.1] and [11, Example 2.7] that, for a
hypersurface V ( f ) having at most isolated singularities, the algebra M2( f ) = H1( f ) is
Artinian if and only if the multiplicity of the hypersurface V ( f ) at any singular point is 2.

The above remark can be extended to higher order Milnor algebras. First consider an
isolated hypersurface singularity (V , 0) : g = 0 at the origin of C

n . Then we define the k-th
order Tjurina ideal T I k(g) to by the ideal in the local ring On generated by all the partial
derivatives ∂αg, for 0 ≤ |α| ≤ k. The k-th order Tjurina algebra of the germ (V , 0) is by
definition the quotient

T k(V , 0) = On

T I k(g)
.

It can be shown that this algebra depends only on the isomorphism class of the germ (V , 0),
and we define the k-th Tjurina number of (V , 0) to be the integer

τ k(V , 0) = dimC T k(V , 0).

With this notation, we have the following result.

Theorem 3.2 The k-th order Milnor algebra Mk( f ) of a reduced homogeneous polynomial
f is Artinian if and only if the multiplicity of the projective hypersurface V ( f ) at any point
p ∈ V ( f ) is at most k. Moreover, if the hypersurface V ( f ) has only isolated singularities,
say at the points p1, . . . , ps , then for any k and for any large enough m one has

dimC Mk( f )m =
s∑

i=1

τ k(V , pi ).
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Proof The algebra Mk( f ) is Artinian if and only if the zero set Z(J k( f )) of the ideal J k( f )
in P

n is empty. Note that a point p ∈ Z(J k( f )) is a point on the hypersurface V ( f ), by
a repeated application of the Euler formula. If we choose the coordinates on P

n such that
p = (1 : 0 : . . . : 0), then the local equation of the hypersurface germ (V ( f ), p) is

g(y1, . . . , yn) = f (1, y1, . . . , yn) = 0,

exactly as in the proof of [11, Theorem 1.1]. It follows that the localization of the ideal
J k( f ) at the point p coincides with the ideal generated by all the partial derivatives ∂αg,
for 0 ≤ |α| ≤ k. And these derivatives vanish all at p exactly when the multiplicity of
V ( f ) at p is > k. This proves the first claim. The proof of the second claim is completely
similar ��

Note that [11, Example 2.18] shows that even for a smooth curve V ( f ), the algebra
M2( f ) = H1( f ) is not Gorenstein in general, since its Hilbert function, which depends on
the choice of the smooth curve, is not symmetric and the dimension of the socle can be > 1.
However, there is a Zariski open subsetUd,k in Rd such that the Hilbert vector Hilb(Mk( f ))
is constant for f ∈ Ud,k .

Question 3.3 Determine the value of the vector Hilb(Mk( f )), or equivalently of the Hilbert
function H(Mk( f ), t) for f ∈ Ud,k .

By semicontinuity, it follows that

hi (M
k( f )) = min{dim(Mk(g)i ) : g ∈ Rd}.

Similarly, there is a Zariski open subsetU ′
d in Rd such that the Hilbert vector Hilb(A( f ))

is constant for f ∈ U ′
d . Using recent results by Zhenjian Wang, see [37, Proposition 1.3], we

have the following.

Proposition 3.4 For a polynomial f ∈ U ′
d , one has hk(A( f )) = dim Qk = (n+k

n

)
for

k ≤ d/2 and hk(A( f )) = hd−k(A( f )) = (n+d−k
n

)
for d/2 < k ≤ d. In particular, a Fermat

type polynomial fF = xd0 + · · · + xdn is not in U ′
d , for d ≥ 4.

Proof Since A( f ) is Artinian Gorenstein with socle degree d , it is enough to prove only
the claim for k ≤ d/2. This claim is equivalent to Ann( f )k = 0 for k ≤ d/2, and also to
dim J k( f )d−k = dim Qk . This last equality is exactly the claim of [37, Proposition 1.3],
where J k( f )d−k is denoted by Ek( f ). The claim for the Fermat type polynomial follows
from Example 2.4. ��
Corollary 3.5 For any k ≤ d/2 and any polynomial f ∈ Ud,k one has

hi (M
k( f )) =

(
n + i

n

)
for i < d − k

and

hd−k(M
k( f )) = dim Rd−k − dim Qk =

(
n + d − k

n

)
−

(
n + k

n

)
.

In particular, a Fermat type polynomial f = xd0 + · · · + xdn is not in Ud,k , for d ≥ 2k ≥ 4.

In conclusion, the introduction of higher order Milnor algebras is motivated by the desire
to construct a larger class of Artin graded algebras starting with homogeneous polynomials.
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These new Artinian algebras may exhibit interesting examples with respect to Lefschetz
properties. It is known that the Hessians are related to Lefschetz properties, and the Hessians
of singular hypersurfaces behave in a different way from the ones of smooth hypersurfaces.
As an example, we have the following. Recall first that hess f denotes the Hessian of a
homogeneous polynomial f as in Definition 2.11 or, more explicitly,

hess f = det

(
∂2 f

∂xi∂x j

)

0≤i, j≤n

.

Proposition 3.6 Let f be a homogeneous polynomial in R.

(1) If the hypersurface V ( f ) is smooth, then hess f /∈ J ( f ).
(2) If the hypersurface V ( f ) is not smooth, but has isolated singularities, then hess f ∈ J ( f ).

Proof The first claim is well known, and it holds in fact for any isolated hypersurface singu-
larity, not only for the cone over V ( f ), see Theorem 1, section 5.11 in [2]. The second claim
is less known, and it follows from [11, Proposition 1.4 (ii)]. Indeed, for the n + 1-st Hessian
algebra Hn+1( f ), one has the equalities

Hn+1( f ) = R

J ( f ) + (hess f )
= M( f )

(hess f )
,

where (hess f ) is the principal ideal in R generated by the Hessian hess f and (hess f ) is the
principal ideal in M( f ) generated by the class hess f of the Hessian hess f in M( f ). By [11,
Proposition 1.4 (ii)], we know that the graded algebras Hn+1( f ) and M( f ) have the same
Hilbert series when the hypersurface V ( f ) is not smooth and has only isolated singularities.
This proves our claim (2). ��
Question 3.7 Is is true that hess f ∈ J ( f ) for any reduced, singular hypersurface V ( f )?

4 The Hilbert functions of A(f ) andMk(f ), and the geometry of V(f )

It is known that for two homogeneous polynomials f , g ∈ Rd , the corresponding Milnor
algebras M( f ) and M(g) are isomorphic as C-algebras if and only if the associated hyper-
surfaces V ( f ) and V (g) inP

n are projectively equivalent. This claim follows from [29] when
the hypersurfaces V ( f ) and V ( f ′) are both smooth. However, the method of proof can be
extended to cover all hypersurfaces. For a closely related result, see [36].

Note that a similar claim fails if we replace the Milnor algebra M( f ) = M1( f ) by
the second order Milnor algebra M2( f ). Indeed, it is enough to consider the family of
complex plane cubics fa = x30 + x31 + x32 − 3ax0x1x2, where a �= 0, a3 �= 1. In this case
M2( fa) = R/(x0, x1, x2) = C does not detect the parameter a. However, the main result of
[37] implies the following.

Theorem 4.1 The k-th order Milnor algebra Mk( f ) of a generic homogeneous polynomial
f determines the hypersurface V ( f ) up-to projective equivalence, when k ≤ d/2 − 1.

Proof Let f and g be two generic, degree d homogeneous polynomials in R, such that we
have an isomorphism of graded algebras

Mk( f ) = R/J k( f ) � R/J k(g) = Mk(g).
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Then there is a linear change of coordinates φ ∈ Gln+1(C), inducing the above isomorphism,
and hence such that φ∗(J k( f )) = J k(g). This last equality can be re-written as J k( f ◦φ) =
J k(g), and Theorem1.2 and Proposition 1.3 in [37] imply that the two hypersurfaces V ( f ◦φ)

and V (g) coincide. ��
Saying that the associated hypersurfaces V ( f ) and V (g) in P

n are projectively equivalent
means that the two polynomials f and g belongs to the same G-orbit, where G = Gln+1(C)

is acting in the natural way on the space of polynomials Rd by substitution. And the fact
that f and g belongs to the same G-orbit implies immediately that the Milnor algebras
M( f ) and M(g) are isomorphic. Similarly, the fact that f and g belong to the same G-
orbit implies immediately that the standard graded Artinian Gorenstein algebras A( f ) and
A(g) are isomorphic, see for instance [6, Lemma 3.3]. In particular, the Hilbert function of
A( f ) is determined by the G-orbit of f , and hopefully by the geometry of the corresponding
hypersurfaceV ( f ). However, the following example seems to suggest that it is a hard problem
to relate the geometry of the hypersurface V ( f ) to the properties of the algebras A( f ), M( f )
and M2( f ).

Example 4.2 In this example we look at quartic curves in P
2, i.e. (n, d) = (2, 4). When

V ( f ) is not a cone, only dimension h2(A( f )) has to be determined. It turns out that all the
possible values {3, 4, 5, 6} are obtained. All the computations belowwere done using CoCoA
software, see [5], with the help of Gabriel Sticlaru.
Case V ( f ) smooth

All the smooth quartics V ( f ) have the same Hilbert function

H(M( f ); t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 3t5 + t6,

given by the formula (2). But the other invariants may change, as the following examples
show.

(1) When fF = x40 + x41 + x42 , the Fermat type polynomial of degree 4, the corresponding
Hilbert function is

H(A( fF ); t) = 1 + 3t + 3t2 + 3t3 + t4,

by Example 2.4. The minimal resolution of A( fF ) is given by

0 → Q(−7) → Q(−3)2 ⊕ Q(−5)3 → Q(−2)3 ⊕ Q(−4)2 → Q,

in particular A( fF ) is not a complete intersection. The second order Milnor algebra is
M2( fF ) = R/(x20 , x

2
1 , x

2
2 ), hence a complete intersection, with Hilbert function

H(M2( fF ); t) = 1 + 3t + 3t2 + t3.

(2) For the smooth Caporali quartic given by fCa = x40 + x41 + x42 + (x0 + x1 + x2)4, we
get

H(A( fCa); t) = 1 + 3t + 4t2 + 3t3 + t4,

and the minimal resolution of A( fCa) is given by

0 → Q(−7) → Q(−4) ⊕ Q(−5)2 → Q(−2)2 ⊕ Q(−3) → Q.

Hence A( fCa) is a complete intersection of multi-degree (2, 2, 3). The second order
Milnor algebra M2( fCa) has a Hilbert function given by

H(M2( fCa); t) = 1 + 3t + 2t2,
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in particular this algebra is not Gorenstein.
(3) For the smooth quartic given by fCa1 = x40 + x41 + x42 + (x20 + x21 + x22 )

2, we get

H(A fCa1); t) = 1 + 3t + 6t2 + 3t3 + t4,

which coincides with the generic value given in Proposition 3.4, and the minimal reso-
lution of A( fCa1) is given by

0 → Q(−7) → Q(−4)7 → Q(−3)7 → Q.

Hence A( fCa1) is far from being a complete intersection. The second order Milnor
algebra M2( fCa1) has a Hilbert function given by

H(M2( fCa1); t) = 1 + 3t,

in particular this algebra is not Gorenstein.
(4) For the smooth quartic given by fCa2 = x40 + x41 + x42 + (x20 + x21 )

2, we get the same
Hilbert function as for A( fCa), but the minimal resolution of A( fCa2) is given by

0 → Q(−7) → Q(−3) ⊕ Q(−4)2 ⊕ Q(−5)2 → Q(−2)2 ⊕ Q(−3)2 ⊕ Q(−4) → Q.

The second order Milnor algebra M2( fCa2) has a Hilbert function given by

H(M2( fCa); t) = 1 + 3t + 2t2,

and hence this algebra is again not Gorenstein.

Case V ( f ) singular

(1) The rational quartic with an E6-singularity, defined by fC = x30 x1 + x42 satisfies
H(A( fC ); t) = H(A fF ; t) and the minimal resolution for A fC is

0 → Q(−7) → Q(−3)2 ⊕ Q(−5)3 → Q(−2)3 ⊕ Q(−4)2 → Q.

Hence the algebra A( fC ) has the same resolution as a graded R-module as the algebra
A( fF ). But these two algebras are not isomorphic. Indeed, note that

Ann( fF )2 = 〈X0X1, X0X2, X1X2〉 and Ann( fC )2 = 〈X2
1, X0X2, X1X2〉.

An isomorphism A( fF ) � A( fC ) ofC-algebras would imply that the two nets of conics

NF : aX0X1 + bX0X2 + cX1X2 and NC : aX2
1 + bX0X2 + cX1X2

are equivalent. This is not the case, since a conic in NF is singular if and only if it
belongs to the union of three lines given by abc = 0, while a conic in NC is singular
if and only if it belongs to the union of two lines given by ab = 0. For the associated
Milnor algebras, one has

H(M( fC ); t) = 1 + 3t + 6t2 + 7t3 + 7t4 + 6
t5

1 − t
,

and

H(M2( fC ); t) = 1 + 3t + 3t2 + 2
t3

1 − t
.

Hence M2( fC ) is not Artinian, as predicted by Theorem 3.2. Note that this curve has
a unique E6-singularity, with Tjurina numbers τ(E6) = τ 1(E6) = 6 and τ 2(E6) = 2,
which explain the coefficients of the rational fractions in the above formulas, in view of
Theorem 3.2.
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(2) For f3A2 = x20 x
2
1 + x21 x

2
2 + x20 x

2
2 − 2x0x1x2(x0 + x1 + x2), which defines a quartic

curve with 3 cusps A2, a direct computation shows that

H(A( f3A2); t) = 1 + 3t + 6t2 + 3t3 + t4,

which coincides with the generic value given in Proposition 3.4. The minimal resolution
is

0 → Q(−7) → Q(−4)7 → Q(−3)7 → Q.

Hence the algebra A( f3A2) has the same resolution as a graded R-module as the
algebra A( fCa1). Does this imply that these two algebras are isomorphic? In this
case Ann( f )2 = 0 and dimAnn( f )3 = 7, hence it is more complicated to use the
above method to distinguish these two algebras. Note also that the line arrangement
f = x0x1x2(x0 + x1 + x2) = 0 gives rise to an algebra A( f ) with exactly the same
resolution as a graded R-module as the algebra A( fCa1).
For the associated Milnor algebras, one has

H(M( f3A2); t) = 1 + 3t + 6t2 + 7t3 + 6
t4

1 − t
,

and

H(M2( f3A2); t) = 1 + 3t .

Hence M2( f3A2) is Artinian, as predicted by Theorem 3.2, but not Gorenstein.
(3) For f2A3 = x20 x

2
1 + x42 , which defines a quartic curve with 2 singularities A3, a direct

computation shows that

H(A( f2A3); t) = 1 + 3t + 4t2 + 3t3 + t4

and the minimal resolution is

0 → Q(−7) → Q(−3) ⊕ Q(−4)2 ⊕ Q(−5)2 → Q(−2)2 ⊕ Q(−3)2 ⊕ Q(−4) → Q.

Hence the algebra A( f2A3) has the same resolution as a graded R-module as the algebra
A( fCa2). Does this imply that these two algebras are isomorphic? Note that

Ann( f2A3)2 = 〈X0X2, X1X2〉 = Ann( fCa2)2,

while Ann( f2A3)3 and Ann( fCa2)3 have both dimension 7. Hence again the above
method to distinguish these two algebras is not easy to apply. For the associated Milnor
algebras, one has

H(M( f2A3); t) = H(M( fC ); t)
and

H(M2( f2A3); t) = 1 + 3t + 2t2.

Hence M2( fC ) is Artinian, but not Gorenstein.
(4) For f4A1 = (x20 + x21 )

2 + (x21 + x22 )
2, which defines a quartic curve with 4 singularities

A1 that is the union of two conics intersecting in the 4 nodes, a direct computation shows
that

H(A( f4A1); t) = 1 + 3t + 5t2 + 3t3 + t4
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and the minimal resolution is

0 → Q(−7) → Q(−4)4 ⊕ Q(−5) → Q(−2) ⊕ Q(−3)4 → Q.

(5) For the line arrangement defined by f = (x30 + x31 )x2, we get an algebra A( f ) with
exactly the same resolution as a graded R-module as the algebra A( fCa), hence a com-
plete intersection of multi-degree (2, 2, 3). But these two algebras are not isomorphic.
Indeed, note that

Ann( fCa)2 = 〈X0X1 − X1X2, X0X2 − X1X2〉 and Ann( f )2 = 〈X0X1, X
2
2〉.

An isomorphism A( fCa) � A( f ) of C-algebras would imply that the two pencils of
conics

PCa : a(y0y1 − y1y2) + b(y0y2 − y1y2) and Pf : ay0y1 + by22

are equivalent. This is not the case, since a conic in PCa is singular if and only if it
belongs to the union of three lines given by ab(a + b) = 0, while a conic in Pf is
singular if and only if it belongs to the union of two lines given by ab = 0.
For the associated Milnor algebras, one has

H(M( f4A1); t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 4
t5

1 − t
,

and

H(M2( f4A1); t) = 1 + 3t + t2.

Hence M2( f4A1) is Artinian and Gorenstein.

Example 4.3 We show here that for some smooth quartics V ( f ) in P
2 the multiplication by

a generic linear form 	 does not give rise to an injection M2( f )1 → M2( f )2. Note that one
has

dim M2( f )1 = dim R1 = 3 and dim M2( f )2 = dim R2 − dim A( f )2 = 6 − dim A( f )2,

using the general formula

dim J kd−k = dim A( f )k .

Hence, as soon as dim A( f )2 ≥ 4, the morphism M2( f )1 → M2( f )2 cannot be injective.
This happens for all the smooth quartics in Example 4.2, except for the Fermat one.

Question 4.4 It would be interesting to find out whether Mather-Yau result extends to this
setting, i.e. if an isomorphism A( f ) � A( f ′) of C-algebras implies that f and f ′ belongs
to the same G-orbit. In the case when (n, d) = (1, 4) or (n, d) = (2, 3), one has T = (n +
1)(d−2) = d and theG-orbits of polynomials in Rd corresponding to smooth hypersurfaces
can be listed using 1-parameter families. In both cases, the correspondenceMac : ft → gu(t)

between a polynomial ft ∈ Rd with V ( ft ) smooth and a polynomial gu(t) = Mac( ft ) ∈ Rd ,
defined by the property that one has an isomorphism

M( ft ) = Agu(t) ,

give rise to a bijection u of the corresponding parameter space, see [6] for details. Hence the
Mather-Yau result implies a positive answer to our question of the algebras A f in these two
special cases.
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5 Higher Jacobians and Higher Polar mappings

Consider the following exact sequence

0 → Ik → Qk → J kd−k → 0,

where I = Ann( f ) and J k = J k( f ). Themap Qk → J kd−k is given by evaluationα �→ α( f ).
We have also the natural exact sequence:

0 → Ik → Qk → Ak → 0.

Note that the vector spaces J kd−k and Ak have the same dimension,

dim J kd−k = dim Qk − dim Ik =
(
n + k

k

)
− dim Ik = dim Ak . (3)

Definition 5.1 The k-th polar mapping (or k-th gradient mapping) of the hypersurface X =
V ( f ) ⊂ P

n is the rational map �k
X : P

n ��� P(n+k
k )−1 given by the k-th partial derivatives

of f . The k-th polar image of X is Z̃k = �k
X (Pn) ⊆ P(n+k

k )−1, the closure of the image of
the k-th polar map.

For {α1, . . . , αak } a basis of the vector space Ak , we define the relative k-th polar map of X
to be the map ϕk

X : P
n ��� P

ak−1 given by the linear system J kd−k :

ϕk
X (p) = (α1( f )(p) : · · · : αak ( f )(p)).

The k-th relative polar image of X is Zk = ϕk
X (Pn) ⊆ P

ak−1, the closure of the image of the
relative k-th polar map.

It follows from Proposition 3.4, that for k ≤ d/2 and f generic, one has ak = (n+k
k

)
and

hence �k
X = ϕk

X in such cases. In general, the exact sequence

0 → Ik → Qk → J kd−k → 0

gives rise to a linear projectionP(n+k
k )−1 ��� P

ak−1 making compatible these two polar maps,
as in the diagram

P
n → P(n+k

k )−1

↘ ↓
P
ak−1.

Moreover, since Z̃k ⊂ P(J kd−k) = P
ak−1 ⊂ P(n+k

k )−1, the secant variety of Z̃k does not

intersect the projection center, hence Zk � Z̃k . The next result is a formalization of the
intuitive idea that the mixed Hessian Hess(1,k)f , introduced in Definition 2.11, is the Jacobian

matrix of the gradient (or polar) map ϕk of order k.

Theorem 5.2 With the above notations, we get:

dim Zk = dim Z̃k = rk(Hess(1,k)X ) − 1.

In particular, the following conditions are equivalents:
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(i) ϕk is a degenerated map, that is, dim Zk < n;
(ii) rk(Hess(1,k)X ) < n + 1;
(iii) The map •Ld−k−1 : A1 → Ad−k has not maximal rank for any L ∈ A1.

Proof If p = [v] ∈ P
n , then TpP

n = C
n+1/ < v > is the affine tangent space to P

n at p. Let

Hess(1,k)X (p) be the equivalence class of the mixed Hessian matrix of X = V ( f ) evaluated

at v. Hess(1,k)X (p) passes to the quotients and it induces the differential of the map ϕk
X at p:

(dϕk
X )p : TpP

n → Tϕk
X (p)P

ak−1, (4)

whose image is exactly Tϕk
X (p)Zk , when p is generic. From this we can describe explicitly

the projective tangent space to Zk at ϕk
X (p), obtaining

Tϕk
X (p)Zk = P(Im(Hess(1,k)X (v)) ⊆ P

ak−1. (5)

Thus, there is an integer γk ≥ 0 such that

dim Zk = rk(Hess(1,k)X ) − 1 = n − γk . (6)

The equivalence between (i) and (i i) is clear, since rk(Hess(1,k)X ) < n + 1 if and only if
γk > 0 if and only if dim(Zk) < n.

The equivalence between (i i) and (i i i) follows from Theorem 2.13. ��
Recall that for a standard gradedArtinian Gorenstein algebra, the injectivity of •L : Ai →

Ai+1 for a certain L ∈ A1 implies the injectivity of •L : A j → A j+1 for all j < i , see
[30, Proposition 2.1]. If A( f ) does not satisfy the WLP, then there is a minimal k such that
•L : Ak → Ak+1 is not injective for all L ∈ A1. By Theorem 5.2 the previous condition
is equivalent to say that for all j ≤ k the matrix Hess(1, j)f has full rank. The following
Corollary is a partial generalization of the Gordan–Noether Hessian criterion, recalled in
Proposition 2.8, to the case of higher order Hessians.

Corollary 5.3 Let k ≤ � d
2 � be the greatest integer such that •L : Ak−1 → Ak is injective for

some L ∈ A1. For each j ≤ k, we get that ϕ j degenerated implies hess jf = 0.

Proof The result follows from the commutative diagram, by Theorem 2.13 and by Theo-
rem 5.2.

A j → Ad− j

↑ ↗
A1

Indeed, for j ≤ k, we have that •L j−1 : A1 → A j is injective, by composition. If •Ld−2 j :
A j → Ad− j is injective, then •Ld− j−1 : A1 → Ad− j is injective. In other words, if

hess jf �= 0, then ϕ j is not degenerated. ��
The converse is not true, as one can see in the next example.

Example 5.4 Let f = xu3 + yu2v + zuv2 + v4 ∈ C[x, y, z, u, v]4 as in [14, Example 3],
and let A = Q/Ann( f ). The map •L : A1 → A2 is injective for L = u + v. For j = 2, we
have
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Hess2f =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 6 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 2 0
0 0 0 0 0 2 0 0
0 2 0 0 2 0 0 0
6 0 0 2 0 0 0 0
0 0 2 0 0 0 0 24

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and hess2f = det Hess2f = 0. Calculating the Hess(1,2)f , we get:

Hess(1,2)f =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 6u 0
0 0 0 2v 2u
0 0 0 0 2v
0 0 0 2u 0
0 0 0 2v 2u
0 2u 2v 2y 2z
6u 2v 0 6x 2y
0 0 2u 2z 24v

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rk(Hess(1,2)f ) = 5, hence ϕ2 is not degenerated, by Theorem 5.2.

Corollary 5.5 Let f be a homogeneous form of degree d and let 1 < k < d − 1. Let ϕk
f be

the k-th polar map of f . If hess f �= 0 then ϕk
f is not degenerated, that is dim Zk = n. In

particular, if X = V ( f ) ⊂ P
n with n ≤ 3 is not a cone, then ϕk

X is not degenerated.

Proof By Theorem 5.2 we have to prove that rk(Hess(1,k)f ) = n + 1 is maximal. Let L ∈ A1

be a general linear form. Since hess f �= 0, the multiplication map •Ld−2 : A1 → Ad−1

is an isomorphism. Indeed, by Theorem 2.13, after choosing basis the matrix of •Ld−2 is
(d − 2)!Hess((d−1)∗,1) whose rank is the same as the rank of Hess f . Since •Ld−2 : A1 →
Ad−1 factors via •Ld−k−1 : A1 → Ad−k , the injectivity of •Ld−2 implies the injectivity of
•Ld−k−1. On the other hand the rank of Hess((d−k)∗,1) is equal to the rank of Hess(1,k)f . The
result now follows from Gordan–Noether theory. ��
Example 5.6 Let X = V ( f ) ⊂ P

3 be Ikeda’s surface given by f = xuv3 + yu3v + x2y3 as
in [25,27]. Since X is not a cone, by the Gordan–Noether criterion, hess f �= 0. On the other
hand, hess2f = 0. By Corollary 5.5, we know that the second polar map is not degenerated.

Moreover, ϕX = �X : P
3 ��� P

9 since dim A2 = 10. From an algebraic viewpoint we have
A1 → A2 → A3 and we know that •L : A2 → A3 is not an isomorfism, in particular it has
non trivial kernel. On the other hand, •L2 : A1 → A3 is injective by Theorem 5.2. So the
image of the first multiplication does not intersect the kernel of the second one.

Consider the k-th polar map �k
X : P

n → P
N associated to a smooth hypersurface X =

V ( f ), where N = (n+k
k

)−1. Corollary 5.5 implies that the image of this map has dimension
n for any k with 1 < k < d − 1. There is a related result: consider the restriction

ψk
X = �k

X |X : X → P
N . (7)

Then it is shown in [7] that the map ψk
X is finite for 1 ≤ k < d . The case k = 2 is stated in

[7, Proposition 1.6] and the general case in [7, Remark 2.3 (ii)]. We prove next that the map
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�k
X is finite as well, which implies that dim Zk = n. Note that this map �k

X is well defined
as soon as Mk( f ) is Artinian.

Theorem 5.7 Let �k
X : P

n → P
N be the k-th polar map associated to a hypersurface

X = V ( f ) ⊂ P
n such that Mk( f ) is Artinian, where N = (n+k

k

) − 1 and 0 < k < d. Then
�k

X is finite. In particular,

dim Zk = dim�k
X (Pn) = n

and one has

deg�k
X · deg�k

X (Pn) = (d − k)n .

Proof Suppose there is a curve C in P
n such that �k

X is constant on C , say

�k
f (x) = (bα)|α|=k ∈ P

N ,

for any x ∈ C . There is at least one multi-index β such that bβ �= 0. But this leads to a
contradiction, since either the partial derivative ∂β f is identically zero, or the hypersurface
∂β f = 0 meets the curve C , say at a point p. At such a point p, all the partial derivatives
∂α f (p) = 0, for |α| = k, in contradiction to the fact that Mk( f ) is Artinian. The claim
about the degree follows by cutting �k

X (Pn) with n generic hyperplanes Hj in P
N , where

j = 1, . . . , n and using the fact that (�k
X )−1(Hj ) is a family of n hypersurfaces of degree

d − k meeting in deg�k
X · deg�k

X (Pn) simple points. ��
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